ipa-inline.h revision 1.1.1.1
1/* Inlining decision heuristics.
2   Copyright (C) 2003-2013 Free Software Foundation, Inc.
3   Contributed by Jan Hubicka
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "ipa-prop.h"
22
23/* Representation of inline parameters that do depend on context function is
24   inlined into (i.e. known constant values of function parameters.
25
26   Conditions that are interesting for function body are collected into CONDS
27   vector.  They are of simple for  function_param OP VAL, where VAL is
28   IPA invariant.  The conditions are then referred by predicates.  */
29
30typedef struct GTY(()) condition
31  {
32    /* If agg_contents is set, this is the offset from which the used data was
33       loaded.  */
34    HOST_WIDE_INT offset;
35    tree val;
36    int operand_num;
37    ENUM_BITFIELD(tree_code) code : 16;
38    /* Set if the used data were loaded from an aggregate parameter or from
39       data received by reference.  */
40    unsigned agg_contents : 1;
41    /* If agg_contents is set, this differentiates between loads from data
42       passed by reference and by value.  */
43    unsigned by_ref : 1;
44  } condition;
45
46/* Inline hints are reasons why inline heuristics should preffer inlining given
47   function.  They are represtented as bitmap of the following values.  */
48enum inline_hints_vals {
49  /* When inlining turns indirect call into a direct call,
50     it is good idea to do so.  */
51  INLINE_HINT_indirect_call = 1,
52  /* Inlining may make loop iterations or loop stride known.  It is good idea
53     to do so because it enables loop optimizatoins.  */
54  INLINE_HINT_loop_iterations = 2,
55  INLINE_HINT_loop_stride = 4,
56  /* Inlining withing same strongly connected component of callgraph is often
57     a loss due to increased stack frame usage and prologue setup costs.  */
58  INLINE_HINT_same_scc = 8,
59  /* Inlining functions in strongly connected component is not such a great
60     win.  */
61  INLINE_HINT_in_scc = 16,
62  /* If function is declared inline by user, it may be good idea to inline
63     it.  */
64  INLINE_HINT_declared_inline = 32,
65  /* Programs are usually still organized for non-LTO compilation and thus
66     if functions are in different modules, inlining may not be so important.
67   */
68  INLINE_HINT_cross_module = 64,
69  /* If array indexes of loads/stores become known there may be room for
70     futher optimization.  */
71  INLINE_HINT_array_index = 128
72};
73typedef int inline_hints;
74
75
76typedef vec<condition, va_gc> *conditions;
77
78/* Representation of predicates i.e. formulas using conditions defined
79   above.  Predicates are simple logical formulas in conjunctive-disjunctive
80   form.
81
82   Predicate is array of clauses terminated by 0.  Every clause must be true
83   in order to make predicate true.
84   Clauses are represented as bitmaps of conditions. One of conditions
85   must be true in order for clause to be true.  */
86
87#define MAX_CLAUSES 8
88typedef unsigned int clause_t;
89struct GTY(()) predicate
90{
91  clause_t clause[MAX_CLAUSES + 1];
92};
93
94/* Represnetation of function body size and time depending on the inline
95   context.  We keep simple array of record, every containing of predicate
96   and time/size to account.
