1/* Target-dependent costs for expmed.c.
2   Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#ifndef EXPMED_H
21#define EXPMED_H 1
22
23#include "insn-codes.h"
24
25enum alg_code {
26  alg_unknown,
27  alg_zero,
28  alg_m, alg_shift,
29  alg_add_t_m2,
30  alg_sub_t_m2,
31  alg_add_factor,
32  alg_sub_factor,
33  alg_add_t2_m,
34  alg_sub_t2_m,
35  alg_impossible
36};
37
38/* Indicates the type of fixup needed after a constant multiplication.
39   BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
40   the result should be negated, and ADD_VARIANT means that the
41   multiplicand should be added to the result.  */
42enum mult_variant {basic_variant, negate_variant, add_variant};
43
44bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
45			  struct algorithm *, enum mult_variant *, int);
46
47/* This structure holds the "cost" of a multiply sequence.  The
48   "cost" field holds the total rtx_cost of every operator in the
49   synthetic multiplication sequence, hence cost(a op b) is defined
50   as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
51   The "latency" field holds the minimum possible latency of the
52   synthetic multiply, on a hypothetical infinitely parallel CPU.
53   This is the critical path, or the maximum height, of the expression
54   tree which is the sum of rtx_costs on the most expensive path from
55   any leaf to the root.  Hence latency(a op b) is defined as zero for
56   leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
57
58struct mult_cost {
59  short cost;     /* Total rtx_cost of the multiplication sequence.  */
60  short latency;  /* The latency of the multiplication sequence.  */
61};
62
63/* This macro is used to compare a pointer to a mult_cost against an
64   single integer "rtx_cost" value.  This is equivalent to the macro
65   CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
66#define MULT_COST_LESS(X,Y) ((X)->cost < (Y)	\
67			     || ((X)->cost == (Y) && (X)->latency < (Y)))
68
69/* This macro is used to compare two pointers to mult_costs against
70   each other.  The macro returns true if X is cheaper than Y.
71   Currently, the cheaper of two mult_costs is the one with the
72   lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
73#define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost		\
74				 || ((X)->cost == (Y)->cost	\
75				     && (X)->latency < (Y)->latency))
76
77/* This structure records a sequence of operations.
78   `ops' is the number of operations recorded.
79   `cost' is their total cost.
80   The operations are stored in `op' and the corresponding
81   logarithms of the integer coefficients in `log'.
82
83   These are the operations:
84   alg_zero		total := 0;
85   alg_m		total := multiplicand;
86   alg_shift		total := total * coeff
87   alg_add_t_m2		total := total + multiplicand * coeff;
88   alg_sub_t_m2		total := total - multiplicand * coeff;
89   alg_add_factor	total := total * coeff + total;
90   alg_sub_factor	total := total * coeff - total;
91   alg_add_t2_m		total := total * coeff + multiplicand;
92   alg_sub_t2_m		total := total * coeff - multiplicand;
93
94   The first operand must be either alg_zero or alg_m.  */
95
96struct algorithm
97{
98  struct mult_cost cost;
99  short ops;
100  /* The size of the OP and LOG fields are not directly related to the
101     word size, but the worst-case algorithms will be if we have few
102     consecutive ones or zeros, i.e., a multiplicand like 10101010101...
103     In that case we will generate shift-by-2, add, shift-by-2, add,...,
104     in total wordsize operations.  */
105  enum alg_code op[MAX_BITS_PER_WORD];
106  char log[MAX_BITS_PER_WORD];
107};
108
109/* The entry for our multiplication cache/hash table.  */
110struct alg_hash_entry {
111  /* The number we are multiplying by.  */
112  unsigned HOST_WIDE_INT t;
113
114  /* The mode in which we are multiplying something by T.  */
115  machine_mode mode;
116
117  /* The best multiplication algorithm for t.  */
118  enum alg_code alg;
119
120  /* The cost of multiplication if ALG_CODE is not alg_impossible.
121     Otherwise, the cost within which multiplication by T is
122     impossible.  */
123  struct mult_cost cost;
124
125  /* Optimized for speed? */
126  bool speed;
127};
128
129/* The number of cache/hash entries.  */
130#if HOST_BITS_PER_WIDE_INT == 64
131#define NUM_ALG_HASH_ENTRIES 1031
132#else
133#define NUM_ALG_HASH_ENTRIES 307
134#endif
135
136#define NUM_MODE_INT \
137  (MAX_MODE_INT - MIN_MODE_INT + 1)
138#define NUM_MODE_PARTIAL_INT \
139  (MIN_MODE_PARTIAL_INT == E_VOIDmode ? 0 \
140   : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
141#define NUM_MODE_VECTOR_INT \
142  (MIN_MODE_VECTOR_INT == E_VOIDmode ? 0 \
143   : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
144
145#define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
146#define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
147
148struct expmed_op_cheap {
149  bool cheap[2][NUM_MODE_IPV_INT];
150};
151
152struct expmed_op_costs {
153  int cost[2][NUM_MODE_IPV_INT];
154};
155
156/* Target-dependent globals.  */
157struct target_expmed {
158  /* Each entry of ALG_HASH caches alg_code for some integer.  This is
159     actually a hash table.  If we have a collision, that the older
160     entry is kicked out.  */
161  struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
162
163  /* True if x_alg_hash might already have been used.  */
164  bool x_alg_hash_used_p;
165
166  /* Nonzero means divides or modulus operations are relatively cheap for
167     powers of two, so don't use branches; emit the operation instead.
