1/* Timing variables for measuring compiler performance.
2   Copyright (C) 2000-2020 Free Software Foundation, Inc.
3   Contributed by Alex Samuel <samuel@codesourcery.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "timevar.h"
25#include "options.h"
26
27#ifndef HAVE_CLOCK_T
28typedef int clock_t;
29#endif
30
31#ifndef HAVE_STRUCT_TMS
32struct tms
33{
34  clock_t tms_utime;
35  clock_t tms_stime;
36  clock_t tms_cutime;
37  clock_t tms_cstime;
38};
39#endif
40
41#ifndef RUSAGE_SELF
42# define RUSAGE_SELF 0
43#endif
44
45/* Calculation of scale factor to convert ticks to microseconds.
46   We mustn't use CLOCKS_PER_SEC except with clock().  */
47#if HAVE_SYSCONF && defined _SC_CLK_TCK
48# define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
49#else
50# ifdef CLK_TCK
51#  define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
52# else
53#  ifdef HZ
54#   define TICKS_PER_SECOND HZ  /* traditional UNIX */
55#  else
56#   define TICKS_PER_SECOND 100 /* often the correct value */
57#  endif
58# endif
59#endif
60
61/* Prefer times to getrusage to clock (each gives successively less
62   information).  */
63#ifdef HAVE_TIMES
64# if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
65  extern clock_t times (struct tms *);
66# endif
67# define USE_TIMES
68# define HAVE_USER_TIME
69# define HAVE_SYS_TIME
70# define HAVE_WALL_TIME
71#else
72#ifdef HAVE_GETRUSAGE
73# if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
74  extern int getrusage (int, struct rusage *);
75# endif
76# define USE_GETRUSAGE
77# define HAVE_USER_TIME
78# define HAVE_SYS_TIME
79#else
80#ifdef HAVE_CLOCK
81# if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
82  extern clock_t clock (void);
83# endif
84# define USE_CLOCK
85# define HAVE_USER_TIME
86#endif
87#endif
88#endif
89
90/* libc is very likely to have snuck a call to sysconf() into one of
91   the underlying constants, and that can be very slow, so we have to
92   precompute them.  Whose wonderful idea was it to make all those
93   _constants_ variable at run time, anyway?  */
94#ifdef USE_TIMES
95static double ticks_to_msec;
96#define TICKS_TO_MSEC (1 / (double)TICKS_PER_SECOND)
97#endif
98
99#ifdef USE_CLOCK
100static double clocks_to_msec;
101#define CLOCKS_TO_MSEC (1 / (double)CLOCKS_PER_SEC)
102#endif
103
104/* Non-NULL if timevars should be used.  In GCC, this happens with
105   the -ftime-report flag.  */
106
107timer *g_timer;
108
109/* Total amount of memory allocated by garbage collector.  */
110
111size_t timevar_ggc_mem_total;
112
113/* The amount of memory that will cause us to report the timevar even
114   if the time spent is not significant.  */
115
116#define GGC_MEM_BOUND (1 << 20)
117
118/* See timevar.h for an explanation of timing variables.  */
119
120static void get_time (struct timevar_time_def *);
121static void timevar_accumulate (struct timevar_time_def *,
122				struct timevar_time_def *,
123				struct timevar_time_def *);
124
125/* The implementation of timing events for jit client code, allowing
126   arbitrary named items to appear on the timing stack.  */
127
128class timer::named_items
129{
130 public:
131  named_items (timer *t);
132  ~named_items ();
133
134  void push (const char *item_name);
135  void pop ();
136  void print (FILE *fp, const timevar_time_def *total);
137
138 private:
139  /* Which timer instance does this relate to?  */
140  timer *m_timer;
141
142  /* Dictionary, mapping from item names to timevar_def.
