postreload-gcse.c revision 1.1.1.1.8.2
1/* Post reload partially redundant load elimination
2   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
3   Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "toplev.h"
26
27#include "rtl.h"
28#include "tree.h"
29#include "tm_p.h"
30#include "regs.h"
31#include "hard-reg-set.h"
32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
36#include "basic-block.h"
37#include "output.h"
38#include "function.h"
39#include "expr.h"
40#include "except.h"
41#include "intl.h"
42#include "obstack.h"
43#include "hashtab.h"
44#include "params.h"
45#include "target.h"
46#include "timevar.h"
47#include "tree-pass.h"
48#include "dbgcnt.h"
49
50/* The following code implements gcse after reload, the purpose of this
51   pass is to cleanup redundant loads generated by reload and other
52   optimizations that come after gcse. It searches for simple inter-block
53   redundancies and tries to eliminate them by adding moves and loads
54   in cold places.
55
56   Perform partially redundant load elimination, try to eliminate redundant
57   loads created by the reload pass.  We try to look for full or partial
58   redundant loads fed by one or more loads/stores in predecessor BBs,
59   and try adding loads to make them fully redundant.  We also check if
60   it's worth adding loads to be able to delete the redundant load.
61
62   Algorithm:
63   1. Build available expressions hash table:
64       For each load/store instruction, if the loaded/stored memory didn't
65       change until the end of the basic block add this memory expression to
66       the hash table.
67   2. Perform Redundancy elimination:
68      For each load instruction do the following:
69	 perform partial redundancy elimination, check if it's worth adding
70	 loads to make the load fully redundant.  If so add loads and
71	 register copies and delete the load.
72   3. Delete instructions made redundant in step 2.
73
74   Future enhancement:
75     If the loaded register is used/defined between load and some store,
76     look for some other free register between load and all its stores,
77     and replace the load with a copy from this register to the loaded
78     register.
79*/
80
81
82/* Keep statistics of this pass.  */
83static struct
84{
85  int moves_inserted;
86  int copies_inserted;
87  int insns_deleted;
88} stats;
89
90/* We need to keep a hash table of expressions.  The table entries are of
91   type 'struct expr', and for each expression there is a single linked
92   list of occurrences.  */
93
94/* The table itself.  */
95static htab_t expr_table;
96
97/* Expression elements in the hash table.  */
98struct expr
99{
100  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
101  rtx expr;
102
103  /* The same hash for this entry.  */
104  hashval_t hash;
105
106  /* List of available occurrence in basic blocks in the function.  */
107  struct occr *avail_occr;
108};
109
110static struct obstack expr_obstack;
111
112/* Occurrence of an expression.
113   There is at most one occurrence per basic block.  If a pattern appears
114   more than once, the last appearance is used.  */
115
116struct occr
117{
118  /* Next occurrence of this expression.  */
119  struct occr *next;
120  /* The insn that computes the expression.  */
121  rtx insn;
122  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
123  char deleted_p;
124};
125
126static struct obstack occr_obstack;
127
128/* The following structure holds the information about the occurrences of
129   the redundant instructions.  */
130struct unoccr
131{
132  struct unoccr *next;
133  edge pred;
134  rtx insn;
135};
136
137static struct obstack unoccr_obstack;
138
139/* Array where each element is the CUID if the insn that last set the hard
140   register with the number of the element, since the start of the current
141   basic block.
142
143   This array is used during the building of the hash table (step 1) to
144   determine if a reg is killed before the end of a basic block.
145
146   It is also used when eliminating partial redundancies (step 2) to see
147   if a reg was modified since the start of a basic block.  */
148static int *reg_avail_info;
149
150/* A list of insns that may modify memory within the current basic block.  */
151struct modifies_mem
152{
153  rtx insn;
154  struct modifies_mem *next;
155};
156static struct modifies_mem *modifies_mem_list;
157
158/* The modifies_mem structs also go on an obstack, only this obstack is
159   freed each time after completing the analysis or transformations on
160   a basic block.  So we allocate a dummy modifies_mem_obstack_bottom
161   object on the obstack to keep track of the bottom of the obstack.  */
162static struct obstack modifies_mem_obstack;
163static struct modifies_mem  *modifies_mem_obstack_bottom;
164
165/* Mapping of insn UIDs to CUIDs.
