range-op.cc revision 1.1.1.1
1/* Code for range operators.
2   Copyright (C) 2017-2020 Free Software Foundation, Inc.
3   Contributed by Andrew MacLeod <amacleod@redhat.com>
4   and Aldy Hernandez <aldyh@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "backend.h"
26#include "insn-codes.h"
27#include "rtl.h"
28#include "tree.h"
29#include "gimple.h"
30#include "cfghooks.h"
31#include "tree-pass.h"
32#include "ssa.h"
33#include "optabs-tree.h"
34#include "gimple-pretty-print.h"
35#include "diagnostic-core.h"
36#include "flags.h"
37#include "fold-const.h"
38#include "stor-layout.h"
39#include "calls.h"
40#include "cfganal.h"
41#include "gimple-fold.h"
42#include "tree-eh.h"
43#include "gimple-iterator.h"
44#include "gimple-walk.h"
45#include "tree-cfg.h"
46#include "wide-int.h"
47#include "range-op.h"
48
49// Return the upper limit for a type.
50
51static inline wide_int
52max_limit (const_tree type)
53{
54  return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
55}
56
57// Return the lower limit for a type.
58
59static inline wide_int
60min_limit (const_tree type)
61{
62  return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
63}
64
65// If the range of either op1 or op2 is undefined, set the result to
66// undefined and return TRUE.
67
68inline bool
69empty_range_check (value_range &r,
70		   const value_range &op1, const value_range & op2)
71{
72  if (op1.undefined_p () || op2.undefined_p ())
73    {
74      r.set_undefined ();
75      return true;
76    }
77  else
78    return false;
79}
80
81// Return TRUE if shifting by OP is undefined behavior, and set R to
82// the appropriate range.
83
84static inline bool
85undefined_shift_range_check (value_range &r, tree type, const value_range op)
86{
87  if (op.undefined_p ())
88    {
89      r = value_range ();
90      return true;
91    }
92
93  // Shifting by any values outside [0..prec-1], gets undefined
94  // behavior from the shift operation.  We cannot even trust
95  // SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
96  // shifts, and the operation at the tree level may be widened.
97  if (wi::lt_p (op.lower_bound (), 0, TYPE_SIGN (op.type ()))
98      || wi::ge_p (op.upper_bound (),
99		   TYPE_PRECISION (type), TYPE_SIGN (op.type ())))
100    {
101      r = value_range (type);
102      return true;
103    }
104  return false;
105}
106
107// Return TRUE if 0 is within [WMIN, WMAX].
108
109static inline bool
110wi_includes_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
111{
112  signop sign = TYPE_SIGN (type);
113  return wi::le_p (wmin, 0, sign) && wi::ge_p (wmax, 0, sign);
114}
115
116// Return TRUE if [WMIN, WMAX] is the singleton 0.
117
118static inline bool
119wi_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
120{
121  unsigned prec = TYPE_PRECISION (type);
122  return wmin == wmax && wi::eq_p (wmin, wi::zero (prec));
123}
124
125// Default wide_int fold operation returns [MIN, MAX].
126
127void
128range_operator::wi_fold (value_range &r, tree type,
129			 const wide_int &lh_lb ATTRIBUTE_UNUSED,
130			 const wide_int &lh_ub ATTRIBUTE_UNUSED,
131			 const wide_int &rh_lb ATTRIBUTE_UNUSED,
132			 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
133{
134  gcc_checking_assert (value_range::supports_type_p (type));
135  r = value_range (type);
136}
137
138// The default for fold is to break all ranges into sub-ranges and
139// invoke the wi_fold method on each sub-range pair.
140
141bool
142range_operator::fold_range (value_range &r, tree type,
143			    const value_range &lh,
144			    const value_range &rh) const
145{
146  gcc_checking_assert (value_range::supports_type_p (type));
147  if (empty_range_check (r, lh, rh))
148    return true;
149
150  value_range tmp;
151  r.set_undefined ();
152  for (unsigned x = 0; x < lh.num_pairs (); ++x)
153    for (unsigned y = 0; y < rh.num_pairs (); ++y)
154      {
155	wide_int lh_lb = lh.lower_bound (x);
156	wide_int lh_ub = lh.upper_bound (x);
157	wide_int rh_lb = rh.lower_bound (y);
158	wide_int rh_ub = rh.upper_bound (y);
159	wi_fold (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub);
160	r.union_ (tmp);
161	if (r.varying_p ())
162	  return true;
163      }
164  return true;
165}
166
167// The default for op1_range is to return false.
168
169bool
170range_operator::op1_range (value_range &r ATTRIBUTE_UNUSED,
171			   tree type ATTRIBUTE_UNUSED,
172			   const value_range &lhs ATTRIBUTE_UNUSED,
173			   const value_range &op2 ATTRIBUTE_UNUSED) const
174{
175  return false;
176}
177
178// The default for op2_range is to return false.
179
180bool
181range_operator::op2_range (value_range &r ATTRIBUTE_UNUSED,
182			   tree type ATTRIBUTE_UNUSED,
183			   const value_range &lhs ATTRIBUTE_UNUSED,
184			   const value_range &op1 ATTRIBUTE_UNUSED) const
185{
186  return false;
187}
188
189
190// Create and return a range from a pair of wide-ints that are known
191// to have overflowed (or underflowed).
192
193static void
194value_range_from_overflowed_bounds (value_range &r, tree type,
195				    const wide_int &wmin,
196				    const wide_int &wmax)
197{
198  const signop sgn = TYPE_SIGN (type);
199  const unsigned int prec = TYPE_PRECISION (type);
200
201  wide_int tmin = wide_int::from (wmin, prec, sgn);
202  wide_int tmax = wide_int::from (wmax, prec, sgn);
203
204  bool covers = false;
205  wide_int tem = tmin;
206  tmin = tmax + 1;
207  if (wi::cmp (tmin, tmax, sgn) < 0)
208    covers = true;
209  tmax = tem - 1;
210  if (wi::cmp (tmax, tem, sgn) > 0)
211    covers = true;
212
213  // If the anti-range would cover nothing, drop to varying.
214  // Likewise if the anti-range bounds are outside of the types
215  // values.
216  if (covers || wi::cmp (tmin, tmax, sgn) > 0)
217    r = value_range (type);
218  else
219    r = value_range (type, tmin, tmax, VR_ANTI_RANGE);
220}
221
222// Create and return a range from a pair of wide-ints.  MIN_OVF and
223// MAX_OVF describe any overflow that might have occurred while
224// calculating WMIN and WMAX respectively.
225
226static void
227value_range_with_overflow (value_range &r, tree type,
228			   const wide_int &wmin, const wide_int &wmax,
229			   wi::overflow_type min_ovf = wi::OVF_NONE,
230			   wi::overflow_type max_ovf = wi::OVF_NONE)
231{
232  const signop sgn = TYPE_SIGN (type);
233  const unsigned int prec = TYPE_PRECISION (type);
234  const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type);
235
236  // For one bit precision if max != min, then the range covers all
237  // values.
238  if (prec == 1 && wi::ne_p (wmax, wmin))
239    {
240      r = value_range (type);
241      return;
242    }
243
244  if (overflow_wraps)
245    {
246      // If overflow wraps, truncate the values and adjust the range,
247      // kind, and bounds appropriately.
248      if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
249	{
250	  wide_int tmin = wide_int::from (wmin, prec, sgn);
251	  wide_int tmax = wide_int::from (wmax, prec, sgn);
252	  // If the limits are swapped, we wrapped around and cover
253	  // the entire range.
254	  if (wi::gt_p (tmin, tmax, sgn))
255	    r = value_range (type);
256	  else
257	    // No overflow or both overflow or underflow.  The range
258	    // kind stays normal.
259	    r = value_range (type, tmin, tmax);
260	  return;
261	}
262
263      if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
264	  || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
265	value_range_from_overflowed_bounds (r, type, wmin, wmax);
266      else
267	// Other underflow and/or overflow, drop to VR_VARYING.
268	r = value_range (type);
269    }
270  else
271    {
272      // If overflow does not wrap, saturate to [MIN, MAX].
273      wide_int new_lb, new_ub;
274      if (min_ovf == wi::OVF_UNDERFLOW)
275	new_lb = wi::min_value (prec, sgn);
276      else if (min_ovf == wi::OVF_OVERFLOW)
277	new_lb = wi::max_value (prec, sgn);
278      else
279        new_lb = wmin;
280
281      if (max_ovf == wi::OVF_UNDERFLOW)
282	new_ub = wi::min_value (prec, sgn);
283      else if (max_ovf == wi::OVF_OVERFLOW)
284	new_ub = wi::max_value (prec, sgn);
285      else
286        new_ub = wmax;
287
288      r = value_range (type, new_lb, new_ub);
289    }
290}
291
292// Create and return a range from a pair of wide-ints.  Canonicalize
293// the case where the bounds are swapped.  In which case, we transform
294// [10,5] into [MIN,5][10,MAX].
295
296static inline void
297create_possibly_reversed_range (value_range &r, tree type,
298				const wide_int &new_lb, const wide_int &new_ub)
299{
300  signop s = TYPE_SIGN (type);
301  // If the bounds are swapped, treat the result as if an overflow occured.
302  if (wi::gt_p (new_lb, new_ub, s))
303    value_range_from_overflowed_bounds (r, type, new_lb, new_ub);
304  else
305    // Otherwise its just a normal range.
306    r = value_range (type, new_lb, new_ub);
307}
308
309// Return a value_range instance that is a boolean TRUE.
310
311static inline value_range
312range_true (tree type)
313{
314  unsigned prec = TYPE_PRECISION (type);
315  return value_range (type, wi::one (prec), wi::one (prec));
316}
317
318// Return a value_range instance that is a boolean FALSE.
319
320static inline value_range
321range_false (tree type)
322{
323  unsigned prec = TYPE_PRECISION (type);
324  return value_range (type, wi::zero (prec), wi::zero (prec));
325}
326
327// Return a value_range that covers both true and false.
328
329static inline value_range
330range_true_and_false (tree type)
331{
332  unsigned prec = TYPE_PRECISION (type);
333  return value_range (type, wi::zero (prec), wi::one (prec));
334}
335
336enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };
337
338// Return the summary information about boolean range LHS.  Return an
339// "interesting" range in R.  For EMPTY or FULL, return the equivalent
340// range for TYPE, for BRS_TRUE and BRS false, return the negation of
341// the bool range.
342
343static bool_range_state
344get_bool_state (value_range &r, const value_range &lhs, tree val_type)
345{
346  // If there is no result, then this is unexecutable.
347  if (lhs.undefined_p ())
348    {
349      r.set_undefined ();
350      return BRS_EMPTY;
351    }
352
353  // If the bounds aren't the same, then it's not a constant.
354  if (!wi::eq_p (lhs.upper_bound (), lhs.lower_bound ()))
355    {
356      r.set_varying (val_type);
357      return BRS_FULL;
358    }
359
360  if (lhs.zero_p ())
361    return BRS_FALSE;
362
363  return BRS_TRUE;
364}
365
366
367class operator_equal : public range_operator
368{
369public:
370  virtual bool fold_range (value_range &r, tree type,
371			   const value_range &op1,
372			   const value_range &op2) const;
373  virtual bool op1_range (value_range &r, tree type,
374			  const value_range &lhs,
375			  const value_range &val) const;
376  virtual bool op2_range (value_range &r, tree type,
377			  const value_range &lhs,
378			  const value_range &val) const;
379} op_equal;
380
381bool
382operator_equal::fold_range (value_range &r, tree type,
383			    const value_range &op1,
384			    const value_range &op2) const
385{
386  if (empty_range_check (r, op1, op2))
387    return true;
388
389  // We can be sure the values are always equal or not if both ranges
390  // consist of a single value, and then compare them.
391  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
392      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
393    {
394      if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
395	r = range_true (type);
396      else
397	r = range_false (type);
398    }
399  else
400    {
401      // If ranges do not intersect, we know the range is not equal,
402      // otherwise we don't know anything for sure.
403      r = op1;
404      r.intersect (op2);
405      if (r.undefined_p ())
406	r = range_false (type);
407      else
408	r = range_true_and_false (type);
409    }
410  return true;
411}
412
413bool
414operator_equal::op1_range (value_range &r, tree type,
415			   const value_range &lhs,
416			   const value_range &op2) const
417{
418  switch (get_bool_state (r, lhs, type))
419    {
420    case BRS_FALSE:
421      // If the result is false, the only time we know anything is
422      // if OP2 is a constant.
423      if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
424	{
425	  r = op2;
426	  r.invert ();
427	}
428      else
429	r.set_varying (type);
430      break;
431
432    case BRS_TRUE:
433      // If it's true, the result is the same as OP2.
