tree-eh.c revision 1.1.1.1.8.2
1/* Exception handling semantics and decomposition for trees.
2   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3   Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "rtl.h"
27#include "tm_p.h"
28#include "flags.h"
29#include "function.h"
30#include "except.h"
31#include "pointer-set.h"
32#include "tree-flow.h"
33#include "tree-dump.h"
34#include "tree-inline.h"
35#include "tree-iterator.h"
36#include "tree-pass.h"
37#include "timevar.h"
38#include "langhooks.h"
39#include "ggc.h"
40#include "toplev.h"
41#include "gimple.h"
42#include "target.h"
43
44/* In some instances a tree and a gimple need to be stored in a same table,
45   i.e. in hash tables. This is a structure to do this. */
46typedef union {tree *tp; tree t; gimple g;} treemple;
47
48/* Nonzero if we are using EH to handle cleanups.  */
49static int using_eh_for_cleanups_p = 0;
50
51void
52using_eh_for_cleanups (void)
53{
54  using_eh_for_cleanups_p = 1;
55}
56
57/* Misc functions used in this file.  */
58
59/* Compare and hash for any structure which begins with a canonical
60   pointer.  Assumes all pointers are interchangeable, which is sort
61   of already assumed by gcc elsewhere IIRC.  */
62
63static int
64struct_ptr_eq (const void *a, const void *b)
65{
66  const void * const * x = (const void * const *) a;
67  const void * const * y = (const void * const *) b;
68  return *x == *y;
69}
70
71static hashval_t
72struct_ptr_hash (const void *a)
73{
74  const void * const * x = (const void * const *) a;
75  return (size_t)*x >> 4;
76}
77
78
79/* Remember and lookup EH landing pad data for arbitrary statements.
80   Really this means any statement that could_throw_p.  We could
81   stuff this information into the stmt_ann data structure, but:
82
83   (1) We absolutely rely on this information being kept until
84   we get to rtl.  Once we're done with lowering here, if we lose
85   the information there's no way to recover it!
86
87   (2) There are many more statements that *cannot* throw as
88   compared to those that can.  We should be saving some amount
89   of space by only allocating memory for those that can throw.  */
90
91/* Add statement T in function IFUN to landing pad NUM.  */
92
93void
94add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
95{
96  struct throw_stmt_node *n;
97  void **slot;
98
99  gcc_assert (num != 0);
100
101  n = GGC_NEW (struct throw_stmt_node);
102  n->stmt = t;
103  n->lp_nr = num;
104
105  if (!get_eh_throw_stmt_table (ifun))
106    set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
107						    struct_ptr_eq,
108						    ggc_free));
109
110  slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
111  gcc_assert (!*slot);
112  *slot = n;
113}
114
115/* Add statement T in the current function (cfun) to EH landing pad NUM.  */
116
117void
118add_stmt_to_eh_lp (gimple t, int num)
119{
120  add_stmt_to_eh_lp_fn (cfun, t, num);
121}
122
123/* Add statement T to the single EH landing pad in REGION.  */
124
125static void
126record_stmt_eh_region (eh_region region, gimple t)
127{
128  if (region == NULL)
129    return;
130  if (region->type == ERT_MUST_NOT_THROW)
131    add_stmt_to_eh_lp_fn (cfun, t, -region->index);
132  else
133    {
134      eh_landing_pad lp = region->landing_pads;
135      if (lp == NULL)
136	lp = gen_eh_landing_pad (region);
137      else
138	gcc_assert (lp->next_lp == NULL);
139      add_stmt_to_eh_lp_fn (cfun, t, lp->index);
140    }
141}
142
143
144/* Remove statement T in function IFUN from its EH landing pad.  */
145
146bool
147remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
148{
149  struct throw_stmt_node dummy;
150  void **slot;
151
152  if (!get_eh_throw_stmt_table (ifun))
153    return false;
154
155  dummy.stmt = t;
156  slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
157                        NO_INSERT);
158  if (slot)
159    {
160      htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
161      return true;
162    }
163  else
164    return false;
165}
166
167
168/* Remove statement T in the current function (cfun) from its
169   EH landing pad.  */
170
171bool
172remove_stmt_from_eh_lp (gimple t)
173{
174  return remove_stmt_from_eh_lp_fn (cfun, t);
175}
176
177/* Determine if statement T is inside an EH region in function IFUN.
178   Positive numbers indicate a landing pad index; negative numbers
179   indicate a MUST_NOT_THROW region index; zero indicates that the
180   statement is not recorded in the region table.  */
181
182int
183lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
184{
185  struct throw_stmt_node *p, n;
186
187  if (ifun->eh->throw_stmt_table == NULL)
188    return 0;
189
190  n.stmt = t;
191  p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
192  return p ? p->lp_nr : 0;
193}
194
195/* Likewise, but always use the current function.  */
196
197int
198lookup_stmt_eh_lp (gimple t)
199{
200  /* We can get called from initialized data when -fnon-call-exceptions
201     is on; prevent crash.  */
202  if (!cfun)
203    return 0;
204  return lookup_stmt_eh_lp_fn (cfun, t);
205}
206
207/* First pass of EH node decomposition.  Build up a tree of GIMPLE_TRY_FINALLY
208   nodes and LABEL_DECL nodes.  We will use this during the second phase to
209   determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */
210
211struct finally_tree_node
212{
213  /* When storing a GIMPLE_TRY, we have to record a gimple.  However
214     when deciding whether a GOTO to a certain LABEL_DECL (which is a
215     tree) leaves the TRY block, its necessary to record a tree in
216     this field.  Thus a treemple is used. */
217  treemple child;
218  gimple parent;
219};
220
221/* Note that this table is *not* marked GTY.  It is short-lived.  */
222static htab_t finally_tree;
223
224static void
225record_in_finally_tree (treemple child, gimple parent)
226{
227  struct finally_tree_node *n;
228  void **slot;
229
230  n = XNEW (struct finally_tree_node);
231  n->child = child;
232  n->parent = parent;
233
234  slot = htab_find_slot (finally_tree, n, INSERT);
235  gcc_assert (!*slot);
236  *slot = n;
237}
238
239static void
240collect_finally_tree (gimple stmt, gimple region);
241
242/* Go through the gimple sequence.  Works with collect_finally_tree to
243   record all GIMPLE_LABEL and GIMPLE_TRY statements. */
244
245static void
246collect_finally_tree_1 (gimple_seq seq, gimple region)
247{
248  gimple_stmt_iterator gsi;
249
250  for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
251    collect_finally_tree (gsi_stmt (gsi), region);
252}
253
254static void
255collect_finally_tree (gimple stmt, gimple region)
256{
257  treemple temp;
258
259  switch (gimple_code (stmt))
260    {
261    case GIMPLE_LABEL:
262      temp.t = gimple_label_label (stmt);
263      record_in_finally_tree (temp, region);
264      break;
265
266    case GIMPLE_TRY:
267      if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
268        {
269          temp.g = stmt;
270          record_in_finally_tree (temp, region);
271          collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
272	  collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
273        }
274      else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
275        {
276          collect_finally_tree_1 (gimple_try_eval (stmt), region);
277          collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
278        }
279      break;
280
281    case GIMPLE_CATCH:
282      collect_finally_tree_1 (gimple_catch_handler (stmt), region);
283      break;
284
285    case GIMPLE_EH_FILTER:
286      collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
287      break;
288
289    default:
290      /* A type, a decl, or some kind of statement that we're not
291	 interested in.  Don't walk them.  */
292      break;
293    }
294}
295
296
297/* Use the finally tree to determine if a jump from START to TARGET
298   would leave the try_finally node that START lives in.  */
299
300static bool
301outside_finally_tree (treemple start, gimple target)
302{
303  struct finally_tree_node n, *p;
304
305  do
306    {
307      n.child = start;
308      p = (struct finally_tree_node *) htab_find (finally_tree, &n);
309      if (!p)
310	return true;
311      start.g = p->parent;
312    }
313  while (start.g != target);
314
315  return false;
316}
317
318/* Second pass of EH node decomposition.  Actually transform the GIMPLE_TRY
319   nodes into a set of gotos, magic labels, and eh regions.
320   The eh region creation is straight-forward, but frobbing all the gotos
321   and such into shape isn't.  */
322
323/* The sequence into which we record all EH stuff.  This will be
324   placed at the end of the function when we're all done.  */
325static gimple_seq eh_seq;
326
327/* Record whether an EH region contains something that can throw,
328   indexed by EH region number.  */
329static bitmap eh_region_may_contain_throw_map;
330
331/* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
332   statements that are seen to escape this GIMPLE_TRY_FINALLY node.
333   The idea is to record a gimple statement for everything except for
334   the conditionals, which get their labels recorded. Since labels are
335   of type 'tree', we need this node to store both gimple and tree
336   objects.  REPL_STMT is the sequence used to replace the goto/return
337   statement.  CONT_STMT is used to store the statement that allows
338   the return/goto to jump to the original destination. */
339
340struct goto_queue_node
341{
342  treemple stmt;
343  gimple_seq repl_stmt;
344  gimple cont_stmt;
345  int index;
346  /* This is used when index >= 0 to indicate that stmt is a label (as
347     opposed to a goto stmt).  */
348  int is_label;
349};
350
351/* State of the world while lowering.  */
352
353struct leh_state
354{
355  /* What's "current" while constructing the eh region tree.  These
356     correspond to variables of the same name in cfun->eh, which we
357     don't have easy access to.  */
358  eh_region cur_region;
359
360  /* What's "current" for the purposes of __builtin_eh_pointer.  For
361     a CATCH, this is the associated TRY.  For an EH_FILTER, this is
362     the associated ALLOWED_EXCEPTIONS, etc.  */
363  eh_region ehp_region;
364
365  /* Processing of TRY_FINALLY requires a bit more state.  This is
366     split out into a separate structure so that we don't have to
367     copy so much when processing other nodes.  */
368  struct leh_tf_state *tf;
369};
370
371struct leh_tf_state
372{
373  /* Pointer to the GIMPLE_TRY_FINALLY node under discussion.  The
374     try_finally_expr is the original GIMPLE_TRY_FINALLY.  We need to retain
375     this so that outside_finally_tree can reliably reference the tree used
376     in the collect_finally_tree data structures.  */
377  gimple try_finally_expr;
378  gimple top_p;
379
380  /* While lowering a top_p usually it is expanded into multiple statements,
381     thus we need the following field to store them. */
382  gimple_seq top_p_seq;
383
384  /* The state outside this try_finally node.  */
385  struct leh_state *outer;
386
387  /* The exception region created for it.  */
388  eh_region region;
389
390  /* The goto queue.  */
391  struct goto_queue_node *goto_queue;
392  size_t goto_queue_size;
393  size_t goto_queue_active;
394
395  /* Pointer map to help in searching goto_queue when it is large.  */
396  struct pointer_map_t *goto_queue_map;
397
398  /* The set of unique labels seen as entries in the goto queue.  */
399  VEC(tree,heap) *dest_array;
400
401  /* A label to be added at the end of the completed transformed
402     sequence.  It will be set if may_fallthru was true *at one time*,
403     though subsequent transformations may have cleared that flag.  */
404  tree fallthru_label;
405
406  /* True if it is possible to fall out the bottom of the try block.
407     Cleared if the fallthru is converted to a goto.  */
408  bool may_fallthru;
409
410  /* True if any entry in goto_queue is a GIMPLE_RETURN.  */
411  bool may_return;
412
413  /* True if the finally block can receive an exception edge.
414     Cleared if the exception case is handled by code duplication.  */
415  bool may_throw;
416};
417
418static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
419
420/* Search for STMT in the goto queue.  Return the replacement,
421   or null if the statement isn't in the queue.  */
422
423#define LARGE_GOTO_QUEUE 20
424
425static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
426
427static gimple_seq
428find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
429{
430  unsigned int i;
431  void **slot;
432
433  if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
434    {
435      for (i = 0; i < tf->goto_queue_active; i++)
436	if ( tf->goto_queue[i].stmt.g == stmt.g)
437	  return tf->goto_queue[i].repl_stmt;
438      return NULL;
439    }
440
441  /* If we have a large number of entries in the goto_queue, create a
442     pointer map and use that for searching.  */
443
444  if (!tf->goto_queue_map)
445    {
446      tf->goto_queue_map = pointer_map_create ();
447      for (i = 0; i < tf->goto_queue_active; i++)
448	{
449	  slot = pointer_map_insert (tf->goto_queue_map,
450                                     tf->goto_queue[i].stmt.g);
451          gcc_assert (*slot == NULL);
452	  *slot = &tf->goto_queue[i];
453	}
454    }
455
456  slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
457  if (slot != NULL)
458    return (((struct goto_queue_node *) *slot)->repl_stmt);
459
460  return NULL;
461}
462
463/* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
464   lowered GIMPLE_COND.  If, by chance, the replacement is a simple goto,
465   then we can just splat it in, otherwise we add the new stmts immediately
466   after the GIMPLE_COND and redirect.  */
467
468static void
469replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
470				gimple_stmt_iterator *gsi)
471{
472  tree label;
473  gimple_seq new_seq;
474  treemple temp;
475  location_t loc = gimple_location (gsi_stmt (*gsi));
476
477  temp.tp = tp;
478  new_seq = find_goto_replacement (tf, temp);
479  if (!new_seq)
480    return;
481
482  if (gimple_seq_singleton_p (new_seq)
483      && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
484    {
485      *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
486      return;
487    }
488
489  label = create_artificial_label (loc);
490  /* Set the new label for the GIMPLE_COND */
491  *tp = label;
492
493  gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
494  gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
495}
496
497/* The real work of replace_goto_queue.  Returns with TSI updated to
498   point to the next statement.  */
499
500static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
501
502static void
503replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
504		      gimple_stmt_iterator *gsi)
505{
506  gimple_seq seq;
507  treemple temp;
508  temp.g = NULL;
509
510  switch (gimple_code (stmt))
511    {
512    case GIMPLE_GOTO:
513    case GIMPLE_RETURN:
514      temp.g = stmt;
515      seq = find_goto_replacement (tf, temp);
516      if (seq)
517	{
518	  gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
519	  gsi_remove (gsi, false);
520	  return;
521	}
522      break;
523
524    case GIMPLE_COND:
525      replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
526      replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
527      break;
528
529    case GIMPLE_TRY:
530      replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
531      replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
532      break;
533    case GIMPLE_CATCH:
534      replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
535      break;
536    case GIMPLE_EH_FILTER:
537      replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
538      break;
539
540    default:
541      /* These won't have gotos in them.  */
542      break;
543    }
544
545  gsi_next (gsi);
546}
547
548/* A subroutine of replace_goto_queue.  Handles GIMPLE_SEQ.  */
549
550static void
551replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
552{
553  gimple_stmt_iterator gsi = gsi_start (seq);
554
555  while (!gsi_end_p (gsi))
556    replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
557}
558
559/* Replace all goto queue members.  */
560
561static void
562replace_goto_queue (struct leh_tf_state *tf)
563{
564  if (tf->goto_queue_active == 0)
565    return;
566  replace_goto_queue_stmt_list (tf->top_p_seq, tf);
567  replace_goto_queue_stmt_list (eh_seq, tf);
568}
569
570/* Add a new record to the goto queue contained in TF. NEW_STMT is the
571   data to be added, IS_LABEL indicates whether NEW_STMT is a label or
572   a gimple return. */
573
574static void
575record_in_goto_queue (struct leh_tf_state *tf,
576                      treemple new_stmt,
577                      int index,
578                      bool is_label)
579{
580  size_t active, size;
581  struct goto_queue_node *q;
582
583  gcc_assert (!tf->goto_queue_map);
584
585  active = tf->goto_queue_active;
586  size = tf->goto_queue_size;
587  if (active >= size)
588    {
589      size = (size ? size * 2 : 32);
590      tf->goto_queue_size = size;
591      tf->goto_queue
592         = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
593    }
594
595  q = &tf->goto_queue[active];
596  tf->goto_queue_active = active + 1;
597
598  memset (q, 0, sizeof (*q));
599  q->stmt = new_stmt;
600  q->index = index;
601  q->is_label = is_label;
602}
603
604/* Record the LABEL label in the goto queue contained in TF.
