tree-ssa-dse.c revision 1.8
1/* Dead store elimination
2   Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "tree-pass.h"
28#include "ssa.h"
29#include "gimple-pretty-print.h"
30#include "fold-const.h"
31#include "gimple-iterator.h"
32#include "tree-cfg.h"
33#include "tree-dfa.h"
34#include "domwalk.h"
35#include "tree-cfgcleanup.h"
36#include "params.h"
37#include "alias.h"
38
39/* This file implements dead store elimination.
40
41   A dead store is a store into a memory location which will later be
42   overwritten by another store without any intervening loads.  In this
43   case the earlier store can be deleted.
44
45   In our SSA + virtual operand world we use immediate uses of virtual
46   operands to detect dead stores.  If a store's virtual definition
47   is used precisely once by a later store to the same location which
48   post dominates the first store, then the first store is dead.
49
50   The single use of the store's virtual definition ensures that
51   there are no intervening aliased loads and the requirement that
52   the second load post dominate the first ensures that if the earlier
53   store executes, then the later stores will execute before the function
54   exits.
55
56   It may help to think of this as first moving the earlier store to
57   the point immediately before the later store.  Again, the single
58   use of the virtual definition and the post-dominance relationship
59   ensure that such movement would be safe.  Clearly if there are
60   back to back stores, then the second is redundant.
61
62   Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
63   may also help in understanding this code since it discusses the
64   relationship between dead store and redundant load elimination.  In
65   fact, they are the same transformation applied to different views of
66   the CFG.  */
67
68
69/* Bitmap of blocks that have had EH statements cleaned.  We should
70   remove their dead edges eventually.  */
71static bitmap need_eh_cleanup;
72
73/* Return value from dse_classify_store */
74enum dse_store_status
75{
76  DSE_STORE_LIVE,
77  DSE_STORE_MAYBE_PARTIAL_DEAD,
78  DSE_STORE_DEAD
79};
80
81/* STMT is a statement that may write into memory.  Analyze it and
82   initialize WRITE to describe how STMT affects memory.
83
84   Return TRUE if the the statement was analyzed, FALSE otherwise.
85
86   It is always safe to return FALSE.  But typically better optimziation
87   can be achieved by analyzing more statements.  */
88
89static bool
90initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
91{
92  /* It's advantageous to handle certain mem* functions.  */
93  if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
94    {
95      switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
96	{
97	  case BUILT_IN_MEMCPY:
98	  case BUILT_IN_MEMMOVE:
99	  case BUILT_IN_MEMSET:
100	    {
101	      tree size = NULL_TREE;
102	      if (gimple_call_num_args (stmt) == 3)
103		size = gimple_call_arg (stmt, 2);
104	      tree ptr = gimple_call_arg (stmt, 0);
105	      ao_ref_init_from_ptr_and_size (write, ptr, size);
106	      return true;
107	    }
108	  default:
109	    break;
110	}
111    }
112  else if (is_gimple_assign (stmt))
113    {
114      ao_ref_init (write, gimple_assign_lhs (stmt));
115      return true;
116    }
117  return false;
118}
119
120/* Given REF from the the alias oracle, return TRUE if it is a valid
121   memory reference for dead store elimination, false otherwise.
122
123   In particular, the reference must have a known base, known maximum
124   size, start at a byte offset and have a size that is one or more
125   bytes.  */
126
127static bool
128valid_ao_ref_for_dse (ao_ref *ref)
129{
130  return (ao_ref_base (ref)
131	  && ref->max_size != -1
132	  && ref->size != 0
133	  && ref->max_size == ref->size
134	  && (ref->offset % BITS_PER_UNIT) == 0
135	  && (ref->size % BITS_PER_UNIT) == 0
136	  && (ref->size != -1));
137}
138
139/* Normalize COPY (an ao_ref) relative to REF.  Essentially when we are
140   done COPY will only refer bytes found within REF.