434      r = op2;
435      break;
436
437    default:
438      break;
439    }
440  return true;
441}
442
443bool
444operator_equal::op2_range (value_range &r, tree type,
445			   const value_range &lhs,
446			   const value_range &op1) const
447{
448  return operator_equal::op1_range (r, type, lhs, op1);
449}
450
451
452class operator_not_equal : public range_operator
453{
454public:
455  virtual bool fold_range (value_range &r, tree type,
456			   const value_range &op1,
457			   const value_range &op2) const;
458  virtual bool op1_range (value_range &r, tree type,
459			  const value_range &lhs,
460			  const value_range &op2) const;
461  virtual bool op2_range (value_range &r, tree type,
462			  const value_range &lhs,
463			  const value_range &op1) const;
464} op_not_equal;
465
466bool
467operator_not_equal::fold_range (value_range &r, tree type,
468				const value_range &op1,
469				const value_range &op2) const
470{
471  if (empty_range_check (r, op1, op2))
472    return true;
473
474  // We can be sure the values are always equal or not if both ranges
475  // consist of a single value, and then compare them.
476  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
477      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
478    {
479      if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
480	r = range_true (type);
481      else
482	r = range_false (type);
483    }
484  else
485    {
486      // If ranges do not intersect, we know the range is not equal,
487      // otherwise we don't know anything for sure.
488      r = op1;
489      r.intersect (op2);
490      if (r.undefined_p ())
491	r = range_true (type);
492      else
493	r = range_true_and_false (type);
494    }
495  return true;
496}
497
498bool
499operator_not_equal::op1_range (value_range &r, tree type,
500			       const value_range &lhs,
501			       const value_range &op2) const
502{
503  switch (get_bool_state (r, lhs, type))
504    {
505    case BRS_TRUE:
506      // If the result is true, the only time we know anything is if
507      // OP2 is a constant.
508      if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
509	{
510	  r = op2;
511	  r.invert ();
512	}
513      else
514	r.set_varying (type);
515      break;
516
517    case BRS_FALSE:
518      // If its true, the result is the same as OP2.
519      r = op2;
520      break;
521
522    default:
523      break;
524    }
525  return true;
526}
527
528
529bool
530operator_not_equal::op2_range (value_range &r, tree type,
531			       const value_range &lhs,
532			       const value_range &op1) const
533{
534  return operator_not_equal::op1_range (r, type, lhs, op1);
535}
536
537// (X < VAL) produces the range of [MIN, VAL - 1].
538
539static void
540build_lt (value_range &r, tree type, const wide_int &val)
541{
542  wi::overflow_type ov;
543  wide_int lim = wi::sub (val, 1, TYPE_SIGN (type), &ov);
544
545  // If val - 1 underflows, check if X < MIN, which is an empty range.
546  if (ov)
547    r.set_undefined ();
548  else
549    r = value_range (type, min_limit (type), lim);
550}
551
552// (X <= VAL) produces the range of [MIN, VAL].
553
554static void
555build_le (value_range &r, tree type, const wide_int &val)
556{
557  r = value_range (type, min_limit (type), val);
558}
559
560// (X > VAL) produces the range of [VAL + 1, MAX].
561
562static void
563build_gt (value_range &r, tree type, const wide_int &val)
564{
565  wi::overflow_type ov;
566  wide_int lim = wi::add (val, 1, TYPE_SIGN (type), &ov);
567  // If val + 1 overflows, check is for X > MAX, which is an empty range.
568  if (ov)
569    r.set_undefined ();
570  else
571    r = value_range (type, lim, max_limit (type));
572}
573
574// (X >= val) produces the range of [VAL, MAX].
575
576static void
577build_ge (value_range &r, tree type, const wide_int &val)
578{
579  r = value_range (type, val, max_limit (type));
580}
581
582
583class operator_lt :  public range_operator
584{
585public:
586  virtual bool fold_range (value_range &r, tree type,
587			   const value_range &op1,
588			   const value_range &op2) const;
589  virtual bool op1_range (value_range &r, tree type,
590			  const value_range &lhs,
591			  const value_range &op2) const;
592  virtual bool op2_range (value_range &r, tree type,
593			  const value_range &lhs,
594			  const value_range &op1) const;
595} op_lt;
596
597bool
598operator_lt::fold_range (value_range &r, tree type,
599			 const value_range &op1,
600			 const value_range &op2) const
601{
602  if (empty_range_check (r, op1, op2))
603    return true;
604
605  signop sign = TYPE_SIGN (op1.type ());
606  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
607
608  if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
609    r = range_true (type);
610  else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
611    r = range_false (type);
612  else
613    r = range_true_and_false (type);
614  return true;
615}
616
617bool
618operator_lt::op1_range (value_range &r, tree type,
619			const value_range &lhs,
620			const value_range &op2) const
621{
622  switch (get_bool_state (r, lhs, type))
623    {
624    case BRS_TRUE:
625      build_lt (r, type, op2.upper_bound ());
626      break;
627
628    case BRS_FALSE:
629      build_ge (r, type, op2.lower_bound ());
630      break;
631
632    default:
633      break;
634    }
635  return true;
636}
637
638bool
639operator_lt::op2_range (value_range &r, tree type,
640			const value_range &lhs,
641			const value_range &op1) const
642{
643  switch (get_bool_state (r, lhs, type))
644    {
645    case BRS_FALSE:
646      build_le (r, type, op1.upper_bound ());
647      break;
648
649    case BRS_TRUE:
650      build_gt (r, type, op1.lower_bound ());
651      break;
652
653    default:
654      break;
655    }
656  return true;
657}
658
659
660class operator_le :  public range_operator
661{
662public:
663  virtual bool fold_range (value_range &r, tree type,
664			   const value_range &op1,
665			   const value_range &op2) const;
666  virtual bool op1_range (value_range &r, tree type,
667			  const value_range &lhs,
668			  const value_range &op2) const;
669  virtual bool op2_range (value_range &r, tree type,
670			  const value_range &lhs,
671			  const value_range &op1) const;
672} op_le;
673
674bool
675operator_le::fold_range (value_range &r, tree type,
676			 const value_range &op1,
677			 const value_range &op2) const
678{
679  if (empty_range_check (r, op1, op2))
680    return true;
681
682  signop sign = TYPE_SIGN (op1.type ());
683  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
684
685  if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
686    r = range_true (type);
687  else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
688    r = range_false (type);
689  else
690    r = range_true_and_false (type);
691  return true;
692}
693
694bool
695operator_le::op1_range (value_range &r, tree type,
696			const value_range &lhs,
697			const value_range &op2) const
698{
699  switch (get_bool_state (r, lhs, type))
700    {
701    case BRS_TRUE:
702      build_le (r, type, op2.upper_bound ());
703      break;
704
705    case BRS_FALSE:
706      build_gt (r, type, op2.lower_bound ());
707      break;
708
709    default:
710      break;
711    }
712  return true;
713}
714
715bool
716operator_le::op2_range (value_range &r, tree type,
717			const value_range &lhs,
718			const value_range &op1) const
719{
720  switch (get_bool_state (r, lhs, type))
721    {
722    case BRS_FALSE:
723      build_lt (r, type, op1.upper_bound ());
724      break;
725
726    case BRS_TRUE:
727      build_ge (r, type, op1.lower_bound ());
728      break;
729
730    default:
731      break;
732    }
733  return true;
734}
735
736
737class operator_gt :  public range_operator
738{
739public:
740  virtual bool fold_range (value_range &r, tree type,
741			   const value_range &op1,
742			   const value_range &op2) const;
743  virtual bool op1_range (value_range &r, tree type,
744			  const value_range &lhs,
745			  const value_range &op2) const;
746  virtual bool op2_range (value_range &r, tree type,
747			  const value_range &lhs,
748			  const value_range &op1) const;
749} op_gt;
750
751bool
752operator_gt::fold_range (value_range &r, tree type,
753			 const value_range &op1, const value_range &op2) const
754{
755  if (empty_range_check (r, op1, op2))
756    return true;
757
758  signop sign = TYPE_SIGN (op1.type ());
759  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
760
761  if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
762    r = range_true (type);
763  else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
764    r = range_false (type);
765  else
766    r = range_true_and_false (type);
767  return true;
768}
769
770bool
771operator_gt::op1_range (value_range &r, tree type,
772			const value_range &lhs, const value_range &op2) const
773{
774  switch (get_bool_state (r, lhs, type))
775    {
776    case BRS_TRUE:
777      build_gt (r, type, op2.lower_bound ());
778      break;
779
780    case BRS_FALSE:
781      build_le (r, type, op2.upper_bound ());
782      break;
783
784    default:
785      break;
786    }
787  return true;
788}
789
790bool
791operator_gt::op2_range (value_range &r, tree type,
792			const value_range &lhs,
793			const value_range &op1) const
794{
795  switch (get_bool_state (r, lhs, type))
796    {
797    case BRS_FALSE:
798      build_ge (r, type, op1.lower_bound ());
799      break;
800
801    case BRS_TRUE:
802      build_lt (r, type, op1.upper_bound ());
803      break;
804
805    default:
806      break;
807    }
808  return true;
809}
810
811
812class operator_ge :  public range_operator
813{
814public:
815  virtual bool fold_range (value_range &r, tree type,
816			   const value_range &op1,
817			   const value_range &op2) const;
818  virtual bool op1_range (value_range &r, tree type,
819			  const value_range &lhs,
820			  const value_range &op2) const;
821  virtual bool op2_range (value_range &r, tree type,
822			  const value_range &lhs,
823			  const value_range &op1) const;
824} op_ge;
825
826bool
827operator_ge::fold_range (value_range &r, tree type,
828			 const value_range &op1,
829			 const value_range &op2) const
830{
831  if (empty_range_check (r, op1, op2))
832    return true;
833
834  signop sign = TYPE_SIGN (op1.type ());
835  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
836
837  if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
838    r = range_true (type);
839  else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
840    r = range_false (type);
841  else
842    r = range_true_and_false (type);
843  return true;
844}
845
846bool
847operator_ge::op1_range (value_range &r, tree type,
848			const value_range &lhs,
849			const value_range &op2) const
850{
851  switch (get_bool_state (r, lhs, type))
852    {
853    case BRS_TRUE:
854      build_ge (r, type, op2.lower_bound ());
855      break;
856
857    case BRS_FALSE:
858      build_lt (r, type, op2.upper_bound ());
859      break;
860
861    default:
862      break;
863    }
864  return true;
865}
866
867bool
868operator_ge::op2_range (value_range &r, tree type,
869			const value_range &lhs,
870			const value_range &op1) const
871{
872  switch (get_bool_state (r, lhs, type))
873    {
874    case BRS_FALSE:
875      build_gt (r, type, op1.lower_bound ());
876      break;
877
878    case BRS_TRUE:
879      build_le (r, type, op1.upper_bound ());
880      break;
881
882    default:
883      break;
884    }
885  return true;
886}
887
888
889class operator_plus : public range_operator
890{
891public:
892  virtual bool op1_range (value_range &r, tree type,
893			  const value_range &lhs,
894			  const value_range &op2) const;
895  virtual bool op2_range (value_range &r, tree type,
896			  const value_range &lhs,
897			  const value_range &op1) const;
898  virtual void wi_fold (value_range &r, tree type,
899		        const wide_int &lh_lb,
900		        const wide_int &lh_ub,
901		        const wide_int &rh_lb,
902		        const wide_int &rh_ub) const;
903} op_plus;
904
905void
906operator_plus::wi_fold (value_range &r, tree type,
907			const wide_int &lh_lb, const wide_int &lh_ub,
908			const wide_int &rh_lb, const wide_int &rh_ub) const
909{
910  wi::overflow_type ov_lb, ov_ub;
911  signop s = TYPE_SIGN (type);
912  wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb);
913  wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub);
914  value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
915}
916
917bool
918operator_plus::op1_range (value_range &r, tree type,
919			  const value_range &lhs,
920			  const value_range &op2) const
921{
922  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op2);
923}
924
925bool
926operator_plus::op2_range (value_range &r, tree type,
927			  const value_range &lhs,
928			  const value_range &op1) const
929{
930  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op1);
931}
932
933
934class operator_minus : public range_operator
935{
936public:
937  virtual bool op1_range (value_range &r, tree type,
938			  const value_range &lhs,
939			  const value_range &op2) const;
940  virtual bool op2_range (value_range &r, tree type,
941			  const value_range &lhs,
942			  const value_range &op1) const;
943  virtual void wi_fold (value_range &r, tree type,
944		        const wide_int &lh_lb,
945		        const wide_int &lh_ub,
946		        const wide_int &rh_lb,
947		        const wide_int &rh_ub) const;
948} op_minus;
949
950void
951operator_minus::wi_fold (value_range &r, tree type,
952			 const wide_int &lh_lb, const wide_int &lh_ub,
953			 const wide_int &rh_lb, const wide_int &rh_ub) const
954{
955  wi::overflow_type ov_lb, ov_ub;
956  signop s = TYPE_SIGN (type);
957  wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb);
958  wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub);
959  value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
960}
961
962bool
963operator_minus::op1_range (value_range &r, tree type,
964			   const value_range &lhs,
965			   const value_range &op2) const
966{
967  return range_op_handler (PLUS_EXPR, type)->fold_range (r, type, lhs, op2);
968}
969
970bool
971operator_minus::op2_range (value_range &r, tree type,
972			   const value_range &lhs,
973			   const value_range &op1) const
974{
975  return fold_range (r, type, op1, lhs);
976}
977
978
979class operator_min : public range_operator
980{
981public:
982  virtual void wi_fold (value_range &r, tree type,
983		        const wide_int &lh_lb,
984		        const wide_int &lh_ub,
985		        const wide_int &rh_lb,
986		        const wide_int &rh_ub) const;
987} op_min;
988
989void
990operator_min::wi_fold (value_range &r, tree type,
991		       const wide_int &lh_lb, const wide_int &lh_ub,
992		       const wide_int &rh_lb, const wide_int &rh_ub) const
993{
994  signop s = TYPE_SIGN (type);
995  wide_int new_lb = wi::min (lh_lb, rh_lb, s);
996  wide_int new_ub = wi::min (lh_ub, rh_ub, s);
997  value_range_with_overflow (r, type, new_lb, new_ub);
998}
999
1000
1001class operator_max : public range_operator
1002{
1003public:
1004  virtual void wi_fold (value_range &r, tree type,
1005		        const wide_int &lh_lb,
1006		        const wide_int &lh_ub,
1007		        const wide_int &rh_lb,
1008		        const wide_int &rh_ub) const;
1009} op_max;
1010
1011void
1012operator_max::wi_fold (value_range &r, tree type,
1013		       const wide_int &lh_lb, const wide_int &lh_ub,
1014		       const wide_int &rh_lb, const wide_int &rh_ub) const
1015{
1016  signop s = TYPE_SIGN (type);
1017  wide_int new_lb = wi::max (lh_lb, rh_lb, s);
1018  wide_int new_ub = wi::max (lh_ub, rh_ub, s);
1019  value_range_with_overflow (r, type, new_lb, new_ub);
1020}
1021
1022
1023class cross_product_operator : public range_operator
1024{
1025public:
1026  // Perform an operation between two wide-ints and place the result
1027  // in R.  Return true if the operation overflowed.