605   TF is not null.  */
606
607static void
608record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
609{
610  int index;
611  treemple temp, new_stmt;
612
613  if (!label)
614    return;
615
616  /* Computed and non-local gotos do not get processed.  Given
617     their nature we can neither tell whether we've escaped the
618     finally block nor redirect them if we knew.  */
619  if (TREE_CODE (label) != LABEL_DECL)
620    return;
621
622  /* No need to record gotos that don't leave the try block.  */
623  temp.t = label;
624  if (!outside_finally_tree (temp, tf->try_finally_expr))
625    return;
626
627  if (! tf->dest_array)
628    {
629      tf->dest_array = VEC_alloc (tree, heap, 10);
630      VEC_quick_push (tree, tf->dest_array, label);
631      index = 0;
632    }
633  else
634    {
635      int n = VEC_length (tree, tf->dest_array);
636      for (index = 0; index < n; ++index)
637        if (VEC_index (tree, tf->dest_array, index) == label)
638          break;
639      if (index == n)
640        VEC_safe_push (tree, heap, tf->dest_array, label);
641    }
642
643  /* In the case of a GOTO we want to record the destination label,
644     since with a GIMPLE_COND we have an easy access to the then/else
645     labels. */
646  new_stmt = stmt;
647  record_in_goto_queue (tf, new_stmt, index, true);
648}
649
650/* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
651   node, and if so record that fact in the goto queue associated with that
652   try_finally node.  */
653
654static void
655maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
656{
657  struct leh_tf_state *tf = state->tf;
658  treemple new_stmt;
659
660  if (!tf)
661    return;
662
663  switch (gimple_code (stmt))
664    {
665    case GIMPLE_COND:
666      new_stmt.tp = gimple_op_ptr (stmt, 2);
667      record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
668      new_stmt.tp = gimple_op_ptr (stmt, 3);
669      record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
670      break;
671    case GIMPLE_GOTO:
672      new_stmt.g = stmt;
673      record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
674      break;
675
676    case GIMPLE_RETURN:
677      tf->may_return = true;
678      new_stmt.g = stmt;
679      record_in_goto_queue (tf, new_stmt, -1, false);
680      break;
681
682    default:
683      gcc_unreachable ();
684    }
685}
686
687
688#ifdef ENABLE_CHECKING
689/* We do not process GIMPLE_SWITCHes for now.  As long as the original source
690   was in fact structured, and we've not yet done jump threading, then none
691   of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this.  */
692
693static void
694verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
695{
696  struct leh_tf_state *tf = state->tf;
697  size_t i, n;
698
699  if (!tf)
700    return;
701
702  n = gimple_switch_num_labels (switch_expr);
703
704  for (i = 0; i < n; ++i)
705    {
706      treemple temp;
707      tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
708      temp.t = lab;
709      gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
710    }
711}
712#else
713#define verify_norecord_switch_expr(state, switch_expr)
714#endif
715
716/* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB.  Place in CONT_P
717   whatever is needed to finish the return.  If MOD is non-null, insert it
718   before the new branch.  RETURN_VALUE_P is a cache containing a temporary
719   variable to be used in manipulating the value returned from the function.  */
720
721static void
722do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
723		       tree *return_value_p)
724{
725  tree ret_expr;
726  gimple x;
727
728  /* In the case of a return, the queue node must be a gimple statement. */
729  gcc_assert (!q->is_label);
730
731  ret_expr = gimple_return_retval (q->stmt.g);
732
733  if (ret_expr)
734    {
735      if (!*return_value_p)
736        *return_value_p = ret_expr;
737      else
738        gcc_assert (*return_value_p == ret_expr);
739      q->cont_stmt = q->stmt.g;
740      /* The nasty part about redirecting the return value is that the
741	 return value itself is to be computed before the FINALLY block
742	 is executed.  e.g.
743
744		int x;
745		int foo (void)
746		{
747		  x = 0;
748		  try {
749		    return x;
750		  } finally {
751		    x++;
752		  }
753		}
754
755	  should return 0, not 1.  Arrange for this to happen by copying
756	  computed the return value into a local temporary.  This also
757	  allows us to redirect multiple return statements through the
758	  same destination block; whether this is a net win or not really
759	  depends, I guess, but it does make generation of the switch in
760	  lower_try_finally_switch easier.  */
761
762      if (TREE_CODE (ret_expr) == RESULT_DECL)
763	{
764	  if (!*return_value_p)
765	    *return_value_p = ret_expr;
766	  else
767	    gcc_assert (*return_value_p == ret_expr);
768	  q->cont_stmt = q->stmt.g;
769	}
770      else
771	  gcc_unreachable ();
772    }
773  else
774      /* If we don't return a value, all return statements are the same.  */
775      q->cont_stmt = q->stmt.g;
776
777  if (!q->repl_stmt)
778    q->repl_stmt = gimple_seq_alloc ();
779
780  if (mod)
781    gimple_seq_add_seq (&q->repl_stmt, mod);
782
783  x = gimple_build_goto (finlab);
784  gimple_seq_add_stmt (&q->repl_stmt, x);
785}
786
787/* Similar, but easier, for GIMPLE_GOTO.  */
788
789static void
790do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
791		     struct leh_tf_state *tf)
792{
793  gimple x;
794
795  gcc_assert (q->is_label);
796  if (!q->repl_stmt)
797    q->repl_stmt = gimple_seq_alloc ();
798
799  q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
800
801  if (mod)
802    gimple_seq_add_seq (&q->repl_stmt, mod);
803
804  x = gimple_build_goto (finlab);
805  gimple_seq_add_stmt (&q->repl_stmt, x);
806}
807
808/* Emit a standard landing pad sequence into SEQ for REGION.  */
809
810static void
811emit_post_landing_pad (gimple_seq *seq, eh_region region)
812{
813  eh_landing_pad lp = region->landing_pads;
814  gimple x;
815
816  if (lp == NULL)
817    lp = gen_eh_landing_pad (region);
818
819  lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
820  EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
821
822  x = gimple_build_label (lp->post_landing_pad);
823  gimple_seq_add_stmt (seq, x);
824}
825
826/* Emit a RESX statement into SEQ for REGION.  */
827
828static void
829emit_resx (gimple_seq *seq, eh_region region)
830{
831  gimple x = gimple_build_resx (region->index);
832  gimple_seq_add_stmt (seq, x);
833  if (region->outer)
834    record_stmt_eh_region (region->outer, x);
835}
836
837/* Emit an EH_DISPATCH statement into SEQ for REGION.  */
838
839static void
840emit_eh_dispatch (gimple_seq *seq, eh_region region)
841{
842  gimple x = gimple_build_eh_dispatch (region->index);
843  gimple_seq_add_stmt (seq, x);
844}
845
846/* Note that the current EH region may contain a throw, or a
847   call to a function which itself may contain a throw.  */
848
849static void
850note_eh_region_may_contain_throw (eh_region region)
851{
852  while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
853    {
854      bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
855      region = region->outer;
856      if (region == NULL)
857	break;
858    }
859}
860
861/* Check if REGION has been marked as containing a throw.  If REGION is
862   NULL, this predicate is false.  */
863
864static inline bool
865eh_region_may_contain_throw (eh_region r)
866{
867  return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
868}
869
870/* We want to transform
871	try { body; } catch { stuff; }
872   to
873	normal_seqence:
874	  body;
875	  over:
876	eh_seqence:
877	  landing_pad:
878	  stuff;
879	  goto over;
880
881   TP is a GIMPLE_TRY node.  REGION is the region whose post_landing_pad
882   should be placed before the second operand, or NULL.  OVER is
883   an existing label that should be put at the exit, or NULL.  */
884
885static gimple_seq
886frob_into_branch_around (gimple tp, eh_region region, tree over)
887{
888  gimple x;
889  gimple_seq cleanup, result;
890  location_t loc = gimple_location (tp);
891
892  cleanup = gimple_try_cleanup (tp);
893  result = gimple_try_eval (tp);
894
895  if (region)
896    emit_post_landing_pad (&eh_seq, region);
897
898  if (gimple_seq_may_fallthru (cleanup))
899    {
900      if (!over)
901	over = create_artificial_label (loc);
902      x = gimple_build_goto (over);
903      gimple_seq_add_stmt (&cleanup, x);
904    }
905  gimple_seq_add_seq (&eh_seq, cleanup);
906
907  if (over)
908    {
909      x = gimple_build_label (over);
910      gimple_seq_add_stmt (&result, x);
911    }
912  return result;
913}
914
915/* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
916   Make sure to record all new labels found.  */
917
918static gimple_seq
919lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
920{
921  gimple region = NULL;
922  gimple_seq new_seq;
923
924  new_seq = copy_gimple_seq_and_replace_locals (seq);
925
926  if (outer_state->tf)
927    region = outer_state->tf->try_finally_expr;
928  collect_finally_tree_1 (new_seq, region);
929
930  return new_seq;
931}
932
933/* A subroutine of lower_try_finally.  Create a fallthru label for
934   the given try_finally state.  The only tricky bit here is that
935   we have to make sure to record the label in our outer context.  */
936
937static tree
938lower_try_finally_fallthru_label (struct leh_tf_state *tf)
939{
940  tree label = tf->fallthru_label;
941  treemple temp;
942
943  if (!label)
944    {
945      label = create_artificial_label (gimple_location (tf->try_finally_expr));
946      tf->fallthru_label = label;
947      if (tf->outer->tf)
948        {
949          temp.t = label;
950          record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
951        }
952    }
953  return label;
954}
955
956/* A subroutine of lower_try_finally.  If lang_protect_cleanup_actions
957   returns non-null, then the language requires that the exception path out
958   of a try_finally be treated specially.  To wit: the code within the
959   finally block may not itself throw an exception.  We have two choices here.
960   First we can duplicate the finally block and wrap it in a must_not_throw
961   region.  Second, we can generate code like
962
963	try {
964	  finally_block;
965	} catch {
966	  if (fintmp == eh_edge)
967	    protect_cleanup_actions;
968	}
969
970   where "fintmp" is the temporary used in the switch statement generation
971   alternative considered below.  For the nonce, we always choose the first
972   option.
973
974   THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */
975
976static void
977honor_protect_cleanup_actions (struct leh_state *outer_state,
978			       struct leh_state *this_state,
979			       struct leh_tf_state *tf)
980{
981  tree protect_cleanup_actions;
982  gimple_stmt_iterator gsi;
983  bool finally_may_fallthru;
984  gimple_seq finally;
985  gimple x;
986
987  /* First check for nothing to do.  */
988  if (lang_protect_cleanup_actions == NULL)
989    return;
990  protect_cleanup_actions = lang_protect_cleanup_actions ();
991  if (protect_cleanup_actions == NULL)
992    return;
993
994  finally = gimple_try_cleanup (tf->top_p);
995  finally_may_fallthru = gimple_seq_may_fallthru (finally);
996
997  /* Duplicate the FINALLY block.  Only need to do this for try-finally,
998     and not for cleanups.  */
999  if (this_state)
1000    finally = lower_try_finally_dup_block (finally, outer_state);
1001
1002  /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1003     set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1004     to be in an enclosing scope, but needs to be implemented at this level
1005     to avoid a nesting violation (see wrap_temporary_cleanups in
1006     cp/decl.c).  Since it's logically at an outer level, we should call
1007     terminate before we get to it, so strip it away before adding the
1008     MUST_NOT_THROW filter.  */
1009  gsi = gsi_start (finally);
1010  x = gsi_stmt (gsi);
1011  if (gimple_code (x) == GIMPLE_TRY
1012      && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1013      && gimple_try_catch_is_cleanup (x))
1014    {
1015      gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1016      gsi_remove (&gsi, false);
1017    }
1018
1019  /* Wrap the block with protect_cleanup_actions as the action.  */
1020  x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1021  x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1022			GIMPLE_TRY_CATCH);
1023  finally = lower_eh_must_not_throw (outer_state, x);
1024
1025  /* Drop all of this into the exception sequence.  */
1026  emit_post_landing_pad (&eh_seq, tf->region);
1027  gimple_seq_add_seq (&eh_seq, finally);
1028  if (finally_may_fallthru)
1029    emit_resx (&eh_seq, tf->region);
1030
1031  /* Having now been handled, EH isn't to be considered with
1032     the rest of the outgoing edges.  */
1033  tf->may_throw = false;
1034}
1035
1036/* A subroutine of lower_try_finally.  We have determined that there is
1037   no fallthru edge out of the finally block.  This means that there is
1038   no outgoing edge corresponding to any incoming edge.  Restructure the
1039   try_finally node for this special case.  */
1040
1041static void
1042lower_try_finally_nofallthru (struct leh_state *state,
1043			      struct leh_tf_state *tf)
1044{
1045  tree lab, return_val;
1046  gimple x;
1047  gimple_seq finally;
1048  struct goto_queue_node *q, *qe;
1049
1050  lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1051
1052  /* We expect that tf->top_p is a GIMPLE_TRY. */
1053  finally = gimple_try_cleanup (tf->top_p);
1054  tf->top_p_seq = gimple_try_eval (tf->top_p);
1055
1056  x = gimple_build_label (lab);
1057  gimple_seq_add_stmt (&tf->top_p_seq, x);
1058
1059  return_val = NULL;
1060  q = tf->goto_queue;
1061  qe = q + tf->goto_queue_active;
1062  for (; q < qe; ++q)
1063    if (q->index < 0)
1064      do_return_redirection (q, lab, NULL, &return_val);
1065    else
1066      do_goto_redirection (q, lab, NULL, tf);
1067
1068  replace_goto_queue (tf);
1069
1070  lower_eh_constructs_1 (state, finally);
1071  gimple_seq_add_seq (&tf->top_p_seq, finally);
1072
1073  if (tf->may_throw)
1074    {
