lra-spills.c revision 1.4
1/* Change pseudos by memory.
2   Copyright (C) 2010-2016 Free Software Foundation, Inc.
3   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.	If not see
19<http://www.gnu.org/licenses/>.	 */
20
21
22/* This file contains code for a pass to change spilled pseudos into
23   memory.
24
25   The pass creates necessary stack slots and assigns spilled pseudos
26   to the stack slots in following way:
27
28   for all spilled pseudos P most frequently used first do
29     for all stack slots S do
30       if P doesn't conflict with pseudos assigned to S then
31	 assign S to P and goto to the next pseudo process
32       end
33     end
34     create new stack slot S and assign P to S
35   end
36
37   The actual algorithm is bit more complicated because of different
38   pseudo sizes.
39
40   After that the code changes spilled pseudos (except ones created
41   from scratches) by corresponding stack slot memory in RTL.
42
43   If at least one stack slot was created, we need to run more passes
44   because we have new addresses which should be checked and because
45   the old address displacements might change and address constraints
46   (or insn memory constraints) might not be satisfied any more.
47
48   For some targets, the pass can spill some pseudos into hard
49   registers of different class (usually into vector registers)
50   instead of spilling them into memory if it is possible and
51   profitable.  Spilling GENERAL_REGS pseudo into SSE registers for
52   Intel Corei7 is an example of such optimization.  And this is
53   actually recommended by Intel optimization guide.
54
55   The file also contains code for final change of pseudos on hard
56   regs correspondingly assigned to them.  */
57
58#include "config.h"
59#include "system.h"
60#include "coretypes.h"
61#include "backend.h"
62#include "target.h"
63#include "rtl.h"
64#include "df.h"
65#include "insn-config.h"
66#include "regs.h"
67#include "ira.h"
68#include "recog.h"
69#include "output.h"
70#include "cfgrtl.h"
71#include "lra.h"
72#include "lra-int.h"
73
74
75/* Max regno at the start of the pass.	*/
76static int regs_num;
77
78/* Map spilled regno -> hard regno used instead of memory for
79   spilling.  */
80static rtx *spill_hard_reg;
81
82/* The structure describes stack slot of a spilled pseudo.  */
83struct pseudo_slot
84{
85  /* Number (0, 1, ...) of the stack slot to which given pseudo
86     belongs.  */
87  int slot_num;
88  /* First or next slot with the same slot number.  */
89  struct pseudo_slot *next, *first;
90  /* Memory representing the spilled pseudo.  */
91  rtx mem;
92};
93
94/* The stack slots for each spilled pseudo.  Indexed by regnos.	 */
95static struct pseudo_slot *pseudo_slots;
96
97/* The structure describes a register or a stack slot which can be
98   used for several spilled pseudos.  */
99struct slot
100{
101  /* First pseudo with given stack slot.  */
102  int regno;
103  /* Hard reg into which the slot pseudos are spilled.	The value is
104     negative for pseudos spilled into memory.	*/
105  int hard_regno;
106  /* Memory representing the all stack slot.  It can be different from
107     memory representing a pseudo belonging to give stack slot because
108     pseudo can be placed in a part of the corresponding stack slot.
109     The value is NULL for pseudos spilled into a hard reg.  */
110  rtx mem;
111  /* Combined live ranges of all pseudos belonging to given slot.  It
112     is used to figure out that a new spilled pseudo can use given
113     stack slot.  */
114  lra_live_range_t live_ranges;
115};
116
117/* Array containing info about the stack slots.	 The array element is
118   indexed by the stack slot number in the range [0..slots_num).  */
119static struct slot *slots;
120/* The number of the stack slots currently existing.  */
121static int slots_num;
122
123/* Set up memory of the spilled pseudo I.  The function can allocate
124   the corresponding stack slot if it is not done yet.	*/
125static void
126assign_mem_slot (int i)
127{
128  rtx x = NULL_RTX;
129  machine_mode mode = GET_MODE (regno_reg_rtx[i]);
130  unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
131  unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
132  unsigned int max_ref_width = GET_MODE_SIZE (lra_reg_info[i].biggest_mode);
133  unsigned int total_size = MAX (inherent_size, max_ref_width);
134  unsigned int min_align = max_ref_width * BITS_PER_UNIT;
135  int adjust = 0;
136
137  lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
138	      && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
139
140  x = slots[pseudo_slots[i].slot_num].mem;
141
142  /* We can use a slot already allocated because it is guaranteed the
143     slot provides both enough inherent space and enough total
144     space.  */
145  if (x)
146    ;
147  /* Each pseudo has an inherent size which comes from its own mode,
148     and a total size which provides room for paradoxical subregs
149     which refer to the pseudo reg in wider modes.  We allocate a new
150     slot, making sure that it has enough inherent space and total
151     space.  */
152  else
153    {
154      rtx stack_slot;
155
156      /* No known place to spill from => no slot to reuse.  */
157      x = assign_stack_local (mode, total_size,
158			      min_align > inherent_align
159			      || total_size > inherent_size ? -1 : 0);
160      stack_slot = x;
161      /* Cancel the big-endian correction done in assign_stack_local.