1028  virtual bool wi_op_overflows (wide_int &r,
1029				tree type,
1030				const wide_int &,
1031				const wide_int &) const = 0;
1032
1033  // Calculate the cross product of two sets of sub-ranges and return it.
1034  void wi_cross_product (value_range &r, tree type,
1035			 const wide_int &lh_lb,
1036			 const wide_int &lh_ub,
1037			 const wide_int &rh_lb,
1038			 const wide_int &rh_ub) const;
1039};
1040
1041// Calculate the cross product of two sets of ranges and return it.
1042//
1043// Multiplications, divisions and shifts are a bit tricky to handle,
1044// depending on the mix of signs we have in the two ranges, we need to
1045// operate on different values to get the minimum and maximum values
1046// for the new range.  One approach is to figure out all the
1047// variations of range combinations and do the operations.
1048//
1049// However, this involves several calls to compare_values and it is
1050// pretty convoluted.  It's simpler to do the 4 operations (MIN0 OP
1051// MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then
1052// figure the smallest and largest values to form the new range.
1053
1054void
1055cross_product_operator::wi_cross_product (value_range &r, tree type,
1056					  const wide_int &lh_lb,
1057					  const wide_int &lh_ub,
1058					  const wide_int &rh_lb,
1059					  const wide_int &rh_ub) const
1060{
1061  wide_int cp1, cp2, cp3, cp4;
1062  // Default to varying.
1063  r = value_range (type);
1064
1065  // Compute the 4 cross operations, bailing if we get an overflow we
1066  // can't handle.
1067  if (wi_op_overflows (cp1, type, lh_lb, rh_lb))
1068    return;
1069  if (wi::eq_p (lh_lb, lh_ub))
1070    cp3 = cp1;
1071  else if (wi_op_overflows (cp3, type, lh_ub, rh_lb))
1072    return;
1073  if (wi::eq_p (rh_lb, rh_ub))
1074    cp2 = cp1;
1075  else if (wi_op_overflows (cp2, type, lh_lb, rh_ub))
1076    return;
1077  if (wi::eq_p (lh_lb, lh_ub))
1078    cp4 = cp2;
1079  else if (wi_op_overflows (cp4, type, lh_ub, rh_ub))
1080    return;
1081
1082  // Order pairs.
1083  signop sign = TYPE_SIGN (type);
1084  if (wi::gt_p (cp1, cp2, sign))
1085    std::swap (cp1, cp2);
1086  if (wi::gt_p (cp3, cp4, sign))
1087    std::swap (cp3, cp4);
1088
1089  // Choose min and max from the ordered pairs.
1090  wide_int res_lb = wi::min (cp1, cp3, sign);
1091  wide_int res_ub = wi::max (cp2, cp4, sign);
1092  value_range_with_overflow (r, type, res_lb, res_ub);
1093}
1094
1095
1096class operator_mult : public cross_product_operator
1097{
1098public:
1099  virtual void wi_fold (value_range &r, tree type,
1100		        const wide_int &lh_lb,
1101		        const wide_int &lh_ub,
1102		        const wide_int &rh_lb,
1103		        const wide_int &rh_ub) const;
1104  virtual bool wi_op_overflows (wide_int &res, tree type,
1105				const wide_int &w0, const wide_int &w1) const;
1106} op_mult;
1107
1108bool
1109operator_mult::wi_op_overflows (wide_int &res, tree type,
1110				const wide_int &w0, const wide_int &w1) const
1111{
1112  wi::overflow_type overflow = wi::OVF_NONE;
1113  signop sign = TYPE_SIGN (type);
1114  res = wi::mul (w0, w1, sign, &overflow);
1115   if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
1116     {
1117       // For multiplication, the sign of the overflow is given
1118       // by the comparison of the signs of the operands.
1119       if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ())
1120	 res = wi::max_value (w0.get_precision (), sign);
1121       else
1122	 res = wi::min_value (w0.get_precision (), sign);
1123       return false;
1124     }
1125   return overflow;
1126}
1127
1128void
1129operator_mult::wi_fold (value_range &r, tree type,
1130			const wide_int &lh_lb, const wide_int &lh_ub,
1131			const wide_int &rh_lb, const wide_int &rh_ub) const
1132{
1133  if (TYPE_OVERFLOW_UNDEFINED (type))
1134    {
1135      wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1136      return;
1137    }
1138
1139  // Multiply the ranges when overflow wraps.  This is basically fancy
1140  // code so we don't drop to varying with an unsigned
1141  // [-3,-1]*[-3,-1].
1142  //
1143  // This test requires 2*prec bits if both operands are signed and
1144  // 2*prec + 2 bits if either is not.  Therefore, extend the values
1145  // using the sign of the result to PREC2.  From here on out,
1146  // everthing is just signed math no matter what the input types
1147  // were.
1148
1149  signop sign = TYPE_SIGN (type);
1150  unsigned prec = TYPE_PRECISION (type);
1151  widest2_int min0 = widest2_int::from (lh_lb, sign);
1152  widest2_int max0 = widest2_int::from (lh_ub, sign);
1153  widest2_int min1 = widest2_int::from (rh_lb, sign);
1154  widest2_int max1 = widest2_int::from (rh_ub, sign);
1155  widest2_int sizem1 = wi::mask <widest2_int> (prec, false);
1156  widest2_int size = sizem1 + 1;
1157
1158  // Canonicalize the intervals.
1159  if (sign == UNSIGNED)
1160    {
1161      if (wi::ltu_p (size, min0 + max0))
1162	{
1163	  min0 -= size;
1164	  max0 -= size;
1165	}
1166      if (wi::ltu_p (size, min1 + max1))
1167	{
1168	  min1 -= size;
1169	  max1 -= size;
1170	}
1171    }
1172
1173  // Sort the 4 products so that min is in prod0 and max is in
1174  // prod3.
1175  widest2_int prod0 = min0 * min1;
1176  widest2_int prod1 = min0 * max1;
1177  widest2_int prod2 = max0 * min1;
1178  widest2_int prod3 = max0 * max1;
1179
1180  // min0min1 > max0max1
1181  if (prod0 > prod3)
1182    std::swap (prod0, prod3);
1183
1184  // min0max1 > max0min1
1185  if (prod1 > prod2)
1186    std::swap (prod1, prod2);
1187
1188  if (prod0 > prod1)
1189    std::swap (prod0, prod1);
1190
1191  if (prod2 > prod3)
1192    std::swap (prod2, prod3);
1193
1194  // diff = max - min
1195  prod2 = prod3 - prod0;
1196  if (wi::geu_p (prod2, sizem1))
1197    // The range covers all values.
1198    r = value_range (type);
1199  else
1200    {
1201      wide_int new_lb = wide_int::from (prod0, prec, sign);
1202      wide_int new_ub = wide_int::from (prod3, prec, sign);
1203      create_possibly_reversed_range (r, type, new_lb, new_ub);
1204    }
1205}
1206
1207
1208class operator_div : public cross_product_operator
1209{
1210public:
1211  operator_div (enum tree_code c)  { code = c; }
1212  virtual void wi_fold (value_range &r, tree type,
1213		        const wide_int &lh_lb,
1214		        const wide_int &lh_ub,
1215		        const wide_int &rh_lb,
1216		        const wide_int &rh_ub) const;
1217  virtual bool wi_op_overflows (wide_int &res, tree type,
1218				const wide_int &, const wide_int &) const;
1219private:
1220  enum tree_code code;
1221};
1222
1223bool
1224operator_div::wi_op_overflows (wide_int &res, tree type,
1225			       const wide_int &w0, const wide_int &w1) const
1226{
1227  if (w1 == 0)
1228    return true;
1229
1230  wi::overflow_type overflow = wi::OVF_NONE;
1231  signop sign = TYPE_SIGN (type);
1232
1233  switch (code)
1234    {
1235    case EXACT_DIV_EXPR:
1236      // EXACT_DIV_EXPR is implemented as TRUNC_DIV_EXPR in
1237      // operator_exact_divide.  No need to handle it here.
1238      gcc_unreachable ();
1239      break;
1240    case TRUNC_DIV_EXPR:
1241      res = wi::div_trunc (w0, w1, sign, &overflow);
1242      break;
1243    case FLOOR_DIV_EXPR:
1244      res = wi::div_floor (w0, w1, sign, &overflow);
1245      break;
1246    case ROUND_DIV_EXPR:
1247      res = wi::div_round (w0, w1, sign, &overflow);
1248      break;
1249    case CEIL_DIV_EXPR:
1250      res = wi::div_ceil (w0, w1, sign, &overflow);
1251      break;
1252    default:
1253      gcc_unreachable ();
1254    }
1255
1256  if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
1257    {
1258      // For division, the only case is -INF / -1 = +INF.
1259      res = wi::max_value (w0.get_precision (), sign);
1260      return false;
1261    }
1262  return overflow;
1263}
1264
1265void
1266operator_div::wi_fold (value_range &r, tree type,
1267		       const wide_int &lh_lb, const wide_int &lh_ub,
1268		       const wide_int &rh_lb, const wide_int &rh_ub) const
1269{
1270  // If we know we will divide by zero, return undefined.
1271  if (rh_lb == 0 && rh_ub == 0)
1272    {
1273      r = value_range ();
1274      return;
1275    }
1276
1277  const wide_int dividend_min = lh_lb;
1278  const wide_int dividend_max = lh_ub;
1279  const wide_int divisor_min = rh_lb;
1280  const wide_int divisor_max = rh_ub;
1281  signop sign = TYPE_SIGN (type);
1282  unsigned prec = TYPE_PRECISION (type);
1283  wide_int extra_min, extra_max;
1284
1285  // If we know we won't divide by zero, just do the division.
1286  if (!wi_includes_zero_p (type, divisor_min, divisor_max))
1287    {
1288      wi_cross_product (r, type, dividend_min, dividend_max,
1289		       divisor_min, divisor_max);
1290      return;
1291    }
1292
1293  // If flag_non_call_exceptions, we must not eliminate a division by zero.
1294  if (cfun->can_throw_non_call_exceptions)
1295    {
1296      r = value_range (type);
1297      return;
1298    }
1299
1300  // If we're definitely dividing by zero, there's nothing to do.
1301  if (wi_zero_p (type, divisor_min, divisor_max))
1302    {
1303      r = value_range ();
1304      return;
1305    }
1306
1307  // Perform the division in 2 parts, [LB, -1] and [1, UB], which will
1308  // skip any division by zero.
1309
1310  // First divide by the negative numbers, if any.
1311  if (wi::neg_p (divisor_min, sign))
1312    wi_cross_product (r, type, dividend_min, dividend_max,
1313		      divisor_min, wi::minus_one (prec));
1314  else
1315    r = value_range ();
1316
1317  // Then divide by the non-zero positive numbers, if any.
1318  if (wi::gt_p (divisor_max, wi::zero (prec), sign))
1319    {
1320      value_range tmp;
1321      wi_cross_product (tmp, type, dividend_min, dividend_max,
1322			wi::one (prec), divisor_max);
1323      r.union_ (tmp);
1324    }
1325  // We shouldn't still have undefined here.
1326  gcc_checking_assert (!r.undefined_p ());
1327}
1328
1329operator_div op_trunc_div (TRUNC_DIV_EXPR);
1330operator_div op_floor_div (FLOOR_DIV_EXPR);
1331operator_div op_round_div (ROUND_DIV_EXPR);
1332operator_div op_ceil_div (CEIL_DIV_EXPR);
1333
1334
1335class operator_exact_divide : public operator_div
1336{
1337public:
1338  operator_exact_divide () : operator_div (TRUNC_DIV_EXPR) { }
1339  virtual bool op1_range (value_range &r, tree type,
1340			  const value_range &lhs,
1341			  const value_range &op2) const;
1342
1343} op_exact_div;
1344
1345bool
1346operator_exact_divide::op1_range (value_range &r, tree type,
1347				  const value_range &lhs,
1348				  const value_range &op2) const
1349{
1350  tree offset;
1351  // [2, 4] = op1 / [3,3]   since its exact divide, no need to worry about
1352  // remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12].