1075      emit_post_landing_pad (&eh_seq, tf->region);
1076
1077      x = gimple_build_goto (lab);
1078      gimple_seq_add_stmt (&eh_seq, x);
1079    }
1080}
1081
1082/* A subroutine of lower_try_finally.  We have determined that there is
1083   exactly one destination of the finally block.  Restructure the
1084   try_finally node for this special case.  */
1085
1086static void
1087lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1088{
1089  struct goto_queue_node *q, *qe;
1090  gimple x;
1091  gimple_seq finally;
1092  tree finally_label;
1093  location_t loc = gimple_location (tf->try_finally_expr);
1094
1095  finally = gimple_try_cleanup (tf->top_p);
1096  tf->top_p_seq = gimple_try_eval (tf->top_p);
1097
1098  lower_eh_constructs_1 (state, finally);
1099
1100  if (tf->may_throw)
1101    {
1102      /* Only reachable via the exception edge.  Add the given label to
1103         the head of the FINALLY block.  Append a RESX at the end.  */
1104      emit_post_landing_pad (&eh_seq, tf->region);
1105      gimple_seq_add_seq (&eh_seq, finally);
1106      emit_resx (&eh_seq, tf->region);
1107      return;
1108    }
1109
1110  if (tf->may_fallthru)
1111    {
1112      /* Only reachable via the fallthru edge.  Do nothing but let
1113	 the two blocks run together; we'll fall out the bottom.  */
1114      gimple_seq_add_seq (&tf->top_p_seq, finally);
1115      return;
1116    }
1117
1118  finally_label = create_artificial_label (loc);
1119  x = gimple_build_label (finally_label);
1120  gimple_seq_add_stmt (&tf->top_p_seq, x);
1121
1122  gimple_seq_add_seq (&tf->top_p_seq, finally);
1123
1124  q = tf->goto_queue;
1125  qe = q + tf->goto_queue_active;
1126
1127  if (tf->may_return)
1128    {
1129      /* Reachable by return expressions only.  Redirect them.  */
1130      tree return_val = NULL;
1131      for (; q < qe; ++q)
1132	do_return_redirection (q, finally_label, NULL, &return_val);
1133      replace_goto_queue (tf);
1134    }
1135  else
1136    {
1137      /* Reachable by goto expressions only.  Redirect them.  */
1138      for (; q < qe; ++q)
1139	do_goto_redirection (q, finally_label, NULL, tf);
1140      replace_goto_queue (tf);
1141
1142      if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1143	{
1144	  /* Reachable by goto to fallthru label only.  Redirect it
1145	     to the new label (already created, sadly), and do not
1146	     emit the final branch out, or the fallthru label.  */
1147	  tf->fallthru_label = NULL;
1148	  return;
1149	}
1150    }
1151
1152  /* Place the original return/goto to the original destination
1153     immediately after the finally block. */
1154  x = tf->goto_queue[0].cont_stmt;
1155  gimple_seq_add_stmt (&tf->top_p_seq, x);
1156  maybe_record_in_goto_queue (state, x);
1157}
1158
1159/* A subroutine of lower_try_finally.  There are multiple edges incoming
1160   and outgoing from the finally block.  Implement this by duplicating the
1161   finally block for every destination.  */
1162
1163static void
1164lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1165{
1166  gimple_seq finally;
1167  gimple_seq new_stmt;
1168  gimple_seq seq;
1169  gimple x;
1170  tree tmp;
1171  location_t tf_loc = gimple_location (tf->try_finally_expr);
1172
1173  finally = gimple_try_cleanup (tf->top_p);
1174  tf->top_p_seq = gimple_try_eval (tf->top_p);
1175  new_stmt = NULL;
1176
1177  if (tf->may_fallthru)
1178    {
1179      seq = lower_try_finally_dup_block (finally, state);
1180      lower_eh_constructs_1 (state, seq);
1181      gimple_seq_add_seq (&new_stmt, seq);
1182
1183      tmp = lower_try_finally_fallthru_label (tf);
1184      x = gimple_build_goto (tmp);
1185      gimple_seq_add_stmt (&new_stmt, x);
1186    }
1187
1188  if (tf->may_throw)
1189    {
1190      seq = lower_try_finally_dup_block (finally, state);
1191      lower_eh_constructs_1 (state, seq);
1192
1193      emit_post_landing_pad (&eh_seq, tf->region);
1194      gimple_seq_add_seq (&eh_seq, seq);
1195      emit_resx (&eh_seq, tf->region);
1196    }
1197
1198  if (tf->goto_queue)
1199    {
1200      struct goto_queue_node *q, *qe;
1201      tree return_val = NULL;
1202      int return_index, index;
1203      struct labels_s
1204      {
1205	struct goto_queue_node *q;
1206	tree label;
1207      } *labels;
1208
1209      return_index = VEC_length (tree, tf->dest_array);
1210      labels = XCNEWVEC (struct labels_s, return_index + 1);
1211
1212      q = tf->goto_queue;
1213      qe = q + tf->goto_queue_active;
1214      for (; q < qe; q++)
1215	{
1216	  index = q->index < 0 ? return_index : q->index;
1217
1218	  if (!labels[index].q)
1219	    labels[index].q = q;
1220	}
1221
1222      for (index = 0; index < return_index + 1; index++)
1223	{
1224	  tree lab;
1225
1226	  q = labels[index].q;
1227	  if (! q)
1228	    continue;
1229
1230	  lab = labels[index].label
1231	    = create_artificial_label (tf_loc);
1232
1233	  if (index == return_index)
1234	    do_return_redirection (q, lab, NULL, &return_val);
1235	  else
1236	    do_goto_redirection (q, lab, NULL, tf);
1237
1238	  x = gimple_build_label (lab);
1239          gimple_seq_add_stmt (&new_stmt, x);
1240
1241	  seq = lower_try_finally_dup_block (finally, state);
1242	  lower_eh_constructs_1 (state, seq);
1243          gimple_seq_add_seq (&new_stmt, seq);
1244
1245          gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1246	  maybe_record_in_goto_queue (state, q->cont_stmt);
1247	}
1248
1249      for (q = tf->goto_queue; q < qe; q++)
1250	{
1251	  tree lab;
1252
1253	  index = q->index < 0 ? return_index : q->index;
1254
1255	  if (labels[index].q == q)
1256	    continue;
1257
1258	  lab = labels[index].label;
1259
1260	  if (index == return_index)
1261	    do_return_redirection (q, lab, NULL, &return_val);
1262	  else
1263	    do_goto_redirection (q, lab, NULL, tf);
1264	}
1265
1266      replace_goto_queue (tf);
1267      free (labels);
1268    }
1269
1270  /* Need to link new stmts after running replace_goto_queue due
1271     to not wanting to process the same goto stmts twice.  */
1272  gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1273}
1274
1275/* A subroutine of lower_try_finally.  There are multiple edges incoming
1276   and outgoing from the finally block.  Implement this by instrumenting
1277   each incoming edge and creating a switch statement at the end of the
1278   finally block that branches to the appropriate destination.  */
1279
1280static void
1281lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1282{
1283  struct goto_queue_node *q, *qe;
1284  tree return_val = NULL;
1285  tree finally_tmp, finally_label;
1286  int return_index, eh_index, fallthru_index;
1287  int nlabels, ndests, j, last_case_index;
1288  tree last_case;
1289  VEC (tree,heap) *case_label_vec;
1290  gimple_seq switch_body;
1291  gimple x;
1292  tree tmp;
1293  gimple switch_stmt;
1294  gimple_seq finally;
1295  struct pointer_map_t *cont_map = NULL;
1296  /* The location of the TRY_FINALLY stmt.  */
1297  location_t tf_loc = gimple_location (tf->try_finally_expr);
1298  /* The location of the finally block.  */
1299  location_t finally_loc;
1300
1301  switch_body = gimple_seq_alloc ();
1302
1303  /* Mash the TRY block to the head of the chain.  */
1304  finally = gimple_try_cleanup (tf->top_p);
1305  tf->top_p_seq = gimple_try_eval (tf->top_p);
1306
1307  /* The location of the finally is either the last stmt in the finally
1308     block or the location of the TRY_FINALLY itself.  */
1309  finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1310    gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1311    : tf_loc;
1312
1313  /* Lower the finally block itself.  */
1314  lower_eh_constructs_1 (state, finally);
1315
1316  /* Prepare for switch statement generation.  */
1317  nlabels = VEC_length (tree, tf->dest_array);
1318  return_index = nlabels;
1319  eh_index = return_index + tf->may_return;
1320  fallthru_index = eh_index + tf->may_throw;
1321  ndests = fallthru_index + tf->may_fallthru;
1322
1323  finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1324  finally_label = create_artificial_label (finally_loc);
1325
1326  /* We use VEC_quick_push on case_label_vec throughout this function,
1327     since we know the size in advance and allocate precisely as muce
1328     space as needed.  */
1329  case_label_vec = VEC_alloc (tree, heap, ndests);
1330  last_case = NULL;
1331  last_case_index = 0;
1332
1333  /* Begin inserting code for getting to the finally block.  Things
1334     are done in this order to correspond to the sequence the code is
1335     layed out.  */
1336
1337  if (tf->may_fallthru)
1338    {
1339      x = gimple_build_assign (finally_tmp,
1340			       build_int_cst (NULL, fallthru_index));
1341      gimple_seq_add_stmt (&tf->top_p_seq, x);
1342
1343      last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1344			  build_int_cst (NULL, fallthru_index),
1345			  NULL, create_artificial_label (tf_loc));
1346      VEC_quick_push (tree, case_label_vec, last_case);
1347      last_case_index++;
1348
1349      x = gimple_build_label (CASE_LABEL (last_case));
1350      gimple_seq_add_stmt (&switch_body, x);
1351
1352      tmp = lower_try_finally_fallthru_label (tf);
1353      x = gimple_build_goto (tmp);
1354      gimple_seq_add_stmt (&switch_body, x);
1355    }
1356
1357  if (tf->may_throw)
1358    {
1359      emit_post_landing_pad (&eh_seq, tf->region);
1360
1361      x = gimple_build_assign (finally_tmp,
1362			       build_int_cst (NULL, eh_index));
1363      gimple_seq_add_stmt (&eh_seq, x);
1364
1365      x = gimple_build_goto (finally_label);
1366      gimple_seq_add_stmt (&eh_seq, x);
1367
1368      last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1369			  build_int_cst (NULL, eh_index),
1370			  NULL, create_artificial_label (tf_loc));
1371      VEC_quick_push (tree, case_label_vec, last_case);
1372      last_case_index++;
1373
1374      x = gimple_build_label (CASE_LABEL (last_case));
1375      gimple_seq_add_stmt (&eh_seq, x);
1376      emit_resx (&eh_seq, tf->region);
1377    }
1378
1379  x = gimple_build_label (finally_label);
1380  gimple_seq_add_stmt (&tf->top_p_seq, x);
1381
1382  gimple_seq_add_seq (&tf->top_p_seq, finally);
1383
1384  /* Redirect each incoming goto edge.  */
1385  q = tf->goto_queue;
1386  qe = q + tf->goto_queue_active;
1387  j = last_case_index + tf->may_return;
1388  /* Prepare the assignments to finally_tmp that are executed upon the
1389     entrance through a particular edge. */
1390  for (; q < qe; ++q)
1391    {
1392      gimple_seq mod;
1393      int switch_id;
1394      unsigned int case_index;
1395
1396      mod = gimple_seq_alloc ();
1397
1398      if (q->index < 0)
1399	{
1400	  x = gimple_build_assign (finally_tmp,
1401				   build_int_cst (NULL, return_index));
1402	  gimple_seq_add_stmt (&mod, x);
1403	  do_return_redirection (q, finally_label, mod, &return_val);
1404	  switch_id = return_index;
1405	}
1406      else
1407	{
1408	  x = gimple_build_assign (finally_tmp,
1409				   build_int_cst (NULL, q->index));
1410	  gimple_seq_add_stmt (&mod, x);
1411	  do_goto_redirection (q, finally_label, mod, tf);
1412	  switch_id = q->index;
1413	}
1414
1415      case_index = j + q->index;
1416      if (VEC_length (tree, case_label_vec) <= case_index
1417          || !VEC_index (tree, case_label_vec, case_index))
1418        {
1419          tree case_lab;
1420          void **slot;
1421          case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1422                             build_int_cst (NULL, switch_id),
1423			     NULL, NULL);
1424          /* We store the cont_stmt in the pointer map, so that we can recover
1425             it in the loop below.  We don't create the new label while
1426             walking the goto_queue because pointers don't offer a stable
1427             order.  */
1428          if (!cont_map)
1429            cont_map = pointer_map_create ();
1430          slot = pointer_map_insert (cont_map, case_lab);
1431          *slot = q->cont_stmt;
1432          VEC_quick_push (tree, case_label_vec, case_lab);
1433        }
1434    }
1435  for (j = last_case_index; j < last_case_index + nlabels; j++)
1436    {
1437      tree label;
1438      gimple cont_stmt;
1439      void **slot;
1440
1441      last_case = VEC_index (tree, case_label_vec, j);
1442
1443      gcc_assert (last_case);
1444      gcc_assert (cont_map);
1445
1446      slot = pointer_map_contains (cont_map, last_case);
1447      /* As the comment above suggests, CASE_LABEL (last_case) was just a
1448         placeholder, it does not store an actual label, yet. */
1449      gcc_assert (slot);
1450      cont_stmt = *(gimple *) slot;
1451
1452      label = create_artificial_label (tf_loc);
1453      CASE_LABEL (last_case) = label;
1454
1455      x = gimple_build_label (label);
1456      gimple_seq_add_stmt (&switch_body, x);
1457      gimple_seq_add_stmt (&switch_body, cont_stmt);
1458      maybe_record_in_goto_queue (state, cont_stmt);
1459    }
1460  if (cont_map)
1461    pointer_map_destroy (cont_map);
1462
1463  replace_goto_queue (tf);
1464
1465  /* Make sure that the last case is the default label, as one is required.
1466     Then sort the labels, which is also required in GIMPLE.  */
1467  CASE_LOW (last_case) = NULL;
1468  sort_case_labels (case_label_vec);
1469
1470  /* Build the switch statement, setting last_case to be the default
1471     label.  */
1472  switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1473                                         case_label_vec);
1474  gimple_set_location (switch_stmt, finally_loc);
1475
1476  /* Need to link SWITCH_STMT after running replace_goto_queue
1477     due to not wanting to process the same goto stmts twice.  */
1478  gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1479  gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1480}
1481
1482/* Decide whether or not we are going to duplicate the finally block.
1483   There are several considerations.
1484
1485   First, if this is Java, then the finally block contains code
1486   written by the user.  It has line numbers associated with it,
1487   so duplicating the block means it's difficult to set a breakpoint.
1488   Since controlling code generation via -g is verboten, we simply
1489   never duplicate code without optimization.