162	 Get the address of the beginning of the slot.	This is so we
163	 can do a big-endian correction unconditionally below.	*/
164      if (BYTES_BIG_ENDIAN)
165	{
166	  adjust = inherent_size - total_size;
167	  if (adjust)
168	    stack_slot
169	      = adjust_address_nv (x,
170				   mode_for_size (total_size * BITS_PER_UNIT,
171						  MODE_INT, 1),
172				   adjust);
173	}
174      slots[pseudo_slots[i].slot_num].mem = stack_slot;
175    }
176
177  /* On a big endian machine, the "address" of the slot is the address
178     of the low part that fits its inherent mode.  */
179  if (BYTES_BIG_ENDIAN && inherent_size < total_size)
180    adjust += (total_size - inherent_size);
181
182  x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
183
184  /* Set all of the memory attributes as appropriate for a spill.  */
185  set_mem_attrs_for_spill (x);
186  pseudo_slots[i].mem = x;
187}
188
189/* Sort pseudos according their usage frequencies.  */
190static int
191regno_freq_compare (const void *v1p, const void *v2p)
192{
193  const int regno1 = *(const int *) v1p;
194  const int regno2 = *(const int *) v2p;
195  int diff;
196
197  if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
198    return diff;
199  return regno1 - regno2;
200}
201
202/* Sort pseudos according to their slots, putting the slots in the order
203   that they should be allocated.  Slots with lower numbers have the highest
204   priority and should get the smallest displacement from the stack or
205   frame pointer (whichever is being used).
206
207   The first allocated slot is always closest to the frame pointer,
208   so prefer lower slot numbers when frame_pointer_needed.  If the stack
209   and frame grow in the same direction, then the first allocated slot is
210   always closest to the initial stack pointer and furthest away from the
211   final stack pointer, so allocate higher numbers first when using the
212   stack pointer in that case.  The reverse is true if the stack and
213   frame grow in opposite directions.  */
214static int
215pseudo_reg_slot_compare (const void *v1p, const void *v2p)
216{
217  const int regno1 = *(const int *) v1p;
218  const int regno2 = *(const int *) v2p;
219  int diff, slot_num1, slot_num2;
220  int total_size1, total_size2;
221
222  slot_num1 = pseudo_slots[regno1].slot_num;
223  slot_num2 = pseudo_slots[regno2].slot_num;
224  if ((diff = slot_num1 - slot_num2) != 0)
225    return (frame_pointer_needed
226	    || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
227  total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
228  total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
229  if ((diff = total_size2 - total_size1) != 0)
230    return diff;
231  return regno1 - regno2;
232}
233
234/* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
235   sorted in order of highest frequency first.  Put the pseudos which
236   did not get a spill hard register at the beginning of array
237   PSEUDO_REGNOS.  Return the number of such pseudos.  */
238static int
239assign_spill_hard_regs (int *pseudo_regnos, int n)
240{
241  int i, k, p, regno, res, spill_class_size, hard_regno, nr;
242  enum reg_class rclass, spill_class;
243  machine_mode mode;
244  lra_live_range_t r;
245  rtx_insn *insn;
246  rtx set;
247  basic_block bb;
248  HARD_REG_SET conflict_hard_regs;
249  bitmap_head ok_insn_bitmap;
250  bitmap setjump_crosses = regstat_get_setjmp_crosses ();
251  /* Hard registers which can not be used for any purpose at given
252     program point because they are unallocatable or already allocated
253     for other pseudos.	 */
254  HARD_REG_SET *reserved_hard_regs;
255
256  if (! lra_reg_spill_p)
257    return n;
258  /* Set up reserved hard regs for every program point.	 */
259  reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
260  for (p = 0; p < lra_live_max_point; p++)
261    COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
262  for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
263    if (lra_reg_info[i].nrefs != 0
264	&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
265      for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
266	for (p = r->start; p <= r->finish; p++)
267	  add_to_hard_reg_set (&reserved_hard_regs[p],