141
142   We have already verified that COPY intersects at least one
143   byte with REF.  */
144
145static void
146normalize_ref (ao_ref *copy, ao_ref *ref)
147{
148  /* If COPY starts before REF, then reset the beginning of
149     COPY to match REF and decrease the size of COPY by the
150     number of bytes removed from COPY.  */
151  if (copy->offset < ref->offset)
152    {
153      copy->size -= (ref->offset - copy->offset);
154      copy->offset = ref->offset;
155    }
156
157  /* If COPY extends beyond REF, chop off its size appropriately.  */
158  if (copy->offset + copy->size > ref->offset + ref->size)
159    copy->size -= (copy->offset + copy->size - (ref->offset + ref->size));
160}
161
162/* Clear any bytes written by STMT from the bitmap LIVE_BYTES.  The base
163   address written by STMT must match the one found in REF, which must
164   have its base address previously initialized.
165
166   This routine must be conservative.  If we don't know the offset or
167   actual size written, assume nothing was written.  */
168
169static void
170clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
171{
172  ao_ref write;
173  if (!initialize_ao_ref_for_dse (stmt, &write))
174    return;
175
176  /* Verify we have the same base memory address, the write
177     has a known size and overlaps with REF.  */
178  if (valid_ao_ref_for_dse (&write)
179      && operand_equal_p (write.base, ref->base, OEP_ADDRESS_OF)
180      && write.size == write.max_size
181      && ((write.offset < ref->offset
182	   && write.offset + write.size > ref->offset)
183	  || (write.offset >= ref->offset
184	      && write.offset < ref->offset + ref->size)))
185    {
186      normalize_ref (&write, ref);
187      bitmap_clear_range (live_bytes,
188			  (write.offset - ref->offset) / BITS_PER_UNIT,
189			  write.size / BITS_PER_UNIT);
190    }
191}
192
193/* REF is a memory write.  Extract relevant information from it and
194   initialize the LIVE_BYTES bitmap.  If successful, return TRUE.
195   Otherwise return FALSE.  */
196
197static bool
198setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
199{
200  if (valid_ao_ref_for_dse (ref)
201      && (ref->size / BITS_PER_UNIT
202	  <= PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)))
203    {
204      bitmap_clear (live_bytes);
205      bitmap_set_range (live_bytes, 0, ref->size / BITS_PER_UNIT);
206      return true;
207    }
208  return false;
209}
210
211/* Compute the number of elements that we can trim from the head and
212   tail of ORIG resulting in a bitmap that is a superset of LIVE.
213
214   Store the number of elements trimmed from the head and tail in
215   TRIM_HEAD and TRIM_TAIL.
216
217   STMT is the statement being trimmed and is used for debugging dump
218   output only.  */
219
220static void
221compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
222	       gimple *stmt)
223{
224  /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
225     extends through ref->size.  So we know that in the original bitmap
226     bits 0..ref->size were true.  We don't actually need the bitmap, just
227     the REF to compute the trims.  */
228
229  /* Now identify how much, if any of the tail we can chop off.  */
230  int last_orig = (ref->size / BITS_PER_UNIT) - 1;
231  int last_live = bitmap_last_set_bit (live);
232  *trim_tail = (last_orig - last_live) & ~0x1;
233
234  /* Identify how much, if any of the head we can chop off.  */
235  int first_orig = 0;
236  int first_live = bitmap_first_set_bit (live);
237  *trim_head = (first_live - first_orig) & ~0x1;
238
239  if ((*trim_head || *trim_tail)
240      && dump_file && (dump_flags & TDF_DETAILS))
241    {
242      fprintf (dump_file, "  Trimming statement (head = %d, tail = %d): ",
243	       *trim_head, *trim_tail);
244      print_gimple_stmt (dump_file, stmt, dump_flags, 0);
245      fprintf (dump_file, "\n");
246    }
247}
248
249/* STMT initializes an object from COMPLEX_CST where one or more of the
250   bytes written may be dead stores.  REF is a representation of the
251   memory written.  LIVE is the bitmap of stores that are actually live.