143     Note that currently we merely store/compare the raw string
144     pointers provided by client code; we don't take a copy,
145     or use strcmp.  */
146  hash_map <const char *, timer::timevar_def> m_hash_map;
147
148  /* The order in which items were originally inserted.  */
149  auto_vec <const char *> m_names;
150};
151
152/* The constructor for class timer::named_items.  */
153
154timer::named_items::named_items (timer *t)
155: m_timer (t),
156  m_hash_map (),
157  m_names ()
158{
159}
160
161/* The destructor for class timer::named_items.  */
162
163timer::named_items::~named_items ()
164{
165}
166
167/* Push the named item onto the timer stack.  */
168
169void
170timer::named_items::push (const char *item_name)
171{
172  gcc_assert (item_name);
173
174  bool existed;
175  timer::timevar_def *def = &m_hash_map.get_or_insert (item_name, &existed);
176  if (!existed)
177    {
178      def->elapsed.user = 0;
179      def->elapsed.sys = 0;
180      def->elapsed.wall = 0;
181      def->name = item_name;
182      def->standalone = 0;
183      m_names.safe_push (item_name);
184    }
185  m_timer->push_internal (def);
186}
187
188/* Pop the top item from the timer stack.  */
189
190void
191timer::named_items::pop ()
192{
193  m_timer->pop_internal ();
194}
195
196/* Print the given client item.  Helper function for timer::print.  */
197
198void
199timer::named_items::print (FILE *fp, const timevar_time_def *total)
200{
201  unsigned int i;
202  const char *item_name;
203  fprintf (fp, "Client items:\n");
204  FOR_EACH_VEC_ELT (m_names, i, item_name)
205    {
206      timer::timevar_def *def = m_hash_map.get (item_name);
207      gcc_assert (def);
208      m_timer->print_row (fp, total, def->name, def->elapsed);
209    }
210}
211
212/* Fill the current times into TIME.  The definition of this function
213   also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
214   HAVE_WALL_TIME macros.  */
215
216static void
217get_time (struct timevar_time_def *now)
218{
219  now->user = 0;
220  now->sys  = 0;
221  now->wall = 0;
222  now->ggc_mem = timevar_ggc_mem_total;
223
224  {
225#ifdef USE_TIMES
226    struct tms tms;
227    now->wall = times (&tms)  * ticks_to_msec;
228    now->user = tms.tms_utime * ticks_to_msec;
229    now->sys  = tms.tms_stime * ticks_to_msec;
230#endif
231#ifdef USE_GETRUSAGE
232    struct rusage rusage;
233    getrusage (RUSAGE_SELF, &rusage);
234    now->user = rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec * 1e-6;
235    now->sys  = rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec * 1e-6;
236#endif
237#ifdef USE_CLOCK
238    now->user = clock () * clocks_to_msec;
239#endif
240  }
241}
242
243/* Add the difference between STOP_TIME and START_TIME to TIMER.  */
244
245static void
246timevar_accumulate (struct timevar_time_def *timer,
247		    struct timevar_time_def *start_time,
248		    struct timevar_time_def *stop_time)
249{
250  timer->user += stop_time->user - start_time->user;
251  timer->sys += stop_time->sys - start_time->sys;
252  timer->wall += stop_time->wall - start_time->wall;
253  timer->ggc_mem += stop_time->ggc_mem - start_time->ggc_mem;
254}
255
256/* Class timer's constructor.  */
257
258timer::timer () :
259  m_stack (NULL),
260  m_unused_stack_instances (NULL),
261  m_start_time (),
262  m_jit_client_items (NULL)
263{
264  /* Zero all elapsed times.  */
265  memset (m_timevars, 0, sizeof (m_timevars));
266
267  /* Initialize the names of timing variables.  */
268#define DEFTIMEVAR(identifier__, name__) \
269  m_timevars[identifier__].name = name__;
270#include "timevar.def"
271#undef DEFTIMEVAR
272
273  /* Initialize configuration-specific state.
274     Ideally this would be one-time initialization.  */
275#ifdef USE_TIMES
276  ticks_to_msec = TICKS_TO_MSEC;
277#endif
278#ifdef USE_CLOCK
279  clocks_to_msec = CLOCKS_TO_MSEC;
280#endif
281}
282
283/* Class timer's destructor.  */
284
285timer::~timer ()
286{
287  timevar_stack_def *iter, *next;
288
289  for (iter = m_stack; iter; iter = next)
290    {
291      next = iter->next;
292      free (iter);
293    }
294  for (iter = m_unused_stack_instances; iter; iter = next)
295    {
296      next = iter->next;
297      free (iter);
298    }
299  for (unsigned i = 0; i < TIMEVAR_LAST; ++i)
300    delete m_timevars[i].children;
301
302  delete m_jit_client_items;
303}
304
305/* Initialize timing variables.  */
306
307void
308timevar_init (void)
309{
310  if (g_timer)
311    return;
312
313  g_timer = new timer ();
314}
315
316/* Push TIMEVAR onto the timing stack.  No further elapsed time is
317   attributed to the previous topmost timing variable on the stack;
318   subsequent elapsed time is attributed to TIMEVAR, until it is
319   popped or another element is pushed on top.