1490
1491   Second, we'd like to prevent egregious code growth.  One way to
1492   do this is to estimate the size of the finally block, multiply
1493   that by the number of copies we'd need to make, and compare against
1494   the estimate of the size of the switch machinery we'd have to add.  */
1495
1496static bool
1497decide_copy_try_finally (int ndests, gimple_seq finally)
1498{
1499  int f_estimate, sw_estimate;
1500
1501  if (!optimize)
1502    return false;
1503
1504  /* Finally estimate N times, plus N gotos.  */
1505  f_estimate = count_insns_seq (finally, &eni_size_weights);
1506  f_estimate = (f_estimate + 1) * ndests;
1507
1508  /* Switch statement (cost 10), N variable assignments, N gotos.  */
1509  sw_estimate = 10 + 2 * ndests;
1510
1511  /* Optimize for size clearly wants our best guess.  */
1512  if (optimize_function_for_size_p (cfun))
1513    return f_estimate < sw_estimate;
1514
1515  /* ??? These numbers are completely made up so far.  */
1516  if (optimize > 1)
1517    return f_estimate < 100 || f_estimate < sw_estimate * 2;
1518  else
1519    return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1520}
1521
1522
1523/* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_FINALLY nodes
1524   to a sequence of labels and blocks, plus the exception region trees
1525   that record all the magic.  This is complicated by the need to
1526   arrange for the FINALLY block to be executed on all exits.  */
1527
1528static gimple_seq
1529lower_try_finally (struct leh_state *state, gimple tp)
1530{
1531  struct leh_tf_state this_tf;
1532  struct leh_state this_state;
1533  int ndests;
1534  gimple_seq old_eh_seq;
1535
1536  /* Process the try block.  */
1537
1538  memset (&this_tf, 0, sizeof (this_tf));
1539  this_tf.try_finally_expr = tp;
1540  this_tf.top_p = tp;
1541  this_tf.outer = state;
1542  if (using_eh_for_cleanups_p)
1543    this_tf.region = gen_eh_region_cleanup (state->cur_region);
1544  else
1545    this_tf.region = NULL;
1546
1547  this_state.cur_region = this_tf.region;
1548  this_state.ehp_region = state->ehp_region;
1549  this_state.tf = &this_tf;
1550
1551  old_eh_seq = eh_seq;
1552  eh_seq = NULL;
1553
1554  lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1555
1556  /* Determine if the try block is escaped through the bottom.  */
1557  this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1558
1559  /* Determine if any exceptions are possible within the try block.  */
1560  if (using_eh_for_cleanups_p)
1561    this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1562  if (this_tf.may_throw)
1563    honor_protect_cleanup_actions (state, &this_state, &this_tf);
1564
1565  /* Determine how many edges (still) reach the finally block.  Or rather,
1566     how many destinations are reached by the finally block.  Use this to
1567     determine how we process the finally block itself.  */
1568
1569  ndests = VEC_length (tree, this_tf.dest_array);
1570  ndests += this_tf.may_fallthru;
1571  ndests += this_tf.may_return;
1572  ndests += this_tf.may_throw;
1573
1574  /* If the FINALLY block is not reachable, dike it out.  */
1575  if (ndests == 0)
1576    {
1577      gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1578      gimple_try_set_cleanup (tp, NULL);
1579    }
1580  /* If the finally block doesn't fall through, then any destination
1581     we might try to impose there isn't reached either.  There may be
1582     some minor amount of cleanup and redirection still needed.  */
1583  else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1584    lower_try_finally_nofallthru (state, &this_tf);
1585
1586  /* We can easily special-case redirection to a single destination.  */
1587  else if (ndests == 1)
1588    lower_try_finally_onedest (state, &this_tf);
1589  else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1590    lower_try_finally_copy (state, &this_tf);
1591  else
1592    lower_try_finally_switch (state, &this_tf);
1593
1594  /* If someone requested we add a label at the end of the transformed
1595     block, do so.  */
1596  if (this_tf.fallthru_label)
1597    {
1598      /* This must be reached only if ndests == 0. */
1599      gimple x = gimple_build_label (this_tf.fallthru_label);
1600      gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1601    }
1602
1603  VEC_free (tree, heap, this_tf.dest_array);
1604  if (this_tf.goto_queue)
1605    free (this_tf.goto_queue);
1606  if (this_tf.goto_queue_map)
1607    pointer_map_destroy (this_tf.goto_queue_map);
1608
1609  /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1610     If there was no old eh_seq, then the append is trivially already done.  */
1611  if (old_eh_seq)
1612    {
1613      if (eh_seq == NULL)
1614	eh_seq = old_eh_seq;
1615      else
1616	{
1617	  gimple_seq new_eh_seq = eh_seq;
1618	  eh_seq = old_eh_seq;
1619	  gimple_seq_add_seq(&eh_seq, new_eh_seq);
1620	}
1621    }
1622
1623  return this_tf.top_p_seq;
1624}
1625
1626/* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_CATCH with a
1627   list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1628   exception region trees that records all the magic.  */
1629
1630static gimple_seq
1631lower_catch (struct leh_state *state, gimple tp)
1632{
1633  eh_region try_region = NULL;
1634  struct leh_state this_state = *state;
1635  gimple_stmt_iterator gsi;
1636  tree out_label;
1637  gimple_seq new_seq;
1638  gimple x;
1639  location_t try_catch_loc = gimple_location (tp);
1640
1641  if (flag_exceptions)
1642    {
1643      try_region = gen_eh_region_try (state->cur_region);
1644      this_state.cur_region = try_region;
1645    }
1646
1647  lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1648
1649  if (!eh_region_may_contain_throw (try_region))
1650    return gimple_try_eval (tp);
1651
1652  new_seq = NULL;
1653  emit_eh_dispatch (&new_seq, try_region);
1654  emit_resx (&new_seq, try_region);
1655
1656  this_state.cur_region = state->cur_region;
1657  this_state.ehp_region = try_region;
1658
1659  out_label = NULL;
1660  for (gsi = gsi_start (gimple_try_cleanup (tp));
1661       !gsi_end_p (gsi);
1662       gsi_next (&gsi))
1663    {
1664      eh_catch c;
1665      gimple gcatch;
1666      gimple_seq handler;
1667
1668      gcatch = gsi_stmt (gsi);
1669      c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1670
1671      handler = gimple_catch_handler (gcatch);
1672      lower_eh_constructs_1 (&this_state, handler);
1673
1674      c->label = create_artificial_label (UNKNOWN_LOCATION);
1675      x = gimple_build_label (c->label);
1676      gimple_seq_add_stmt (&new_seq, x);
1677
1678      gimple_seq_add_seq (&new_seq, handler);
1679
1680      if (gimple_seq_may_fallthru (new_seq))
1681	{
1682	  if (!out_label)
1683	    out_label = create_artificial_label (try_catch_loc);
1684
1685	  x = gimple_build_goto (out_label);
1686	  gimple_seq_add_stmt (&new_seq, x);
1687	}
1688      if (!c->type_list)
1689	break;
1690    }
1691
1692  gimple_try_set_cleanup (tp, new_seq);
1693
1694  return frob_into_branch_around (tp, try_region, out_label);
1695}
1696
1697/* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with a
1698   GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1699   region trees that record all the magic.  */
1700
1701static gimple_seq
1702lower_eh_filter (struct leh_state *state, gimple tp)
1703{
1704  struct leh_state this_state = *state;
1705  eh_region this_region = NULL;
1706  gimple inner, x;
1707  gimple_seq new_seq;
1708
1709  inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1710
1711  if (flag_exceptions)
1712    {
1713      this_region = gen_eh_region_allowed (state->cur_region,
1714				           gimple_eh_filter_types (inner));
1715      this_state.cur_region = this_region;
1716    }
1717
1718  lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1719
1720  if (!eh_region_may_contain_throw (this_region))
1721    return gimple_try_eval (tp);
1722
1723  new_seq = NULL;
1724  this_state.cur_region = state->cur_region;
1725  this_state.ehp_region = this_region;
1726
1727  emit_eh_dispatch (&new_seq, this_region);
1728  emit_resx (&new_seq, this_region);
1729
1730  this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1731  x = gimple_build_label (this_region->u.allowed.label);
1732  gimple_seq_add_stmt (&new_seq, x);
1733
1734  lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1735  gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1736
1737  gimple_try_set_cleanup (tp, new_seq);
1738
1739  return frob_into_branch_around (tp, this_region, NULL);
1740}
1741
1742/* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with
1743   an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1744   plus the exception region trees that record all the magic.  */
1745
1746static gimple_seq
1747lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1748{
1749  struct leh_state this_state = *state;
1750
1751  if (flag_exceptions)
1752    {
1753      gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1754      eh_region this_region;
1755
1756      this_region = gen_eh_region_must_not_throw (state->cur_region);
1757      this_region->u.must_not_throw.failure_decl
1758	= gimple_eh_must_not_throw_fndecl (inner);
1759      this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1760
1761      /* In order to get mangling applied to this decl, we must mark it
1762	 used now.  Otherwise, pass_ipa_free_lang_data won't think it
1763	 needs to happen.  */
1764      TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1765
1766      this_state.cur_region = this_region;
1767    }
1768
1769  lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1770
1771  return gimple_try_eval (tp);
1772}
1773
1774/* Implement a cleanup expression.  This is similar to try-finally,
1775   except that we only execute the cleanup block for exception edges.  */
1776
1777static gimple_seq
1778lower_cleanup (struct leh_state *state, gimple tp)
1779{
1780  struct leh_state this_state = *state;
1781  eh_region this_region = NULL;
1782  struct leh_tf_state fake_tf;
1783  gimple_seq result;
1784
1785  if (flag_exceptions)
1786    {
1787      this_region = gen_eh_region_cleanup (state->cur_region);
1788      this_state.cur_region = this_region;
1789    }
1790
1791  lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1792
1793  if (!eh_region_may_contain_throw (this_region))
1794    return gimple_try_eval (tp);
1795
1796  /* Build enough of a try-finally state so that we can reuse
1797     honor_protect_cleanup_actions.  */
1798  memset (&fake_tf, 0, sizeof (fake_tf));
1799  fake_tf.top_p = fake_tf.try_finally_expr = tp;
1800  fake_tf.outer = state;
1801  fake_tf.region = this_region;
1802  fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1803  fake_tf.may_throw = true;
1804
1805  honor_protect_cleanup_actions (state, NULL, &fake_tf);
1806
1807  if (fake_tf.may_throw)
1808    {
1809      /* In this case honor_protect_cleanup_actions had nothing to do,
1810	 and we should process this normally.  */
1811      lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1812      result = frob_into_branch_around (tp, this_region,
1813                                        fake_tf.fallthru_label);
1814    }
1815  else
1816    {
1817      /* In this case honor_protect_cleanup_actions did nearly all of
1818	 the work.  All we have left is to append the fallthru_label.  */
1819
1820      result = gimple_try_eval (tp);
1821      if (fake_tf.fallthru_label)
1822	{
1823	  gimple x = gimple_build_label (fake_tf.fallthru_label);
1824	  gimple_seq_add_stmt (&result, x);
1825	}
1826    }
1827  return result;
1828}
1829
1830/* Main loop for lowering eh constructs. Also moves gsi to the next
1831   statement. */
1832
1833static void
1834lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1835{
1836  gimple_seq replace;
1837  gimple x;
1838  gimple stmt = gsi_stmt (*gsi);
1839
1840  switch (gimple_code (stmt))
1841    {
1842    case GIMPLE_CALL:
1843      {
1844	tree fndecl = gimple_call_fndecl (stmt);
1845	tree rhs, lhs;
1846
1847	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1848	  switch (DECL_FUNCTION_CODE (fndecl))
1849	    {
1850	    case BUILT_IN_EH_POINTER:
1851	      /* The front end may have generated a call to
1852		 __builtin_eh_pointer (0) within a catch region.  Replace
1853		 this zero argument with the current catch region number.  */
1854	      if (state->ehp_region)
1855		{
1856		  tree nr = build_int_cst (NULL, state->ehp_region->index);
1857		  gimple_call_set_arg (stmt, 0, nr);
1858		}
1859	      else
1860		{
1861		  /* The user has dome something silly.  Remove it.  */
1862		  rhs = build_int_cst (ptr_type_node, 0);
1863		  goto do_replace;
1864		}
1865	      break;
1866
1867	    case BUILT_IN_EH_FILTER:
1868	      /* ??? This should never appear, but since it's a builtin it
1869		 is accessible to abuse by users.  Just remove it and
1870		 replace the use with the arbitrary value zero.  */
1871	      rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1872	    do_replace:
1873	      lhs = gimple_call_lhs (stmt);
1874	      x = gimple_build_assign (lhs, rhs);
1875	      gsi_insert_before (gsi, x, GSI_SAME_STMT);
1876	      /* FALLTHRU */
1877
1878	    case BUILT_IN_EH_COPY_VALUES:
1879	      /* Likewise this should not appear.  Remove it.  */
1880	      gsi_remove (gsi, true);
1881	      return;
1882
1883	    default:
1884	      break;
1885	    }
1886      }
1887      /* FALLTHRU */
1888
1889    case GIMPLE_ASSIGN:
1890      /* If the stmt can throw use a new temporary for the assignment
1891         to a LHS.  This makes sure the old value of the LHS is
1892	 available on the EH edge.  Only do so for statements that
1893	 potentially fall thru (no noreturn calls e.g.), otherwise
1894	 this new assignment might create fake fallthru regions.  */
1895      if (stmt_could_throw_p (stmt)
1896	  && gimple_has_lhs (stmt)
1897	  && gimple_stmt_may_fallthru (stmt)
1898	  && !tree_could_throw_p (gimple_get_lhs (stmt))
1899	  && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1900	{
1901	  tree lhs = gimple_get_lhs (stmt);
1902	  tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1903	  gimple s = gimple_build_assign (lhs, tmp);
1904	  gimple_set_location (s, gimple_location (stmt));
1905	  gimple_set_block (s, gimple_block (stmt));
1906	  gimple_set_lhs (stmt, tmp);
1907	  if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1908	      || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1909	    DECL_GIMPLE_REG_P (tmp) = 1;
1910	  gsi_insert_after (gsi, s, GSI_SAME_STMT);
1911	}
1912      /* Look for things that can throw exceptions, and record them.  */
1913      if (state->cur_region && stmt_could_throw_p (stmt))
1914	{
1915	  record_stmt_eh_region (state->cur_region, stmt);
1916	  note_eh_region_may_contain_throw (state->cur_region);
1917	}
1918      break;
1919
1920    case GIMPLE_COND:
1921    case GIMPLE_GOTO:
1922    case GIMPLE_RETURN:
1923      maybe_record_in_goto_queue (state, stmt);
1924      break;
1925
1926    case GIMPLE_SWITCH:
1927      verify_norecord_switch_expr (state, stmt);
1928      break;
1929
1930    case GIMPLE_TRY:
1931      if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1932	replace = lower_try_finally (state, stmt);
1933      else
1934	{
1935	  x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1936	  if (!x)
1937	    {
1938	      replace = gimple_try_eval (stmt);
1939	      lower_eh_constructs_1 (state, replace);
1940	    }
1941	  else
1942	    switch (gimple_code (x))
1943	      {
1944		case GIMPLE_CATCH:
1945		    replace = lower_catch (state, stmt);
1946		    break;
1947		case GIMPLE_EH_FILTER:
1948		    replace = lower_eh_filter (state, stmt);
1949		    break;
1950		case GIMPLE_EH_MUST_NOT_THROW:
1951		    replace = lower_eh_must_not_throw (state, stmt);
1952		    break;
1953		default:
1954		    replace = lower_cleanup (state, stmt);
1955		    break;
1956	      }
1957	}
1958
1959      /* Remove the old stmt and insert the transformed sequence
1960	 instead. */
1961      gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1962      gsi_remove (gsi, true);
1963
1964      /* Return since we don't want gsi_next () */
1965      return;
1966
1967    default:
1968      /* A type, a decl, or some kind of statement that we're not
1969	 interested in.  Don't walk them.  */
1970      break;
1971    }
1972
1973  gsi_next (gsi);
1974}
1975
1976/* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1977
1978static void
1979lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1980{
1981  gimple_stmt_iterator gsi;
1982  for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1983    lower_eh_constructs_2 (state, &gsi);
1984}
1985
1986static unsigned int
1987lower_eh_constructs (void)
1988{
1989  struct leh_state null_state;
1990  gimple_seq bodyp;
1991
1992  bodyp = gimple_body (current_function_decl);
1993  if (bodyp == NULL)
1994    return 0;
1995
1996  finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1997  eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1998  memset (&null_state, 0, sizeof (null_state));
1999
2000  collect_finally_tree_1 (bodyp, NULL);
2001  lower_eh_constructs_1 (&null_state, bodyp);
2002
2003  /* We assume there's a return statement, or something, at the end of
2004     the function, and thus ploping the EH sequence afterward won't
2005     change anything.  */
2006  gcc_assert (!gimple_seq_may_fallthru (bodyp));
2007  gimple_seq_add_seq (&bodyp, eh_seq);
2008
2009  /* We assume that since BODYP already existed, adding EH_SEQ to it
2010     didn't change its value, and we don't have to re-set the function.  */
2011  gcc_assert (bodyp == gimple_body (current_function_decl));
2012
2013  htab_delete (finally_tree);
2014  BITMAP_FREE (eh_region_may_contain_throw_map);
2015  eh_seq = NULL;
2016
2017  /* If this function needs a language specific EH personality routine
2018     and the frontend didn't already set one do so now.  */
2019  if (function_needs_eh_personality (cfun) == eh_personality_lang
2020      && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2021    DECL_FUNCTION_PERSONALITY (current_function_decl)
2022      = lang_hooks.eh_personality ();
2023
2024  return 0;
2025}
2026
2027struct gimple_opt_pass pass_lower_eh =
2028{
2029 {
2030  GIMPLE_PASS,
2031  "eh",					/* name */
2032  NULL,					/* gate */
2033  lower_eh_constructs,			/* execute */
2034  NULL,					/* sub */
2035  NULL,					/* next */
2036  0,					/* static_pass_number */
2037  TV_TREE_EH,				/* tv_id */
2038  PROP_gimple_lcf,			/* properties_required */
2039  PROP_gimple_leh,			/* properties_provided */
2040  0,					/* properties_destroyed */
2041  0,					/* todo_flags_start */
2042  TODO_dump_func			/* todo_flags_finish */
2043 }
2044};
2045
2046/* Create the multiple edges from an EH_DISPATCH statement to all of
2047   the possible handlers for its EH region.  Return true if there's
2048   no fallthru edge; false if there is.  */
2049
2050bool
2051make_eh_dispatch_edges (gimple stmt)
2052{
2053  eh_region r;
2054  eh_catch c;
2055  basic_block src, dst;
2056
2057  r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2058  src = gimple_bb (stmt);
2059
2060  switch (r->type)
2061    {
2062    case ERT_TRY:
2063      for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2064	{
2065	  dst = label_to_block (c->label);
2066	  make_edge (src, dst, 0);
2067
2068	  /* A catch-all handler doesn't have a fallthru.  */
2069	  if (c->type_list == NULL)
2070	    return false;
2071	}
2072      break;
2073
2074    case ERT_ALLOWED_EXCEPTIONS:
2075      dst = label_to_block (r->u.allowed.label);
2076      make_edge (src, dst, 0);
2077      break;
2078
2079    default:
2080      gcc_unreachable ();
2081    }
2082
2083  return true;
2084}
2085
2086/* Create the single EH edge from STMT to its nearest landing pad,
2087   if there is such a landing pad within the current function.  */
2088
2089void
2090make_eh_edges (gimple stmt)
2091{
2092  basic_block src, dst;
2093  eh_landing_pad lp;
2094  int lp_nr;
2095
2096  lp_nr = lookup_stmt_eh_lp (stmt);
2097  if (lp_nr <= 0)
2098    return;
2099
2100  lp = get_eh_landing_pad_from_number (lp_nr);
2101  gcc_assert (lp != NULL);
2102
2103  src = gimple_bb (stmt);
2104  dst = label_to_block (lp->post_landing_pad);
2105  make_edge (src, dst, EDGE_EH);
2106}
2107
2108/* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2109   do not actually perform the final edge redirection.
