1/* Copyright (C) 2007-2020 Free Software Foundation, Inc.
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13for more details.
14
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22<http://www.gnu.org/licenses/>.  */
23
24/*****************************************************************************
25 *    BID64 square root
26 *****************************************************************************
27 *
28 *  Algorithm description:
29 *
30 *  if(exponent_x is odd)
31 *     scale coefficient_x by 10, adjust exponent
32 *  - get lower estimate for number of digits in coefficient_x
33 *  - scale coefficient x to between 31 and 33 decimal digits
34 *  - in parallel, check for exact case and return if true
35 *  - get high part of result coefficient using double precision sqrt
36 *  - compute remainder and refine coefficient in one iteration (which
37 *                                 modifies it by at most 1)
38 *  - result exponent is easy to compute from the adjusted arg. exponent
39 *
40 ****************************************************************************/
41
42#include "bid_internal.h"
43#include "bid_sqrt_macros.h"
44#ifdef UNCHANGED_BINARY_STATUS_FLAGS
45#include <fenv.h>
46
47#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
48#endif
49
50extern double sqrt (double);
51
52#if DECIMAL_CALL_BY_REFERENCE
53
54void
55bid64_sqrt (UINT64 * pres,
56	    UINT64 *
57	    px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
58	    _EXC_INFO_PARAM) {
59  UINT64 x;
60#else
61
62UINT64
63bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
64	    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
65#endif
66  UINT128 CA, CT;
67  UINT64 sign_x, coefficient_x;
68  UINT64 Q, Q2, A10, C4, R, R2, QE, res;
69  SINT64 D;
70  int_double t_scale;
71  int_float tempx;
72  double da, dq, da_h, da_l, dqe;
73  int exponent_x, exponent_q, bin_expon_cx;
74  int digits_x;
75  int scale;
76#ifdef UNCHANGED_BINARY_STATUS_FLAGS
77  fexcept_t binaryflags = 0;
78#endif
79
80#if DECIMAL_CALL_BY_REFERENCE
81#if !DECIMAL_GLOBAL_ROUNDING
82  _IDEC_round rnd_mode = *prnd_mode;
83#endif
84  x = *px;
85#endif
86
87  // unpack arguments, check for NaN or Infinity
88  if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
89    // x is Inf. or NaN or 0
90    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
91      res = coefficient_x;
92      if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64)	// -Infinity
93      {
94	res = NAN_MASK64;
95#ifdef SET_STATUS_FLAGS
96	__set_status_flags (pfpsf, INVALID_EXCEPTION);
97#endif
98      }
99#ifdef SET_STATUS_FLAGS
100      if ((x & SNAN_MASK64) == SNAN_MASK64)	// sNaN
101	__set_status_flags (pfpsf, INVALID_EXCEPTION);
102#endif
103      BID_RETURN (res & QUIET_MASK64);
104    }
105    // x is 0
106    exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
107    res = sign_x | (((UINT64) exponent_x) << 53);
108    BID_RETURN (res);
109  }
110  // x<0?