97
98   We keep values scaled up, so fractional sizes and times can be
99   accounted.  */
100#define INLINE_SIZE_SCALE 2
101#define INLINE_TIME_SCALE (CGRAPH_FREQ_BASE * 2)
102typedef struct GTY(()) size_time_entry
103{
104  struct predicate predicate;
105  int size;
106  int time;
107} size_time_entry;
108
109/* Function inlining information.  */
110struct GTY(()) inline_summary
111{
112  /* Information about the function body itself.  */
113
114  /* Estimated stack frame consumption by the function.  */
115  HOST_WIDE_INT estimated_self_stack_size;
116  /* Size of the function body.  */
117  int self_size;
118  /* Time of the function body.  */
119  int self_time;
120
121  /* False when there something makes inlining impossible (such as va_arg).  */
122  unsigned inlinable : 1;
123
124  /* Information about function that will result after applying all the
125     inline decisions present in the callgraph.  Generally kept up to
126     date only for functions that are not inline clones. */
127
128  /* Estimated stack frame consumption by the function.  */
129  HOST_WIDE_INT estimated_stack_size;
130  /* Expected offset of the stack frame of inlined function.  */
131  HOST_WIDE_INT stack_frame_offset;
132  /* Estimated size of the function after inlining.  */
133  int time;
134  int size;
135
136  /* Conditional size/time information.  The summaries are being
137     merged during inlining.  */
138  conditions conds;
139  vec<size_time_entry, va_gc> *entry;
140
141  /* Predicate on when some loop in the function becomes to have known
142     bounds.   */
143  struct predicate * GTY((skip)) loop_iterations;
144  /* Predicate on when some loop in the function becomes to have known
145     stride.   */
146  struct predicate * GTY((skip)) loop_stride;
147  /* Predicate on when some array indexes become constants.  */
148  struct predicate * GTY((skip)) array_index;
149  /* Estimated growth for inlining all copies of the function before start
150     of small functions inlining.
151     This value will get out of date as the callers are duplicated, but
152     using up-to-date value in the badness metric mean a lot of extra
153     expenses.  */
154  int growth;
155  /* Number of SCC on the beggining of inlining process.  */
156  int scc_no;
157};
158
159
160typedef struct inline_summary inline_summary_t;
161extern GTY(()) vec<inline_summary_t, va_gc> *inline_summary_vec;
162
163/* Information kept about parameter of call site.  */
164struct inline_param_summary
165{
166  /* REG_BR_PROB_BASE based probability that parameter will change in between
167     two invocation of the calls.
168     I.e. loop invariant parameters
169     REG_BR_PROB_BASE/estimated_iterations and regular
170     parameters REG_BR_PROB_BASE.
171
172     Value 0 is reserved for compile time invariants. */
173  int change_prob;
174};
175typedef struct inline_param_summary inline_param_summary_t;
176
177/* Information kept about callgraph edges.  */
178struct inline_edge_summary
179{
180  /* Estimated size and time of the call statement.  */
181  int call_stmt_size;
182  int call_stmt_time;
183  /* Depth of loop nest, 0 means no nesting.  */
184  unsigned short int loop_depth;
185  struct predicate *predicate;
186  /* Array indexed by parameters.
187     0 means that parameter change all the time, REG_BR_PROB_BASE means
188     that parameter is constant.  */
189  vec<inline_param_summary_t> param;
190};
191
192typedef struct inline_edge_summary inline_edge_summary_t;
193extern vec<inline_edge_summary_t> inline_edge_summary_vec;
194
195typedef struct edge_growth_cache_entry
196{
197  int time, size;
198  inline_hints hints;
199} edge_growth_cache_entry;
200
201extern vec<int> node_growth_cache;
202extern vec<edge_growth_cache_entry> edge_growth_cache;
203
204/* In ipa-inline-analysis.c  */
205void debug_inline_summary (struct cgraph_node *);
206void dump_inline_summaries (FILE *f);
207void dump_inline_summary (FILE *f, struct cgraph_node *node);
208void dump_inline_hints (FILE *f, inline_hints);
209void inline_generate_summary (void);
210void inline_read_summary (void);