1353  // We wont bother trying to enumerate all the in between stuff :-P
1354  // TRUE accuraacy is [6,6][9,9][12,12].  This is unlikely to matter most of
1355  // the time however.
1356  // If op2 is a multiple of 2, we would be able to set some non-zero bits.
1357  if (op2.singleton_p (&offset)
1358      && !integer_zerop (offset))
1359    return range_op_handler (MULT_EXPR, type)->fold_range (r, type, lhs, op2);
1360  return false;
1361}
1362
1363
1364class operator_lshift : public cross_product_operator
1365{
1366public:
1367  virtual bool fold_range (value_range &r, tree type,
1368			   const value_range &op1,
1369			   const value_range &op2) const;
1370
1371  virtual void wi_fold (value_range &r, tree type,
1372			const wide_int &lh_lb, const wide_int &lh_ub,
1373			const wide_int &rh_lb, const wide_int &rh_ub) const;
1374  virtual bool wi_op_overflows (wide_int &res,
1375				tree type,
1376				const wide_int &,
1377				const wide_int &) const;
1378} op_lshift;
1379
1380bool
1381operator_lshift::fold_range (value_range &r, tree type,
1382			     const value_range &op1,
1383			     const value_range &op2) const
1384{
1385  if (undefined_shift_range_check (r, type, op2))
1386    return true;
1387
1388  // Transform left shifts by constants into multiplies.
1389  if (op2.singleton_p ())
1390    {
1391      unsigned shift = op2.lower_bound ().to_uhwi ();
1392      wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type));
1393      value_range mult (type, tmp, tmp);
1394
1395      // Force wrapping multiplication.
1396      bool saved_flag_wrapv = flag_wrapv;
1397      bool saved_flag_wrapv_pointer = flag_wrapv_pointer;
1398      flag_wrapv = 1;
1399      flag_wrapv_pointer = 1;
1400      bool b = range_op_handler (MULT_EXPR, type)->fold_range (r, type, op1,
1401							       mult);
1402      flag_wrapv = saved_flag_wrapv;
1403      flag_wrapv_pointer = saved_flag_wrapv_pointer;
1404      return b;
1405    }
1406  else
1407    // Otherwise, invoke the generic fold routine.
1408    return range_operator::fold_range (r, type, op1, op2);
1409}
1410
1411void
1412operator_lshift::wi_fold (value_range &r, tree type,
1413			  const wide_int &lh_lb, const wide_int &lh_ub,
1414			  const wide_int &rh_lb, const wide_int &rh_ub) const
1415{
1416  signop sign = TYPE_SIGN (type);
1417  unsigned prec = TYPE_PRECISION (type);
1418  int overflow_pos = sign == SIGNED ? prec - 1 : prec;
1419  int bound_shift = overflow_pos - rh_ub.to_shwi ();
1420  // If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
1421  // overflow.  However, for that to happen, rh.max needs to be zero,
1422  // which means rh is a singleton range of zero, which means it
1423  // should be handled by the lshift fold_range above.
1424  wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
1425  wide_int complement = ~(bound - 1);
1426  wide_int low_bound, high_bound;
1427  bool in_bounds = false;
1428
1429  if (sign == UNSIGNED)
1430    {
1431      low_bound = bound;
1432      high_bound = complement;
1433      if (wi::ltu_p (lh_ub, low_bound))
1434	{
1435	  // [5, 6] << [1, 2] == [10, 24].
1436	  // We're shifting out only zeroes, the value increases
1437	  // monotonically.
1438	  in_bounds = true;
1439	}
1440      else if (wi::ltu_p (high_bound, lh_lb))
1441	{
1442	  // [0xffffff00, 0xffffffff] << [1, 2]
1443	  // == [0xfffffc00, 0xfffffffe].
1444	  // We're shifting out only ones, the value decreases
1445	  // monotonically.
1446	  in_bounds = true;
1447	}
1448    }
1449  else
1450    {
1451      // [-1, 1] << [1, 2] == [-4, 4]
1452      low_bound = complement;
1453      high_bound = bound;
1454      if (wi::lts_p (lh_ub, high_bound)
1455	  && wi::lts_p (low_bound, lh_lb))
1456	{
1457	  // For non-negative numbers, we're shifting out only zeroes,
1458	  // the value increases monotonically.  For negative numbers,
1459	  // we're shifting out only ones, the value decreases
1460	  // monotonically.
1461	  in_bounds = true;
1462	}
1463    }
1464
1465  if (in_bounds)
1466    wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1467  else
1468   r = value_range (type);
1469}
1470
1471bool
1472operator_lshift::wi_op_overflows (wide_int &res, tree type,
1473				  const wide_int &w0, const wide_int &w1) const
1474{
1475  signop sign = TYPE_SIGN (type);
1476  if (wi::neg_p (w1))
1477    {
1478      // It's unclear from the C standard whether shifts can overflow.
1479      // The following code ignores overflow; perhaps a C standard
1480      // interpretation ruling is needed.
1481      res = wi::rshift (w0, -w1, sign);
1482    }
1483  else
1484    res = wi::lshift (w0, w1);
1485  return false;
1486}
1487
1488
1489class operator_rshift : public cross_product_operator
1490{
1491public:
1492  virtual bool fold_range (value_range &r, tree type,
1493			   const value_range &op1,
1494			   const value_range &op2) const;
1495  virtual void wi_fold (value_range &r, tree type,
1496		        const wide_int &lh_lb,
1497		        const wide_int &lh_ub,
1498		        const wide_int &rh_lb,
1499		        const wide_int &rh_ub) const;
1500  virtual bool wi_op_overflows (wide_int &res,
1501				tree type,
1502				const wide_int &w0,
1503				const wide_int &w1) const;
1504} op_rshift;
1505
1506bool
1507operator_rshift::wi_op_overflows (wide_int &res,
1508				  tree type,
1509				  const wide_int &w0,
1510				  const wide_int &w1) const
1511{
1512  signop sign = TYPE_SIGN (type);
1513  if (wi::neg_p (w1))
1514    res = wi::lshift (w0, -w1);
1515  else
1516    {
1517      // It's unclear from the C standard whether shifts can overflow.
1518      // The following code ignores overflow; perhaps a C standard
1519      // interpretation ruling is needed.
1520      res = wi::rshift (w0, w1, sign);
1521    }
1522  return false;
1523}
1524
1525bool
1526operator_rshift::fold_range (value_range &r, tree type,
1527			     const value_range &op1,
1528			     const value_range &op2) const
1529{
1530  // Invoke the generic fold routine if not undefined..
1531  if (undefined_shift_range_check (r, type, op2))
1532    return true;
1533
1534  return range_operator::fold_range (r, type, op1, op2);
1535}
1536
1537void
1538operator_rshift::wi_fold (value_range &r, tree type,
1539			  const wide_int &lh_lb, const wide_int &lh_ub,
1540			  const wide_int &rh_lb, const wide_int &rh_ub) const
1541{
1542  wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1543}
1544
1545
1546class operator_cast: public range_operator
1547{
1548public:
1549  virtual bool fold_range (value_range &r, tree type,
1550			   const value_range &op1,
1551			   const value_range &op2) const;
1552  virtual bool op1_range (value_range &r, tree type,
1553			  const value_range &lhs,
1554			  const value_range &op2) const;
1555
1556} op_convert;
1557
1558bool
1559operator_cast::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
1560			   const value_range &lh,
1561			   const value_range &rh) const
1562{
1563  if (empty_range_check (r, lh, rh))
1564    return true;
1565
1566  tree inner = lh.type ();
1567  tree outer = rh.type ();
1568  gcc_checking_assert (rh.varying_p ());
1569  gcc_checking_assert (types_compatible_p (outer, type));
1570  signop inner_sign = TYPE_SIGN (inner);
1571  signop outer_sign = TYPE_SIGN (outer);
1572  unsigned inner_prec = TYPE_PRECISION (inner);
1573  unsigned outer_prec = TYPE_PRECISION (outer);
1574
1575  // Start with an empty range and add subranges.
1576  r = value_range ();
1577  for (unsigned x = 0; x < lh.num_pairs (); ++x)
1578    {
1579      wide_int lh_lb = lh.lower_bound (x);
1580      wide_int lh_ub = lh.upper_bound (x);
1581
1582      // If the conversion is not truncating we can convert the min
1583      // and max values and canonicalize the resulting range.
1584      // Otherwise, we can do the conversion if the size of the range
1585      // is less than what the precision of the target type can
1586      // represent.
1587      if (outer_prec >= inner_prec
1588	  || wi::rshift (wi::sub (lh_ub, lh_lb),
1589			 wi::uhwi (outer_prec, inner_prec),
1590			 inner_sign) == 0)
1591	{
1592	  wide_int min = wide_int::from (lh_lb, outer_prec, inner_sign);
1593	  wide_int max = wide_int::from (lh_ub, outer_prec, inner_sign);
1594	  if (!wi::eq_p (min, wi::min_value (outer_prec, outer_sign))
1595	      || !wi::eq_p (max, wi::max_value (outer_prec, outer_sign)))
1596	    {
1597	      value_range tmp;
1598	      create_possibly_reversed_range (tmp, type, min, max);
1599	      r.union_ (tmp);
1600	      continue;
1601	    }
1602	}
1603      r = value_range (type);
1604      break;
1605    }
1606  return true;
1607}
1608
1609bool
1610operator_cast::op1_range (value_range &r, tree type,
1611			  const value_range &lhs,
1612			  const value_range &op2) const
1613{
1614  tree lhs_type = lhs.type ();
1615  value_range tmp;
1616  gcc_checking_assert (types_compatible_p (op2.type(), type));
1617
1618  // If the precision of the LHS is smaller than the precision of the
1619  // RHS, then there would be truncation of the value on the RHS, and
1620  // so we can tell nothing about it.
1621  if (TYPE_PRECISION (lhs_type) < TYPE_PRECISION (type))
1622    {
1623      // If we've been passed an actual value for the RHS rather than
1624      // the type, see if it fits the LHS, and if so, then we can allow
1625      // it.
1626      fold_range (r, lhs_type, op2, value_range (lhs_type));
1627      fold_range (tmp, type, r, value_range (type));
1628      if (tmp == op2)
1629        {
1630	  // We know the value of the RHS fits in the LHS type, so
1631	  // convert the LHS and remove any values that arent in OP2.
1632	  fold_range (r, type, lhs, value_range (type));
1633	  r.intersect (op2);
1634	  return true;
1635	}
1636      // Special case if the LHS is a boolean.  A 0 means the RHS is
1637      // zero, and a 1 means the RHS is non-zero.
1638      if (TREE_CODE (lhs_type) == BOOLEAN_TYPE)
1639	{
1640	  // If the LHS is unknown, the result is whatever op2 already is.
1641	  if (!lhs.singleton_p ())
1642	    {
1643	      r = op2;
1644	      return true;
1645	    }
1646	  // Boolean casts are weird in GCC. It's actually an implied
1647	  // mask with 0x01, so all that is known is whether the
1648	  // rightmost bit is 0 or 1, which implies the only value
1649	  // *not* in the RHS is 0 or -1.
1650	  unsigned prec = TYPE_PRECISION (type);
1651	  if (lhs.zero_p ())
1652	    r = value_range (type, wi::minus_one (prec), wi::minus_one (prec),
1653			     VR_ANTI_RANGE);
1654	  else
1655	    r = value_range (type, wi::zero (prec), wi::zero (prec),
1656			     VR_ANTI_RANGE);
1657	  // And intersect it with what we know about op2.
1658	  r.intersect (op2);
1659	}
1660      else
1661	// Otherwise we'll have to assume it's whatever we know about op2.
1662	r = op2;
1663      return true;
1664    }
1665
1666  // If the LHS precision is greater than the rhs precision, the LHS
1667  // range is restricted to the range of the RHS by this
1668  // assignment.
1669  if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type))
1670    {
1671      // Cast the range of the RHS to the type of the LHS.
1672      fold_range (tmp, lhs_type, value_range (type), value_range (lhs_type));
1673      // Intersect this with the LHS range will produce the range, which
1674      // will be cast to the RHS type before returning.
1675      tmp.intersect (lhs);
1676    }
1677  else
1678    tmp = lhs;
1679
1680  // Cast the calculated range to the type of the RHS.
1681  fold_range (r, type, tmp, value_range (type));
1682  return true;
1683}
1684
1685
1686class operator_logical_and : public range_operator
1687{
1688public:
1689  virtual bool fold_range (value_range &r, tree type,
1690			   const value_range &lh,
1691			   const value_range &rh) const;
1692  virtual bool op1_range (value_range &r, tree type,
1693			  const value_range &lhs,
1694			  const value_range &op2) const;
1695  virtual bool op2_range (value_range &r, tree type,
1696			  const value_range &lhs,
1697			  const value_range &op1) const;
1698} op_logical_and;
1699
1700
1701bool
1702operator_logical_and::fold_range (value_range &r, tree type,
1703				  const value_range &lh,
1704				  const value_range &rh) const
1705{
1706  if (empty_range_check (r, lh, rh))
1707    return true;
1708
1709  // 0 && anything is 0.
