spellcheck.c revision 1.3
1/* Find near-matches for strings.
2   Copyright (C) 2015-2017 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
25#include "spellcheck.h"
26#include "selftest.h"
27
28/* The Levenshtein distance is an "edit-distance": the minimal
29   number of one-character insertions, removals or substitutions
30   that are needed to change one string into another.
31
32   This implementation uses the Wagner-Fischer algorithm.  */
33
34edit_distance_t
35levenshtein_distance (const char *s, int len_s,
36		      const char *t, int len_t)
37{
38  const bool debug = false;
39
40  if (debug)
41    {
42      printf ("s: \"%s\" (len_s=%i)\n", s, len_s);
43      printf ("t: \"%s\" (len_t=%i)\n", t, len_t);
44    }
45
46  if (len_s == 0)
47    return len_t;
48  if (len_t == 0)
49    return len_s;
50
51  /* We effectively build a matrix where each (i, j) contains the
52     Levenshtein distance between the prefix strings s[0:j]
53     and t[0:i].
54     Rather than actually build an (len_t + 1) * (len_s + 1) matrix,
55     we simply keep track of the last row, v0 and a new row, v1,
56     which avoids an (len_t + 1) * (len_s + 1) allocation and memory accesses
57     in favor of two (len_s + 1) allocations.  These could potentially be
58     statically-allocated if we impose a maximum length on the
59     strings of interest.  */
60  edit_distance_t *v0 = new edit_distance_t[len_s + 1];
61  edit_distance_t *v1 = new edit_distance_t[len_s + 1];
62
63  /* The first row is for the case of an empty target string, which
64     we can reach by deleting every character in the source string.  */
65  for (int i = 0; i < len_s + 1; i++)
66    v0[i] = i;
67
68  /* Build successive rows.  */
69  for (int i = 0; i < len_t; i++)
70    {
71      if (debug)
72	{
73	  printf ("i:%i v0 = ", i);
74	  for (int j = 0; j < len_s + 1; j++)
75	    printf ("%i ", v0[j]);
76	  printf ("\n");
77	}
78
79      /* The initial column is for the case of an empty source string; we
80	 can reach prefixes of the target string of length i
81	 by inserting i characters.  */
82      v1[0] = i + 1;
83
84      /* Build the rest of the row by considering neighbors to
85	 the north, west and northwest.  */
86      for (int j = 0; j < len_s; j++)
87	{
88	  edit_distance_t cost = (s[j] == t[i] ? 0 : 1);
89	  edit_distance_t deletion     = v1[j] + 1;
90	  edit_distance_t insertion    = v0[j + 1] + 1;
91	  edit_distance_t substitution = v0[j] + cost;
92	  edit_distance_t cheapest = MIN (deletion, insertion);
93	  cheapest = MIN (cheapest, substitution);
94	  v1[j + 1] = cheapest;
95	}
96
97      /* Prepare to move on to next row.  */
98      for (int j = 0; j < len_s + 1; j++)
99	v0[j] = v1[j];
100    }
101
102  if (debug)
103    {
104      printf ("final v1 = ");
105      for (int j = 0; j < len_s + 1; j++)
106	printf ("%i ", v1[j]);
107      printf ("\n");
108    }
109
110  edit_distance_t result = v1[len_s];
111  delete[] v0;
112  delete[] v1;
113  return result;
114}
115
116/* Calculate Levenshtein distance between two nil-terminated strings.  */
117
118edit_distance_t
119levenshtein_distance (const char *s, const char *t)
120{
121  return levenshtein_distance (s, strlen (s), t, strlen (t));
122}
123
124/* Given TARGET, a non-NULL string, and CANDIDATES, a non-NULL ptr to
125   an autovec of non-NULL strings, determine which element within
126   CANDIDATES has the lowest edit distance to TARGET.  If there are
127   multiple elements with the same minimal distance, the first in the
128   vector wins.