111  if (sign_x && coefficient_x) {
112    res = NAN_MASK64;
113#ifdef SET_STATUS_FLAGS
114    __set_status_flags (pfpsf, INVALID_EXCEPTION);
115#endif
116    BID_RETURN (res);
117  }
118#ifdef UNCHANGED_BINARY_STATUS_FLAGS
119  (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
120#endif
121  //--- get number of bits in the coefficient of x ---
122  tempx.d = (float) coefficient_x;
123  bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
124  digits_x = estimate_decimal_digits[bin_expon_cx];
125  // add test for range
126  if (coefficient_x >= power10_index_binexp[bin_expon_cx])
127    digits_x++;
128
129  A10 = coefficient_x;
130  if (exponent_x & 1) {
131    A10 = (A10 << 2) + A10;
132    A10 += A10;
133  }
134
135  dqe = sqrt ((double) A10);
136  QE = (UINT32) dqe;
137  if (QE * QE == A10) {
138    res =
139      very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
140			   QE);
141#ifdef UNCHANGED_BINARY_STATUS_FLAGS
142    (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
143#endif
144    BID_RETURN (res);
145  }
146  // if exponent is odd, scale coefficient by 10
147  scale = 31 - digits_x;
148  exponent_q = exponent_x - scale;
149  scale += (exponent_q & 1);	// exp. bias is even
150
151  CT = power10_table_128[scale];
152  __mul_64x128_short (CA, coefficient_x, CT);
153
154  // 2^64
155  t_scale.i = 0x43f0000000000000ull;
156  // convert CA to DP
157  da_h = CA.w[1];
158  da_l = CA.w[0];
159  da = da_h * t_scale.d + da_l;
160
161  dq = sqrt (da);
162
163  Q = (UINT64) dq;
164
165  // get sign(sqrt(CA)-Q)
166  R = CA.w[0] - Q * Q;
167  R = ((SINT64) R) >> 63;
168  D = R + R + 1;
169
170  exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
171
172#ifdef SET_STATUS_FLAGS
173  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
174#endif
175
176#ifndef IEEE_ROUND_NEAREST
177#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
178  if (!((rnd_mode) & 3)) {
179#endif
180#endif
181
182    // midpoint to check
183    Q2 = Q + Q + D;
184    C4 = CA.w[0] << 2;
185
186    // get sign(-sqrt(CA)+Midpoint)
187    R2 = Q2 * Q2 - C4;
188    R2 = ((SINT64) R2) >> 63;
189
190    // adjust Q if R!=R2
191    Q += (D & (R ^ R2));
192#ifndef IEEE_ROUND_NEAREST
193#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
194  } else {
195    C4 = CA.w[0];
196    Q += D;
197    if ((SINT64) (Q * Q - C4) > 0)
198      Q--;
199    if (rnd_mode == ROUNDING_UP)
200      Q++;
201  }
202#endif
203#endif
204
205  res = fast_get_BID64 (0, exponent_q, Q);
206#ifdef UNCHANGED_BINARY_STATUS_FLAGS
207  (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
208#endif
209  BID_RETURN (res);
210}
211
212
213TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
214
215     UINT256 M256, C4, C8;
216     UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
217       mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
218UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
219SINT64 D;
220int_float fx, f64;
221int exponent_x, bin_expon_cx, done = 0;
222int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
223#ifdef UNCHANGED_BINARY_STATUS_FLAGS
224fexcept_t binaryflags = 0;
225#endif
226
227	// unpack arguments, check for NaN or Infinity
228if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
229  res = CX.w[1];
230  // NaN ?
231  if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
232#ifdef SET_STATUS_FLAGS
233    if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull)	// sNaN
234      __set_status_flags (pfpsf, INVALID_EXCEPTION);
235#endif
236    Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
237    Tmp.w[0] = CX.w[0];
238    TP128 = reciprocals10_128[18];
239    __mul_128x128_full (Qh, Ql, Tmp, TP128);
240    amount = recip_scale[18];
241    __shr_128 (Tmp, Qh, amount);
242    res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
243    BID_RETURN (res);
244  }
245  // x is Infinity?