211void inline_write_summary (void);
212void inline_free_summary (void);
213void initialize_inline_failed (struct cgraph_edge *);
214int estimate_time_after_inlining (struct cgraph_node *, struct cgraph_edge *);
215int estimate_size_after_inlining (struct cgraph_node *, struct cgraph_edge *);
216void estimate_ipcp_clone_size_and_time (struct cgraph_node *,
217					vec<tree>,  vec<tree>,
218					vec<ipa_agg_jump_function_p>,
219					int *, int *, inline_hints *);
220int do_estimate_growth (struct cgraph_node *);
221void inline_merge_summary (struct cgraph_edge *edge);
222void inline_update_overall_summary (struct cgraph_node *node);
223int do_estimate_edge_size (struct cgraph_edge *edge);
224int do_estimate_edge_time (struct cgraph_edge *edge);
225inline_hints do_estimate_edge_hints (struct cgraph_edge *edge);
226void initialize_growth_caches (void);
227void free_growth_caches (void);
228void compute_inline_parameters (struct cgraph_node *, bool);
229
230/* In ipa-inline-transform.c  */
231bool inline_call (struct cgraph_edge *, bool, vec<cgraph_edge_p> *, int *, bool);
232unsigned int inline_transform (struct cgraph_node *);
233void clone_inlined_nodes (struct cgraph_edge *e, bool, bool, int *);
234
235extern int ncalls_inlined;
236extern int nfunctions_inlined;
237
238static inline struct inline_summary *
239inline_summary (struct cgraph_node *node)
240{
241  return &(*inline_summary_vec)[node->uid];
242}
243
244static inline struct inline_edge_summary *
245inline_edge_summary (struct cgraph_edge *edge)
246{
247  return &inline_edge_summary_vec[edge->uid];
248}
249
250/* Return estimated unit growth after inlning all calls to NODE.
251   Quick accesors to the inline growth caches.
252   For convenience we keep zero 0 as unknown.  Because growth
253   can be both positive and negative, we simply increase positive
254   growths by 1. */
255static inline int
256estimate_growth (struct cgraph_node *node)
257{
258  int ret;
259  if ((int)node_growth_cache.length () <= node->uid
260      || !(ret = node_growth_cache[node->uid]))
261    return do_estimate_growth (node);
262  return ret - (ret > 0);
263}
264
265
266/* Return estimated size of the inline sequence of EDGE.  */
267
268static inline int
269estimate_edge_size (struct cgraph_edge *edge)
270{
271  int ret;
272  if ((int)edge_growth_cache.length () <= edge->uid
273      || !(ret = edge_growth_cache[edge->uid].size))
274    return do_estimate_edge_size (edge);
275  return ret - (ret > 0);
276}
277
278/* Return estimated callee growth after inlining EDGE.  */
279
280static inline int
281estimate_edge_growth (struct cgraph_edge *edge)
282{
283#ifdef ENABLE_CHECKING
284  gcc_checking_assert (inline_edge_summary (edge)->call_stmt_size);
285#endif
286  return (estimate_edge_size (edge)
287	  - inline_edge_summary (edge)->call_stmt_size);
288}
289
290/* Return estimated callee runtime increase after inlning
291   EDGE.  */
292
293static inline int
294estimate_edge_time (struct cgraph_edge *edge)
295{
296  int ret;
297  if ((int)edge_growth_cache.length () <= edge->uid
298      || !(ret =  edge_growth_cache[edge->uid].time))
299    return do_estimate_edge_time (edge);
300  return ret - (ret > 0);
301}
302
303
304/* Return estimated callee runtime increase after inlning
305   EDGE.  */
306
307static inline inline_hints
308estimate_edge_hints (struct cgraph_edge *edge)
309{
310  inline_hints ret;
311  if ((int)edge_growth_cache.length () <= edge->uid
312      || !(ret = edge_growth_cache[edge->uid].hints))
313    return do_estimate_edge_hints (edge);
314  return ret - 1;
315}
316
317
318/* Reset cached value for NODE.  */
319
320static inline void
321reset_node_growth_cache (struct cgraph_node *node)
322{
323  if ((int)node_growth_cache.length () > node->uid)
324    node_growth_cache[node->uid] = 0;
325}
326
327/* Reset cached value for EDGE.  */
328
329static inline void
330reset_edge_growth_cache (struct cgraph_edge *edge)
331{
332  if ((int)edge_growth_cache.length () > edge->uid)
333    {
334      struct edge_growth_cache_entry zero = {0, 0, 0};
335      edge_growth_cache[edge->uid] = zero;
336    }
337}
338