166   CUIDs are like UIDs except they increase monotonically in each basic
167   block, have no gaps, and only apply to real insns.  */
168static int *uid_cuid;
169#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170
171
172/* Helpers for memory allocation/freeing.  */
173static void alloc_mem (void);
174static void free_mem (void);
175
176/* Support for hash table construction and transformations.  */
177static bool oprs_unchanged_p (rtx, rtx, bool);
178static void record_last_reg_set_info (rtx, rtx);
179static void record_last_reg_set_info_regno (rtx, int);
180static void record_last_mem_set_info (rtx);
181static void record_last_set_info (rtx, const_rtx, void *);
182static void record_opr_changes (rtx);
183
184static void find_mem_conflicts (rtx, const_rtx, void *);
185static int load_killed_in_block_p (int, rtx, bool);
186static void reset_opr_set_tables (void);
187
188/* Hash table support.  */
189static hashval_t hash_expr (rtx, int *);
190static hashval_t hash_expr_for_htab (const void *);
191static int expr_equiv_p (const void *, const void *);
192static void insert_expr_in_table (rtx, rtx);
193static struct expr *lookup_expr_in_table (rtx);
194static int dump_hash_table_entry (void **, void *);
195static void dump_hash_table (FILE *);
196
197/* Helpers for eliminate_partially_redundant_load.  */
198static bool reg_killed_on_edge (rtx, edge);
199static bool reg_used_on_edge (rtx, edge);
200
201static rtx get_avail_load_store_reg (rtx);
202
203static bool bb_has_well_behaved_predecessors (basic_block);
204static struct occr* get_bb_avail_insn (basic_block, struct occr *);
205static void hash_scan_set (rtx);
206static void compute_hash_table (void);
207
208/* The work horses of this pass.  */
209static void eliminate_partially_redundant_load (basic_block,
210						rtx,
211						struct expr *);
212static void eliminate_partially_redundant_loads (void);
213
214
215/* Allocate memory for the CUID mapping array and register/memory
216   tracking tables.  */
217
218static void
219alloc_mem (void)
220{
221  int i;
222  basic_block bb;
223  rtx insn;
224
225  /* Find the largest UID and create a mapping from UIDs to CUIDs.  */
226  uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
227  i = 1;
228  FOR_EACH_BB (bb)
229    FOR_BB_INSNS (bb, insn)
230      {
231        if (INSN_P (insn))
232	  uid_cuid[INSN_UID (insn)] = i++;
233	else
234	  uid_cuid[INSN_UID (insn)] = i;
235      }
236
237  /* Allocate the available expressions hash table.  We don't want to
238     make the hash table too small, but unnecessarily making it too large
239     also doesn't help.  The i/4 is a gcse.c relic, and seems like a
240     reasonable choice.  */
241  expr_table = htab_create (MAX (i / 4, 13),
242			    hash_expr_for_htab, expr_equiv_p, NULL);
243
244  /* We allocate everything on obstacks because we often can roll back
245     the whole obstack to some point.  Freeing obstacks is very fast.  */
246  gcc_obstack_init (&expr_obstack);
247  gcc_obstack_init (&occr_obstack);
248  gcc_obstack_init (&unoccr_obstack);
249  gcc_obstack_init (&modifies_mem_obstack);
250
251  /* Working array used to track the last set for each register
252     in the current block.  */
253  reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
254
255  /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
256     can roll it back in reset_opr_set_tables.  */
257  modifies_mem_obstack_bottom =
258    (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
259					   sizeof (struct modifies_mem));
260}
261
262/* Free memory allocated by alloc_mem.  */
263
264static void
265free_mem (void)
266{
267  free (uid_cuid);
268
269  htab_delete (expr_table);
270
271  obstack_free (&expr_obstack, NULL);
272  obstack_free (&occr_obstack, NULL);
273  obstack_free (&unoccr_obstack, NULL);
274  obstack_free (&modifies_mem_obstack, NULL);
275
276  free (reg_avail_info);
277}
278
279
280/* Hash expression X.
281   DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
282   or if the expression contains something we don't want to insert in the
283   table.  */
284
285static hashval_t
286hash_expr (rtx x, int *do_not_record_p)
287{
288  *do_not_record_p = 0;
289  return hash_rtx (x, GET_MODE (x), do_not_record_p,
290		   NULL,  /*have_reg_qty=*/false);
291}
292
293/* Callback for hashtab.
294   Return the hash value for expression EXP.  We don't actually hash
295   here, we just return the cached hash value.  */
296
297static hashval_t
298hash_expr_for_htab (const void *expp)
299{
300  const struct expr *const exp = (const struct expr *) expp;
301  return exp->hash;
302}
303
304/* Callback for hashtab.
305   Return nonzero if exp1 is equivalent to exp2.  */
306
307static int
308expr_equiv_p (const void *exp1p, const void *exp2p)
309{
310  const struct expr *const exp1 = (const struct expr *) exp1p;
311  const struct expr *const exp2 = (const struct expr *) exp2p;
312  int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
313
314  gcc_assert (!equiv_p || exp1->hash == exp2->hash);
315  return equiv_p;
316}
317
318
319/* Insert expression X in INSN in the hash TABLE.
320   If it is already present, record it as the last occurrence in INSN's
321   basic block.  */
322
323static void
324insert_expr_in_table (rtx x, rtx insn)
325{
326  int do_not_record_p;
327  hashval_t hash;
328  struct expr *cur_expr, **slot;
329  struct occr *avail_occr, *last_occr = NULL;
330
331  hash = hash_expr (x, &do_not_record_p);
332
333  /* Do not insert expression in the table if it contains volatile operands,
334     or if hash_expr determines the expression is something we don't want
335     to or can't handle.  */
336  if (do_not_record_p)
337    return;
338
339  /* We anticipate that redundant expressions are rare, so for convenience
340     allocate a new hash table element here already and set its fields.