252
253   Attempt to rewrite STMT so that only the real or imaginary part of
254   the object is actually stored.  */
255
256static void
257maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
258{
259  int trim_head, trim_tail;
260  compute_trims (ref, live, &trim_head, &trim_tail, stmt);
261
262  /* The amount of data trimmed from the head or tail must be at
263     least half the size of the object to ensure we're trimming
264     the entire real or imaginary half.  By writing things this
265     way we avoid more O(n) bitmap operations.  */
266  if (trim_tail * 2 >= ref->size / BITS_PER_UNIT)
267    {
268      /* TREE_REALPART is live */
269      tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
270      tree y = gimple_assign_lhs (stmt);
271      y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
272      gimple_assign_set_lhs (stmt, y);
273      gimple_assign_set_rhs1 (stmt, x);
274    }
275  else if (trim_head * 2 >= ref->size / BITS_PER_UNIT)
276    {
277      /* TREE_IMAGPART is live */
278      tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
279      tree y = gimple_assign_lhs (stmt);
280      y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
281      gimple_assign_set_lhs (stmt, y);
282      gimple_assign_set_rhs1 (stmt, x);
283    }
284
285  /* Other cases indicate parts of both the real and imag subobjects
286     are live.  We do not try to optimize those cases.  */
287}
288
289/* STMT initializes an object using a CONSTRUCTOR where one or more of the
290   bytes written are dead stores.  ORIG is the bitmap of bytes stored by
291   STMT.  LIVE is the bitmap of stores that are actually live.
292
293   Attempt to rewrite STMT so that only the real or imaginary part of
294   the object is actually stored.
295
296   The most common case for getting here is a CONSTRUCTOR with no elements
297   being used to zero initialize an object.  We do not try to handle other
298   cases as those would force us to fully cover the object with the
299   CONSTRUCTOR node except for the components that are dead.  */
300
301static void
302maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
303{
304  tree ctor = gimple_assign_rhs1 (stmt);
305
306  /* This is the only case we currently handle.  It actually seems to
307     catch most cases of actual interest.  */
308  gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);
309
310  int head_trim = 0;
311  int tail_trim = 0;
312  compute_trims (ref, live, &head_trim, &tail_trim, stmt);
313
314  /* Now we want to replace the constructor initializer
315     with memset (object + head_trim, 0, size - head_trim - tail_trim).  */
316  if (head_trim || tail_trim)
317    {
318      /* We want &lhs for the MEM_REF expression.  */
319      tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));
320
321      if (! is_gimple_min_invariant (lhs_addr))
322	return;
323
324      /* The number of bytes for the new constructor.  */
325      int count = (ref->size / BITS_PER_UNIT) - head_trim - tail_trim;
326
327      /* And the new type for the CONSTRUCTOR.  Essentially it's just
328	 a char array large enough to cover the non-trimmed parts of
329	 the original CONSTRUCTOR.  Note we want explicit bounds here
330	 so that we know how many bytes to clear when expanding the
331	 CONSTRUCTOR.  */
332      tree type = build_array_type_nelts (char_type_node, count);
333
334      /* Build a suitable alias type rather than using alias set zero
335	 to avoid pessimizing.  */
336      tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));
337
338      /* Build a MEM_REF representing the whole accessed area, starting
339	 at the first byte not trimmed.  */
340      tree exp = fold_build2 (MEM_REF, type, lhs_addr,
341			      build_int_cst (alias_type, head_trim));
342
343      /* Now update STMT with a new RHS and LHS.  */
344      gimple_assign_set_lhs (stmt, exp);
345      gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
346    }
347}
348
349/* STMT is a memcpy, memmove or memset.  Decrement the number of bytes
350   copied/set by DECREMENT.  */
351static void
352decrement_count (gimple *stmt, int decrement)
353{
354  tree *countp = gimple_call_arg_ptr (stmt, 2);
355  gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
356  *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
357						    - decrement));
358
359}
360
361static void
362increment_start_addr (gimple *stmt, tree *where, int increment)
363{
364  if (TREE_CODE (*where) == SSA_NAME)
365    {
366      tree tem = make_ssa_name (TREE_TYPE (*where));
367      gassign *newop
368        = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
369			       build_int_cst (sizetype, increment));
370      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
371      gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
372      *where = tem;
373      update_stmt (gsi_stmt (gsi));
374      return;
375    }
376
377  *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
378                                             *where,
379                                             build_int_cst (ptr_type_node,
380                                                            increment)));
381}
382
383/* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
384   (ORIG & ~NEW) and need not be stored.  Try to rewrite STMT to reduce
385   the amount of data it actually writes.