246  if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
247    if (sign_x) {
248      // -Inf, return NaN
249      res = 0x7c00000000000000ull;
250#ifdef SET_STATUS_FLAGS
251      __set_status_flags (pfpsf, INVALID_EXCEPTION);
252#endif
253    }
254    BID_RETURN (res);
255  }
256  // x is 0 otherwise
257
258  exponent_x =
259    ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
260    DECIMAL_EXPONENT_BIAS;
261  if (exponent_x < 0)
262    exponent_x = 0;
263  if (exponent_x > DECIMAL_MAX_EXPON_64)
264    exponent_x = DECIMAL_MAX_EXPON_64;
265  //res= sign_x | (((UINT64)exponent_x)<<53);
266  res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
267  BID_RETURN (res);
268}
269if (sign_x) {
270  res = 0x7c00000000000000ull;
271#ifdef SET_STATUS_FLAGS
272  __set_status_flags (pfpsf, INVALID_EXCEPTION);
273#endif
274  BID_RETURN (res);
275}
276#ifdef UNCHANGED_BINARY_STATUS_FLAGS
277(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
278#endif
279
280	   // 2^64
281f64.i = 0x5f800000;
282
283	   // fx ~ CX
284fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
285bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
286digits = estimate_decimal_digits[bin_expon_cx];
287
288A10 = CX;
289if (exponent_x & 1) {
290  A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
291  A10.w[0] = CX.w[0] << 3;
292  CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
293  CX2.w[0] = CX.w[0] << 1;
294  __add_128_128 (A10, A10, CX2);
295}
296
297C256.w[1] = A10.w[1];
298C256.w[0] = A10.w[0];
299CS.w[0] = short_sqrt128 (A10);
300CS.w[1] = 0;
301mul_factor = 0;
302	   // check for exact result
303if (CS.w[0] < 10000000000000000ull) {
304  if (CS.w[0] * CS.w[0] == A10.w[0]) {
305    __sqr64_fast (S2, CS.w[0]);
306    if (S2.w[1] == A10.w[1])	// && S2.w[0]==A10.w[0])
307    {
308      res =
309	get_BID64 (0,
310		   ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
311		   DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
312#ifdef UNCHANGED_BINARY_STATUS_FLAGS
313      (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
314#endif
315      BID_RETURN (res);
316    }
317  }
318  if (CS.w[0] >= 1000000000000000ull) {
319    done = 1;
320    exponent_q = exponent_x;
321    C256.w[1] = A10.w[1];
322    C256.w[0] = A10.w[0];
323  }
324#ifdef SET_STATUS_FLAGS
325  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
326#endif
327  exact = 0;
328} else {
329  B10 = 0x3333333333333334ull;
330  __mul_64x64_to_128_full (CS2, CS.w[0], B10);
331  CS0 = CS2.w[1] >> 1;
332  if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
333#ifdef SET_STATUS_FLAGS
334    __set_status_flags (pfpsf, INEXACT_EXCEPTION);
335#endif
336    exact = 0;
337  }
338  done = 1;
339  CS.w[0] = CS0;
340  exponent_q = exponent_x + 2;
341  mul_factor = 10;
342  mul_factor2 = 100;
343  if (CS.w[0] >= 10000000000000000ull) {
344    __mul_64x64_to_128_full (CS2, CS.w[0], B10);
345    CS0 = CS2.w[1] >> 1;
346    if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
347#ifdef SET_STATUS_FLAGS
348      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
349#endif
350      exact = 0;
351    }
352    exponent_q += 2;
353    CS.w[0] = CS0;
354    mul_factor = 100;
355    mul_factor2 = 10000;
356  }
357  if (exact) {
358    CS0 = CS.w[0] * mul_factor;
359    __sqr64_fast (CS1, CS0)
360      if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
361#ifdef SET_STATUS_FLAGS
362      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
363#endif
364      exact = 0;
365    }
366  }
367}
368
369if (!done) {
370  // get number of digits in CX
371  D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
372  if (D > 0
373      || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
374    digits++;
375
376  // if exponent is odd, scale coefficient by 10
377  scale = 31 - digits;
378  exponent_q = exponent_x - scale;
379  scale += (exponent_q & 1);	// exp. bias is even
380
381  T128 = power10_table_128[scale];
382  __mul_128x128_low (C256, CX, T128);
383
384
385  CS.w[0] = short_sqrt128 (C256);
386}
387   //printf("CS=%016I64x\n",CS.w[0]);
388
389exponent_q =
390  ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
391  DECIMAL_EXPONENT_BIAS;
392if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
393  extra_digits = -exponent_q;
394  exponent_q = 0;
395