341     If we don't do this, we need a hack with a static struct expr.  Anyway,
342     obstack_free is really fast and one more obstack_alloc doesn't hurt if
343     we're going to see more expressions later on.  */
344  cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
345					    sizeof (struct expr));
346  cur_expr->expr = x;
347  cur_expr->hash = hash;
348  cur_expr->avail_occr = NULL;
349
350  slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
351						    hash, INSERT);
352
353  if (! (*slot))
354    /* The expression isn't found, so insert it.  */
355    *slot = cur_expr;
356  else
357    {
358      /* The expression is already in the table, so roll back the
359	 obstack and use the existing table entry.  */
360      obstack_free (&expr_obstack, cur_expr);
361      cur_expr = *slot;
362    }
363
364  /* Search for another occurrence in the same basic block.  */
365  avail_occr = cur_expr->avail_occr;
366  while (avail_occr
367	 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
368    {
369      /* If an occurrence isn't found, save a pointer to the end of
370	 the list.  */
371      last_occr = avail_occr;
372      avail_occr = avail_occr->next;
373    }
374
375  if (avail_occr)
376    /* Found another instance of the expression in the same basic block.
377       Prefer this occurrence to the currently recorded one.  We want
378       the last one in the block and the block is scanned from start
379       to end.  */
380    avail_occr->insn = insn;
381  else
382    {
383      /* First occurrence of this expression in this basic block.  */
384      avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
385						  sizeof (struct occr));
386
387      /* First occurrence of this expression in any block?  */
388      if (cur_expr->avail_occr == NULL)
389        cur_expr->avail_occr = avail_occr;
390      else
391        last_occr->next = avail_occr;
392
393      avail_occr->insn = insn;
394      avail_occr->next = NULL;
395      avail_occr->deleted_p = 0;
396    }
397}
398
399
400/* Lookup pattern PAT in the expression hash table.
401   The result is a pointer to the table entry, or NULL if not found.  */
402
403static struct expr *
404lookup_expr_in_table (rtx pat)
405{
406  int do_not_record_p;
407  struct expr **slot, *tmp_expr;
408  hashval_t hash = hash_expr (pat, &do_not_record_p);
409
410  if (do_not_record_p)
411    return NULL;
412
413  tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
414					    sizeof (struct expr));
415  tmp_expr->expr = pat;
416  tmp_expr->hash = hash;
417  tmp_expr->avail_occr = NULL;
418
419  slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
420                                                    hash, INSERT);
421  obstack_free (&expr_obstack, tmp_expr);
422
423  if (!slot)
424    return NULL;
425  else
426    return (*slot);
427}
428
429
430/* Dump all expressions and occurrences that are currently in the
431   expression hash table to FILE.  */
432
433/* This helper is called via htab_traverse.  */
434static int
435dump_hash_table_entry (void **slot, void *filep)
436{
437  struct expr *expr = (struct expr *) *slot;
438  FILE *file = (FILE *) filep;
439  struct occr *occr;
440
441  fprintf (file, "expr: ");
442  print_rtl (file, expr->expr);
443  fprintf (file,"\nhashcode: %u\n", expr->hash);
444  fprintf (file,"list of occurrences:\n");
445  occr = expr->avail_occr;
446  while (occr)
447    {
448      rtx insn = occr->insn;
449      print_rtl_single (file, insn);
450      fprintf (file, "\n");
451      occr = occr->next;
452    }
453  fprintf (file, "\n");
454  return 1;
455}
456
457static void
458dump_hash_table (FILE *file)
459{
460  fprintf (file, "\n\nexpression hash table\n");
461  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
462           (long) htab_size (expr_table),
463           (long) htab_elements (expr_table),
464           htab_collisions (expr_table));
465  if (htab_elements (expr_table) > 0)
466    {
467      fprintf (file, "\n\ntable entries:\n");
468      htab_traverse (expr_table, dump_hash_table_entry, file);
469    }
470  fprintf (file, "\n");
471}
472
473/* Return true if register X is recorded as being set by an instruction
474   whose CUID is greater than the one given.  */
475
476static bool
477reg_changed_after_insn_p (rtx x, int cuid)
478{
479  unsigned int regno, end_regno;
480
481  regno = REGNO (x);
482  end_regno = END_HARD_REGNO (x);
483  do
484    if (reg_avail_info[regno] > cuid)
485      return true;
486  while (++regno < end_regno);
487  return false;
488}
489
490/* Return nonzero if the operands of expression X are unchanged
491   1) from the start of INSN's basic block up to but not including INSN
492      if AFTER_INSN is false, or
493   2) from INSN to the end of INSN's basic block if AFTER_INSN is true.  */
494
495static bool
496oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
497{
498  int i, j;
499  enum rtx_code code;
500  const char *fmt;
501
502  if (x == 0)
503    return 1;
504
505  code = GET_CODE (x);
506  switch (code)
507    {
508    case REG:
509      /* We are called after register allocation.  */
510      gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
511      if (after_insn)
512	return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
513      else
514	return !reg_changed_after_insn_p (x, 0);
515
516    case MEM:
517      if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
518	return 0;
519      else
520	return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
521
522    case PC:
523    case CC0: /*FIXME*/
524    case CONST:
525    case CONST_INT:
526    case CONST_DOUBLE:
527    case CONST_FIXED:
528    case CONST_VECTOR:
529    case SYMBOL_REF:
530    case LABEL_REF:
531    case ADDR_VEC:
532    case ADDR_DIFF_VEC:
533      return 1;
534
535    case PRE_DEC:
536    case PRE_INC:
537    case POST_DEC:
538    case POST_INC:
539    case PRE_MODIFY:
540    case POST_MODIFY:
541      if (after_insn)
542	return 0;
543      break;
544
545    default:
546      break;
547    }
548
549  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
550    {
551      if (fmt[i] == 'e')
552	{
553	  if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
554	    return 0;
555	}
556      else if (fmt[i] == 'E')
557	for (j = 0; j < XVECLEN (x, i); j++)
558	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
559	    return 0;
560    }
561
562  return 1;
563}
564
565
566/* Used for communication between find_mem_conflicts and
567   load_killed_in_block_p.  Nonzero if find_mem_conflicts finds a
568   conflict between two memory references.