2110
2111   CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2112   we intend to change the destination EH region as well; this means
2113   EH_LANDING_PAD_NR must already be set on the destination block label.
2114   If false, we're being called from generic cfg manipulation code and we
2115   should preserve our place within the region tree.  */
2116
2117static void
2118redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2119{
2120  eh_landing_pad old_lp, new_lp;
2121  basic_block old_bb;
2122  gimple throw_stmt;
2123  int old_lp_nr, new_lp_nr;
2124  tree old_label, new_label;
2125  edge_iterator ei;
2126  edge e;
2127
2128  old_bb = edge_in->dest;
2129  old_label = gimple_block_label (old_bb);
2130  old_lp_nr = EH_LANDING_PAD_NR (old_label);
2131  gcc_assert (old_lp_nr > 0);
2132  old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2133
2134  throw_stmt = last_stmt (edge_in->src);
2135  gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2136
2137  new_label = gimple_block_label (new_bb);
2138
2139  /* Look for an existing region that might be using NEW_BB already.  */
2140  new_lp_nr = EH_LANDING_PAD_NR (new_label);
2141  if (new_lp_nr)
2142    {
2143      new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2144      gcc_assert (new_lp);
2145
2146      /* Unless CHANGE_REGION is true, the new and old landing pad
2147	 had better be associated with the same EH region.  */
2148      gcc_assert (change_region || new_lp->region == old_lp->region);
2149    }
2150  else
2151    {
2152      new_lp = NULL;
2153      gcc_assert (!change_region);
2154    }
2155
2156  /* Notice when we redirect the last EH edge away from OLD_BB.  */
2157  FOR_EACH_EDGE (e, ei, old_bb->preds)
2158    if (e != edge_in && (e->flags & EDGE_EH))
2159      break;
2160
2161  if (new_lp)
2162    {
2163      /* NEW_LP already exists.  If there are still edges into OLD_LP,
2164	 there's nothing to do with the EH tree.  If there are no more
2165	 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2166	 If CHANGE_REGION is true, then our caller is expecting to remove
2167	 the landing pad.  */
2168      if (e == NULL && !change_region)
2169	remove_eh_landing_pad (old_lp);
2170    }
2171  else
2172    {
2173      /* No correct landing pad exists.  If there are no more edges
2174	 into OLD_LP, then we can simply re-use the existing landing pad.
2175	 Otherwise, we have to create a new landing pad.  */
2176      if (e == NULL)
2177	{
2178	  EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2179	  new_lp = old_lp;
2180	}
2181      else
2182	new_lp = gen_eh_landing_pad (old_lp->region);
2183      new_lp->post_landing_pad = new_label;
2184      EH_LANDING_PAD_NR (new_label) = new_lp->index;
2185    }
2186
2187  /* Maybe move the throwing statement to the new region.  */
2188  if (old_lp != new_lp)
2189    {
2190      remove_stmt_from_eh_lp (throw_stmt);
2191      add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2192    }
2193}
2194
2195/* Redirect EH edge E to NEW_BB.  */
2196
2197edge
2198redirect_eh_edge (edge edge_in, basic_block new_bb)
2199{
2200  redirect_eh_edge_1 (edge_in, new_bb, false);
2201  return ssa_redirect_edge (edge_in, new_bb);
2202}
2203
2204/* This is a subroutine of gimple_redirect_edge_and_branch.  Update the
2205   labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2206   The actual edge update will happen in the caller.  */
2207
2208void
2209redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2210{
2211  tree new_lab = gimple_block_label (new_bb);
2212  bool any_changed = false;
2213  basic_block old_bb;
2214  eh_region r;
2215  eh_catch c;
2216
2217  r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2218  switch (r->type)
2219    {
2220    case ERT_TRY:
2221      for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2222	{
2223	  old_bb = label_to_block (c->label);
2224	  if (old_bb == e->dest)
2225	    {
2226	      c->label = new_lab;
2227	      any_changed = true;
2228	    }
2229	}
2230      break;
2231
2232    case ERT_ALLOWED_EXCEPTIONS:
2233      old_bb = label_to_block (r->u.allowed.label);
2234      gcc_assert (old_bb == e->dest);
2235      r->u.allowed.label = new_lab;
2236      any_changed = true;
2237      break;
2238
2239    default:
2240      gcc_unreachable ();
2241    }
2242
2243  gcc_assert (any_changed);
2244}
2245
2246/* Helper function for operation_could_trap_p and stmt_could_throw_p.  */
2247
2248bool
2249operation_could_trap_helper_p (enum tree_code op,
2250			       bool fp_operation,
2251			       bool honor_trapv,
2252			       bool honor_nans,
2253			       bool honor_snans,
2254			       tree divisor,
2255			       bool *handled)
2256{
2257  *handled = true;
2258  switch (op)
2259    {
2260    case TRUNC_DIV_EXPR:
2261    case CEIL_DIV_EXPR:
2262    case FLOOR_DIV_EXPR:
2263    case ROUND_DIV_EXPR:
2264    case EXACT_DIV_EXPR:
2265    case CEIL_MOD_EXPR:
2266    case FLOOR_MOD_EXPR:
2267    case ROUND_MOD_EXPR:
2268    case TRUNC_MOD_EXPR:
2269    case RDIV_EXPR:
2270      if (honor_snans || honor_trapv)
2271	return true;
2272      if (fp_operation)
2273	return flag_trapping_math;
2274      if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2275        return true;
2276      return false;
2277
2278    case LT_EXPR:
2279    case LE_EXPR:
2280    case GT_EXPR:
2281    case GE_EXPR:
2282    case LTGT_EXPR:
2283      /* Some floating point comparisons may trap.  */
2284      return honor_nans;
2285
2286    case EQ_EXPR:
2287    case NE_EXPR:
2288    case UNORDERED_EXPR:
2289    case ORDERED_EXPR:
2290    case UNLT_EXPR:
2291    case UNLE_EXPR:
2292    case UNGT_EXPR:
2293    case UNGE_EXPR:
2294    case UNEQ_EXPR:
2295      return honor_snans;
2296
2297    case CONVERT_EXPR:
2298    case FIX_TRUNC_EXPR:
2299      /* Conversion of floating point might trap.  */
2300      return honor_nans;
2301
2302    case NEGATE_EXPR:
2303    case ABS_EXPR:
2304    case CONJ_EXPR:
2305      /* These operations don't trap with floating point.  */
2306      if (honor_trapv)
2307	return true;
2308      return false;
2309
2310    case PLUS_EXPR:
2311    case MINUS_EXPR:
2312    case MULT_EXPR:
2313      /* Any floating arithmetic may trap.  */
2314      if (fp_operation && flag_trapping_math)
2315	return true;
2316      if (honor_trapv)
2317	return true;
2318      return false;
2319
2320    case COMPLEX_EXPR:
2321    case CONSTRUCTOR:
2322      /* Constructing an object cannot trap.  */
2323      return false;
2324
2325    default:
2326      /* Any floating arithmetic may trap.  */
2327      if (fp_operation && flag_trapping_math)
2328	return true;
2329
2330      *handled = false;
2331      return false;
2332    }
2333}
2334
2335/* Return true if operation OP may trap.  FP_OPERATION is true if OP is applied
2336   on floating-point values.  HONOR_TRAPV is true if OP is applied on integer
2337   type operands that may trap.  If OP is a division operator, DIVISOR contains
2338   the value of the divisor.  */
2339
2340bool
2341operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2342			tree divisor)
2343{
2344  bool honor_nans = (fp_operation && flag_trapping_math
2345		     && !flag_finite_math_only);
2346  bool honor_snans = fp_operation && flag_signaling_nans != 0;
2347  bool handled;
2348
2349  if (TREE_CODE_CLASS (op) != tcc_comparison
2350      && TREE_CODE_CLASS (op) != tcc_unary
2351      && TREE_CODE_CLASS (op) != tcc_binary)
2352    return false;
2353
2354  return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2355					honor_nans, honor_snans, divisor,
2356					&handled);
2357}
2358
2359/* Return true if EXPR can trap, as in dereferencing an invalid pointer
2360   location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
2361   This routine expects only GIMPLE lhs or rhs input.  */
2362
2363bool
2364tree_could_trap_p (tree expr)
2365{
2366  enum tree_code code;
2367  bool fp_operation = false;
2368  bool honor_trapv = false;
2369  tree t, base, div = NULL_TREE;
2370
2371  if (!expr)
2372    return false;
2373
2374  code = TREE_CODE (expr);
2375  t = TREE_TYPE (expr);
2376
2377  if (t)
2378    {
2379      if (COMPARISON_CLASS_P (expr))
2380	fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2381      else
2382	fp_operation = FLOAT_TYPE_P (t);
2383      honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2384    }
2385
2386  if (TREE_CODE_CLASS (code) == tcc_binary)
2387    div = TREE_OPERAND (expr, 1);
2388  if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2389    return true;
2390
2391 restart:
2392  switch (code)
2393    {
2394    case TARGET_MEM_REF:
2395      /* For TARGET_MEM_REFs use the information based on the original
2396	 reference.  */
2397      expr = TMR_ORIGINAL (expr);
2398      code = TREE_CODE (expr);
2399      goto restart;
2400
2401    case COMPONENT_REF:
2402    case REALPART_EXPR:
2403    case IMAGPART_EXPR:
2404    case BIT_FIELD_REF:
2405    case VIEW_CONVERT_EXPR:
2406    case WITH_SIZE_EXPR:
2407      expr = TREE_OPERAND (expr, 0);
2408      code = TREE_CODE (expr);
2409      goto restart;
2410
2411    case ARRAY_RANGE_REF:
2412      base = TREE_OPERAND (expr, 0);
2413      if (tree_could_trap_p (base))
2414	return true;
2415      if (TREE_THIS_NOTRAP (expr))
2416	return false;
2417      return !range_in_array_bounds_p (expr);
2418
2419    case ARRAY_REF:
2420      base = TREE_OPERAND (expr, 0);
2421      if (tree_could_trap_p (base))
2422	return true;
2423      if (TREE_THIS_NOTRAP (expr))
2424	return false;
2425      return !in_array_bounds_p (expr);
2426
2427    case INDIRECT_REF:
2428    case ALIGN_INDIRECT_REF:
2429    case MISALIGNED_INDIRECT_REF:
2430      return !TREE_THIS_NOTRAP (expr);
2431
2432    case ASM_EXPR:
2433      return TREE_THIS_VOLATILE (expr);
2434
2435    case CALL_EXPR:
2436      t = get_callee_fndecl (expr);
2437      /* Assume that calls to weak functions may trap.  */
2438      if (!t || !DECL_P (t) || DECL_WEAK (t))
2439	return true;
2440      return false;
2441
2442    default:
2443      return false;
2444    }
2445}
2446
2447
2448/* Helper for stmt_could_throw_p.  Return true if STMT (assumed to be a
2449   an assignment or a conditional) may throw.  */
2450
2451static bool
2452stmt_could_throw_1_p (gimple stmt)
2453{
2454  enum tree_code code = gimple_expr_code (stmt);
2455  bool honor_nans = false;
2456  bool honor_snans = false;
2457  bool fp_operation = false;
2458  bool honor_trapv = false;
2459  tree t;
2460  size_t i;
2461  bool handled, ret;
2462
2463  if (TREE_CODE_CLASS (code) == tcc_comparison
2464      || TREE_CODE_CLASS (code) == tcc_unary
2465      || TREE_CODE_CLASS (code) == tcc_binary)
2466    {
2467      t = gimple_expr_type (stmt);
2468      fp_operation = FLOAT_TYPE_P (t);
2469      if (fp_operation)
2470	{
2471	  honor_nans = flag_trapping_math && !flag_finite_math_only;
2472	  honor_snans = flag_signaling_nans != 0;
2473	}
2474      else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2475	honor_trapv = true;
2476    }
2477
2478  /* Check if the main expression may trap.  */
2479  t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2480  ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2481				       honor_nans, honor_snans, t,
2482				       &handled);
2483  if (handled)
2484    return ret;
2485
2486  /* If the expression does not trap, see if any of the individual operands may
2487     trap.  */
2488  for (i = 0; i < gimple_num_ops (stmt); i++)
2489    if (tree_could_trap_p (gimple_op (stmt, i)))
2490      return true;
2491
2492  return false;
2493}
2494
2495
2496/* Return true if statement STMT could throw an exception.  */
2497
2498bool
2499stmt_could_throw_p (gimple stmt)
2500{
2501  if (!flag_exceptions)
2502    return false;
2503
2504  /* The only statements that can throw an exception are assignments,
2505     conditionals, calls, resx, and asms.  */
2506  switch (gimple_code (stmt))
2507    {
2508    case GIMPLE_RESX:
2509      return true;
2510
2511    case GIMPLE_CALL:
2512      return !gimple_call_nothrow_p (stmt);
2513
2514    case GIMPLE_ASSIGN:
2515    case GIMPLE_COND:
2516      if (!flag_non_call_exceptions)
2517        return false;
2518      return stmt_could_throw_1_p (stmt);
2519
2520    case GIMPLE_ASM:
2521      if (!flag_non_call_exceptions)
2522        return false;
2523      return gimple_asm_volatile_p (stmt);
2524
2525    default:
2526      return false;
2527    }
2528}
2529
2530
2531/* Return true if expression T could throw an exception.  */
2532
2533bool
2534tree_could_throw_p (tree t)
2535{
2536  if (!flag_exceptions)
2537    return false;
2538  if (TREE_CODE (t) == MODIFY_EXPR)
2539    {
2540      if (flag_non_call_exceptions
2541          && tree_could_trap_p (TREE_OPERAND (t, 0)))
2542        return true;
2543      t = TREE_OPERAND (t, 1);
2544    }
2545
2546  if (TREE_CODE (t) == WITH_SIZE_EXPR)
2547    t = TREE_OPERAND (t, 0);
2548  if (TREE_CODE (t) == CALL_EXPR)
2549    return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2550  if (flag_non_call_exceptions)
2551    return tree_could_trap_p (t);
2552  return false;
2553}
2554
2555/* Return true if STMT can throw an exception that is not caught within
2556   the current function (CFUN).  */
2557
2558bool
2559stmt_can_throw_external (gimple stmt)
2560{
2561  int lp_nr;
2562
2563  if (!stmt_could_throw_p (stmt))
2564    return false;
2565
2566  lp_nr = lookup_stmt_eh_lp (stmt);
2567  return lp_nr == 0;
2568}
2569
2570/* Return true if STMT can throw an exception that is caught within
2571   the current function (CFUN).  */
2572
2573bool
2574stmt_can_throw_internal (gimple stmt)
2575{
2576  int lp_nr;
2577
2578  if (!stmt_could_throw_p (stmt))
2579    return false;
2580
2581  lp_nr = lookup_stmt_eh_lp (stmt);
2582  return lp_nr > 0;
2583}
2584
2585/* Given a statement STMT in IFUN, if STMT can no longer throw, then
2586   remove any entry it might have from the EH table.  Return true if
2587   any change was made.  */
2588
2589bool
2590maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2591{
2592  if (stmt_could_throw_p (stmt))
2593    return false;
2594  return remove_stmt_from_eh_lp_fn (ifun, stmt);
2595}
2596
2597/* Likewise, but always use the current function.  */
2598
2599bool
2600maybe_clean_eh_stmt (gimple stmt)
2601{
2602  return maybe_clean_eh_stmt_fn (cfun, stmt);
2603}
2604
2605/* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2606   OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2607   in the table if it should be in there.  Return TRUE if a replacement was
2608   done that my require an EH edge purge.  */
2609
2610bool
2611maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2612{
2613  int lp_nr = lookup_stmt_eh_lp (old_stmt);
2614
2615  if (lp_nr != 0)
2616    {
2617      bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2618
2619      if (new_stmt == old_stmt && new_stmt_could_throw)
2620	return false;
2621
2622      remove_stmt_from_eh_lp (old_stmt);
2623      if (new_stmt_could_throw)
2624	{
2625	  add_stmt_to_eh_lp (new_stmt, lp_nr);
2626	  return false;
2627	}
2628      else
2629	return true;
2630    }
2631
2632  return false;
2633}
2634
2635/* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2636   in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT.  The MAP