268			       lra_reg_info[i].biggest_mode, hard_regno);
269  bitmap_initialize (&ok_insn_bitmap, &reg_obstack);
270  FOR_EACH_BB_FN (bb, cfun)
271    FOR_BB_INSNS (bb, insn)
272      if (DEBUG_INSN_P (insn)
273	  || ((set = single_set (insn)) != NULL_RTX
274	      && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
275	bitmap_set_bit (&ok_insn_bitmap, INSN_UID (insn));
276  for (res = i = 0; i < n; i++)
277    {
278      regno = pseudo_regnos[i];
279      rclass = lra_get_allocno_class (regno);
280      if (bitmap_bit_p (setjump_crosses, regno)
281	  || (spill_class
282	      = ((enum reg_class)
283		 targetm.spill_class ((reg_class_t) rclass,
284				      PSEUDO_REGNO_MODE (regno)))) == NO_REGS
285	  || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
286				       &ok_insn_bitmap))
287	{
288	  pseudo_regnos[res++] = regno;
289	  continue;
290	}
291      lra_assert (spill_class != NO_REGS);
292      COPY_HARD_REG_SET (conflict_hard_regs,
293			 lra_reg_info[regno].conflict_hard_regs);
294      for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
295	for (p = r->start; p <= r->finish; p++)
296	  IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
297      spill_class_size = ira_class_hard_regs_num[spill_class];
298      mode = lra_reg_info[regno].biggest_mode;
299      for (k = 0; k < spill_class_size; k++)
300	{
301	  hard_regno = ira_class_hard_regs[spill_class][k];
302	  if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
303	    break;
304	}
305      if (k >= spill_class_size)
306	{
307	   /* There is no available regs -- assign memory later.  */
308	  pseudo_regnos[res++] = regno;
309	  continue;
310	}
311      if (lra_dump_file != NULL)
312	fprintf (lra_dump_file, "  Spill r%d into hr%d\n", regno, hard_regno);
313      /* Update reserved_hard_regs.  */
314      for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
315	for (p = r->start; p <= r->finish; p++)
316	  add_to_hard_reg_set (&reserved_hard_regs[p],
317			       lra_reg_info[regno].biggest_mode, hard_regno);
318      spill_hard_reg[regno]
319	= gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
320      for (nr = 0;
321	   nr < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
322	   nr++)
323	/* Just loop.  */
324	df_set_regs_ever_live (hard_regno + nr, true);
325    }
326  bitmap_clear (&ok_insn_bitmap);
327  free (reserved_hard_regs);
328  return res;
329}
330
331/* Add pseudo REGNO to slot SLOT_NUM.  */
332static void
333add_pseudo_to_slot (int regno, int slot_num)
334{
335  struct pseudo_slot *first;
336
337  if (slots[slot_num].regno < 0)
338    {
339      /* It is the first pseudo in the slot.  */
340      slots[slot_num].regno = regno;
341      pseudo_slots[regno].first = &pseudo_slots[regno];
342      pseudo_slots[regno].next = NULL;
343    }
344  else
345    {
346      first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
347      pseudo_slots[regno].next = first->next;
348      first->next = &pseudo_slots[regno];
349    }
350  pseudo_slots[regno].mem = NULL_RTX;
351  pseudo_slots[regno].slot_num = slot_num;
352  slots[slot_num].live_ranges
353    = lra_merge_live_ranges (slots[slot_num].live_ranges,
354			     lra_copy_live_range_list
355			     (lra_reg_info[regno].live_ranges));
356}
357
358/* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
359   length N.  Sort pseudos in PSEUDO_REGNOS for subsequent assigning
360   memory stack slots.	*/
361static void
362assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
363{
364  int i, j, regno;
365
366  slots_num = 0;
367  /* Assign stack slot numbers to spilled pseudos, use smaller numbers
368     for most frequently used pseudos.	*/
369  for (i = 0; i < n; i++)
370    {
371      regno = pseudo_regnos[i];
372      if (! flag_ira_share_spill_slots)
373	j = slots_num;
374      else
375	{
376	  for (j = 0; j < slots_num; j++)
377	    if (slots[j].hard_regno < 0
378		&& ! (lra_intersected_live_ranges_p
379		      (slots[j].live_ranges,
380		       lra_reg_info[regno].live_ranges)))
381	      break;
382	}
383      if (j >= slots_num)
384	{
385	  /* New slot.	*/
386	  slots[j].live_ranges = NULL;
387	  slots[j].regno = slots[j].hard_regno = -1;
388	  slots[j].mem = NULL_RTX;
389	  slots_num++;
390	}
391      add_pseudo_to_slot (regno, j);
392    }