569   This is a bit of a hack to work around the limitations of note_stores.  */
570static int mems_conflict_p;
571
572/* DEST is the output of an instruction.  If it is a memory reference, and
573   possibly conflicts with the load found in DATA, then set mems_conflict_p
574   to a nonzero value.  */
575
576static void
577find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
578		    void *data)
579{
580  rtx mem_op = (rtx) data;
581
582  while (GET_CODE (dest) == SUBREG
583	 || GET_CODE (dest) == ZERO_EXTRACT
584	 || GET_CODE (dest) == STRICT_LOW_PART)
585    dest = XEXP (dest, 0);
586
587  /* If DEST is not a MEM, then it will not conflict with the load.  Note
588     that function calls are assumed to clobber memory, but are handled
589     elsewhere.  */
590  if (! MEM_P (dest))
591    return;
592
593  if (true_dependence (dest, GET_MODE (dest), mem_op,
594		       rtx_addr_varies_p))
595    mems_conflict_p = 1;
596}
597
598
599/* Return nonzero if the expression in X (a memory reference) is killed
600   in the current basic block before (if AFTER_INSN is false) or after
601   (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
602
603   This function assumes that the modifies_mem table is flushed when
604   the hash table construction or redundancy elimination phases start
605   processing a new basic block.  */
606
607static int
608load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
609{
610  struct modifies_mem *list_entry = modifies_mem_list;
611
612  while (list_entry)
613    {
614      rtx setter = list_entry->insn;
615
616      /* Ignore entries in the list that do not apply.  */
617      if ((after_insn
618	   && INSN_CUID (setter) < uid_limit)
619	  || (! after_insn
620	      && INSN_CUID (setter) > uid_limit))
621	{
622	  list_entry = list_entry->next;
623	  continue;
624	}
625
626      /* If SETTER is a call everything is clobbered.  Note that calls
627	 to pure functions are never put on the list, so we need not
628	 worry about them.  */
629      if (CALL_P (setter))
630	return 1;
631
632      /* SETTER must be an insn of some kind that sets memory.  Call
633	 note_stores to examine each hunk of memory that is modified.
634	 It will set mems_conflict_p to nonzero if there may be a
635	 conflict between X and SETTER.  */
636      mems_conflict_p = 0;
637      note_stores (PATTERN (setter), find_mem_conflicts, x);
638      if (mems_conflict_p)
639	return 1;
640
641      list_entry = list_entry->next;
642    }
643  return 0;
644}
645
646
647/* Record register first/last/block set information for REGNO in INSN.  */
648
649static inline void
650record_last_reg_set_info (rtx insn, rtx reg)
651{
652  unsigned int regno, end_regno;
653
654  regno = REGNO (reg);
655  end_regno = END_HARD_REGNO (reg);
656  do
657    reg_avail_info[regno] = INSN_CUID (insn);
658  while (++regno < end_regno);
659}
660
661static inline void
662record_last_reg_set_info_regno (rtx insn, int regno)
663{
664  reg_avail_info[regno] = INSN_CUID (insn);
665}
666
667
668/* Record memory modification information for INSN.  We do not actually care
669   about the memory location(s) that are set, or even how they are set (consider
670   a CALL_INSN).  We merely need to record which insns modify memory.  */
671
672static void
673record_last_mem_set_info (rtx insn)
674{
675  struct modifies_mem *list_entry;
676
677  list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
678						      sizeof (struct modifies_mem));
679  list_entry->insn = insn;
680  list_entry->next = modifies_mem_list;
681  modifies_mem_list = list_entry;
682}
683
684/* Called from compute_hash_table via note_stores to handle one
685   SET or CLOBBER in an insn.  DATA is really the instruction in which
686   the SET is taking place.  */
687
688static void
689record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
690{
691  rtx last_set_insn = (rtx) data;
692
693  if (GET_CODE (dest) == SUBREG)
694    dest = SUBREG_REG (dest);
695
696  if (REG_P (dest))
697    record_last_reg_set_info (last_set_insn, dest);
698  else if (MEM_P (dest))
699    {
700      /* Ignore pushes, they don't clobber memory.  They may still
701	 clobber the stack pointer though.  Some targets do argument
702	 pushes without adding REG_INC notes.  See e.g. PR25196,
703	 where a pushsi2 on i386 doesn't have REG_INC notes.  Note
704	 such changes here too.  */
705      if (! push_operand (dest, GET_MODE (dest)))
706	record_last_mem_set_info (last_set_insn);
707      else
708	record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
709    }
710}
711
712
713/* Reset tables used to keep track of what's still available since the
714   start of the block.  */
715
716static void
717reset_opr_set_tables (void)
718{
719  memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
720  obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
721  modifies_mem_list = NULL;
722}
723
724
725/* Record things set by INSN.