129
130   If more than half of the letters were misspelled, the suggestion is
131   likely to be meaningless, so return NULL for this case.  */
132
133const char *
134find_closest_string (const char *target,
135		     const auto_vec<const char *> *candidates)
136{
137  gcc_assert (target);
138  gcc_assert (candidates);
139
140  int i;
141  const char *candidate;
142  best_match<const char *, const char *> bm (target);
143  FOR_EACH_VEC_ELT (*candidates, i, candidate)
144    {
145      gcc_assert (candidate);
146      bm.consider (candidate);
147    }
148
149  return bm.get_best_meaningful_candidate ();
150}
151
152#if CHECKING_P
153
154namespace selftest {
155
156/* Selftests.  */
157
158/* Verify that the levenshtein_distance (A, B) equals the expected
159   value.  */
160
161static void
162levenshtein_distance_unit_test_oneway (const char *a, const char *b,
163				       edit_distance_t expected)
164{
165  edit_distance_t actual = levenshtein_distance (a, b);
166  ASSERT_EQ (actual, expected);
167}
168
169/* Verify that both
170     levenshtein_distance (A, B)
171   and
172     levenshtein_distance (B, A)
173   equal the expected value, to ensure that the function is symmetric.  */
174
175static void
176levenshtein_distance_unit_test (const char *a, const char *b,
177				edit_distance_t expected)
178{
179  levenshtein_distance_unit_test_oneway (a, b, expected);
180  levenshtein_distance_unit_test_oneway (b, a, expected);
181}
182
183/* Verify that find_closest_string is sane.  */
184
185static void
186test_find_closest_string ()
187{
188  auto_vec<const char *> candidates;
189
190  /* Verify that it can handle an empty vec.  */
191  ASSERT_EQ (NULL, find_closest_string ("", &candidates));
192
193  /* Verify that it works sanely for non-empty vecs.  */
194  candidates.safe_push ("apple");
195  candidates.safe_push ("banana");
196  candidates.safe_push ("cherry");
197
198  ASSERT_STREQ ("apple", find_closest_string ("app", &candidates));
199  ASSERT_STREQ ("banana", find_closest_string ("banyan", &candidates));
200  ASSERT_STREQ ("cherry", find_closest_string ("berry", &candidates));
201  ASSERT_EQ (NULL, find_closest_string ("not like the others", &candidates));
202
203  /* The order of the vec can matter, but it should not matter for these
204     inputs.  */
205  candidates.truncate (0);
206  candidates.safe_push ("cherry");
207  candidates.safe_push ("banana");
208  candidates.safe_push ("apple");
209  ASSERT_STREQ ("apple", find_closest_string ("app", &candidates));
210  ASSERT_STREQ ("banana", find_closest_string ("banyan", &candidates));
211  ASSERT_STREQ ("cherry", find_closest_string ("berry", &candidates));
212  ASSERT_EQ (NULL, find_closest_string ("not like the others", &candidates));
213
214  /* If the goal string somehow makes it into the candidate list, offering
215     it as a suggestion will be nonsensical.  Verify that we don't offer such
216     suggestions.  */
217  ASSERT_EQ (NULL, find_closest_string ("banana", &candidates));
218}
219
220/* Test data for test_metric_conditions.  */
221
222static const char * const test_data[] = {
223  "",
224  "foo",
225  "food",
226  "boo",
227  "1234567890123456789012345678901234567890123456789012345678901234567890"
228};
229
230/* Verify that levenshtein_distance appears to be a sane distance function,
231   i.e. the conditions for being a metric.  This is done directly for a
232   small set of examples, using test_data above.  This is O(N^3) in the size
233   of the array, due to the test for the triangle inequality, so we keep the
234   array small.  */
235
236static void
237test_metric_conditions ()
238{
239  const int num_test_cases = sizeof (test_data) / sizeof (test_data[0]);
240
241  for (int i = 0; i < num_test_cases; i++)
242    {
243      for (int j = 0; j < num_test_cases; j++)
244	{
245	  edit_distance_t dist_ij
246	    = levenshtein_distance (test_data[i], test_data[j]);
247
248	  /* Identity of indiscernibles: d(i, j) > 0 iff i == j.  */
249	  if (i == j)
250	    ASSERT_EQ (dist_ij, 0);
251	  else
252	    ASSERT_TRUE (dist_ij > 0);
253
254	  /* Symmetry: d(i, j) == d(j, i).  */
255	  edit_distance_t dist_ji
256	    = levenshtein_distance (test_data[j], test_data[i]);
257	  ASSERT_EQ (dist_ij, dist_ji);
258
259	  /* Triangle inequality.  */
260	  for (int k = 0; k < num_test_cases; k++)
261	    {
262	      edit_distance_t dist_ik
263		= levenshtein_distance (test_data[i], test_data[k]);
264	      edit_distance_t dist_jk
265		= levenshtein_distance (test_data[j], test_data[k]);
266	      ASSERT_TRUE (dist_ik <= dist_ij + dist_jk);
267	    }
268	}
269    }
270}
271
272/* Verify levenshtein_distance for a variety of pairs of pre-canned
273   inputs, comparing against known-good values.  */
274
275void
276spellcheck_c_tests ()
277{
278  levenshtein_distance_unit_test ("", "nonempty", strlen ("nonempty"));
279  levenshtein_distance_unit_test ("saturday", "sunday", 3);
280  levenshtein_distance_unit_test ("foo", "m_foo", 2);
281  levenshtein_distance_unit_test ("hello_world", "HelloWorld", 3);
282  levenshtein_distance_unit_test
283    ("the quick brown fox jumps over the lazy dog", "dog", 40);
284  levenshtein_distance_unit_test
285    ("the quick brown fox jumps over the lazy dog",
286     "the quick brown dog jumps over the lazy fox",
287     4);
288  levenshtein_distance_unit_test
289    ("Lorem ipsum dolor sit amet, consectetur adipiscing elit,",
290     "All your base are belong to us",
291     44);
292  levenshtein_distance_unit_test ("foo", "FOO", 3);
293
294  test_find_closest_string ();
295  test_metric_conditions ();
296}
297
298} // namespace selftest
299
300#endif /* #if CHECKING_P */
301