1710  if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
1711      || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
1712    r = range_false (type);
1713  else if (lh.contains_p (build_zero_cst (lh.type ()))
1714	   || rh.contains_p (build_zero_cst (rh.type ())))
1715    // To reach this point, there must be a logical 1 on each side, and
1716    // the only remaining question is whether there is a zero or not.
1717    r = range_true_and_false (type);
1718  else
1719    r = range_true (type);
1720  return true;
1721}
1722
1723bool
1724operator_logical_and::op1_range (value_range &r, tree type,
1725				 const value_range &lhs,
1726				 const value_range &op2 ATTRIBUTE_UNUSED) const
1727{
1728   switch (get_bool_state (r, lhs, type))
1729     {
1730     case BRS_TRUE:
1731       // A true result means both sides of the AND must be true.
1732       r = range_true (type);
1733       break;
1734     default:
1735       // Any other result means only one side has to be false, the
1736       // other side can be anything. So we cannott be sure of any
1737       // result here.
1738       r = range_true_and_false (type);
1739       break;
1740     }
1741  return true;
1742}
1743
1744bool
1745operator_logical_and::op2_range (value_range &r, tree type,
1746				 const value_range &lhs,
1747				 const value_range &op1) const
1748{
1749  return operator_logical_and::op1_range (r, type, lhs, op1);
1750}
1751
1752
1753class operator_bitwise_and : public range_operator
1754{
1755public:
1756  virtual bool op1_range (value_range &r, tree type,
1757			  const value_range &lhs,
1758			  const value_range &op2) const;
1759  virtual bool op2_range (value_range &r, tree type,
1760			  const value_range &lhs,
1761			  const value_range &op1) const;
1762  virtual void wi_fold (value_range &r, tree type,
1763		        const wide_int &lh_lb,
1764		        const wide_int &lh_ub,
1765		        const wide_int &rh_lb,
1766		        const wide_int &rh_ub) const;
1767} op_bitwise_and;
1768
1769// Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if
1770// possible.  Basically, see if we can optimize:
1771//
1772//	[LB, UB] op Z
1773//   into:
1774//	[LB op Z, UB op Z]
1775//
1776// If the optimization was successful, accumulate the range in R and
1777// return TRUE.
1778
1779static bool
1780wi_optimize_and_or (value_range &r,
1781		    enum tree_code code,
1782		    tree type,
1783		    const wide_int &lh_lb, const wide_int &lh_ub,
1784		    const wide_int &rh_lb, const wide_int &rh_ub)
1785{
1786  // Calculate the singleton mask among the ranges, if any.
1787  wide_int lower_bound, upper_bound, mask;
1788  if (wi::eq_p (rh_lb, rh_ub))
1789    {
1790      mask = rh_lb;
1791      lower_bound = lh_lb;
1792      upper_bound = lh_ub;
1793    }
1794  else if (wi::eq_p (lh_lb, lh_ub))
1795    {
1796      mask = lh_lb;
1797      lower_bound = rh_lb;
1798      upper_bound = rh_ub;
1799    }
1800  else
1801    return false;
1802
1803  // If Z is a constant which (for op | its bitwise not) has n
1804  // consecutive least significant bits cleared followed by m 1
1805  // consecutive bits set immediately above it and either
1806  // m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
1807  //
1808  // The least significant n bits of all the values in the range are
1809  // cleared or set, the m bits above it are preserved and any bits
1810  // above these are required to be the same for all values in the
1811  // range.
1812  wide_int w = mask;
1813  int m = 0, n = 0;
1814  if (code == BIT_IOR_EXPR)
1815    w = ~w;
1816  if (wi::eq_p (w, 0))
1817    n = w.get_precision ();
1818  else
1819    {
1820      n = wi::ctz (w);
1821      w = ~(w | wi::mask (n, false, w.get_precision ()));
1822      if (wi::eq_p (w, 0))
1823	m = w.get_precision () - n;
1824      else
1825	m = wi::ctz (w) - n;
1826    }
1827  wide_int new_mask = wi::mask (m + n, true, w.get_precision ());
1828  if ((new_mask & lower_bound) != (new_mask & upper_bound))
1829    return false;
1830
1831  wide_int res_lb, res_ub;
1832  if (code == BIT_AND_EXPR)
1833    {
1834      res_lb = wi::bit_and (lower_bound, mask);
1835      res_ub = wi::bit_and (upper_bound, mask);
1836    }
1837  else if (code == BIT_IOR_EXPR)
1838    {
1839      res_lb = wi::bit_or (lower_bound, mask);
1840      res_ub = wi::bit_or (upper_bound, mask);
1841    }
1842  else
1843    gcc_unreachable ();
1844  value_range_with_overflow (r, type, res_lb, res_ub);
1845  return true;
1846}
1847
1848// For range [LB, UB] compute two wide_int bit masks.
1849//
1850// In the MAYBE_NONZERO bit mask, if some bit is unset, it means that
1851// for all numbers in the range the bit is 0, otherwise it might be 0
1852// or 1.
1853//
1854// In the MUSTBE_NONZERO bit mask, if some bit is set, it means that
1855// for all numbers in the range the bit is 1, otherwise it might be 0
1856// or 1.
1857
1858void
1859wi_set_zero_nonzero_bits (tree type,
1860			  const wide_int &lb, const wide_int &ub,
1861			  wide_int &maybe_nonzero,
1862			  wide_int &mustbe_nonzero)
1863{
1864  signop sign = TYPE_SIGN (type);
1865
1866  if (wi::eq_p (lb, ub))
1867    maybe_nonzero = mustbe_nonzero = lb;
1868  else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign))
1869    {
1870      wide_int xor_mask = lb ^ ub;
1871      maybe_nonzero = lb | ub;
1872      mustbe_nonzero = lb & ub;
1873      if (xor_mask != 0)
1874	{
1875	  wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1876				    maybe_nonzero.get_precision ());
1877	  maybe_nonzero = maybe_nonzero | mask;
1878	  mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask);
1879	}
1880    }
1881  else
1882    {
1883      maybe_nonzero = wi::minus_one (lb.get_precision ());
1884      mustbe_nonzero = wi::zero (lb.get_precision ());
1885    }
1886}
1887
1888void
1889operator_bitwise_and::wi_fold (value_range &r, tree type,
1890			       const wide_int &lh_lb,
1891			       const wide_int &lh_ub,
1892			       const wide_int &rh_lb,
1893			       const wide_int &rh_ub) const
1894{
1895  if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
1896    return;
1897
1898  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
1899  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
1900  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
1901			    maybe_nonzero_lh, mustbe_nonzero_lh);
1902  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
1903			    maybe_nonzero_rh, mustbe_nonzero_rh);
1904
1905  wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh;
1906  wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh;
1907  signop sign = TYPE_SIGN (type);
1908  unsigned prec = TYPE_PRECISION (type);
1909  // If both input ranges contain only negative values, we can
1910  // truncate the result range maximum to the minimum of the
1911  // input range maxima.
1912  if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign))
1913    {
1914      new_ub = wi::min (new_ub, lh_ub, sign);
1915      new_ub = wi::min (new_ub, rh_ub, sign);
1916    }
1917  // If either input range contains only non-negative values
1918  // we can truncate the result range maximum to the respective
1919  // maximum of the input range.
1920  if (wi::ge_p (lh_lb, 0, sign))
1921    new_ub = wi::min (new_ub, lh_ub, sign);
1922  if (wi::ge_p (rh_lb, 0, sign))
1923    new_ub = wi::min (new_ub, rh_ub, sign);
1924  // PR68217: In case of signed & sign-bit-CST should
1925  // result in [-INF, 0] instead of [-INF, INF].
1926  if (wi::gt_p (new_lb, new_ub, sign))
1927    {
1928      wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec);
1929      if (sign == SIGNED
1930	  && ((wi::eq_p (lh_lb, lh_ub)
1931	       && !wi::cmps (lh_lb, sign_bit))
1932	      || (wi::eq_p (rh_lb, rh_ub)
1933		  && !wi::cmps (rh_lb, sign_bit))))
1934	{
1935	  new_lb = wi::min_value (prec, sign);
1936	  new_ub = wi::zero (prec);
1937	}
1938    }
1939  // If the limits got swapped around, return varying.
1940  if (wi::gt_p (new_lb, new_ub,sign))
1941    r = value_range (type);
1942  else
1943    value_range_with_overflow (r, type, new_lb, new_ub);
1944}
1945
1946bool
1947operator_bitwise_and::op1_range (value_range &r, tree type,
1948				 const value_range &lhs,
1949				 const value_range &op2) const
1950{
1951  // If this is really a logical wi_fold, call that.
1952  if (types_compatible_p (type, boolean_type_node))
1953    return op_logical_and.op1_range (r, type, lhs, op2);
1954
1955  // For now do nothing with bitwise AND of value_range's.
1956  r.set_varying (type);
1957  return true;
1958}
1959
1960bool
1961operator_bitwise_and::op2_range (value_range &r, tree type,
1962				 const value_range &lhs,
1963				 const value_range &op1) const
1964{
1965  return operator_bitwise_and::op1_range (r, type, lhs, op1);
1966}
1967
1968
1969class operator_logical_or : public range_operator
1970{
1971public:
1972  virtual bool fold_range (value_range &r, tree type,
1973			   const value_range &lh,
1974			   const value_range &rh) const;
1975  virtual bool op1_range (value_range &r, tree type,
1976			  const value_range &lhs,
1977			  const value_range &op2) const;
1978  virtual bool op2_range (value_range &r, tree type,
1979			  const value_range &lhs,
1980			  const value_range &op1) const;
1981} op_logical_or;
1982
1983bool
1984operator_logical_or::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
1985				 const value_range &lh,
1986				 const value_range &rh) const
1987{
1988  if (empty_range_check (r, lh, rh))
1989    return true;
1990
1991  r = lh;
1992  r.union_ (rh);
1993  return true;
1994}
1995
1996bool
1997operator_logical_or::op1_range (value_range &r, tree type,
1998				const value_range &lhs,
1999				const value_range &op2 ATTRIBUTE_UNUSED) const
2000{
2001   switch (get_bool_state (r, lhs, type))
2002     {
2003     case BRS_FALSE:
2004       // A false result means both sides of the OR must be false.
2005       r = range_false (type);
2006       break;
2007     default:
2008       // Any other result means only one side has to be true, the
2009       // other side can be anything. so we can't be sure of any result
2010       // here.
2011       r = range_true_and_false (type);
2012       break;
2013    }
2014  return true;
2015}
2016
2017bool
2018operator_logical_or::op2_range (value_range &r, tree type,
2019				const value_range &lhs,
2020				const value_range &op1) const
2021{
2022  return operator_logical_or::op1_range (r, type, lhs, op1);
2023}
2024
2025
2026class operator_bitwise_or : public range_operator
2027{
2028public:
2029  virtual bool op1_range (value_range &r, tree type,
2030			  const value_range &lhs,
2031			  const value_range &op2) const;
2032  virtual bool op2_range (value_range &r, tree type,
2033			  const value_range &lhs,
2034			  const value_range &op1) const;
2035  virtual void wi_fold (value_range &r, tree type,
2036		        const wide_int &lh_lb,
2037		        const wide_int &lh_ub,
2038		        const wide_int &rh_lb,
2039		        const wide_int &rh_ub) const;
2040} op_bitwise_or;
2041
2042void
2043operator_bitwise_or::wi_fold (value_range &r, tree type,
2044			      const wide_int &lh_lb,
2045			      const wide_int &lh_ub,
2046			      const wide_int &rh_lb,
2047			      const wide_int &rh_ub) const
2048{
2049  if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
2050    return;
2051
2052  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
2053  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
2054  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
2055			    maybe_nonzero_lh, mustbe_nonzero_lh);
2056  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
2057			    maybe_nonzero_rh, mustbe_nonzero_rh);
2058  wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh;
2059  wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh;
2060  signop sign = TYPE_SIGN (type);
2061  // If the input ranges contain only positive values we can
2062  // truncate the minimum of the result range to the maximum
2063  // of the input range minima.
2064  if (wi::ge_p (lh_lb, 0, sign)
2065      && wi::ge_p (rh_lb, 0, sign))
2066    {
2067      new_lb = wi::max (new_lb, lh_lb, sign);
2068      new_lb = wi::max (new_lb, rh_lb, sign);
2069    }
2070  // If either input range contains only negative values
2071  // we can truncate the minimum of the result range to the
2072  // respective minimum range.
2073  if (wi::lt_p (lh_ub, 0, sign))
2074    new_lb = wi::max (new_lb, lh_lb, sign);
2075  if (wi::lt_p (rh_ub, 0, sign))
2076    new_lb = wi::max (new_lb, rh_lb, sign);
2077  // If the limits got swapped around, return varying.
2078  if (wi::gt_p (new_lb, new_ub,sign))
2079    r = value_range (type);
2080  else
2081    value_range_with_overflow (r, type, new_lb, new_ub);
2082}
2083
2084bool
2085operator_bitwise_or::op1_range (value_range &r, tree type,
2086				const value_range &lhs,
2087				const value_range &op2) const
2088{
2089  // If this is really a logical wi_fold, call that.