726   This data is used by oprs_unchanged_p.  */
727
728static void
729record_opr_changes (rtx insn)
730{
731  rtx note;
732
733  /* Find all stores and record them.  */
734  note_stores (PATTERN (insn), record_last_set_info, insn);
735
736  /* Also record autoincremented REGs for this insn as changed.  */
737  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
738    if (REG_NOTE_KIND (note) == REG_INC)
739      record_last_reg_set_info (insn, XEXP (note, 0));
740
741  /* Finally, if this is a call, record all call clobbers.  */
742  if (CALL_P (insn))
743    {
744      unsigned int regno;
745      rtx link, x;
746
747      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
748	if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
749	  record_last_reg_set_info_regno (insn, regno);
750
751      for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
752	if (GET_CODE (XEXP (link, 0)) == CLOBBER)
753	  {
754	    x = XEXP (XEXP (link, 0), 0);
755	    if (REG_P (x))
756	      {
757		gcc_assert (HARD_REGISTER_P (x));
758		record_last_reg_set_info (insn, x);
759	      }
760	  }
761
762      if (! RTL_CONST_OR_PURE_CALL_P (insn))
763	record_last_mem_set_info (insn);
764    }
765}
766
767
768/* Scan the pattern of INSN and add an entry to the hash TABLE.
769   After reload we are interested in loads/stores only.  */
770
771static void
772hash_scan_set (rtx insn)
773{
774  rtx pat = PATTERN (insn);
775  rtx src = SET_SRC (pat);
776  rtx dest = SET_DEST (pat);
777
778  /* We are only interested in loads and stores.  */
779  if (! MEM_P (src) && ! MEM_P (dest))
780    return;
781
782  /* Don't mess with jumps and nops.  */
783  if (JUMP_P (insn) || set_noop_p (pat))
784    return;
785
786  if (REG_P (dest))
787    {
788      if (/* Don't CSE something if we can't do a reg/reg copy.  */
789	  can_copy_p (GET_MODE (dest))
790	  /* Is SET_SRC something we want to gcse?  */
791	  && general_operand (src, GET_MODE (src))
792#ifdef STACK_REGS
793	  /* Never consider insns touching the register stack.  It may
794	     create situations that reg-stack cannot handle (e.g. a stack
795	     register live across an abnormal edge).  */
796	  && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
797#endif
798	  /* An expression is not available if its operands are
799	     subsequently modified, including this insn.  */
800	  && oprs_unchanged_p (src, insn, true))
801	{
802	  insert_expr_in_table (src, insn);
803	}
804    }
805  else if (REG_P (src))
806    {
807      /* Only record sets of pseudo-regs in the hash table.  */
808      if (/* Don't CSE something if we can't do a reg/reg copy.  */
809	  can_copy_p (GET_MODE (src))
810	  /* Is SET_DEST something we want to gcse?  */
811	  && general_operand (dest, GET_MODE (dest))
812#ifdef STACK_REGS
813	  /* As above for STACK_REGS.  */
814	  && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
815#endif
816	  && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
817	  /* Check if the memory expression is killed after insn.  */
818	  && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
819	  && oprs_unchanged_p (XEXP (dest, 0), insn, true))
820	{
821	  insert_expr_in_table (dest, insn);
822	}
823    }
824}
825
826
827/* Create hash table of memory expressions available at end of basic
828   blocks.  Basically you should think of this hash table as the
829   representation of AVAIL_OUT.  This is the set of expressions that
830   is generated in a basic block and not killed before the end of the
831   same basic block.  Notice that this is really a local computation.  */
832
833static void
834compute_hash_table (void)
835{
836  basic_block bb;
837
838  FOR_EACH_BB (bb)
839    {
840      rtx insn;
841
842      /* First pass over the instructions records information used to
843	 determine when registers and memory are last set.