320
321   TIMEVAR cannot be running as a standalone timer.  */
322
323void
324timer::push (timevar_id_t timevar)
325{
326  struct timevar_def *tv = &m_timevars[timevar];
327  push_internal (tv);
328}
329
330/* Push TV onto the timing stack, either one of the builtin ones
331   for a timevar_id_t, or one provided by client code to libgccjit.  */
332
333void
334timer::push_internal (struct timevar_def *tv)
335{
336  struct timevar_stack_def *context;
337  struct timevar_time_def now;
338
339  gcc_assert (tv);
340
341  /* Mark this timing variable as used.  */
342  tv->used = 1;
343
344  /* Can't push a standalone timer.  */
345  gcc_assert (!tv->standalone);
346
347  /* What time is it?  */
348  get_time (&now);
349
350  /* If the stack isn't empty, attribute the current elapsed time to
351     the old topmost element.  */
352  if (m_stack)
353    timevar_accumulate (&m_stack->timevar->elapsed, &m_start_time, &now);
354
355  /* Reset the start time; from now on, time is attributed to
356     TIMEVAR.  */
357  m_start_time = now;
358
359  /* See if we have a previously-allocated stack instance.  If so,
360     take it off the list.  If not, malloc a new one.  */
361  if (m_unused_stack_instances != NULL)
362    {
363      context = m_unused_stack_instances;
364      m_unused_stack_instances = m_unused_stack_instances->next;
365    }
366  else
367    context = XNEW (struct timevar_stack_def);
368
369  /* Fill it in and put it on the stack.  */
370  context->timevar = tv;
371  context->next = m_stack;
372  m_stack = context;
373}
374
375/* Pop the topmost timing variable element off the timing stack.  The
376   popped variable must be TIMEVAR.  Elapsed time since the that
377   element was pushed on, or since it was last exposed on top of the
378   stack when the element above it was popped off, is credited to that
379   timing variable.  */
380
381void
382timer::pop (timevar_id_t timevar)
383{
384  gcc_assert (&m_timevars[timevar] == m_stack->timevar);
385
386  pop_internal ();
387}
388
389/* Pop the topmost item from the stack, either one of the builtin ones
390   for a timevar_id_t, or one provided by client code to libgccjit.  */
391
392void
393timer::pop_internal ()
394{
395  struct timevar_time_def now;
396  struct timevar_stack_def *popped = m_stack;
397
398  /* What time is it?  */
399  get_time (&now);
400
401  /* Attribute the elapsed time to the element we're popping.  */
402  timevar_accumulate (&popped->timevar->elapsed, &m_start_time, &now);
403
404  /* Take the item off the stack.  */
405  m_stack = m_stack->next;
406
407  /* Record the elapsed sub-time to the parent as well.  */
408  if (m_stack && time_report_details)
409    {
410      if (! m_stack->timevar->children)
411	m_stack->timevar->children = new child_map_t (5);
412      bool existed_p;
413      timevar_time_def &time
414	= m_stack->timevar->children->get_or_insert (popped->timevar, &existed_p);
415      if (! existed_p)
416	memset (&time, 0, sizeof (timevar_time_def));
417      timevar_accumulate (&time, &m_start_time, &now);
418    }
419
420  /* Reset the start time; from now on, time is attributed to the
421     element just exposed on the stack.  */
422  m_start_time = now;
423
424  /* Don't delete the stack element; instead, add it to the list of
425     unused elements for later use.  */
426  popped->next = m_unused_stack_instances;
427  m_unused_stack_instances = popped;
428}
429
430/* Start timing TIMEVAR independently of the timing stack.  Elapsed
431   time until timevar_stop is called for the same timing variable is
432   attributed to TIMEVAR.  */
433
434void
435timevar_start (timevar_id_t timevar)
436{
437  if (!g_timer)
438    return;
439
440  g_timer->start (timevar);
441}
442
443/* See timevar_start above.  */