386
387   Right now we only support trimming from the head or the tail of the
388   memory region.  In theory we could split the mem* call, but it's
389   likely of marginal value.  */
390
391static void
392maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
393{
394  switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
395    {
396    case BUILT_IN_MEMCPY:
397    case BUILT_IN_MEMMOVE:
398      {
399	int head_trim, tail_trim;
400	compute_trims (ref, live, &head_trim, &tail_trim, stmt);
401
402	/* Tail trimming is easy, we can just reduce the count.  */
403        if (tail_trim)
404	  decrement_count (stmt, tail_trim);
405
406	/* Head trimming requires adjusting all the arguments.  */
407        if (head_trim)
408          {
409	    tree *dst = gimple_call_arg_ptr (stmt, 0);
410	    increment_start_addr (stmt, dst, head_trim);
411	    tree *src = gimple_call_arg_ptr (stmt, 1);
412	    increment_start_addr (stmt, src, head_trim);
413	    decrement_count (stmt, head_trim);
414	  }
415        break;
416      }
417
418    case BUILT_IN_MEMSET:
419      {
420	int head_trim, tail_trim;
421	compute_trims (ref, live, &head_trim, &tail_trim, stmt);
422
423	/* Tail trimming is easy, we can just reduce the count.  */
424        if (tail_trim)
425	  decrement_count (stmt, tail_trim);
426
427	/* Head trimming requires adjusting all the arguments.  */
428        if (head_trim)
429          {
430	    tree *dst = gimple_call_arg_ptr (stmt, 0);
431	    increment_start_addr (stmt, dst, head_trim);
432	    decrement_count (stmt, head_trim);
433	  }
434	break;
435      }
436
437      default:
438	break;
439    }
440}
441
442/* STMT is a memory write where one or more bytes written are dead
443   stores.  ORIG is the bitmap of bytes stored by STMT.  LIVE is the
444   bitmap of stores that are actually live.
445
446   Attempt to rewrite STMT so that it writes fewer memory locations.  Right
447   now we only support trimming at the start or end of the memory region.
448   It's not clear how much there is to be gained by trimming from the middle
449   of the region.  */
450
451static void
452maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
453{
454  if (is_gimple_assign (stmt)
455      && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
456    {
457      switch (gimple_assign_rhs_code (stmt))
458	{
459	case CONSTRUCTOR:
460	  maybe_trim_constructor_store (ref, live, stmt);
461	  break;
462	case COMPLEX_CST:
463	  maybe_trim_complex_store (ref, live, stmt);
464	  break;
465	default:
466	  break;
467	}
468    }
469}
470
471/* A helper of dse_optimize_stmt.
472   Given a GIMPLE_ASSIGN in STMT that writes to REF, find a candidate
473   statement *USE_STMT that may prove STMT to be dead.
474   Return TRUE if the above conditions are met, otherwise FALSE.  */
475
476static dse_store_status
477dse_classify_store (ao_ref *ref, gimple *stmt, gimple **use_stmt,
478		    bool byte_tracking_enabled, sbitmap live_bytes)
479{
480  gimple *temp;
481  unsigned cnt = 0;
482
483  *use_stmt = NULL;
484
485  /* Find the first dominated statement that clobbers (part of) the
486     memory stmt stores to with no intermediate statement that may use
487     part of the memory stmt stores.  That is, find a store that may
488     prove stmt to be a dead store.  */
489  temp = stmt;
490  do
491    {
492      gimple *use_stmt, *defvar_def;
493      imm_use_iterator ui;
494      bool fail = false;
495      tree defvar;
496
497      /* Limit stmt walking to be linear in the number of possibly
498         dead stores.  */
499      if (++cnt > 256)
500	return DSE_STORE_LIVE;
501
502      if (gimple_code (temp) == GIMPLE_PHI)
503	defvar = PHI_RESULT (temp);
504      else
505	defvar = gimple_vdef (temp);
506      defvar_def = temp;
507      temp = NULL;
508      FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
509	{
510	  cnt++;
511
512	  /* If we ever reach our DSE candidate stmt again fail.  We
513	     cannot handle dead stores in loops.  */
514	  if (use_stmt == stmt)
515	    {
516	      fail = true;
517	      BREAK_FROM_IMM_USE_STMT (ui);
518	    }
519	  /* In simple cases we can look through PHI nodes, but we
520	     have to be careful with loops and with memory references
521	     containing operands that are also operands of PHI nodes.