844	 Since we compute a "local" AVAIL_OUT, reset the tables that
845	 help us keep track of what has been modified since the start
846	 of the block.  */
847      reset_opr_set_tables ();
848      FOR_BB_INSNS (bb, insn)
849	{
850	  if (INSN_P (insn))
851            record_opr_changes (insn);
852	}
853
854      /* The next pass actually builds the hash table.  */
855      FOR_BB_INSNS (bb, insn)
856	if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
857	  hash_scan_set (insn);
858    }
859}
860
861
862/* Check if register REG is killed in any insn waiting to be inserted on
863   edge E.  This function is required to check that our data flow analysis
864   is still valid prior to commit_edge_insertions.  */
865
866static bool
867reg_killed_on_edge (rtx reg, edge e)
868{
869  rtx insn;
870
871  for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
872    if (INSN_P (insn) && reg_set_p (reg, insn))
873      return true;
874
875  return false;
876}
877
878/* Similar to above - check if register REG is used in any insn waiting
879   to be inserted on edge E.
880   Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
881   with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p.  */
882
883static bool
884reg_used_on_edge (rtx reg, edge e)
885{
886  rtx insn;
887
888  for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
889    if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
890      return true;
891
892  return false;
893}
894
895/* Return the loaded/stored register of a load/store instruction.  */
896
897static rtx
898get_avail_load_store_reg (rtx insn)
899{
900  if (REG_P (SET_DEST (PATTERN (insn))))
901    /* A load.  */
902    return SET_DEST(PATTERN(insn));
903  else
904    {
905      /* A store.  */
906      gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
907      return SET_SRC (PATTERN (insn));
908    }
909}
910
911/* Return nonzero if the predecessors of BB are "well behaved".  */
912
913static bool
914bb_has_well_behaved_predecessors (basic_block bb)
915{
916  edge pred;
917  edge_iterator ei;
918
919  if (EDGE_COUNT (bb->preds) == 0)
920    return false;
921
922  FOR_EACH_EDGE (pred, ei, bb->preds)
923    {
924      if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
925	return false;
926
927      if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
928	return false;
929    }
930  return true;
931}
932
933
934/* Search for the occurrences of expression in BB.  */
935
936static struct occr*
937get_bb_avail_insn (basic_block bb, struct occr *occr)
938{
939  for (; occr != NULL; occr = occr->next)
940    if (BLOCK_FOR_INSN (occr->insn) == bb)
941      return occr;
942  return NULL;
943}
944
945
946/* This handles the case where several stores feed a partially redundant
947   load. It checks if the redundancy elimination is possible and if it's
948   worth it.
949
950   Redundancy elimination is possible if,
951   1) None of the operands of an insn have been modified since the start
952      of the current basic block.
953   2) In any predecessor of the current basic block, the same expression
954      is generated.
955
956   See the function body for the heuristics that determine if eliminating
957   a redundancy is also worth doing, assuming it is possible.  */
958
959static void
960eliminate_partially_redundant_load (basic_block bb, rtx insn,
961				    struct expr *expr)
962{
963  edge pred;
964  rtx avail_insn = NULL_RTX;
965  rtx avail_reg;
966  rtx dest, pat;
967  struct occr *a_occr;
968  struct unoccr *occr, *avail_occrs = NULL;
969  struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
970  int npred_ok = 0;
971  gcov_type ok_count = 0; /* Redundant load execution count.  */
972  gcov_type critical_count = 0; /* Execution count of critical edges.  */
973  edge_iterator ei;
974  bool critical_edge_split = false;
975
976  /* The execution count of the loads to be added to make the
977     load fully redundant.  */
978  gcov_type not_ok_count = 0;
979  basic_block pred_bb;
980
981  pat = PATTERN (insn);
982  dest = SET_DEST (pat);
983
984  /* Check that the loaded register is not used, set, or killed from the
985     beginning of the block.  */
986  if (reg_changed_after_insn_p (dest, 0)
987      || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
988    return;
989
990  /* Check potential for replacing load with copy for predecessors.  */
991  FOR_EACH_EDGE (pred, ei, bb->preds)
992    {
993      rtx next_pred_bb_end;
994
995      avail_insn = NULL_RTX;
996      avail_reg = NULL_RTX;
997      pred_bb = pred->src;
998      next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
999      for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1000	   a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1001	{
1002	  /* Check if the loaded register is not used.  */
1003	  avail_insn = a_occr->insn;
1004	  avail_reg = get_avail_load_store_reg (avail_insn);
1005	  gcc_assert (avail_reg);
1006
1007	  /* Make sure we can generate a move from register avail_reg to
1008	     dest.  */
1009	  extract_insn (gen_move_insn (copy_rtx (dest),
1010				       copy_rtx (avail_reg)));
1011	  if (! constrain_operands (1)