393  /* Sort regnos according to their slot numbers.  */
394  qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
395}
396
397/* Recursively process LOC in INSN and change spilled pseudos to the
398   corresponding memory or spilled hard reg.  Ignore spilled pseudos
399   created from the scratches.  Return true if the pseudo nrefs equal
400   to 0 (don't change the pseudo in this case).  Otherwise return false.  */
401static bool
402remove_pseudos (rtx *loc, rtx_insn *insn)
403{
404  int i;
405  rtx hard_reg;
406  const char *fmt;
407  enum rtx_code code;
408  bool res = false;
409
410  if (*loc == NULL_RTX)
411    return res;
412  code = GET_CODE (*loc);
413  if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
414      && lra_get_regno_hard_regno (i) < 0
415      /* We do not want to assign memory for former scratches because
416	 it might result in an address reload for some targets.	 In
417	 any case we transform such pseudos not getting hard registers
418	 into scratches back.  */
419      && ! lra_former_scratch_p (i))
420    {
421      if (lra_reg_info[i].nrefs == 0
422	  && pseudo_slots[i].mem == NULL && spill_hard_reg[i] == NULL)
423	return true;
424      if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
425	*loc = copy_rtx (hard_reg);
426      else
427	{
428	  rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
429					GET_MODE (pseudo_slots[i].mem),
430					false, false, 0, true);
431	  *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
432	}
433      return res;
434    }
435
436  fmt = GET_RTX_FORMAT (code);
437  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
438    {
439      if (fmt[i] == 'e')
440	res = remove_pseudos (&XEXP (*loc, i), insn) || res;
441      else if (fmt[i] == 'E')
442	{
443	  int j;
444
445	  for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
446	    res = remove_pseudos (&XVECEXP (*loc, i, j), insn) || res;
447	}
448    }
449  return res;
450}
451
452/* Convert spilled pseudos into their stack slots or spill hard regs,
453   put insns to process on the constraint stack (that is all insns in
454   which pseudos were changed to memory or spill hard regs).   */
455static void
456spill_pseudos (void)
457{
458  basic_block bb;
459  rtx_insn *insn, *curr;
460  int i;
461  bitmap_head spilled_pseudos, changed_insns;
462
463  bitmap_initialize (&spilled_pseudos, &reg_obstack);
464  bitmap_initialize (&changed_insns, &reg_obstack);
465  for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
466    {
467      if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
468	  && ! lra_former_scratch_p (i))
469	{
470	  bitmap_set_bit (&spilled_pseudos, i);
471	  bitmap_ior_into (&changed_insns, &lra_reg_info[i].insn_bitmap);
472	}
473    }
474  FOR_EACH_BB_FN (bb, cfun)
475    {
476      FOR_BB_INSNS_SAFE (bb, insn, curr)
477	{
478	  bool removed_pseudo_p = false;
479
480	  if (bitmap_bit_p (&changed_insns, INSN_UID (insn)))
481	    {
482	      rtx *link_loc, link;
483
484	      removed_pseudo_p = remove_pseudos (&PATTERN (insn), insn);
485	      if (CALL_P (insn)
486		  && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
487		removed_pseudo_p = true;
488	      for (link_loc = &REG_NOTES (insn);
489		   (link = *link_loc) != NULL_RTX;
490		   link_loc = &XEXP (link, 1))
491		{
492		  switch (REG_NOTE_KIND (link))
493		    {
494		    case REG_FRAME_RELATED_EXPR:
495		    case REG_CFA_DEF_CFA:
496		    case REG_CFA_ADJUST_CFA:
497		    case REG_CFA_OFFSET:
498		    case REG_CFA_REGISTER:
499		    case REG_CFA_EXPRESSION:
500		    case REG_CFA_RESTORE:
501		    case REG_CFA_SET_VDRAP:
502		      if (remove_pseudos (&XEXP (link, 0), insn))
503			removed_pseudo_p = true;
504		      break;
505		    default:
506		      break;
507		    }
508		}
509	      if (lra_dump_file != NULL)
510		fprintf (lra_dump_file,
511			 "Changing spilled pseudos to memory in insn #%u\n",
512			 INSN_UID (insn));
513	      lra_push_insn (insn);
514	      if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
515		lra_set_used_insn_alternative (insn, -1);
516	    }
517	  else if (CALL_P (insn)
518		   /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE
519		      does not affect value of insn_bitmap of the
520		      corresponding lra_reg_info.  That is because we