2090  if (types_compatible_p (type, boolean_type_node))
2091    return op_logical_or.op1_range (r, type, lhs, op2);
2092
2093  // For now do nothing with bitwise OR of value_range's.
2094  r.set_varying (type);
2095  return true;
2096}
2097
2098bool
2099operator_bitwise_or::op2_range (value_range &r, tree type,
2100				const value_range &lhs,
2101				const value_range &op1) const
2102{
2103  return operator_bitwise_or::op1_range (r, type, lhs, op1);
2104}
2105
2106
2107class operator_bitwise_xor : public range_operator
2108{
2109public:
2110  virtual void wi_fold (value_range &r, tree type,
2111		        const wide_int &lh_lb,
2112		        const wide_int &lh_ub,
2113		        const wide_int &rh_lb,
2114		        const wide_int &rh_ub) const;
2115} op_bitwise_xor;
2116
2117void
2118operator_bitwise_xor::wi_fold (value_range &r, tree type,
2119			       const wide_int &lh_lb,
2120			       const wide_int &lh_ub,
2121			       const wide_int &rh_lb,
2122			       const wide_int &rh_ub) const
2123{
2124  signop sign = TYPE_SIGN (type);
2125  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
2126  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
2127  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
2128			    maybe_nonzero_lh, mustbe_nonzero_lh);
2129  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
2130			    maybe_nonzero_rh, mustbe_nonzero_rh);
2131
2132  wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh)
2133			       | ~(maybe_nonzero_lh | maybe_nonzero_rh));
2134  wide_int result_one_bits
2135    = (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh)
2136       | wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh));
2137  wide_int new_ub = ~result_zero_bits;
2138  wide_int new_lb = result_one_bits;
2139
2140  // If the range has all positive or all negative values, the result
2141  // is better than VARYING.
2142  if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign))
2143    value_range_with_overflow (r, type, new_lb, new_ub);
2144  else
2145    r = value_range (type);
2146}
2147
2148
2149class operator_trunc_mod : public range_operator
2150{
2151public:
2152  virtual void wi_fold (value_range &r, tree type,
2153		        const wide_int &lh_lb,
2154		        const wide_int &lh_ub,
2155		        const wide_int &rh_lb,
2156		        const wide_int &rh_ub) const;
2157} op_trunc_mod;
2158
2159void
2160operator_trunc_mod::wi_fold (value_range &r, tree type,
2161			     const wide_int &lh_lb,
2162			     const wide_int &lh_ub,
2163			     const wide_int &rh_lb,
2164			     const wide_int &rh_ub) const
2165{
2166  wide_int new_lb, new_ub, tmp;
2167  signop sign = TYPE_SIGN (type);
2168  unsigned prec = TYPE_PRECISION (type);
2169
2170  // Mod 0 is undefined.  Return undefined.
2171  if (wi_zero_p (type, rh_lb, rh_ub))
2172    {
2173      r = value_range ();
2174      return;
2175    }
2176
2177  // ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0.
2178  new_ub = rh_ub - 1;
2179  if (sign == SIGNED)
2180    {
2181      tmp = -1 - rh_lb;
2182      new_ub = wi::smax (new_ub, tmp);
2183    }
2184
2185  if (sign == UNSIGNED)
2186    new_lb = wi::zero (prec);
2187  else
2188    {
2189      new_lb = -new_ub;
2190      tmp = lh_lb;
2191      if (wi::gts_p (tmp, 0))
2192	tmp = wi::zero (prec);
2193      new_lb = wi::smax (new_lb, tmp);
2194    }
2195  tmp = lh_ub;
2196  if (sign == SIGNED && wi::neg_p (tmp))
2197    tmp = wi::zero (prec);
2198  new_ub = wi::min (new_ub, tmp, sign);
2199
2200  value_range_with_overflow (r, type, new_lb, new_ub);
2201}
2202
2203
2204class operator_logical_not : public range_operator
2205{
2206public:
2207  virtual bool fold_range (value_range &r, tree type,
2208			   const value_range &lh,
2209			   const value_range &rh) const;
2210  virtual bool op1_range (value_range &r, tree type,
2211			  const value_range &lhs,
2212			  const value_range &op2) const;
2213} op_logical_not;
2214
2215// Folding a logical NOT, oddly enough, involves doing nothing on the
2216// forward pass through.  During the initial walk backwards, the
2217// logical NOT reversed the desired outcome on the way back, so on the
2218// way forward all we do is pass the range forward.
2219//
2220// 	b_2 = x_1 < 20
2221// 	b_3 = !b_2
2222// 	if (b_3)
2223//  to determine the TRUE branch, walking  backward
2224//       if (b_3)		if ([1,1])
2225//       b_3 = !b_2		[1,1] = ![0,0]
2226// 	 b_2 = x_1 < 20		[0,0] = x_1 < 20,   false, so x_1 == [20, 255]
2227//   which is the result we are looking for.. so.. pass it through.
2228
2229bool
2230operator_logical_not::fold_range (value_range &r, tree type,
2231				  const value_range &lh,
2232				  const value_range &rh ATTRIBUTE_UNUSED) const
2233{
2234  if (empty_range_check (r, lh, rh))
2235    return true;
2236
2237  if (lh.varying_p () || lh.undefined_p ())
2238    r = lh;
2239  else
2240    {
2241      r = lh;
2242      r.invert ();
2243    }
2244  gcc_checking_assert (lh.type() == type);
2245  return true;
2246}
2247
2248bool
2249operator_logical_not::op1_range (value_range &r,
2250				 tree type ATTRIBUTE_UNUSED,
2251				 const value_range &lhs,
2252				 const value_range &op2 ATTRIBUTE_UNUSED) const
2253{
2254  r = lhs;
2255  if (!lhs.varying_p () && !lhs.undefined_p ())
2256    r.invert ();
2257  return true;
2258}
2259
2260
2261class operator_bitwise_not : public range_operator
2262{
2263public:
2264  virtual bool fold_range (value_range &r, tree type,
2265			   const value_range &lh,
2266			   const value_range &rh) const;
2267  virtual bool op1_range (value_range &r, tree type,
2268			  const value_range &lhs,
2269			  const value_range &op2) const;
2270} op_bitwise_not;
2271
2272bool
2273operator_bitwise_not::fold_range (value_range &r, tree type,
2274				  const value_range &lh,
2275				  const value_range &rh) const
2276{
2277  if (empty_range_check (r, lh, rh))
2278    return true;
2279
2280  // ~X is simply -1 - X.
2281  value_range minusone (type, wi::minus_one (TYPE_PRECISION (type)),
2282			wi::minus_one (TYPE_PRECISION (type)));
2283  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, minusone,
2284							  lh);
2285}
2286
2287bool
2288operator_bitwise_not::op1_range (value_range &r, tree type,
2289				 const value_range &lhs,
2290				 const value_range &op2) const
2291{
2292  // ~X is -1 - X and since bitwise NOT is involutary...do it again.
2293  return fold_range (r, type, lhs, op2);
2294}
2295
2296
2297class operator_cst : public range_operator
2298{
2299public:
2300  virtual bool fold_range (value_range &r, tree type,
2301			   const value_range &op1,
2302			   const value_range &op2) const;
2303} op_integer_cst;
2304
2305bool
2306operator_cst::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
2307			  const value_range &lh,
2308			  const value_range &rh ATTRIBUTE_UNUSED) const
2309{
2310  r = lh;
2311  return true;
2312}
2313
2314
2315class operator_identity : public range_operator
2316{
2317public:
2318  virtual bool fold_range (value_range &r, tree type,
2319			   const value_range &op1,
2320			   const value_range &op2) const;
2321  virtual bool op1_range (value_range &r, tree type,
2322			  const value_range &lhs,
2323			  const value_range &op2) const;
2324} op_identity;
2325
2326bool
2327operator_identity::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
2328			       const value_range &lh,
2329			       const value_range &rh ATTRIBUTE_UNUSED) const
2330{
2331  r = lh;
2332  return true;
2333}
2334
2335bool
2336operator_identity::op1_range (value_range &r, tree type ATTRIBUTE_UNUSED,
2337			      const value_range &lhs,
2338			      const value_range &op2 ATTRIBUTE_UNUSED) const
2339{
2340  r = lhs;
2341  return true;
2342}
2343
2344
2345class operator_abs : public range_operator
2346{
2347 public:
2348  virtual void wi_fold (value_range &r, tree type,
2349		        const wide_int &lh_lb,
2350		        const wide_int &lh_ub,
2351		        const wide_int &rh_lb,
2352		        const wide_int &rh_ub) const;
2353  virtual bool op1_range (value_range &r, tree type,
2354			  const value_range &lhs,
2355			  const value_range &op2) const;
2356} op_abs;
2357
2358void
2359operator_abs::wi_fold (value_range &r, tree type,
2360		       const wide_int &lh_lb, const wide_int &lh_ub,
2361		       const wide_int &rh_lb ATTRIBUTE_UNUSED,
2362		       const wide_int &rh_ub ATTRIBUTE_UNUSED) const
2363{
2364  wide_int min, max;
2365  signop sign = TYPE_SIGN (type);
2366  unsigned prec = TYPE_PRECISION (type);
2367
2368  // Pass through LH for the easy cases.
2369  if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign))
2370    {
2371      r = value_range (type, lh_lb, lh_ub);
2372      return;
2373    }
2374
2375  // -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get
2376  // a useful range.
2377  wide_int min_value = wi::min_value (prec, sign);
2378  wide_int max_value = wi::max_value (prec, sign);
2379  if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value))
2380    {
2381      r = value_range (type);
2382      return;
2383    }
2384
2385  // ABS_EXPR may flip the range around, if the original range
2386  // included negative values.
2387  if (wi::eq_p (lh_lb, min_value))
2388    min = max_value;
2389  else
2390    min = wi::abs (lh_lb);
2391  if (wi::eq_p (lh_ub, min_value))
2392    max = max_value;
2393  else
2394    max = wi::abs (lh_ub);
2395
2396  // If the range contains zero then we know that the minimum value in the
2397  // range will be zero.
2398  if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign))
2399    {
2400      if (wi::gt_p (min, max, sign))
2401	max = min;
2402      min = wi::zero (prec);
2403    }
2404  else
2405    {
2406      // If the range was reversed, swap MIN and MAX.
2407      if (wi::gt_p (min, max, sign))
2408	std::swap (min, max);
2409    }
2410
2411  // If the new range has its limits swapped around (MIN > MAX), then
2412  // the operation caused one of them to wrap around.  The only thing
2413  // we know is that the result is positive.
2414  if (wi::gt_p (min, max, sign))
2415    {
2416      min = wi::zero (prec);
2417      max = max_value;
2418    }
2419  r = value_range (type, min, max);
2420}
2421
2422bool
2423operator_abs::op1_range (value_range &r, tree type,
2424			 const value_range &lhs,
2425			 const value_range &op2) const
2426{
2427  if (empty_range_check (r, lhs, op2))
2428    return true;
2429  if (TYPE_UNSIGNED (type))
2430    {
2431      r = lhs;
2432      return true;
2433    }
2434  // Start with the positives because negatives are an impossible result.
2435  value_range positives = range_positives (type);
2436  positives.intersect (lhs);
2437  r = positives;
2438  // Then add the negative of each pair:
2439  // ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20].
2440  for (unsigned i = 0; i < positives.num_pairs (); ++i)
2441    r.union_ (value_range (type,
2442			   -positives.upper_bound (i),
2443			   -positives.lower_bound (i)));
2444  return true;
2445}
2446
2447
2448class operator_absu : public range_operator
2449{
2450 public:
2451  virtual void wi_fold (value_range &r, tree type,
2452			const wide_int &lh_lb, const wide_int &lh_ub,
2453			const wide_int &rh_lb, const wide_int &rh_ub) const;
2454} op_absu;
2455
2456void
2457operator_absu::wi_fold (value_range &r, tree type,
2458			const wide_int &lh_lb, const wide_int &lh_ub,
2459			const wide_int &rh_lb ATTRIBUTE_UNUSED,
2460			const wide_int &rh_ub ATTRIBUTE_UNUSED) const
2461{
2462  wide_int new_lb, new_ub;
2463
2464  // Pass through VR0 the easy cases.
2465  if (wi::ges_p (lh_lb, 0))
2466    {
2467      new_lb = lh_lb;
2468      new_ub = lh_ub;
2469    }
2470  else
2471    {
2472      new_lb = wi::abs (lh_lb);
2473      new_ub = wi::abs (lh_ub);
2474
2475      // If the range contains zero then we know that the minimum
2476      // value in the range will be zero.