444
445void
446timer::start (timevar_id_t timevar)
447{
448  struct timevar_def *tv = &m_timevars[timevar];
449
450  /* Mark this timing variable as used.  */
451  tv->used = 1;
452
453  /* Don't allow the same timing variable to be started more than
454     once.  */
455  gcc_assert (!tv->standalone);
456  tv->standalone = 1;
457
458  get_time (&tv->start_time);
459}
460
461/* Stop timing TIMEVAR.  Time elapsed since timevar_start was called
462   is attributed to it.  */
463
464void
465timevar_stop (timevar_id_t timevar)
466{
467  if (!g_timer)
468    return;
469
470  g_timer->stop (timevar);
471}
472
473/* See timevar_stop above.  */
474
475void
476timer::stop (timevar_id_t timevar)
477{
478  struct timevar_def *tv = &m_timevars[timevar];
479  struct timevar_time_def now;
480
481  /* TIMEVAR must have been started via timevar_start.  */
482  gcc_assert (tv->standalone);
483  tv->standalone = 0; /* Enable a restart.  */
484
485  get_time (&now);
486  timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
487}
488
489
490/* Conditionally start timing TIMEVAR independently of the timing stack.
491   If the timer is already running, leave it running and return true.
492   Otherwise, start the timer and return false.
493   Elapsed time until the corresponding timevar_cond_stop
494   is called for the same timing variable is attributed to TIMEVAR.  */
495
496bool
497timevar_cond_start (timevar_id_t timevar)
498{
499  if (!g_timer)
500    return false;
501
502  return g_timer->cond_start (timevar);
503}
504
505/* See timevar_cond_start above.  */
506
507bool
508timer::cond_start (timevar_id_t timevar)
509{
510  struct timevar_def *tv = &m_timevars[timevar];
511
512  /* Mark this timing variable as used.  */
513  tv->used = 1;
514
515  if (tv->standalone)
516    return true;  /* The timevar is already running.  */
517
518  /* Don't allow the same timing variable
519     to be unconditionally started more than once.  */
520  tv->standalone = 1;
521
522  get_time (&tv->start_time);
523  return false;  /* The timevar was not already running.  */
524}
525
526/* Conditionally stop timing TIMEVAR.  The RUNNING parameter must come
527   from the return value of a dynamically matching timevar_cond_start.
528   If the timer had already been RUNNING, do nothing.  Otherwise, time
529   elapsed since timevar_cond_start was called is attributed to it.  */
530
531void
532timevar_cond_stop (timevar_id_t timevar, bool running)
533{
534  if (!g_timer || running)
535    return;
536
537  g_timer->cond_stop (timevar);
538}
539
540/* See timevar_cond_stop above.  */
541
542void
543timer::cond_stop (timevar_id_t timevar)
544{
545  struct timevar_def *tv;
546  struct timevar_time_def now;
547
548  tv = &m_timevars[timevar];
549
550  /* TIMEVAR must have been started via timevar_cond_start.  */
551  gcc_assert (tv->standalone);
552  tv->standalone = 0; /* Enable a restart.  */
553
554  get_time (&now);
555  timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
556}
557
558/* Push the named item onto the timing stack.  */
559
560void
561timer::push_client_item (const char *item_name)
562{
563  gcc_assert (item_name);
564
565  /* Lazily create the named_items instance.  */
566  if (!m_jit_client_items)
567    m_jit_client_items = new named_items (this);
568
569  m_jit_client_items->push (item_name);
570}
571
572/* Pop the top-most client item from the timing stack.  */
573
574void
575timer::pop_client_item ()
576{
577  gcc_assert (m_jit_client_items);
578  m_jit_client_items->pop ();
579}
580
581/* Validate that phase times are consistent.  */
582
583void
584timer::validate_phases (FILE *fp) const
585{
586  unsigned int /* timevar_id_t */ id;
587  const timevar_time_def *total = &m_timevars[TV_TOTAL].elapsed;