2637   operand is the return value of duplicate_eh_regions.  */
2638
2639bool
2640maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2641			    struct function *old_fun, gimple old_stmt,
2642			    struct pointer_map_t *map, int default_lp_nr)
2643{
2644  int old_lp_nr, new_lp_nr;
2645  void **slot;
2646
2647  if (!stmt_could_throw_p (new_stmt))
2648    return false;
2649
2650  old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2651  if (old_lp_nr == 0)
2652    {
2653      if (default_lp_nr == 0)
2654	return false;
2655      new_lp_nr = default_lp_nr;
2656    }
2657  else if (old_lp_nr > 0)
2658    {
2659      eh_landing_pad old_lp, new_lp;
2660
2661      old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2662      slot = pointer_map_contains (map, old_lp);
2663      new_lp = (eh_landing_pad) *slot;
2664      new_lp_nr = new_lp->index;
2665    }
2666  else
2667    {
2668      eh_region old_r, new_r;
2669
2670      old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2671      slot = pointer_map_contains (map, old_r);
2672      new_r = (eh_region) *slot;
2673      new_lp_nr = -new_r->index;
2674    }
2675
2676  add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2677  return true;
2678}
2679
2680/* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2681   and thus no remapping is required.  */
2682
2683bool
2684maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2685{
2686  int lp_nr;
2687
2688  if (!stmt_could_throw_p (new_stmt))
2689    return false;
2690
2691  lp_nr = lookup_stmt_eh_lp (old_stmt);
2692  if (lp_nr == 0)
2693    return false;
2694
2695  add_stmt_to_eh_lp (new_stmt, lp_nr);
2696  return true;
2697}
2698
2699/* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2700   GIMPLE_TRY) that are similar enough to be considered the same.  Currently
2701   this only handles handlers consisting of a single call, as that's the
2702   important case for C++: a destructor call for a particular object showing
2703   up in multiple handlers.  */
2704
2705static bool
2706same_handler_p (gimple_seq oneh, gimple_seq twoh)
2707{
2708  gimple_stmt_iterator gsi;
2709  gimple ones, twos;
2710  unsigned int ai;
2711
2712  gsi = gsi_start (oneh);
2713  if (!gsi_one_before_end_p (gsi))
2714    return false;
2715  ones = gsi_stmt (gsi);
2716
2717  gsi = gsi_start (twoh);
2718  if (!gsi_one_before_end_p (gsi))
2719    return false;
2720  twos = gsi_stmt (gsi);
2721
2722  if (!is_gimple_call (ones)
2723      || !is_gimple_call (twos)
2724      || gimple_call_lhs (ones)
2725      || gimple_call_lhs (twos)
2726      || gimple_call_chain (ones)
2727      || gimple_call_chain (twos)
2728      || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2729      || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2730    return false;
2731
2732  for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2733    if (!operand_equal_p (gimple_call_arg (ones, ai),
2734                          gimple_call_arg (twos, ai), 0))
2735      return false;
2736
2737  return true;
2738}
2739
2740/* Optimize
2741    try { A() } finally { try { ~B() } catch { ~A() } }
2742    try { ... } finally { ~A() }
2743   into
2744    try { A() } catch { ~B() }
2745    try { ~B() ... } finally { ~A() }
2746
2747   This occurs frequently in C++, where A is a local variable and B is a
2748   temporary used in the initializer for A.  */
2749
2750static void
2751optimize_double_finally (gimple one, gimple two)
2752{
2753  gimple oneh;
2754  gimple_stmt_iterator gsi;
2755
2756  gsi = gsi_start (gimple_try_cleanup (one));
2757  if (!gsi_one_before_end_p (gsi))
2758    return;
2759
2760  oneh = gsi_stmt (gsi);
2761  if (gimple_code (oneh) != GIMPLE_TRY
2762      || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2763    return;
2764
2765  if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2766    {
2767      gimple_seq seq = gimple_try_eval (oneh);
2768
2769      gimple_try_set_cleanup (one, seq);
2770      gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2771      seq = copy_gimple_seq_and_replace_locals (seq);
2772      gimple_seq_add_seq (&seq, gimple_try_eval (two));
2773      gimple_try_set_eval (two, seq);
2774    }
2775}
2776
2777/* Perform EH refactoring optimizations that are simpler to do when code
2778   flow has been lowered but EH structures haven't.  */
2779
2780static void
2781refactor_eh_r (gimple_seq seq)
2782{
2783  gimple_stmt_iterator gsi;
2784  gimple one, two;
2785
2786  one = NULL;
2787  two = NULL;
2788  gsi = gsi_start (seq);
2789  while (1)
2790    {
2791      one = two;
2792      if (gsi_end_p (gsi))
2793	two = NULL;
2794      else
2795	two = gsi_stmt (gsi);
2796      if (one
2797	  && two
2798	  && gimple_code (one) == GIMPLE_TRY
2799	  && gimple_code (two) == GIMPLE_TRY
2800	  && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2801	  && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2802	optimize_double_finally (one, two);
2803      if (one)
2804	switch (gimple_code (one))
2805	  {
2806	  case GIMPLE_TRY:
2807	    refactor_eh_r (gimple_try_eval (one));
2808	    refactor_eh_r (gimple_try_cleanup (one));
2809	    break;
2810	  case GIMPLE_CATCH:
2811	    refactor_eh_r (gimple_catch_handler (one));
2812	    break;
2813	  case GIMPLE_EH_FILTER:
2814	    refactor_eh_r (gimple_eh_filter_failure (one));
2815	    break;
2816	  default:
2817	    break;
2818	  }
2819      if (two)
2820	gsi_next (&gsi);
2821      else
2822	break;
2823    }
2824}
2825
2826static unsigned
2827refactor_eh (void)
2828{
2829  refactor_eh_r (gimple_body (current_function_decl));
2830  return 0;
2831}
2832
2833static bool
2834gate_refactor_eh (void)
2835{
2836  return flag_exceptions != 0;
2837}
2838
2839struct gimple_opt_pass pass_refactor_eh =
2840{
2841 {
2842  GIMPLE_PASS,
2843  "ehopt",				/* name */
2844  gate_refactor_eh,			/* gate */
2845  refactor_eh,				/* execute */
2846  NULL,					/* sub */
2847  NULL,					/* next */
2848  0,					/* static_pass_number */
2849  TV_TREE_EH,				/* tv_id */
2850  PROP_gimple_lcf,			/* properties_required */
2851  0,					/* properties_provided */
2852  0,					/* properties_destroyed */
2853  0,					/* todo_flags_start */
2854  TODO_dump_func			/* todo_flags_finish */
2855 }
2856};
2857
2858/* At the end of gimple optimization, we can lower RESX.  */
2859
2860static bool
2861lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2862{
2863  int lp_nr;
2864  eh_region src_r, dst_r;
2865  gimple_stmt_iterator gsi;
2866  gimple x;
2867  tree fn, src_nr;
2868  bool ret = false;
2869
2870  lp_nr = lookup_stmt_eh_lp (stmt);
2871  if (lp_nr != 0)
2872    dst_r = get_eh_region_from_lp_number (lp_nr);
2873  else
2874    dst_r = NULL;
2875
2876  src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2877  gsi = gsi_last_bb (bb);
2878
2879  if (src_r == NULL)
2880    {
2881      /* We can wind up with no source region when pass_cleanup_eh shows
2882	 that there are no entries into an eh region and deletes it, but
2883	 then the block that contains the resx isn't removed.  This can
2884	 happen without optimization when the switch statement created by
2885	 lower_try_finally_switch isn't simplified to remove the eh case.
2886
2887	 Resolve this by expanding the resx node to an abort.  */
2888
2889      fn = implicit_built_in_decls[BUILT_IN_TRAP];
2890      x = gimple_build_call (fn, 0);
2891      gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2892
2893      while (EDGE_COUNT (bb->succs) > 0)
2894	remove_edge (EDGE_SUCC (bb, 0));
2895    }
2896  else if (dst_r)
2897    {
2898      /* When we have a destination region, we resolve this by copying
2899	 the excptr and filter values into place, and changing the edge
2900	 to immediately after the landing pad.  */
2901      edge e;
2902
2903      if (lp_nr < 0)
2904	{
2905	  basic_block new_bb;
2906	  void **slot;
2907	  tree lab;
2908
2909	  /* We are resuming into a MUST_NOT_CALL region.  Expand a call to
2910	     the failure decl into a new block, if needed.  */
2911	  gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2912
2913	  slot = pointer_map_contains (mnt_map, dst_r);
2914	  if (slot == NULL)
2915	    {
2916	      gimple_stmt_iterator gsi2;
2917
2918	      new_bb = create_empty_bb (bb);
2919	      lab = gimple_block_label (new_bb);
2920	      gsi2 = gsi_start_bb (new_bb);
2921
2922	      fn = dst_r->u.must_not_throw.failure_decl;
2923	      x = gimple_build_call (fn, 0);
2924	      gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2925	      gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2926
2927	      slot = pointer_map_insert (mnt_map, dst_r);
2928	      *slot = lab;
2929	    }
2930	  else
2931	    {
2932	      lab = (tree) *slot;
2933	      new_bb = label_to_block (lab);
2934	    }
2935
2936	  gcc_assert (EDGE_COUNT (bb->succs) == 0);
2937	  e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2938	  e->count = bb->count;
2939	  e->probability = REG_BR_PROB_BASE;
2940	}
2941      else
2942	{
2943	  edge_iterator ei;
2944	  tree dst_nr = build_int_cst (NULL, dst_r->index);
2945
2946	  fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2947	  src_nr = build_int_cst (NULL, src_r->index);
2948	  x = gimple_build_call (fn, 2, dst_nr, src_nr);
2949	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2950
2951	  /* Update the flags for the outgoing edge.  */
2952	  e = single_succ_edge (bb);
2953	  gcc_assert (e->flags & EDGE_EH);
2954	  e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2955
2956	  /* If there are no more EH users of the landing pad, delete it.  */
2957	  FOR_EACH_EDGE (e, ei, e->dest->preds)
2958	    if (e->flags & EDGE_EH)
2959	      break;
2960	  if (e == NULL)
2961	    {
2962	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2963	      remove_eh_landing_pad (lp);
2964	    }
2965	}
2966
2967      ret = true;
2968    }
2969  else
2970    {
2971      tree var;
2972
2973      /* When we don't have a destination region, this exception escapes
2974	 up the call chain.  We resolve this by generating a call to the
2975	 _Unwind_Resume library function.  */
2976
2977      /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2978	 with no arguments for C++ and Java.  Check for that.  */
2979      if (src_r->use_cxa_end_cleanup)
2980	{
2981	  fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2982	  x = gimple_build_call (fn, 0);
2983	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2984	}
2985      else
2986	{
2987	  fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2988	  src_nr = build_int_cst (NULL, src_r->index);
2989	  x = gimple_build_call (fn, 1, src_nr);
2990	  var = create_tmp_var (ptr_type_node, NULL);
2991	  var = make_ssa_name (var, x);
2992	  gimple_call_set_lhs (x, var);
2993	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2994
2995	  fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2996	  x = gimple_build_call (fn, 1, var);
2997	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2998	}
2999
3000      gcc_assert (EDGE_COUNT (bb->succs) == 0);
3001    }
3002
3003  gsi_remove (&gsi, true);
3004
3005  return ret;
3006}
3007
3008static unsigned
3009execute_lower_resx (void)
3010{
3011  basic_block bb;
3012  struct pointer_map_t *mnt_map;
3013  bool dominance_invalidated = false;
3014  bool any_rewritten = false;
3015
3016  mnt_map = pointer_map_create ();
3017
3018  FOR_EACH_BB (bb)
3019    {
3020      gimple last = last_stmt (bb);
3021      if (last && is_gimple_resx (last))
3022	{
3023	  dominance_invalidated |= lower_resx (bb, last, mnt_map);
3024	  any_rewritten = true;
3025	}
3026    }
3027
3028  pointer_map_destroy (mnt_map);
3029
3030  if (dominance_invalidated)
3031    {
3032      free_dominance_info (CDI_DOMINATORS);
3033      free_dominance_info (CDI_POST_DOMINATORS);
3034    }
3035
3036  return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3037}
3038
3039static bool
3040gate_lower_resx (void)
3041{
3042  return flag_exceptions != 0;
3043}
3044
3045struct gimple_opt_pass pass_lower_resx =
3046{
3047 {
3048  GIMPLE_PASS,
3049  "resx",				/* name */
3050  gate_lower_resx,			/* gate */
3051  execute_lower_resx,			/* execute */
3052  NULL,					/* sub */
3053  NULL,					/* next */
3054  0,					/* static_pass_number */
3055  TV_TREE_EH,				/* tv_id */
3056  PROP_gimple_lcf,			/* properties_required */
3057  0,					/* properties_provided */
3058  0,					/* properties_destroyed */
3059  0,					/* todo_flags_start */
3060  TODO_dump_func | TODO_verify_flow	/* todo_flags_finish */
3061 }
3062};
3063
3064
3065/* At the end of inlining, we can lower EH_DISPATCH.  Return true when
3066   we have found some duplicate labels and removed some edges.  */
3067
3068static bool
3069lower_eh_dispatch (basic_block src, gimple stmt)
3070{
3071  gimple_stmt_iterator gsi;
3072  int region_nr;
3073  eh_region r;
3074  tree filter, fn;
3075  gimple x;
3076  bool redirected = false;
3077
3078  region_nr = gimple_eh_dispatch_region (stmt);
3079  r = get_eh_region_from_number (region_nr);
3080
3081  gsi = gsi_last_bb (src);
3082
3083  switch (r->type)
3084    {
3085    case ERT_TRY:
3086      {
3087	VEC (tree, heap) *labels = NULL;
3088	tree default_label = NULL;
3089	eh_catch c;
3090	edge_iterator ei;
3091	edge e;
3092	struct pointer_set_t *seen_values = pointer_set_create ();
3093
3094	/* Collect the labels for a switch.  Zero the post_landing_pad
3095	   field becase we'll no longer have anything keeping these labels
3096	   in existance and the optimizer will be free to merge these
3097	   blocks at will.  */
3098	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3099	  {
3100	    tree tp_node, flt_node, lab = c->label;
3101	    bool have_label = false;
3102
3103	    c->label = NULL;
3104	    tp_node = c->type_list;
3105	    flt_node = c->filter_list;
3106
3107	    if (tp_node == NULL)
3108	      {
3109	        default_label = lab;
3110		break;
3111	      }
3112	    do
3113	      {
3114		/* Filter out duplicate labels that arise when this handler
3115		   is shadowed by an earlier one.  When no labels are
3116		   attached to the handler anymore, we remove
3117		   the corresponding edge and then we delete unreachable
3118		   blocks at the end of this pass.  */
3119		if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3120		  {
3121		    tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3122				     TREE_VALUE (flt_node), NULL, lab);
3123		    VEC_safe_push (tree, heap, labels, t);
3124		    pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3125		    have_label = true;
3126		  }
3127
3128		tp_node = TREE_CHAIN (tp_node);
3129		flt_node = TREE_CHAIN (flt_node);
3130	      }
3131	    while (tp_node);
3132	    if (! have_label)
3133	      {
3134	        remove_edge (find_edge (src, label_to_block (lab)));
3135	        redirected = true;
3136	      }
3137	  }
3138
3139	/* Clean up the edge flags.  */
3140	FOR_EACH_EDGE (e, ei, src->succs)
3141	  {
3142	    if (e->flags & EDGE_FALLTHRU)
3143	      {
3144		/* If there was no catch-all, use the fallthru edge.  */
3145		if (default_label == NULL)
3146		  default_label = gimple_block_label (e->dest);
3147		e->flags &= ~EDGE_FALLTHRU;
3148	      }
3149	  }
3150	gcc_assert (default_label != NULL);
3151
3152	/* Don't generate a switch if there's only a default case.