1012	      || reg_killed_on_edge (avail_reg, pred)
1013	      || reg_used_on_edge (dest, pred))
1014	    {
1015	      avail_insn = NULL;
1016	      continue;
1017	    }
1018	  if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1019	    /* AVAIL_INSN remains non-null.  */
1020	    break;
1021	  else
1022	    avail_insn = NULL;
1023	}
1024
1025      if (EDGE_CRITICAL_P (pred))
1026	critical_count += pred->count;
1027
1028      if (avail_insn != NULL_RTX)
1029	{
1030	  npred_ok++;
1031	  ok_count += pred->count;
1032	  if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1033						    copy_rtx (avail_reg)))))
1034	    {
1035	      /* Check if there is going to be a split.  */
1036	      if (EDGE_CRITICAL_P (pred))
1037		critical_edge_split = true;
1038	    }
1039	  else /* Its a dead move no need to generate.  */
1040	    continue;
1041	  occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1042						  sizeof (struct unoccr));
1043	  occr->insn = avail_insn;
1044	  occr->pred = pred;
1045	  occr->next = avail_occrs;
1046	  avail_occrs = occr;
1047	  if (! rollback_unoccr)
1048	    rollback_unoccr = occr;
1049	}
1050      else
1051	{
1052	  /* Adding a load on a critical edge will cause a split.  */
1053	  if (EDGE_CRITICAL_P (pred))
1054	    critical_edge_split = true;
1055	  not_ok_count += pred->count;
1056	  unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1057						    sizeof (struct unoccr));
1058	  unoccr->insn = NULL_RTX;
1059	  unoccr->pred = pred;
1060	  unoccr->next = unavail_occrs;
1061	  unavail_occrs = unoccr;
1062	  if (! rollback_unoccr)
1063	    rollback_unoccr = unoccr;
1064	}
1065    }
1066
1067  if (/* No load can be replaced by copy.  */
1068      npred_ok == 0
1069      /* Prevent exploding the code.  */
1070      || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1071      /* If we don't have profile information we cannot tell if splitting
1072         a critical edge is profitable or not so don't do it.  */
1073      || ((! profile_info || ! flag_branch_probabilities
1074	   || targetm.cannot_modify_jumps_p ())
1075	  && critical_edge_split))
1076    goto cleanup;
1077
1078  /* Check if it's worth applying the partial redundancy elimination.  */
1079  if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1080    goto cleanup;
1081  if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1082    goto cleanup;
1083
1084  /* Generate moves to the loaded register from where
1085     the memory is available.  */
1086  for (occr = avail_occrs; occr; occr = occr->next)
1087    {
1088      avail_insn = occr->insn;
1089      pred = occr->pred;
1090      /* Set avail_reg to be the register having the value of the
1091	 memory.  */
1092      avail_reg = get_avail_load_store_reg (avail_insn);
1093      gcc_assert (avail_reg);
1094
1095      insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1096					  copy_rtx (avail_reg)),
1097			   pred);
1098      stats.moves_inserted++;
1099
1100      if (dump_file)
1101	fprintf (dump_file,
1102		 "generating move from %d to %d on edge from %d to %d\n",
1103		 REGNO (avail_reg),
1104		 REGNO (dest),
1105		 pred->src->index,
1106		 pred->dest->index);
1107    }
1108
1109  /* Regenerate loads where the memory is unavailable.  */
1110  for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1111    {
1112      pred = unoccr->pred;
1113      insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1114      stats.copies_inserted++;
1115
1116      if (dump_file)
1117	{
1118	  fprintf (dump_file,
1119		   "generating on edge from %d to %d a copy of load: ",
1120		   pred->src->index,
1121		   pred->dest->index);
1122	  print_rtl (dump_file, PATTERN (insn));
1123	  fprintf (dump_file, "\n");
1124	}
1125    }
1126
1127  /* Delete the insn if it is not available in this block and mark it
1128     for deletion if it is available. If insn is available it may help
1129     discover additional redundancies, so mark it for later deletion.  */
1130  for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1131       a_occr && (a_occr->insn != insn);
1132       a_occr = get_bb_avail_insn (bb, a_occr->next));
1133
1134  if (!a_occr)
1135    {
1136      stats.insns_deleted++;
1137
1138      if (dump_file)
1139	{
1140	  fprintf (dump_file, "deleting insn:\n");
1141          print_rtl_single (dump_file, insn);
1142          fprintf (dump_file, "\n");
1143	}
1144      delete_insn (insn);
1145    }
1146  else
1147    a_occr->deleted_p = 1;
1148
1149cleanup:
1150  if (rollback_unoccr)
1151    obstack_free (&unoccr_obstack, rollback_unoccr);
1152}
1153
1154/* Performing the redundancy elimination as described before.  */
1155
1156static void
1157eliminate_partially_redundant_loads (void)
1158{
1159  rtx insn;
1160  basic_block bb;
1161
1162  /* Note we start at block 1.  */
1163
1164  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1165    return;
1166
1167  FOR_BB_BETWEEN (bb,
1168		  ENTRY_BLOCK_PTR->next_bb->next_bb,
1169		  EXIT_BLOCK_PTR,
1170		  next_bb)
1171    {
1172      /* Don't try anything on basic blocks with strange predecessors.  */
1173      if (! bb_has_well_behaved_predecessors (bb))