522	     See gcc.c-torture/execute/20051110-*.c.  */
523	  else if (gimple_code (use_stmt) == GIMPLE_PHI)
524	    {
525	      if (temp
526		  /* Make sure we are not in a loop latch block.  */
527		  || gimple_bb (stmt) == gimple_bb (use_stmt)
528		  || dominated_by_p (CDI_DOMINATORS,
529				     gimple_bb (stmt), gimple_bb (use_stmt))
530		  /* We can look through PHIs to regions post-dominating
531		     the DSE candidate stmt.  */
532		  || !dominated_by_p (CDI_POST_DOMINATORS,
533				      gimple_bb (stmt), gimple_bb (use_stmt)))
534		{
535		  fail = true;
536		  BREAK_FROM_IMM_USE_STMT (ui);
537		}
538	      /* Do not consider the PHI as use if it dominates the
539	         stmt defining the virtual operand we are processing,
540		 we have processed it already in this case.  */
541	      if (gimple_bb (defvar_def) != gimple_bb (use_stmt)
542		  && !dominated_by_p (CDI_DOMINATORS,
543				      gimple_bb (defvar_def),
544				      gimple_bb (use_stmt)))
545		temp = use_stmt;
546	    }
547	  /* If the statement is a use the store is not dead.  */
548	  else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
549	    {
550	      fail = true;
551	      BREAK_FROM_IMM_USE_STMT (ui);
552	    }
553	  /* If this is a store, remember it or bail out if we have
554	     multiple ones (the will be in different CFG parts then).  */
555	  else if (gimple_vdef (use_stmt))
556	    {
557	      if (temp)
558		{
559		  fail = true;
560		  BREAK_FROM_IMM_USE_STMT (ui);
561		}
562	      temp = use_stmt;
563	    }
564	}
565
566      if (fail)
567	{
568	  /* STMT might be partially dead and we may be able to reduce
569	     how many memory locations it stores into.  */
570	  if (byte_tracking_enabled && !gimple_clobber_p (stmt))
571	    return DSE_STORE_MAYBE_PARTIAL_DEAD;
572	  return DSE_STORE_LIVE;
573	}
574
575      /* If we didn't find any definition this means the store is dead
576         if it isn't a store to global reachable memory.  In this case
577	 just pretend the stmt makes itself dead.  Otherwise fail.  */
578      if (!temp)
579	{
580	  if (ref_may_alias_global_p (ref))
581	    return DSE_STORE_LIVE;
582
583	  temp = stmt;
584	  break;
585	}
586
587      if (byte_tracking_enabled && temp)
588	clear_bytes_written_by (live_bytes, temp, ref);
589    }
590  /* Continue walking until we reach a full kill as a single statement
591     or there are no more live bytes.  */
592  while (!stmt_kills_ref_p (temp, ref)
593	 && !(byte_tracking_enabled && bitmap_empty_p (live_bytes)));
594
595  *use_stmt = temp;
596  return DSE_STORE_DEAD;
597}
598
599
600class dse_dom_walker : public dom_walker
601{
602public:
603  dse_dom_walker (cdi_direction direction)
604    : dom_walker (direction), m_byte_tracking_enabled (false)
605
606  { m_live_bytes = sbitmap_alloc (PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)); }
607
608  ~dse_dom_walker () { sbitmap_free (m_live_bytes); }
609
610  virtual edge before_dom_children (basic_block);
611
612private:
613  sbitmap m_live_bytes;
614  bool m_byte_tracking_enabled;
615  void dse_optimize_stmt (gimple_stmt_iterator *);
616};
617
618/* Delete a dead call at GSI, which is mem* call of some kind.  */
619static void
620delete_dead_call (gimple_stmt_iterator *gsi)
621{
622  gimple *stmt = gsi_stmt (*gsi);
623  if (dump_file && (dump_flags & TDF_DETAILS))
624    {
625      fprintf (dump_file, "  Deleted dead call: ");
626      print_gimple_stmt (dump_file, stmt, dump_flags, 0);
627      fprintf (dump_file, "\n");
628    }
629
630  tree lhs = gimple_call_lhs (stmt);
631  if (lhs)
632    {
633      tree ptr = gimple_call_arg (stmt, 0);