3153	   This is common in the form of try { A; } catch (...) { B; }.  */
3154	if (labels == NULL)
3155	  {
3156	    e = single_succ_edge (src);
3157	    e->flags |= EDGE_FALLTHRU;
3158	  }
3159	else
3160	  {
3161	    fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3162	    x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3163	    filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3164	    filter = make_ssa_name (filter, x);
3165	    gimple_call_set_lhs (x, filter);
3166	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3167
3168	    /* Turn the default label into a default case.  */
3169	    default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3170				    NULL, NULL, default_label);
3171	    sort_case_labels (labels);
3172
3173	    x = gimple_build_switch_vec (filter, default_label, labels);
3174	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3175
3176	    VEC_free (tree, heap, labels);
3177	  }
3178	pointer_set_destroy (seen_values);
3179      }
3180      break;
3181
3182    case ERT_ALLOWED_EXCEPTIONS:
3183      {
3184	edge b_e = BRANCH_EDGE (src);
3185	edge f_e = FALLTHRU_EDGE (src);
3186
3187	fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3188	x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3189	filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3190	filter = make_ssa_name (filter, x);
3191	gimple_call_set_lhs (x, filter);
3192	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3193
3194	r->u.allowed.label = NULL;
3195	x = gimple_build_cond (EQ_EXPR, filter,
3196			       build_int_cst (TREE_TYPE (filter),
3197					      r->u.allowed.filter),
3198			       NULL_TREE, NULL_TREE);
3199	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3200
3201	b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3202        f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3203      }
3204      break;
3205
3206    default:
3207      gcc_unreachable ();
3208    }
3209
3210  /* Replace the EH_DISPATCH with the SWITCH or COND generated above.  */
3211  gsi_remove (&gsi, true);
3212  return redirected;
3213}
3214
3215static unsigned
3216execute_lower_eh_dispatch (void)
3217{
3218  basic_block bb;
3219  bool any_rewritten = false;
3220  bool redirected = false;
3221
3222  assign_filter_values ();
3223
3224  FOR_EACH_BB (bb)
3225    {
3226      gimple last = last_stmt (bb);
3227      if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3228	{
3229	  redirected |= lower_eh_dispatch (bb, last);
3230	  any_rewritten = true;
3231	}
3232    }
3233
3234  if (redirected)
3235    delete_unreachable_blocks ();
3236  return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3237}
3238
3239static bool
3240gate_lower_eh_dispatch (void)
3241{
3242  return cfun->eh->region_tree != NULL;
3243}
3244
3245struct gimple_opt_pass pass_lower_eh_dispatch =
3246{
3247 {
3248  GIMPLE_PASS,
3249  "ehdisp",				/* name */
3250  gate_lower_eh_dispatch,		/* gate */
3251  execute_lower_eh_dispatch,		/* execute */
3252  NULL,					/* sub */
3253  NULL,					/* next */
3254  0,					/* static_pass_number */
3255  TV_TREE_EH,				/* tv_id */
3256  PROP_gimple_lcf,			/* properties_required */
3257  0,					/* properties_provided */
3258  0,					/* properties_destroyed */
3259  0,					/* todo_flags_start */
3260  TODO_dump_func | TODO_verify_flow	/* todo_flags_finish */
3261 }
3262};
3263
3264/* Walk statements, see what regions are really referenced and remove
3265   those that are unused.  */
3266
3267static void
3268remove_unreachable_handlers (void)
3269{
3270  sbitmap r_reachable, lp_reachable;
3271  eh_region region;
3272  eh_landing_pad lp;
3273  basic_block bb;
3274  int lp_nr, r_nr;
3275
3276  r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3277  lp_reachable
3278    = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3279  sbitmap_zero (r_reachable);
3280  sbitmap_zero (lp_reachable);
3281
3282  FOR_EACH_BB (bb)
3283    {
3284      gimple_stmt_iterator gsi = gsi_start_bb (bb);
3285
3286      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3287	{
3288	  gimple stmt = gsi_stmt (gsi);
3289	  lp_nr = lookup_stmt_eh_lp (stmt);
3290
3291	  /* Negative LP numbers are MUST_NOT_THROW regions which
3292	     are not considered BB enders.  */
3293	  if (lp_nr < 0)
3294	    SET_BIT (r_reachable, -lp_nr);
3295
3296	  /* Positive LP numbers are real landing pads, are are BB enders.  */
3297	  else if (lp_nr > 0)
3298	    {
3299	      gcc_assert (gsi_one_before_end_p (gsi));
3300	      region = get_eh_region_from_lp_number (lp_nr);
3301	      SET_BIT (r_reachable, region->index);
3302	      SET_BIT (lp_reachable, lp_nr);
3303	    }
3304	}
3305    }
3306
3307  if (dump_file)
3308    {
3309      fprintf (dump_file, "Before removal of unreachable regions:\n");
3310      dump_eh_tree (dump_file, cfun);
3311      fprintf (dump_file, "Reachable regions: ");
3312      dump_sbitmap_file (dump_file, r_reachable);
3313      fprintf (dump_file, "Reachable landing pads: ");
3314      dump_sbitmap_file (dump_file, lp_reachable);
3315    }
3316
3317  for (r_nr = 1;
3318       VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3319    if (region && !TEST_BIT (r_reachable, r_nr))
3320      {
3321	if (dump_file)
3322	  fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3323	remove_eh_handler (region);
3324      }
3325
3326  for (lp_nr = 1;
3327       VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3328    if (lp && !TEST_BIT (lp_reachable, lp_nr))
3329      {
3330	if (dump_file)
3331	  fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3332	remove_eh_landing_pad (lp);
3333      }
3334
3335  if (dump_file)
3336    {
3337      fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3338      dump_eh_tree (dump_file, cfun);
3339      fprintf (dump_file, "\n\n");
3340    }
3341
3342  sbitmap_free (r_reachable);
3343  sbitmap_free (lp_reachable);
3344
3345#ifdef ENABLE_CHECKING
3346  verify_eh_tree (cfun);
3347#endif
3348}
3349
3350/* Remove regions that do not have landing pads.  This assumes
3351   that remove_unreachable_handlers has already been run, and
3352   that we've just manipulated the landing pads since then.  */
3353
3354static void
3355remove_unreachable_handlers_no_lp (void)
3356{
3357  eh_region r;
3358  int i;
3359
3360  for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3361    if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3362      {
3363	if (dump_file)
3364	  fprintf (dump_file, "Removing unreachable region %d\n", i);
3365	remove_eh_handler (r);
3366      }
3367}
3368
3369/* Undo critical edge splitting on an EH landing pad.  Earlier, we
3370   optimisticaly split all sorts of edges, including EH edges.  The
3371   optimization passes in between may not have needed them; if not,
3372   we should undo the split.
3373
3374   Recognize this case by having one EH edge incoming to the BB and
3375   one normal edge outgoing; BB should be empty apart from the
3376   post_landing_pad label.
3377
3378   Note that this is slightly different from the empty handler case
3379   handled by cleanup_empty_eh, in that the actual handler may yet
3380   have actual code but the landing pad has been separated from the
3381   handler.  As such, cleanup_empty_eh relies on this transformation
3382   having been done first.  */
3383
3384static bool
3385unsplit_eh (eh_landing_pad lp)
3386{
3387  basic_block bb = label_to_block (lp->post_landing_pad);
3388  gimple_stmt_iterator gsi;
3389  edge e_in, e_out;
3390
3391  /* Quickly check the edge counts on BB for singularity.  */
3392  if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3393    return false;
3394  e_in = EDGE_PRED (bb, 0);
3395  e_out = EDGE_SUCC (bb, 0);
3396
3397  /* Input edge must be EH and output edge must be normal.  */
3398  if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3399    return false;
3400
3401  /* The block must be empty except for the labels and debug insns.  */
3402  gsi = gsi_after_labels (bb);
3403  if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3404    gsi_next_nondebug (&gsi);
3405  if (!gsi_end_p (gsi))
3406    return false;
3407
3408  /* The destination block must not already have a landing pad
3409     for a different region.  */
3410  for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3411    {
3412      gimple stmt = gsi_stmt (gsi);
3413      tree lab;
3414      int lp_nr;
3415
3416      if (gimple_code (stmt) != GIMPLE_LABEL)
3417	break;
3418      lab = gimple_label_label (stmt);
3419      lp_nr = EH_LANDING_PAD_NR (lab);
3420      if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3421	return false;
3422    }
3423
3424  /* The new destination block must not already be a destination of
3425     the source block, lest we merge fallthru and eh edges and get
3426     all sorts of confused.  */
3427  if (find_edge (e_in->src, e_out->dest))
3428    return false;
3429
3430  /* ??? We can get degenerate phis due to cfg cleanups.  I would have
3431     thought this should have been cleaned up by a phicprop pass, but
3432     that doesn't appear to handle virtuals.  Propagate by hand.  */
3433  if (!gimple_seq_empty_p (phi_nodes (bb)))
3434    {
3435      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3436	{
3437	  gimple use_stmt, phi = gsi_stmt (gsi);
3438	  tree lhs = gimple_phi_result (phi);
3439	  tree rhs = gimple_phi_arg_def (phi, 0);
3440	  use_operand_p use_p;
3441	  imm_use_iterator iter;
3442
3443	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3444	    {
3445	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3446		SET_USE (use_p, rhs);
3447	    }
3448
3449	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3450	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3451
3452	  remove_phi_node (&gsi, true);
3453	}
3454    }
3455
3456  if (dump_file && (dump_flags & TDF_DETAILS))
3457    fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3458	     lp->index, e_out->dest->index);
3459
3460  /* Redirect the edge.  Since redirect_eh_edge_1 expects to be moving
3461     a successor edge, humor it.  But do the real CFG change with the
3462     predecessor of E_OUT in order to preserve the ordering of arguments
3463     to the PHI nodes in E_OUT->DEST.  */
3464  redirect_eh_edge_1 (e_in, e_out->dest, false);
3465  redirect_edge_pred (e_out, e_in->src);
3466  e_out->flags = e_in->flags;
3467  e_out->probability = e_in->probability;
3468  e_out->count = e_in->count;
3469  remove_edge (e_in);
3470
3471  return true;
3472}
3473
3474/* Examine each landing pad block and see if it matches unsplit_eh.  */
3475
3476static bool
3477unsplit_all_eh (void)
3478{
3479  bool changed = false;
3480  eh_landing_pad lp;
3481  int i;
3482
3483  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3484    if (lp)
3485      changed |= unsplit_eh (lp);
3486
3487  return changed;
3488}
3489
3490/* A subroutine of cleanup_empty_eh.  Redirect all EH edges incoming
3491   to OLD_BB to NEW_BB; return true on success, false on failure.