2477      if (wi::ges_p (lh_ub, 0))
2478	{
2479	  if (wi::gtu_p (new_lb, new_ub))
2480	    new_ub = new_lb;
2481	  new_lb = wi::zero (TYPE_PRECISION (type));
2482	}
2483      else
2484	std::swap (new_lb, new_ub);
2485    }
2486
2487  gcc_checking_assert (TYPE_UNSIGNED (type));
2488  r = value_range (type, new_lb, new_ub);
2489}
2490
2491
2492class operator_negate : public range_operator
2493{
2494 public:
2495  virtual bool fold_range (value_range &r, tree type,
2496			   const value_range &op1,
2497			   const value_range &op2) const;
2498  virtual bool op1_range (value_range &r, tree type,
2499			  const value_range &lhs,
2500			  const value_range &op2) const;
2501} op_negate;
2502
2503bool
2504operator_negate::fold_range (value_range &r, tree type,
2505			     const value_range &lh,
2506			     const value_range &rh) const
2507{
2508  if (empty_range_check (r, lh, rh))
2509    return true;
2510  // -X is simply 0 - X.
2511  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type,
2512							  range_zero (type),
2513							  lh);
2514}
2515
2516bool
2517operator_negate::op1_range (value_range &r, tree type,
2518			    const value_range &lhs,
2519			    const value_range &op2) const
2520{
2521  // NEGATE is involutory.
2522  return fold_range (r, type, lhs, op2);
2523}
2524
2525
2526class operator_addr_expr : public range_operator
2527{
2528public:
2529  virtual bool fold_range (value_range &r, tree type,
2530			   const value_range &op1,
2531			   const value_range &op2) const;
2532  virtual bool op1_range (value_range &r, tree type,
2533			  const value_range &lhs,
2534			  const value_range &op2) const;
2535} op_addr;
2536
2537bool
2538operator_addr_expr::fold_range (value_range &r, tree type,
2539				const value_range &lh,
2540				const value_range &rh) const
2541{
2542  if (empty_range_check (r, lh, rh))
2543    return true;
2544
2545  // Return a non-null pointer of the LHS type (passed in op2).
2546  if (lh.zero_p ())
2547    r = range_zero (type);
2548  else if (!lh.contains_p (build_zero_cst (lh.type ())))
2549    r = range_nonzero (type);
2550  else
2551    r = value_range (type);
2552  return true;
2553}
2554
2555bool
2556operator_addr_expr::op1_range (value_range &r, tree type,
2557			       const value_range &lhs,
2558			       const value_range &op2) const
2559{
2560  return operator_addr_expr::fold_range (r, type, lhs, op2);
2561}
2562
2563
2564class pointer_plus_operator : public range_operator
2565{
2566public:
2567  virtual void wi_fold (value_range &r, tree type,
2568		        const wide_int &lh_lb,
2569		        const wide_int &lh_ub,
2570		        const wide_int &rh_lb,
2571		        const wide_int &rh_ub) const;
2572} op_pointer_plus;
2573
2574void
2575pointer_plus_operator::wi_fold (value_range &r, tree type,
2576				const wide_int &lh_lb,
2577				const wide_int &lh_ub,
2578				const wide_int &rh_lb,
2579				const wide_int &rh_ub) const
2580{
2581  // For pointer types, we are really only interested in asserting
2582  // whether the expression evaluates to non-NULL.
2583  //
2584  // With -fno-delete-null-pointer-checks we need to be more
2585  // conservative.  As some object might reside at address 0,
2586  // then some offset could be added to it and the same offset
2587  // subtracted again and the result would be NULL.
2588  // E.g.
2589  // static int a[12]; where &a[0] is NULL and
2590  // ptr = &a[6];
2591  // ptr -= 6;
2592  // ptr will be NULL here, even when there is POINTER_PLUS_EXPR
2593  // where the first range doesn't include zero and the second one
2594  // doesn't either.  As the second operand is sizetype (unsigned),
2595  // consider all ranges where the MSB could be set as possible
2596  // subtractions where the result might be NULL.
2597  if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
2598       || !wi_includes_zero_p (type, rh_lb, rh_ub))
2599      && !TYPE_OVERFLOW_WRAPS (type)
2600      && (flag_delete_null_pointer_checks
2601	  || !wi::sign_mask (rh_ub)))
2602    r = range_nonzero (type);
2603  else if (lh_lb == lh_ub && lh_lb == 0
2604	   && rh_lb == rh_ub && rh_lb == 0)
2605    r = range_zero (type);
2606  else
2607   r = value_range (type);
2608}
2609
2610
2611class pointer_min_max_operator : public range_operator
2612{
2613public:
2614  virtual void wi_fold (value_range & r, tree type,
2615			const wide_int &lh_lb, const wide_int &lh_ub,
2616			const wide_int &rh_lb, const wide_int &rh_ub) const;
2617} op_ptr_min_max;
2618
2619void
2620pointer_min_max_operator::wi_fold (value_range &r, tree type,
2621				   const wide_int &lh_lb,
2622				   const wide_int &lh_ub,
2623				   const wide_int &rh_lb,
2624				   const wide_int &rh_ub) const
2625{
2626  // For MIN/MAX expressions with pointers, we only care about
2627  // nullness.  If both are non null, then the result is nonnull.
2628  // If both are null, then the result is null.  Otherwise they
2629  // are varying.
2630  if (!wi_includes_zero_p (type, lh_lb, lh_ub)
2631      && !wi_includes_zero_p (type, rh_lb, rh_ub))
2632    r = range_nonzero (type);
2633  else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
2634    r = range_zero (type);
2635  else
2636    r = value_range (type);
2637}
2638
2639
2640class pointer_and_operator : public range_operator
2641{
2642public:
2643  virtual void wi_fold (value_range &r, tree type,
2644			const wide_int &lh_lb, const wide_int &lh_ub,
2645			const wide_int &rh_lb, const wide_int &rh_ub) const;
2646} op_pointer_and;
2647
2648void
2649pointer_and_operator::wi_fold (value_range &r, tree type,
2650			       const wide_int &lh_lb,
2651			       const wide_int &lh_ub,
2652			       const wide_int &rh_lb ATTRIBUTE_UNUSED,
2653			       const wide_int &rh_ub ATTRIBUTE_UNUSED) const
2654{
2655  // For pointer types, we are really only interested in asserting
2656  // whether the expression evaluates to non-NULL.
2657  if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
2658    r = range_zero (type);
2659  else
2660    r = value_range (type);
2661}
2662
2663
2664class pointer_or_operator : public range_operator
2665{
2666public:
2667  virtual void wi_fold (value_range &r, tree type,
2668			const wide_int &lh_lb, const wide_int &lh_ub,
2669			const wide_int &rh_lb, const wide_int &rh_ub) const;
2670} op_pointer_or;
2671
2672void
2673pointer_or_operator::wi_fold (value_range &r, tree type,
2674			      const wide_int &lh_lb,
2675			      const wide_int &lh_ub,
2676			      const wide_int &rh_lb,
2677			      const wide_int &rh_ub) const
2678{
2679  // For pointer types, we are really only interested in asserting
2680  // whether the expression evaluates to non-NULL.
2681  if (!wi_includes_zero_p (type, lh_lb, lh_ub)
2682      && !wi_includes_zero_p (type, rh_lb, rh_ub))
2683    r = range_nonzero (type);
2684  else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
2685    r = range_zero (type);
2686  else
2687    r = value_range (type);
2688}
2689
2690// This implements the range operator tables as local objects in this file.
2691
2692class range_op_table
2693{
2694public:
2695  inline range_operator *operator[] (enum tree_code code);
2696protected:
2697  void set (enum tree_code code, range_operator &op);
2698private:
2699  range_operator *m_range_tree[MAX_TREE_CODES];
2700};
2701
2702// Return a pointer to the range_operator instance, if there is one
2703// associated with tree_code CODE.
2704
2705range_operator *
2706range_op_table::operator[] (enum tree_code code)
2707{
2708  gcc_checking_assert (code > 0 && code < MAX_TREE_CODES);
2709  return m_range_tree[code];
2710}
2711
2712// Add OP to the handler table for CODE.
2713
2714void
2715range_op_table::set (enum tree_code code, range_operator &op)
2716{
2717  gcc_checking_assert (m_range_tree[code] == NULL);
2718  m_range_tree[code] = &op;
2719}
2720
2721// Instantiate a range op table for integral operations.
2722
2723class integral_table : public range_op_table
2724{
2725public:
2726  integral_table ();
2727} integral_tree_table;
2728
2729integral_table::integral_table ()
2730{
2731  set (EQ_EXPR, op_equal);
2732  set (NE_EXPR, op_not_equal);
2733  set (LT_EXPR, op_lt);
2734  set (LE_EXPR, op_le);
2735  set (GT_EXPR, op_gt);
2736  set (GE_EXPR, op_ge);
2737  set (PLUS_EXPR, op_plus);
2738  set (MINUS_EXPR, op_minus);
2739  set (MIN_EXPR, op_min);
2740  set (MAX_EXPR, op_max);
2741  set (MULT_EXPR, op_mult);
2742  set (TRUNC_DIV_EXPR, op_trunc_div);
2743  set (FLOOR_DIV_EXPR, op_floor_div);
2744  set (ROUND_DIV_EXPR, op_round_div);
2745  set (CEIL_DIV_EXPR, op_ceil_div);
2746  set (EXACT_DIV_EXPR, op_exact_div);
2747  set (LSHIFT_EXPR, op_lshift);
2748  set (RSHIFT_EXPR, op_rshift);
2749  set (NOP_EXPR, op_convert);
2750  set (CONVERT_EXPR, op_convert);
2751  set (TRUTH_AND_EXPR, op_logical_and);
2752  set (BIT_AND_EXPR, op_bitwise_and);
2753  set (TRUTH_OR_EXPR, op_logical_or);
2754  set (BIT_IOR_EXPR, op_bitwise_or);
2755  set (BIT_XOR_EXPR, op_bitwise_xor);
2756  set (TRUNC_MOD_EXPR, op_trunc_mod);
2757  set (TRUTH_NOT_EXPR, op_logical_not);
2758  set (BIT_NOT_EXPR, op_bitwise_not);
2759  set (INTEGER_CST, op_integer_cst);
2760  set (SSA_NAME, op_identity);
2761  set (PAREN_EXPR, op_identity);
2762  set (OBJ_TYPE_REF, op_identity);
2763  set (ABS_EXPR, op_abs);
2764  set (ABSU_EXPR, op_absu);
2765  set (NEGATE_EXPR, op_negate);
2766  set (ADDR_EXPR, op_addr);
2767}
2768
2769// Instantiate a range op table for pointer operations.
2770
2771class pointer_table : public range_op_table
2772{
2773public:
2774  pointer_table ();
2775} pointer_tree_table;
2776
2777pointer_table::pointer_table ()
2778{
2779  set (BIT_AND_EXPR, op_pointer_and);
2780  set (BIT_IOR_EXPR, op_pointer_or);
2781  set (MIN_EXPR, op_ptr_min_max);
2782  set (MAX_EXPR, op_ptr_min_max);
2783  set (POINTER_PLUS_EXPR, op_pointer_plus);
2784
2785  set (EQ_EXPR, op_equal);
2786  set (NE_EXPR, op_not_equal);
2787  set (LT_EXPR, op_lt);
2788  set (LE_EXPR, op_le);
2789  set (GT_EXPR, op_gt);
2790  set (GE_EXPR, op_ge);
2791  set (SSA_NAME, op_identity);
2792  set (ADDR_EXPR, op_addr);
2793  set (NOP_EXPR, op_convert);
2794  set (CONVERT_EXPR, op_convert);
2795
2796  set (BIT_NOT_EXPR, op_bitwise_not);
2797  set (BIT_XOR_EXPR, op_bitwise_xor);
2798}
2799
2800// The tables are hidden and accessed via a simple extern function.
2801
2802range_operator *
2803range_op_handler (enum tree_code code, tree type)
2804{
2805  // First check if there is apointer specialization.
2806  if (POINTER_TYPE_P (type))
2807    return pointer_tree_table[code];
2808  return integral_tree_table[code];
2809}
2810
2811// Cast the range in R to TYPE.
2812
2813void
2814range_cast (value_range &r, tree type)
2815{
2816  value_range tmp = r;
2817  range_operator *op = range_op_handler (CONVERT_EXPR, type);
2818  // Call op_convert, if it fails, the result is varying.
2819  if (!op->fold_range (r, type, tmp, value_range (type)))
2820    r = value_range (type);
2821}
2822
2823#if CHECKING_P
2824#include "selftest.h"
2825#include "stor-layout.h"
2826
2827namespace selftest
2828{
2829#define INT(N) build_int_cst (integer_type_node, (N))
2830#define UINT(N) build_int_cstu (unsigned_type_node, (N))
2831#define INT16(N) build_int_cst (short_integer_type_node, (N))
2832#define UINT16(N) build_int_cstu (short_unsigned_type_node, (N))
2833#define INT64(N) build_int_cstu (long_long_integer_type_node, (N))
2834#define UINT64(N) build_int_cstu (long_long_unsigned_type_node, (N))
2835#define UINT128(N) build_int_cstu (u128_type, (N))
2836#define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N))
2837#define SCHAR(N) build_int_cst (signed_char_type_node, (N))
2838
2839// Run all of the selftests within this file.
2840
2841void
2842range_tests ()
2843{
2844  tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
2845  value_range i1, i2, i3;
2846  value_range r0, r1, rold;
2847
2848  // Test that NOT(255) is [0..254] in 8-bit land.