588  double phase_user = 0.0;
589  double phase_sys = 0.0;
590  double phase_wall = 0.0;
591  size_t phase_ggc_mem = 0;
592  static char phase_prefix[] = "phase ";
593  const double tolerance = 1.000001;  /* One part in a million.  */
594
595  for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
596    {
597      const timevar_def *tv = &m_timevars[(timevar_id_t) id];
598
599      /* Don't evaluate timing variables that were never used.  */
600      if (!tv->used)
601	continue;
602
603      if (strncmp (tv->name, phase_prefix, sizeof phase_prefix - 1) == 0)
604	{
605	  phase_user += tv->elapsed.user;
606	  phase_sys += tv->elapsed.sys;
607	  phase_wall += tv->elapsed.wall;
608	  phase_ggc_mem += tv->elapsed.ggc_mem;
609	}
610    }
611
612  if (phase_user > total->user * tolerance
613      || phase_sys > total->sys * tolerance
614      || phase_wall > total->wall * tolerance
615      || phase_ggc_mem > total->ggc_mem * tolerance)
616    {
617
618      fprintf (fp, "Timing error: total of phase timers exceeds total time.\n");
619      if (phase_user > total->user)
620	fprintf (fp, "user    %24.18e > %24.18e\n", phase_user, total->user);
621      if (phase_sys > total->sys)
622	fprintf (fp, "sys     %24.18e > %24.18e\n", phase_sys, total->sys);
623      if (phase_wall > total->wall)
624	fprintf (fp, "wall    %24.18e > %24.18e\n", phase_wall, total->wall);
625      if (phase_ggc_mem > total->ggc_mem)
626	fprintf (fp, "ggc_mem %24lu > %24lu\n", (unsigned long)phase_ggc_mem,
627		 (unsigned long)total->ggc_mem);
628      gcc_unreachable ();
629    }
630}
631
632/* Helper function for timer::print.  */
633
634void
635timer::print_row (FILE *fp,
636		  const timevar_time_def *total,
637		  const char *name, const timevar_time_def &elapsed)
638{
639  /* The timing variable name.  */
640  fprintf (fp, " %-35s:", name);
641
642#ifdef HAVE_USER_TIME
643  /* Print user-mode time for this process.  */
644  fprintf (fp, "%7.2f (%3.0f%%)",
645	   elapsed.user,
646	   (total->user == 0 ? 0 : elapsed.user / total->user) * 100);
647#endif /* HAVE_USER_TIME */
648
649#ifdef HAVE_SYS_TIME
650  /* Print system-mode time for this process.  */
651  fprintf (fp, "%7.2f (%3.0f%%)",
652	   elapsed.sys,
653	   (total->sys == 0 ? 0 : elapsed.sys / total->sys) * 100);
654#endif /* HAVE_SYS_TIME */
655
656#ifdef HAVE_WALL_TIME
657  /* Print wall clock time elapsed.  */
658  fprintf (fp, "%7.2f (%3.0f%%)",
659	   elapsed.wall,
660	   (total->wall == 0 ? 0 : elapsed.wall / total->wall) * 100);
661#endif /* HAVE_WALL_TIME */
662
663  /* Print the amount of ggc memory allocated.  */
664  fprintf (fp, "%8u kB (%3.0f%%)",
665	   (unsigned) (elapsed.ggc_mem >> 10),
666	   (total->ggc_mem == 0
667	    ? 0
668	    : (float) elapsed.ggc_mem / total->ggc_mem) * 100);
669
670  putc ('\n', fp);
671}
672
673/* Return whether ELAPSED is all zero.  */
674
675bool
676timer::all_zero (const timevar_time_def &elapsed)
677{
678  const double tiny = 5e-3;
679  return (elapsed.user < tiny
680	  && elapsed.sys < tiny
681	  && elapsed.wall < tiny
682	  && elapsed.ggc_mem < GGC_MEM_BOUND);
683}
684
685/* Summarize timing variables to FP.  The timing variable TV_TOTAL has
686   a special meaning -- it's considered to be the total elapsed time,
687   for normalizing the others, and is displayed last.  */
688
689void
690timer::print (FILE *fp)
691{
692  /* Only print stuff if we have some sort of time information.  */
693#if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME)
694  unsigned int /* timevar_id_t */ id;
695  const timevar_time_def *total = &m_timevars[TV_TOTAL].elapsed;
696  struct timevar_time_def now;
697
698  /* Update timing information in case we're calling this from GDB.  */
699
700  if (fp == 0)