521		      don't need to reload pseudos in
522		      CALL_INSN_FUNCTION_USAGEs.  So if we process only
523		      insns in the insn_bitmap of given pseudo here, we
524		      can miss the pseudo in some
525		      CALL_INSN_FUNCTION_USAGEs.  */
526		   && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
527	    removed_pseudo_p = true;
528	  if (removed_pseudo_p)
529	    {
530	      lra_assert (DEBUG_INSN_P (insn));
531	      lra_invalidate_insn_data (insn);
532	      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
533	      if (lra_dump_file != NULL)
534		fprintf (lra_dump_file,
535			 "Debug insn #%u is reset because it referenced "
536			 "removed pseudo\n", INSN_UID (insn));
537	    }
538	  bitmap_and_compl_into (df_get_live_in (bb), &spilled_pseudos);
539	  bitmap_and_compl_into (df_get_live_out (bb), &spilled_pseudos);
540	}
541    }
542  bitmap_clear (&spilled_pseudos);
543  bitmap_clear (&changed_insns);
544}
545
546/* Return true if we need to change some pseudos into memory.  */
547bool
548lra_need_for_spills_p (void)
549{
550  int i; max_regno = max_reg_num ();
551
552  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
553    if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
554	&& ! lra_former_scratch_p (i))
555      return true;
556  return false;
557}
558
559/* Change spilled pseudos into memory or spill hard regs.  Put changed
560   insns on the constraint stack (these insns will be considered on
561   the next constraint pass).  The changed insns are all insns in
562   which pseudos were changed.  */
563void
564lra_spill (void)
565{
566  int i, n, curr_regno;
567  int *pseudo_regnos;
568
569  regs_num = max_reg_num ();
570  spill_hard_reg = XNEWVEC (rtx, regs_num);
571  pseudo_regnos = XNEWVEC (int, regs_num);
572  for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
573    if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
574	/* We do not want to assign memory for former scratches.  */
575	&& ! lra_former_scratch_p (i))
576      pseudo_regnos[n++] = i;
577  lra_assert (n > 0);
578  pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
579  for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
580    {
581      spill_hard_reg[i] = NULL_RTX;
582      pseudo_slots[i].mem = NULL_RTX;
583    }
584  slots = XNEWVEC (struct slot, regs_num);
585  /* Sort regnos according their usage frequencies.  */
586  qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
587  n = assign_spill_hard_regs (pseudo_regnos, n);
588  assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
589  for (i = 0; i < n; i++)
590    if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
591      assign_mem_slot (pseudo_regnos[i]);
592  if (n > 0 && crtl->stack_alignment_needed)
593    /* If we have a stack frame, we must align it now.  The stack size
594       may be a part of the offset computation for register
595       elimination.  */
596    assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
597  if (lra_dump_file != NULL)
598    {
599      for (i = 0; i < slots_num; i++)
600	{
601	  fprintf (lra_dump_file, "  Slot %d regnos (width = %d):", i,
602		   GET_MODE_SIZE (GET_MODE (slots[i].mem)));
603	  for (curr_regno = slots[i].regno;;
604	       curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
605	    {
606	      fprintf (lra_dump_file, "	 %d", curr_regno);
607	      if (pseudo_slots[curr_regno].next == NULL)
608		break;
609	    }
610	  fprintf (lra_dump_file, "\n");
611	}
612    }
613  spill_pseudos ();
614  free (slots);
615  free (pseudo_slots);
616  free (pseudo_regnos);
617  free (spill_hard_reg);
618}
619
620/* Apply alter_subreg for subregs of regs in *LOC.  Use FINAL_P for
621   alter_subreg calls. Return true if any subreg of reg is
622   processed.  */
623static bool
624alter_subregs (rtx *loc, bool final_p)
625{
626  int i;
627  rtx x = *loc;
628  bool res;
629  const char *fmt;
630  enum rtx_code code;
631
632  if (x == NULL_RTX)
633    return false;
634  code = GET_CODE (x);
635  if (code == SUBREG && REG_P (SUBREG_REG (x)))
636    {
637      lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
638      alter_subreg (loc, final_p);
639      return true;
640    }
641  fmt = GET_RTX_FORMAT (code);
642  res = false;