1174	continue;
1175
1176      /* Do not try anything on cold basic blocks.  */
1177      if (optimize_bb_for_size_p (bb))
1178	continue;
1179
1180      /* Reset the table of things changed since the start of the current
1181	 basic block.  */
1182      reset_opr_set_tables ();
1183
1184      /* Look at all insns in the current basic block and see if there are
1185	 any loads in it that we can record.  */
1186      FOR_BB_INSNS (bb, insn)
1187	{
1188	  /* Is it a load - of the form (set (reg) (mem))?  */
1189	  if (NONJUMP_INSN_P (insn)
1190              && GET_CODE (PATTERN (insn)) == SET
1191	      && REG_P (SET_DEST (PATTERN (insn)))
1192	      && MEM_P (SET_SRC (PATTERN (insn))))
1193	    {
1194	      rtx pat = PATTERN (insn);
1195	      rtx src = SET_SRC (pat);
1196	      struct expr *expr;
1197
1198	      if (!MEM_VOLATILE_P (src)
1199		  && GET_MODE (src) != BLKmode
1200		  && general_operand (src, GET_MODE (src))
1201		  /* Are the operands unchanged since the start of the
1202		     block?  */
1203		  && oprs_unchanged_p (src, insn, false)
1204		  && !(flag_non_call_exceptions && may_trap_p (src))
1205		  && !side_effects_p (src)
1206		  /* Is the expression recorded?  */
1207		  && (expr = lookup_expr_in_table (src)) != NULL)
1208		{
1209		  /* We now have a load (insn) and an available memory at
1210		     its BB start (expr). Try to remove the loads if it is
1211		     redundant.  */
1212		  eliminate_partially_redundant_load (bb, insn, expr);
1213		}
1214	    }
1215
1216	  /* Keep track of everything modified by this insn, so that we
1217	     know what has been modified since the start of the current
1218	     basic block.  */
1219	  if (INSN_P (insn))
1220	    record_opr_changes (insn);
1221	}
1222    }
1223
1224  commit_edge_insertions ();
1225}
1226
1227/* Go over the expression hash table and delete insns that were
1228   marked for later deletion.  */
1229
1230/* This helper is called via htab_traverse.  */
1231static int
1232delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1233{
1234  struct expr *expr = (struct expr *) *slot;
1235  struct occr *occr;
1236
1237  for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1238    {
1239      if (occr->deleted_p && dbg_cnt (gcse2_delete))
1240	{
1241	  delete_insn (occr->insn);
1242	  stats.insns_deleted++;
1243
1244	  if (dump_file)
1245	    {
1246	      fprintf (dump_file, "deleting insn:\n");
1247	      print_rtl_single (dump_file, occr->insn);
1248	      fprintf (dump_file, "\n");
1249	    }
1250	}
1251    }
1252
1253  return 1;
1254}
1255
1256static void
1257delete_redundant_insns (void)
1258{
1259  htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1260  if (dump_file)
1261    fprintf (dump_file, "\n");
1262}
1263
1264/* Main entry point of the GCSE after reload - clean some redundant loads
1265   due to spilling.  */
1266
1267static void
1268gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1269{
1270
1271  memset (&stats, 0, sizeof (stats));
1272
1273  /* Allocate memory for this pass.
1274     Also computes and initializes the insns' CUIDs.  */
1275  alloc_mem ();
1276
1277  /* We need alias analysis.  */
1278  init_alias_analysis ();
1279
1280  compute_hash_table ();
1281
1282  if (dump_file)
1283    dump_hash_table (dump_file);
1284
1285  if (htab_elements (expr_table) > 0)
1286    {
1287      eliminate_partially_redundant_loads ();
1288      delete_redundant_insns ();
1289
1290      if (dump_file)
1291	{
1292	  fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1293	  fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1294	  fprintf (dump_file, "moves inserted:  %d\n", stats.moves_inserted);
1295	  fprintf (dump_file, "insns deleted:   %d\n", stats.insns_deleted);
1296	  fprintf (dump_file, "\n\n");
1297	}
1298    }
1299
1300  /* We are finished with alias.  */
1301  end_alias_analysis ();
1302
1303  free_mem ();
1304}
1305
1306
1307static bool
1308gate_handle_gcse2 (void)
1309{
1310  return (optimize > 0 && flag_gcse_after_reload
1311	  && optimize_function_for_speed_p (cfun));
1312}
1313
1314
1315static unsigned int
1316rest_of_handle_gcse2 (void)
1317{
1318  gcse_after_reload_main (get_insns ());
1319  rebuild_jump_labels (get_insns ());
1320  return 0;
1321}
1322
1323struct rtl_opt_pass pass_gcse2 =
1324{
1325 {
1326  RTL_PASS,
1327  "gcse2",                              /* name */
1328  gate_handle_gcse2,                    /* gate */
1329  rest_of_handle_gcse2,                 /* execute */
1330  NULL,                                 /* sub */
1331  NULL,                                 /* next */
1332  0,                                    /* static_pass_number */
1333  TV_GCSE_AFTER_RELOAD,                 /* tv_id */
1334  0,                                    /* properties_required */
1335  0,                                    /* properties_provided */
1336  0,                                    /* properties_destroyed */
1337  0,                                    /* todo_flags_start */
1338  TODO_dump_func | TODO_verify_rtl_sharing
1339  | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
1340 }
1341};
1342
1343