396  // get coeff*(2^M[extra_digits])/10^extra_digits
397  __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
398
399  // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
400  amount = short_recip_scale[extra_digits];
401
402  CS0 = QH.w[1] >> amount;
403
404#ifdef SET_STATUS_FLAGS
405  if (exact) {
406    if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
407      exact = 0;
408  }
409  if (!exact)
410    __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
411#endif
412
413  CS.w[0] = CS0;
414  if (!mul_factor)
415    mul_factor = 1;
416  mul_factor *= power10_table_128[extra_digits].w[0];
417  __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
418  if (mul_factor2_long.w[1])
419    mul_factor2 = 0;
420  else
421    mul_factor2 = mul_factor2_long.w[1];
422}
423	   // 4*C256
424C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
425C4.w[0] = C256.w[0] << 2;
426
427#ifndef IEEE_ROUND_NEAREST
428#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
429if (!((rnd_mode) & 3)) {
430#endif
431#endif
432  // compare to midpoints
433  CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
434  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
435  if (mul_factor)
436    CSM.w[0] *= mul_factor;
437  // CSM^2
438  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
439  //__mul_128x128_to_256(M256, CSM, CSM);
440
441  if (C4.w[1] > M256.w[1] ||
442      (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
443    // round up
444    CS.w[0]++;
445  } else {
446    C8.w[0] = CS.w[0] << 3;
447    C8.w[1] = 0;
448    if (mul_factor) {
449      if (mul_factor2) {
450	__mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
451      } else {
452	__mul_64x128_low (C8, C8.w[0], mul_factor2_long);
453      }
454    }
455    // M256 - 8*CSM
456    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
457    M256.w[1] = M256.w[1] - C8.w[1] - Carry;
458
459    // if CSM' > C256, round up
460    if (M256.w[1] > C4.w[1] ||
461	(M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
462      // round down
463      if (CS.w[0])
464	CS.w[0]--;
465    }
466  }
467#ifndef IEEE_ROUND_NEAREST
468#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
469} else {
470  CS.w[0]++;
471  CSM.w[0] = CS.w[0];
472  C8.w[0] = CSM.w[0] << 1;
473  if (mul_factor)
474    CSM.w[0] *= mul_factor;
475  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
476  C8.w[1] = 0;
477  if (mul_factor) {
478    if (mul_factor2) {
479      __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
480    } else {
481      __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
482    }
483  }
484  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
485
486  if (M256.w[1] > C256.w[1] ||
487      (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
488    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
489    M256.w[1] = M256.w[1] - Carry - C8.w[1];
490    M256.w[0]++;
491    if (!M256.w[0]) {
492      M256.w[1]++;
493
494    }
495
496    if ((M256.w[1] > C256.w[1] ||
497	 (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
498	&& (CS.w[0] > 1)) {
499
500      CS.w[0]--;
501
502      if (CS.w[0] > 1) {
503	__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
504	M256.w[1] = M256.w[1] - Carry - C8.w[1];
505	M256.w[0]++;
506	if (!M256.w[0]) {
507	  M256.w[1]++;
508	}
509
510	if (M256.w[1] > C256.w[1] ||
511	    (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
512	  CS.w[0]--;
513      }
514    }
515  }
516
517  else {
518				/*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
519				M256.w[1] = M256.w[1] + Carry + C8.w[1];
520				M256.w[0]++;
521				if(!M256.w[0])
522				{
523					M256.w[1]++;
524				}
525				CS.w[0]++;
526			if(M256.w[1]<C256.w[1] ||
527				(M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
528			{
529				CS.w[0]++;
530			}*/
531    CS.w[0]++;
532  }
533  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
534  // RU?
535  if (((rnd_mode) != ROUNDING_UP) || exact) {
536    if (CS.w[0])
537      CS.w[0]--;
538  }
539
540}
541#endif
542#endif
543 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
544
545res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
546#ifdef UNCHANGED_BINARY_STATUS_FLAGS
547(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
548#endif
549BID_RETURN (res);
550
551
552}
553