634      gimple *new_stmt = gimple_build_assign (lhs, ptr);
635      unlink_stmt_vdef (stmt);
636      if (gsi_replace (gsi, new_stmt, true))
637        bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
638    }
639  else
640    {
641      /* Then we need to fix the operand of the consuming stmt.  */
642      unlink_stmt_vdef (stmt);
643
644      /* Remove the dead store.  */
645      if (gsi_remove (gsi, true))
646	bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
647      release_defs (stmt);
648    }
649}
650
651/* Delete a dead store at GSI, which is a gimple assignment. */
652
653static void
654delete_dead_assignment (gimple_stmt_iterator *gsi)
655{
656  gimple *stmt = gsi_stmt (*gsi);
657  if (dump_file && (dump_flags & TDF_DETAILS))
658    {
659      fprintf (dump_file, "  Deleted dead store: ");
660      print_gimple_stmt (dump_file, stmt, dump_flags, 0);
661      fprintf (dump_file, "\n");
662    }
663
664  /* Then we need to fix the operand of the consuming stmt.  */
665  unlink_stmt_vdef (stmt);
666
667  /* Remove the dead store.  */
668  basic_block bb = gimple_bb (stmt);
669  if (gsi_remove (gsi, true))
670    bitmap_set_bit (need_eh_cleanup, bb->index);
671
672  /* And release any SSA_NAMEs set in this statement back to the
673     SSA_NAME manager.  */
674  release_defs (stmt);
675}
676
677/* Attempt to eliminate dead stores in the statement referenced by BSI.
678
679   A dead store is a store into a memory location which will later be
680   overwritten by another store without any intervening loads.  In this
681   case the earlier store can be deleted.
682
683   In our SSA + virtual operand world we use immediate uses of virtual
684   operands to detect dead stores.  If a store's virtual definition
685   is used precisely once by a later store to the same location which
686   post dominates the first store, then the first store is dead.  */
687
688void
689dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
690{
691  gimple *stmt = gsi_stmt (*gsi);
692
693  /* If this statement has no virtual defs, then there is nothing
694     to do.  */
695  if (!gimple_vdef (stmt))
696    return;
697
698  /* Don't return early on *this_2(D) ={v} {CLOBBER}.  */
699  if (gimple_has_volatile_ops (stmt)
700      && (!gimple_clobber_p (stmt)
701	  || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
702    return;
703
704  ao_ref ref;
705  if (!initialize_ao_ref_for_dse (stmt, &ref))
706    return;
707
708  /* We know we have virtual definitions.  We can handle assignments and
709     some builtin calls.  */
710  if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
711    {
712      switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
713	{
714	  case BUILT_IN_MEMCPY:
715	  case BUILT_IN_MEMMOVE:
716	  case BUILT_IN_MEMSET:
717	    {
718	      /* Occasionally calls with an explicit length of zero
719		 show up in the IL.  It's pointless to do analysis
720		 on them, they're trivially dead.  */
721	      tree size = gimple_call_arg (stmt, 2);
722	      if (integer_zerop (size))
723		{
724		  delete_dead_call (gsi);
725		  return;
726		}
727
728	      gimple *use_stmt;
729	      enum dse_store_status store_status;
730	      m_byte_tracking_enabled
731		= setup_live_bytes_from_ref (&ref, m_live_bytes);
732	      store_status = dse_classify_store (&ref, stmt, &use_stmt,
733						 m_byte_tracking_enabled,
734						 m_live_bytes);
735	      if (store_status == DSE_STORE_LIVE)
736		return;
737
738	      if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
739		{
740		  maybe_trim_memstar_call (&ref, m_live_bytes, stmt);
741		  return;