701    fp = stderr;
702
703  /* What time is it?  */
704  get_time (&now);
705
706  /* If the stack isn't empty, attribute the current elapsed time to
707     the old topmost element.  */
708  if (m_stack)
709    timevar_accumulate (&m_stack->timevar->elapsed, &m_start_time, &now);
710
711  /* Reset the start time; from now on, time is attributed to
712     TIMEVAR.  */
713  m_start_time = now;
714
715  fprintf (fp, "\n%-35s%16s%14s%14s%18s\n", "Time variable", "usr", "sys",
716	   "wall", "GGC");
717  if (m_jit_client_items)
718    fputs ("GCC items:\n", fp);
719  for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
720    {
721      const timevar_def *tv = &m_timevars[(timevar_id_t) id];
722
723      /* Don't print the total execution time here; that goes at the
724	 end.  */
725      if ((timevar_id_t) id == TV_TOTAL)
726	continue;
727
728      /* Don't print timing variables that were never used.  */
729      if (!tv->used)
730	continue;
731
732      bool any_children_with_time = false;
733      if (tv->children)
734	for (child_map_t::iterator i = tv->children->begin ();
735	     i != tv->children->end (); ++i)
736	  if (! all_zero ((*i).second))
737	    {
738	      any_children_with_time = true;
739	      break;
740	    }
741
742      /* Don't print timing variables if we're going to get a row of
743         zeroes.  Unless there are children with non-zero time.  */
744      if (! any_children_with_time
745	  && all_zero (tv->elapsed))
746	continue;
747
748      print_row (fp, total, tv->name, tv->elapsed);
749
750      if (tv->children)
751	for (child_map_t::iterator i = tv->children->begin ();
752	     i != tv->children->end (); ++i)
753	  {
754	    timevar_def *tv2 = (*i).first;
755	    /* Don't print timing variables if we're going to get a row of
756	       zeroes.  */
757	    if (! all_zero ((*i).second))
758	      {
759		char lname[256];
760		snprintf (lname, 256, "`- %s", tv2->name);
761		print_row (fp, total, lname, (*i).second);
762	      }
763	  }
764    }
765  if (m_jit_client_items)
766    m_jit_client_items->print (fp, total);
767
768  /* Print total time.  */
769  fprintf (fp, " %-35s:", "TOTAL");
770#ifdef HAVE_USER_TIME
771  fprintf (fp, "%7.2f      ", total->user);
772#endif
773#ifdef HAVE_SYS_TIME
774  fprintf (fp, "%8.2f      ", total->sys);
775#endif
776#ifdef HAVE_WALL_TIME
777  fprintf (fp, "%8.2f      ", total->wall);
778#endif
779  fprintf (fp, "%9u kB\n", (unsigned) (total->ggc_mem >> 10));
780
781  if (CHECKING_P || flag_checking)
782    fprintf (fp, "Extra diagnostic checks enabled; compiler may run slowly.\n");
783  if (CHECKING_P)
784    fprintf (fp, "Configure with --enable-checking=release to disable checks.\n");
785#ifndef ENABLE_ASSERT_CHECKING
786  fprintf (fp, "Internal checks disabled; compiler is not suited for release.\n");
787  fprintf (fp, "Configure with --enable-checking=release to enable checks.\n");
788#endif
789
790#endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
791	  || defined (HAVE_WALL_TIME) */
792
793  validate_phases (fp);
794}
795
796/* Get the name of the topmost item.  For use by jit for validating
797   inputs to gcc_jit_timer_pop.  */
798const char *
799timer::get_topmost_item_name () const
800{
801  if (m_stack)
802    return m_stack->timevar->name;
803  else
804    return NULL;
805}
806
807/* Prints a message to stderr stating that time elapsed in STR is
808   TOTAL (given in microseconds).  */
809
810void
811print_time (const char *str, long total)
812{
813  long all_time = get_run_time ();
814  fprintf (stderr,
815	   "time in %s: %ld.%06ld (%ld%%)\n",
816	   str, total / 1000000, total % 1000000,
817	   all_time == 0 ? 0
818	   : (long) (((100.0 * (double) total) / (double) all_time) + .5));
819}
820