3492
3493   OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3494   PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3495   Virtual PHIs may be deleted and marked for renaming.  */
3496
3497static bool
3498cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3499			     edge old_bb_out, bool change_region)
3500{
3501  gimple_stmt_iterator ngsi, ogsi;
3502  edge_iterator ei;
3503  edge e;
3504  bitmap rename_virts;
3505  bitmap ophi_handled;
3506
3507  FOR_EACH_EDGE (e, ei, old_bb->preds)
3508    redirect_edge_var_map_clear (e);
3509
3510  ophi_handled = BITMAP_ALLOC (NULL);
3511  rename_virts = BITMAP_ALLOC (NULL);
3512
3513  /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3514     for the edges we're going to move.  */
3515  for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3516    {
3517      gimple ophi, nphi = gsi_stmt (ngsi);
3518      tree nresult, nop;
3519
3520      nresult = gimple_phi_result (nphi);
3521      nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3522
3523      /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3524	 the source ssa_name.  */
3525      ophi = NULL;
3526      for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3527	{
3528	  ophi = gsi_stmt (ogsi);
3529	  if (gimple_phi_result (ophi) == nop)
3530	    break;
3531	  ophi = NULL;
3532	}
3533
3534      /* If we did find the corresponding PHI, copy those inputs.  */
3535      if (ophi)
3536	{
3537	  bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3538	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3539	    {
3540	      location_t oloc;
3541	      tree oop;
3542
3543	      if ((e->flags & EDGE_EH) == 0)
3544		continue;
3545	      oop = gimple_phi_arg_def (ophi, e->dest_idx);
3546	      oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3547	      redirect_edge_var_map_add (e, nresult, oop, oloc);
3548	    }
3549	}
3550      /* If we didn't find the PHI, but it's a VOP, remember to rename
3551	 it later, assuming all other tests succeed.  */
3552      else if (!is_gimple_reg (nresult))
3553	bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3554      /* If we didn't find the PHI, and it's a real variable, we know
3555	 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3556	 variable is unchanged from input to the block and we can simply
3557	 re-use the input to NEW_BB from the OLD_BB_OUT edge.  */
3558      else
3559	{
3560	  location_t nloc
3561	    = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3562	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3563	    redirect_edge_var_map_add (e, nresult, nop, nloc);
3564	}
3565    }
3566
3567  /* Second, verify that all PHIs from OLD_BB have been handled.  If not,
3568     we don't know what values from the other edges into NEW_BB to use.  */
3569  for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3570    {
3571      gimple ophi = gsi_stmt (ogsi);
3572      tree oresult = gimple_phi_result (ophi);
3573      if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3574	goto fail;
3575    }
3576
3577  /* At this point we know that the merge will succeed.  Remove the PHI
3578     nodes for the virtuals that we want to rename.  */
3579  if (!bitmap_empty_p (rename_virts))
3580    {
3581      for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3582	{
3583	  gimple nphi = gsi_stmt (ngsi);
3584	  tree nresult = gimple_phi_result (nphi);
3585	  if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3586	    {
3587	      mark_virtual_phi_result_for_renaming (nphi);
3588	      remove_phi_node (&ngsi, true);
3589	    }
3590	  else
3591	    gsi_next (&ngsi);
3592	}
3593    }
3594
3595  /* Finally, move the edges and update the PHIs.  */
3596  for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3597    if (e->flags & EDGE_EH)
3598      {
3599	redirect_eh_edge_1 (e, new_bb, change_region);
3600	redirect_edge_succ (e, new_bb);
3601	flush_pending_stmts (e);
3602      }
3603    else
3604      ei_next (&ei);
3605
3606  BITMAP_FREE (ophi_handled);
3607  BITMAP_FREE (rename_virts);
3608  return true;
3609
3610 fail:
3611  FOR_EACH_EDGE (e, ei, old_bb->preds)
3612    redirect_edge_var_map_clear (e);
3613  BITMAP_FREE (ophi_handled);
3614  BITMAP_FREE (rename_virts);
3615  return false;
3616}
3617
3618/* A subroutine of cleanup_empty_eh.  Move a landing pad LP from its
3619   old region to NEW_REGION at BB.  */
3620
3621static void
3622cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3623			  eh_landing_pad lp, eh_region new_region)
3624{
3625  gimple_stmt_iterator gsi;
3626  eh_landing_pad *pp;
3627
3628  for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3629    continue;
3630  *pp = lp->next_lp;
3631
3632  lp->region = new_region;
3633  lp->next_lp = new_region->landing_pads;
3634  new_region->landing_pads = lp;
3635
3636  /* Delete the RESX that was matched within the empty handler block.  */
3637  gsi = gsi_last_bb (bb);
3638  mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3639  gsi_remove (&gsi, true);
3640
3641  /* Clean up E_OUT for the fallthru.  */
3642  e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3643  e_out->probability = REG_BR_PROB_BASE;
3644}
3645
3646/* A subroutine of cleanup_empty_eh.  Handle more complex cases of
3647   unsplitting than unsplit_eh was prepared to handle, e.g. when
3648   multiple incoming edges and phis are involved.  */
3649
3650static bool
3651cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3652{
3653  gimple_stmt_iterator gsi;
3654  tree lab;
3655
3656  /* We really ought not have totally lost everything following
3657     a landing pad label.  Given that BB is empty, there had better
3658     be a successor.  */
3659  gcc_assert (e_out != NULL);
3660
3661  /* The destination block must not already have a landing pad
3662     for a different region.  */
3663  lab = NULL;
3664  for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3665    {
3666      gimple stmt = gsi_stmt (gsi);
3667      int lp_nr;
3668
3669      if (gimple_code (stmt) != GIMPLE_LABEL)
3670	break;
3671      lab = gimple_label_label (stmt);
3672      lp_nr = EH_LANDING_PAD_NR (lab);
3673      if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3674	return false;
3675    }
3676
3677  /* Attempt to move the PHIs into the successor block.  */
3678  if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3679    {
3680      if (dump_file && (dump_flags & TDF_DETAILS))
3681	fprintf (dump_file,
3682		 "Unsplit EH landing pad %d to block %i "
3683		 "(via cleanup_empty_eh).\n",
3684		 lp->index, e_out->dest->index);
3685      return true;
3686    }
3687
3688  return false;
3689}
3690
3691/* Return true if edge E_FIRST is part of an empty infinite loop
3692   or leads to such a loop through a series of single successor
3693   empty bbs.  */
3694
3695static bool
3696infinite_empty_loop_p (edge e_first)
3697{
3698  bool inf_loop = false;
3699  edge e;
3700
3701  if (e_first->dest == e_first->src)
3702    return true;
3703
3704  e_first->src->aux = (void *) 1;
3705  for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
3706    {
3707      gimple_stmt_iterator gsi;
3708      if (e->dest->aux)
3709	{
3710	  inf_loop = true;
3711	  break;
3712	}
3713      e->dest->aux = (void *) 1;
3714      gsi = gsi_after_labels (e->dest);
3715      if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3716	gsi_next_nondebug (&gsi);
3717      if (!gsi_end_p (gsi))
3718	break;
3719    }
3720  e_first->src->aux = NULL;
3721  for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
3722    e->dest->aux = NULL;
3723
3724  return inf_loop;
3725}
3726
3727/* Examine the block associated with LP to determine if it's an empty
3728   handler for its EH region.  If so, attempt to redirect EH edges to
3729   an outer region.  Return true the CFG was updated in any way.  This
3730   is similar to jump forwarding, just across EH edges.  */
3731
3732static bool
3733cleanup_empty_eh (eh_landing_pad lp)
3734{
3735  basic_block bb = label_to_block (lp->post_landing_pad);
3736  gimple_stmt_iterator gsi;
3737  gimple resx;
3738  eh_region new_region;
3739  edge_iterator ei;
3740  edge e, e_out;
3741  bool has_non_eh_pred;
3742  int new_lp_nr;
3743
3744  /* There can be zero or one edges out of BB.  This is the quickest test.  */
3745  switch (EDGE_COUNT (bb->succs))
3746    {
3747    case 0:
3748      e_out = NULL;
3749      break;
3750    case 1:
3751      e_out = EDGE_SUCC (bb, 0);
3752      break;
3753    default:
3754      return false;
3755    }
3756  gsi = gsi_after_labels (bb);
3757
3758  /* Make sure to skip debug statements.  */
3759  if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3760    gsi_next_nondebug (&gsi);
3761
3762  /* If the block is totally empty, look for more unsplitting cases.  */
3763  if (gsi_end_p (gsi))
3764    {
3765      /* For the degenerate case of an infinite loop bail out.  */
3766      if (infinite_empty_loop_p (e_out))
3767	return false;
3768
3769      return cleanup_empty_eh_unsplit (bb, e_out, lp);
3770    }
3771
3772  /* The block should consist only of a single RESX statement.  */
3773  resx = gsi_stmt (gsi);
3774  if (!is_gimple_resx (resx))
3775    return false;
3776  gcc_assert (gsi_one_before_end_p (gsi));
3777
3778  /* Determine if there are non-EH edges, or resx edges into the handler.  */
3779  has_non_eh_pred = false;
3780  FOR_EACH_EDGE (e, ei, bb->preds)
3781    if (!(e->flags & EDGE_EH))
3782      has_non_eh_pred = true;
3783
3784  /* Find the handler that's outer of the empty handler by looking at
3785     where the RESX instruction was vectored.  */
3786  new_lp_nr = lookup_stmt_eh_lp (resx);
3787  new_region = get_eh_region_from_lp_number (new_lp_nr);
3788
3789  /* If there's no destination region within the current function,
3790     redirection is trivial via removing the throwing statements from
3791     the EH region, removing the EH edges, and allowing the block
3792     to go unreachable.  */
3793  if (new_region == NULL)
3794    {
3795      gcc_assert (e_out == NULL);
3796      for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3797	if (e->flags & EDGE_EH)
3798	  {
3799	    gimple stmt = last_stmt (e->src);
3800	    remove_stmt_from_eh_lp (stmt);
3801	    remove_edge (e);
3802	  }
3803	else
3804	  ei_next (&ei);
3805      goto succeed;
3806    }
3807
3808  /* If the destination region is a MUST_NOT_THROW, allow the runtime
3809     to handle the abort and allow the blocks to go unreachable.  */
3810  if (new_region->type == ERT_MUST_NOT_THROW)
3811    {
3812      for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3813	if (e->flags & EDGE_EH)
3814	  {
3815	    gimple stmt = last_stmt (e->src);
3816	    remove_stmt_from_eh_lp (stmt);
3817	    add_stmt_to_eh_lp (stmt, new_lp_nr);
3818	    remove_edge (e);
3819	  }
3820	else
3821	  ei_next (&ei);
3822      goto succeed;
3823    }
3824
3825  /* Try to redirect the EH edges and merge the PHIs into the destination
3826     landing pad block.  If the merge succeeds, we'll already have redirected
3827     all the EH edges.  The handler itself will go unreachable if there were
3828     no normal edges.  */
3829  if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3830    goto succeed;
3831
3832  /* Finally, if all input edges are EH edges, then we can (potentially)
3833     reduce the number of transfers from the runtime by moving the landing
3834     pad from the original region to the new region.  This is a win when
3835     we remove the last CLEANUP region along a particular exception
3836     propagation path.  Since nothing changes except for the region with
3837     which the landing pad is associated, the PHI nodes do not need to be
3838     adjusted at all.  */
3839  if (!has_non_eh_pred)
3840    {
3841      cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3842      if (dump_file && (dump_flags & TDF_DETAILS))
3843	fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3844		 lp->index, new_region->index);
3845
3846      /* ??? The CFG didn't change, but we may have rendered the
3847	 old EH region unreachable.  Trigger a cleanup there.  */
3848      return true;
3849    }
3850
3851  return false;
3852
3853 succeed:
3854  if (dump_file && (dump_flags & TDF_DETAILS))
3855    fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3856  remove_eh_landing_pad (lp);
3857  return true;
3858}
3859
3860/* Do a post-order traversal of the EH region tree.  Examine each
3861   post_landing_pad block and see if we can eliminate it as empty.  */
3862
3863static bool
3864cleanup_all_empty_eh (void)
3865{
3866  bool changed = false;
3867  eh_landing_pad lp;
3868  int i;
3869
3870  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3871    if (lp)
3872      changed |= cleanup_empty_eh (lp);
3873
3874  return changed;
3875}
3876
3877/* Perform cleanups and lowering of exception handling
3878    1) cleanups regions with handlers doing nothing are optimized out
3879    2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3880    3) Info about regions that are containing instructions, and regions
3881       reachable via local EH edges is collected
3882    4) Eh tree is pruned for regions no longer neccesary.
3883
3884   TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3885	 Unify those that have the same failure decl and locus.
3886*/
3887
3888static unsigned int
3889execute_cleanup_eh (void)
3890{
3891  /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3892     looking up unreachable landing pads.  */
3893  remove_unreachable_handlers ();
3894
3895  /* Watch out for the region tree vanishing due to all unreachable.  */
3896  if (cfun->eh->region_tree && optimize)
3897    {
3898      bool changed = false;
3899
3900      changed |= unsplit_all_eh ();
3901      changed |= cleanup_all_empty_eh ();
3902
3903      if (changed)
3904	{
3905	  free_dominance_info (CDI_DOMINATORS);
3906	  free_dominance_info (CDI_POST_DOMINATORS);
3907
3908          /* We delayed all basic block deletion, as we may have performed
3909	     cleanups on EH edges while non-EH edges were still present.  */
3910	  delete_unreachable_blocks ();
3911
3912	  /* We manipulated the landing pads.  Remove any region that no
3913	     longer has a landing pad.  */
3914	  remove_unreachable_handlers_no_lp ();
3915
3916	  return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3917	}
3918    }
3919
3920  return 0;
3921}
3922
3923static bool
3924gate_cleanup_eh (void)
3925{
3926  return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3927}
3928
3929struct gimple_opt_pass pass_cleanup_eh = {
3930  {
3931   GIMPLE_PASS,
3932   "ehcleanup",			/* name */
3933   gate_cleanup_eh,		/* gate */
3934   execute_cleanup_eh,		/* execute */
3935   NULL,			/* sub */
3936   NULL,			/* next */
3937   0,				/* static_pass_number */
3938   TV_TREE_EH,			/* tv_id */
3939   PROP_gimple_lcf,		/* properties_required */
3940   0,				/* properties_provided */
3941   0,				/* properties_destroyed */
3942   0,				/* todo_flags_start */
3943   TODO_dump_func		/* todo_flags_finish */
3944   }
3945};
3946
3947/* Verify that BB containing STMT as the last statement, has precisely the
3948   edge that make_eh_edges would create.  */
3949
3950bool
3951verify_eh_edges (gimple stmt)
3952{
3953  basic_block bb = gimple_bb (stmt);
3954  eh_landing_pad lp = NULL;
3955  int lp_nr;
3956  edge_iterator ei;
3957  edge e, eh_edge;
3958
3959  lp_nr = lookup_stmt_eh_lp (stmt);
3960  if (lp_nr > 0)
3961    lp = get_eh_landing_pad_from_number (lp_nr);
3962
3963  eh_edge = NULL;
3964  FOR_EACH_EDGE (e, ei, bb->succs)
3965    {
3966      if (e->flags & EDGE_EH)
3967	{
3968	  if (eh_edge)
3969	    {
3970	      error ("BB %i has multiple EH edges", bb->index);
3971	      return true;
3972	    }
3973	  else
3974	    eh_edge = e;
3975	}
3976    }
3977
3978  if (lp == NULL)
3979    {
3980      if (eh_edge)
3981	{
3982	  error ("BB %i can not throw but has an EH edge", bb->index);
3983	  return true;
3984	}
3985      return false;
3986    }
3987
3988  if (!stmt_could_throw_p (stmt))
3989    {
3990      error ("BB %i last statement has incorrectly set lp", bb->index);
3991      return true;
3992    }
3993
3994  if (eh_edge == NULL)
3995    {
3996      error ("BB %i is missing an EH edge", bb->index);
3997      return true;
3998    }
3999
4000  if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4001    {
4002      error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4003      return true;
4004    }
4005
4006  return false;
4007}
4008
4009/* Similarly, but handle GIMPLE_EH_DISPATCH specifically.  */
4010
4011bool
4012verify_eh_dispatch_edge (gimple stmt)
4013{
4014  eh_region r;
4015  eh_catch c;
4016  basic_block src, dst;
4017  bool want_fallthru = true;
4018  edge_iterator ei;
4019  edge e, fall_edge;
4020
4021  r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4022  src = gimple_bb (stmt);
4023
4024  FOR_EACH_EDGE (e, ei, src->succs)
4025    gcc_assert (e->aux == NULL);
4026
4027  switch (r->type)
4028    {
4029    case ERT_TRY:
4030      for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4031	{
4032	  dst = label_to_block (c->label);
4033	  e = find_edge (src, dst);
4034	  if (e == NULL)
4035	    {
4036	      error ("BB %i is missing an edge", src->index);
4037	      return true;
4038	    }
4039	  e->aux = (void *)e;
4040
4041	  /* A catch-all handler doesn't have a fallthru.  */
4042	  if (c->type_list == NULL)
4043	    {
4044	      want_fallthru = false;
4045	      break;
4046	    }
4047	}
4048      break;
4049
4050    case ERT_ALLOWED_EXCEPTIONS:
4051      dst = label_to_block (r->u.allowed.label);
4052      e = find_edge (src, dst);
4053      if (e == NULL)
4054	{
4055	  error ("BB %i is missing an edge", src->index);
4056	  return true;
4057	}
4058      e->aux = (void *)e;
4059      break;
4060
4061    default:
4062      gcc_unreachable ();
4063    }
4064
4065  fall_edge = NULL;
4066  FOR_EACH_EDGE (e, ei, src->succs)
4067    {
4068      if (e->flags & EDGE_FALLTHRU)
4069	{
4070	  if (fall_edge != NULL)
4071	    {
4072	      error ("BB %i too many fallthru edges", src->index);
4073	      return true;
4074	    }
4075	  fall_edge = e;
4076	}
4077      else if (e->aux)
4078	e->aux = NULL;
4079      else
4080	{
4081	  error ("BB %i has incorrect edge", src->index);
4082	  return true;
4083	}
4084    }
4085  if ((fall_edge != NULL) ^ want_fallthru)
4086    {
4087      error ("BB %i has incorrect fallthru edge", src->index);
4088      return true;
4089    }
4090
4091  return false;
4092}
4093