2849  value_range not_255 (UCHAR (255), UCHAR (255), VR_ANTI_RANGE);
2850  ASSERT_TRUE (not_255 == value_range (UCHAR (0), UCHAR (254)));
2851
2852  // Test that NOT(0) is [1..255] in 8-bit land.
2853  value_range not_zero = range_nonzero (unsigned_char_type_node);
2854  ASSERT_TRUE (not_zero == value_range (UCHAR (1), UCHAR (255)));
2855
2856  // Check that [0,127][0x..ffffff80,0x..ffffff]
2857  //  => ~[128, 0x..ffffff7f].
2858  r0 = value_range (UINT128 (0), UINT128 (127));
2859  tree high = build_minus_one_cst (u128_type);
2860  // low = -1 - 127 => 0x..ffffff80.
2861  tree low = fold_build2 (MINUS_EXPR, u128_type, high, UINT128(127));
2862  r1 = value_range (low, high); // [0x..ffffff80, 0x..ffffffff]
2863  // r0 = [0,127][0x..ffffff80,0x..fffffff].
2864  r0.union_ (r1);
2865  // r1 = [128, 0x..ffffff7f].
2866  r1 = value_range (UINT128(128),
2867			 fold_build2 (MINUS_EXPR, u128_type,
2868				      build_minus_one_cst (u128_type),
2869				      UINT128(128)));
2870  r0.invert ();
2871  ASSERT_TRUE (r0 == r1);
2872
2873  r0.set_varying (integer_type_node);
2874  tree minint = wide_int_to_tree (integer_type_node, r0.lower_bound ());
2875  tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ());
2876
2877  r0.set_varying (short_integer_type_node);
2878  tree minshort = wide_int_to_tree (short_integer_type_node, r0.lower_bound ());
2879  tree maxshort = wide_int_to_tree (short_integer_type_node, r0.upper_bound ());
2880
2881  r0.set_varying (unsigned_type_node);
2882  tree maxuint = wide_int_to_tree (unsigned_type_node, r0.upper_bound ());
2883
2884  // Check that ~[0,5] => [6,MAX] for unsigned int.
2885  r0 = value_range (UINT (0), UINT (5));
2886  r0.invert ();
2887  ASSERT_TRUE (r0 == value_range (UINT(6), maxuint));
2888
2889  // Check that ~[10,MAX] => [0,9] for unsigned int.
2890  r0 = value_range (UINT(10), maxuint);
2891  r0.invert ();
2892  ASSERT_TRUE (r0 == value_range (UINT (0), UINT (9)));
2893
2894  // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
2895  r0 = value_range (UINT128 (0), UINT128 (5), VR_ANTI_RANGE);
2896  r1 = value_range (UINT128(6), build_minus_one_cst (u128_type));
2897  ASSERT_TRUE (r0 == r1);
2898
2899  // Check that [~5] is really [-MIN,4][6,MAX].
2900  r0 = value_range (INT (5), INT (5), VR_ANTI_RANGE);
2901  r1 = value_range (minint, INT (4));
2902  r1.union_ (value_range (INT (6), maxint));
2903  ASSERT_FALSE (r1.undefined_p ());
2904  ASSERT_TRUE (r0 == r1);
2905
2906  r1 = value_range (INT (5), INT (5));
2907  value_range r2 (r1);
2908  ASSERT_TRUE (r1 == r2);
2909
2910  r1 = value_range (INT (5), INT (10));
2911
2912  r1 = value_range (integer_type_node,
2913	       wi::to_wide (INT (5)), wi::to_wide (INT (10)));
2914  ASSERT_TRUE (r1.contains_p (INT (7)));
2915
2916  r1 = value_range (SCHAR (0), SCHAR (20));
2917  ASSERT_TRUE (r1.contains_p (SCHAR(15)));
2918  ASSERT_FALSE (r1.contains_p (SCHAR(300)));
2919
2920  // If a range is in any way outside of the range for the converted
2921  // to range, default to the range for the new type.
2922  if (TYPE_PRECISION (TREE_TYPE (maxint))
2923      > TYPE_PRECISION (short_integer_type_node))
2924    {
2925      r1 = value_range (integer_zero_node, maxint);
2926      range_cast (r1, short_integer_type_node);
2927      ASSERT_TRUE (r1.lower_bound () == wi::to_wide (minshort)
2928		   && r1.upper_bound() == wi::to_wide (maxshort));
2929    }
2930
2931  // (unsigned char)[-5,-1] => [251,255].
2932  r0 = rold = value_range (SCHAR (-5), SCHAR (-1));
2933  range_cast (r0, unsigned_char_type_node);
2934  ASSERT_TRUE (r0 == value_range (UCHAR (251), UCHAR (255)));
2935  range_cast (r0, signed_char_type_node);
2936  ASSERT_TRUE (r0 == rold);
2937
2938  // (signed char)[15, 150] => [-128,-106][15,127].
2939  r0 = rold = value_range (UCHAR (15), UCHAR (150));
2940  range_cast (r0, signed_char_type_node);
2941  r1 = value_range (SCHAR (15), SCHAR (127));
2942  r2 = value_range (SCHAR (-128), SCHAR (-106));
2943  r1.union_ (r2);
2944  ASSERT_TRUE (r1 == r0);
2945  range_cast (r0, unsigned_char_type_node);
2946  ASSERT_TRUE (r0 == rold);
2947
2948  // (unsigned char)[-5, 5] => [0,5][251,255].
2949  r0 = rold = value_range (SCHAR (-5), SCHAR (5));
2950  range_cast (r0, unsigned_char_type_node);
2951  r1 = value_range (UCHAR (251), UCHAR (255));
2952  r2 = value_range (UCHAR (0), UCHAR (5));
2953  r1.union_ (r2);
2954  ASSERT_TRUE (r0 == r1);
2955  range_cast (r0, signed_char_type_node);
2956  ASSERT_TRUE (r0 == rold);
2957
2958  // (unsigned char)[-5,5] => [0,5][251,255].
2959  r0 = value_range (INT (-5), INT (5));
2960  range_cast (r0, unsigned_char_type_node);
2961  r1 = value_range (UCHAR (0), UCHAR (5));
2962  r1.union_ (value_range (UCHAR (251), UCHAR (255)));
2963  ASSERT_TRUE (r0 == r1);
2964
2965  // (unsigned char)[5U,1974U] => [0,255].
2966  r0 = value_range (UINT (5), UINT (1974));
2967  range_cast (r0, unsigned_char_type_node);
2968  ASSERT_TRUE (r0 == value_range (UCHAR (0), UCHAR (255)));
2969  range_cast (r0, integer_type_node);
2970  // Going to a wider range should not sign extend.
2971  ASSERT_TRUE (r0 == value_range (INT (0), INT (255)));
2972
2973  // (unsigned char)[-350,15] => [0,255].
2974  r0 = value_range (INT (-350), INT (15));
2975  range_cast (r0, unsigned_char_type_node);
2976  ASSERT_TRUE (r0 == (value_range
2977		      (TYPE_MIN_VALUE (unsigned_char_type_node),
2978		       TYPE_MAX_VALUE (unsigned_char_type_node))));
2979
2980  // Casting [-120,20] from signed char to unsigned short.
2981  // => [0, 20][0xff88, 0xffff].
2982  r0 = value_range (SCHAR (-120), SCHAR (20));
2983  range_cast (r0, short_unsigned_type_node);
2984  r1 = value_range (UINT16 (0), UINT16 (20));
2985  r2 = value_range (UINT16 (0xff88), UINT16 (0xffff));
2986  r1.union_ (r2);
2987  ASSERT_TRUE (r0 == r1);
2988  // A truncating cast back to signed char will work because [-120, 20]
2989  // is representable in signed char.
2990  range_cast (r0, signed_char_type_node);
2991  ASSERT_TRUE (r0 == value_range (SCHAR (-120), SCHAR (20)));
2992
2993  // unsigned char -> signed short
2994  //	(signed short)[(unsigned char)25, (unsigned char)250]
2995  // => [(signed short)25, (signed short)250]
2996  r0 = rold = value_range (UCHAR (25), UCHAR (250));
2997  range_cast (r0, short_integer_type_node);
2998  r1 = value_range (INT16 (25), INT16 (250));
2999  ASSERT_TRUE (r0 == r1);
3000  range_cast (r0, unsigned_char_type_node);
3001  ASSERT_TRUE (r0 == rold);
3002
3003  // Test casting a wider signed [-MIN,MAX] to a nar`rower unsigned.
3004  r0 = value_range (TYPE_MIN_VALUE (long_long_integer_type_node),
3005	       TYPE_MAX_VALUE (long_long_integer_type_node));
3006  range_cast (r0, short_unsigned_type_node);
3007  r1 = value_range (TYPE_MIN_VALUE (short_unsigned_type_node),
3008	       TYPE_MAX_VALUE (short_unsigned_type_node));
3009  ASSERT_TRUE (r0 == r1);
3010
3011  // NOT([10,20]) ==> [-MIN,9][21,MAX].
3012  r0 = r1 = value_range (INT (10), INT (20));
3013  r2 = value_range (minint, INT(9));
3014  r2.union_ (value_range (INT(21), maxint));
3015  ASSERT_FALSE (r2.undefined_p ());
3016  r1.invert ();
3017  ASSERT_TRUE (r1 == r2);
3018  // Test that NOT(NOT(x)) == x.
3019  r2.invert ();
3020  ASSERT_TRUE (r0 == r2);
3021
3022  // Test that booleans and their inverse work as expected.
3023  r0 = range_zero (boolean_type_node);
3024  ASSERT_TRUE (r0 == value_range (build_zero_cst (boolean_type_node),
3025				       build_zero_cst (boolean_type_node)));
3026  r0.invert ();
3027  ASSERT_TRUE (r0 == value_range (build_one_cst (boolean_type_node),
3028				       build_one_cst (boolean_type_node)));
3029
3030  // Casting NONZERO to a narrower type will wrap/overflow so
3031  // it's just the entire range for the narrower type.
3032  //
3033  // "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32].  This is
3034  // is outside of the range of a smaller range, return the full
3035  // smaller range.
3036  if (TYPE_PRECISION (integer_type_node)
3037      > TYPE_PRECISION (short_integer_type_node))
3038    {
3039      r0 = range_nonzero (integer_type_node);
3040      range_cast (r0, short_integer_type_node);
3041      r1 = value_range (TYPE_MIN_VALUE (short_integer_type_node),
3042			     TYPE_MAX_VALUE (short_integer_type_node));
3043      ASSERT_TRUE (r0 == r1);
3044    }
3045
3046  // Casting NONZERO from a narrower signed to a wider signed.
3047  //
3048  // NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16].
3049  // Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16].
3050  r0 = range_nonzero (short_integer_type_node);
3051  range_cast (r0, integer_type_node);
3052  r1 = value_range (INT (-32768), INT (-1));
3053  r2 = value_range (INT (1), INT (32767));
3054  r1.union_ (r2);
3055  ASSERT_TRUE (r0 == r1);
3056
3057  // Make sure NULL and non-NULL of pointer types work, and that
3058  // inverses of them are consistent.
3059  tree voidp = build_pointer_type (void_type_node);
3060  r0 = range_zero (voidp);
3061  r1 = r0;
3062  r0.invert ();
3063  r0.invert ();
3064  ASSERT_TRUE (r0 == r1);
3065
3066  // [10,20] U [15, 30] => [10, 30].
3067  r0 = value_range (INT (10), INT (20));
3068  r1 = value_range (INT (15), INT (30));
3069  r0.union_ (r1);
3070  ASSERT_TRUE (r0 == value_range (INT (10), INT (30)));
3071
3072  // [15,40] U [] => [15,40].
3073  r0 = value_range (INT (15), INT (40));
3074  r1.set_undefined ();
3075  r0.union_ (r1);
3076  ASSERT_TRUE (r0 == value_range (INT (15), INT (40)));
3077
3078  // [10,20] U [10,10] => [10,20].
3079  r0 = value_range (INT (10), INT (20));
3080  r1 = value_range (INT (10), INT (10));
3081  r0.union_ (r1);
3082  ASSERT_TRUE (r0 == value_range (INT (10), INT (20)));
3083
3084  // [10,20] U [9,9] => [9,20].
3085  r0 = value_range (INT (10), INT (20));
3086  r1 = value_range (INT (9), INT (9));
3087  r0.union_ (r1);
3088  ASSERT_TRUE (r0 == value_range (INT (9), INT (20)));
3089
3090  // [10,20] ^ [15,30] => [15,20].
3091  r0 = value_range (INT (10), INT (20));
3092  r1 = value_range (INT (15), INT (30));
3093  r0.intersect (r1);
3094  ASSERT_TRUE (r0 == value_range (INT (15), INT (20)));
3095
3096  // Test the internal sanity of wide_int's wrt HWIs.
3097  ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
3098			      TYPE_SIGN (boolean_type_node))
3099	       == wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));
3100
3101  // Test zero_p().
3102  r0 = value_range (INT (0), INT (0));
3103  ASSERT_TRUE (r0.zero_p ());
3104
3105  // Test nonzero_p().
3106  r0 = value_range (INT (0), INT (0));
3107  r0.invert ();
3108  ASSERT_TRUE (r0.nonzero_p ());
3109}
3110
3111} // namespace selftest
3112
3113#endif // CHECKING_P
3114