742		}
743
744	      if (store_status == DSE_STORE_DEAD)
745		delete_dead_call (gsi);
746	      return;
747	    }
748
749	  default:
750	    return;
751	}
752    }
753
754  if (is_gimple_assign (stmt))
755    {
756      gimple *use_stmt;
757
758      /* Self-assignments are zombies.  */
759      if (operand_equal_p (gimple_assign_rhs1 (stmt),
760			   gimple_assign_lhs (stmt), 0))
761	use_stmt = stmt;
762      else
763	{
764	  m_byte_tracking_enabled
765	    = setup_live_bytes_from_ref (&ref, m_live_bytes);
766	  enum dse_store_status store_status;
767	  store_status = dse_classify_store (&ref, stmt, &use_stmt,
768					     m_byte_tracking_enabled,
769					     m_live_bytes);
770	  if (store_status == DSE_STORE_LIVE)
771	    return;
772
773	  if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
774	    {
775	      maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
776	      return;
777	    }
778	}
779
780      /* Now we know that use_stmt kills the LHS of stmt.  */
781
782      /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
783	 another clobber stmt.  */
784      if (gimple_clobber_p (stmt)
785	  && !gimple_clobber_p (use_stmt))
786	return;
787
788      delete_dead_assignment (gsi);
789    }
790}
791
792edge
793dse_dom_walker::before_dom_children (basic_block bb)
794{
795  gimple_stmt_iterator gsi;
796
797  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
798    {
799      dse_optimize_stmt (&gsi);
800      if (gsi_end_p (gsi))
801	gsi = gsi_last_bb (bb);
802      else
803	gsi_prev (&gsi);
804    }
805  return NULL;
806}
807
808namespace {
809
810const pass_data pass_data_dse =
811{
812  GIMPLE_PASS, /* type */
813  "dse", /* name */
814  OPTGROUP_NONE, /* optinfo_flags */
815  TV_TREE_DSE, /* tv_id */
816  ( PROP_cfg | PROP_ssa ), /* properties_required */
817  0, /* properties_provided */
818  0, /* properties_destroyed */
819  0, /* todo_flags_start */
820  0, /* todo_flags_finish */
821};
822
823class pass_dse : public gimple_opt_pass
824{
825public:
826  pass_dse (gcc::context *ctxt)
827    : gimple_opt_pass (pass_data_dse, ctxt)
828  {}
829
830  /* opt_pass methods: */
831  opt_pass * clone () { return new pass_dse (m_ctxt); }
832  virtual bool gate (function *) { return flag_tree_dse != 0; }
833  virtual unsigned int execute (function *);
834
835}; // class pass_dse
836
837unsigned int
838pass_dse::execute (function *fun)
839{
840  need_eh_cleanup = BITMAP_ALLOC (NULL);
841
842  renumber_gimple_stmt_uids ();
843
844  /* We might consider making this a property of each pass so that it
845     can be [re]computed on an as-needed basis.  Particularly since
846     this pass could be seen as an extension of DCE which needs post
847     dominators.  */
848  calculate_dominance_info (CDI_POST_DOMINATORS);
849  calculate_dominance_info (CDI_DOMINATORS);
850
851  /* Dead store elimination is fundamentally a walk of the post-dominator
852     tree and a backwards walk of statements within each block.  */
853  dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);
854
855  /* Removal of stores may make some EH edges dead.  Purge such edges from
856     the CFG as needed.  */
857  if (!bitmap_empty_p (need_eh_cleanup))
858    {
859      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
860      cleanup_tree_cfg ();
861    }
862
863  BITMAP_FREE (need_eh_cleanup);
864
865  /* For now, just wipe the post-dominator information.  */
866  free_dominance_info (CDI_POST_DOMINATORS);
867  return 0;
868}
869
870} // anon namespace
871
872gimple_opt_pass *
873make_pass_dse (gcc::context *ctxt)
874{
875  return new pass_dse (ctxt);
876}
877