643  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
644    {
645      if (fmt[i] == 'e')
646	{
647	  if (alter_subregs (&XEXP (x, i), final_p))
648	    res = true;
649	}
650      else if (fmt[i] == 'E')
651	{
652	  int j;
653
654	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
655	    if (alter_subregs (&XVECEXP (x, i, j), final_p))
656	      res = true;
657	}
658    }
659  return res;
660}
661
662/* Return true if REGNO is used for return in the current
663   function.  */
664static bool
665return_regno_p (unsigned int regno)
666{
667  rtx outgoing = crtl->return_rtx;
668
669  if (! outgoing)
670    return false;
671
672  if (REG_P (outgoing))
673    return REGNO (outgoing) == regno;
674  else if (GET_CODE (outgoing) == PARALLEL)
675    {
676      int i;
677
678      for (i = 0; i < XVECLEN (outgoing, 0); i++)
679	{
680	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
681
682	  if (REG_P (x) && REGNO (x) == regno)
683	    return true;
684	}
685    }
686  return false;
687}
688
689/* Final change of pseudos got hard registers into the corresponding
690   hard registers and removing temporary clobbers.  */
691void
692lra_final_code_change (void)
693{
694  int i, hard_regno;
695  basic_block bb;
696  rtx_insn *insn, *curr;
697  int max_regno = max_reg_num ();
698
699  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
700    if (lra_reg_info[i].nrefs != 0
701	&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
702      SET_REGNO (regno_reg_rtx[i], hard_regno);
703  FOR_EACH_BB_FN (bb, cfun)
704    FOR_BB_INSNS_SAFE (bb, insn, curr)
705      if (INSN_P (insn))
706	{
707	  rtx pat = PATTERN (insn);
708
709	  if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
710	    {
711	      /* Remove clobbers temporarily created in LRA.  We don't
712		 need them anymore and don't want to waste compiler
713		 time processing them in a few subsequent passes.  */
714	      lra_invalidate_insn_data (insn);
715	      delete_insn (insn);
716	      continue;
717	    }
718
719	  /* IRA can generate move insns involving pseudos.  It is
720	     better remove them earlier to speed up compiler a bit.
721	     It is also better to do it here as they might not pass
722	     final RTL check in LRA, (e.g. insn moving a control
723	     register into itself).  So remove an useless move insn
724	     unless next insn is USE marking the return reg (we should
725	     save this as some subsequent optimizations assume that
726	     such original insns are saved).  */
727	  if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
728	      && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
729	      && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
730	      && ! return_regno_p (REGNO (SET_SRC (pat))))
731	    {
732	      lra_invalidate_insn_data (insn);
733	      delete_insn (insn);
734	      continue;
735	    }
736
737	  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
738	  struct lra_insn_reg *reg;
739
740	  for (reg = id->regs; reg != NULL; reg = reg->next)
741	    if (reg->regno >= FIRST_PSEUDO_REGISTER
742		&& lra_reg_info [reg->regno].nrefs == 0)
743	      break;
744
745	  if (reg != NULL)
746	    {
747	      /* Pseudos still can be in debug insns in some very rare
748		 and complicated cases, e.g. the pseudo was removed by
749		 inheritance and the debug insn is not EBBs where the
750		 inheritance happened.  It is difficult and time
751		 consuming to find what hard register corresponds the
752		 pseudo -- so just remove the debug insn.  Another
753		 solution could be assigning hard reg/memory but it
754		 would be a misleading info.  It is better not to have
755		 info than have it wrong.  */
756	      lra_assert (DEBUG_INSN_P (insn));
757	      lra_invalidate_insn_data (insn);
758	      delete_insn (insn);
759	      continue;
760	    }
761
762	  struct lra_static_insn_data *static_id = id->insn_static_data;
763	  bool insn_change_p = false;
764
765	  for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
766	    if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
767		&& alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
768	      {
769		lra_update_dup (id, i);
770		insn_change_p = true;
771	      }
772	  if (insn_change_p)
773	    lra_update_operator_dups (id);
774	}
775}
776