168     Usually, this will mean that the MD file will emit non-branch
169     sequences.  */
170  struct expmed_op_cheap x_sdiv_pow2_cheap;
171  struct expmed_op_cheap x_smod_pow2_cheap;
172
173  /* Cost of various pieces of RTL.  Note that some of these are indexed by
174     shift count and some by mode.  */
175  int x_zero_cost[2];
176  struct expmed_op_costs x_add_cost;
177  struct expmed_op_costs x_neg_cost;
178  struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
179  struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
180  struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
181  struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
182  struct expmed_op_costs x_mul_cost;
183  struct expmed_op_costs x_sdiv_cost;
184  struct expmed_op_costs x_udiv_cost;
185  int x_mul_widen_cost[2][NUM_MODE_INT];
186  int x_mul_highpart_cost[2][NUM_MODE_INT];
187
188  /* Conversion costs are only defined between two scalar integer modes
189     of different sizes.  The first machine mode is the destination mode,
190     and the second is the source mode.  */
191  int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
192};
193
194extern struct target_expmed default_target_expmed;
195#if SWITCHABLE_TARGET
196extern struct target_expmed *this_target_expmed;
197#else
198#define this_target_expmed (&default_target_expmed)
199#endif
200
201/* Return a pointer to the alg_hash_entry at IDX.  */
202
203static inline struct alg_hash_entry *
204alg_hash_entry_ptr (int idx)
205{
206  return &this_target_expmed->x_alg_hash[idx];
207}
208
209/* Return true if the x_alg_hash field might have been used.  */
210
211static inline bool
212alg_hash_used_p (void)
213{
214  return this_target_expmed->x_alg_hash_used_p;
215}
216
217/* Set whether the x_alg_hash field might have been used.  */
218
219static inline void
220set_alg_hash_used_p (bool usedp)
221{
222  this_target_expmed->x_alg_hash_used_p = usedp;
223}
224
225/* Compute an index into the cost arrays by mode class.  */
226
227static inline int
228expmed_mode_index (machine_mode mode)
229{
230  switch (GET_MODE_CLASS (mode))
231    {
232    case MODE_INT:
233      return mode - MIN_MODE_INT;
234    case MODE_PARTIAL_INT:
235      /* If there are no partial integer modes, help the compiler
236	 to figure out this will never happen.  See PR59934.  */
237      if (MIN_MODE_PARTIAL_INT != VOIDmode)
238	return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
239      break;
240    case MODE_VECTOR_INT:
241      /* If there are no vector integer modes, help the compiler
242	 to figure out this will never happen.  See PR59934.  */
243      if (MIN_MODE_VECTOR_INT != VOIDmode)
244	return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
245      break;
246    default:
247      break;
248    }
249  gcc_unreachable ();
250}
251
252/* Return a pointer to a boolean contained in EOC indicating whether
253   a particular operation performed in MODE is cheap when optimizing
254   for SPEED.  */
255
256static inline bool *
257expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
258		     machine_mode mode)
259{
260  int idx = expmed_mode_index (mode);
261  return &eoc->cheap[speed][idx];
262}
263
264/* Return a pointer to a cost contained in COSTS when a particular
265   operation is performed in MODE when optimizing for SPEED.  */
266
267static inline int *
268expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
269		    machine_mode mode)
270{
271  int idx = expmed_mode_index (mode);
272  return &costs->cost[speed][idx];
273}
274
275/* Subroutine of {set_,}sdiv_pow2_cheap.  Not to be used otherwise.  */
276
277static inline bool *
278sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
279{
280  return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
281			      speed, mode);
282}
283
284/* Set whether a signed division by a power of 2 is cheap in MODE
285   when optimizing for SPEED.  */
286
287static inline void
288set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
289{
290  *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
291}
292
293/* Return whether a signed division by a power of 2 is cheap in MODE
294   when optimizing for SPEED.  */
295
296static inline bool
297sdiv_pow2_cheap (bool speed, machine_mode mode)
298{
299  return *sdiv_pow2_cheap_ptr (speed, mode);
300}
301
302/* Subroutine of {set_,}smod_pow2_cheap.  Not to be used otherwise.  */
303
304static inline bool *
305smod_pow2_cheap_ptr (bool speed, machine_mode mode)
306{
307  return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
308			      speed, mode);
309}
310
311/* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
312   optimizing for SPEED.  */
313
314static inline void
315set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
316{
317  *smod_pow2_cheap_ptr (speed, mode) = cheap;
318}
319
320/* Return whether a signed modulo by a power of 2 is cheap in MODE
321   when optimizing for SPEED.  */
322
323static inline bool
324smod_pow2_cheap (bool speed, machine_mode mode)
325{
326  return *smod_pow2_cheap_ptr (speed, mode);
327}
328
329/* Subroutine of {set_,}zero_cost.  Not to be used otherwise.  */
330
331static inline int *
332zero_cost_ptr (bool speed)
333{
334  return &this_target_expmed->x_zero_cost[speed];
335}
336
337/* Set the COST of loading zero when optimizing for SPEED.  */
338
339static inline void
340set_zero_cost (bool speed, int cost)
341{
342  *zero_cost_ptr (speed) = cost;
343}
344
345/* Return the COST of loading zero when optimizing for SPEED.  */
346
347static inline int
348zero_cost (bool speed)
349{
350  return *zero_cost_ptr (speed);
351}
352
353/* Subroutine of {set_,}add_cost.  Not to be used otherwise.  */
354
355static inline int *
356add_cost_ptr (bool speed, machine_mode mode)
357{
358  return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
359}
360
361/* Set the COST of computing an add in MODE when optimizing for SPEED.  */
362
363static inline void
364set_add_cost (bool speed, machine_mode mode, int cost)
365{
366  *add_cost_ptr (speed, mode) = cost;
367}
368
369/* Return the cost of computing an add in MODE when optimizing for SPEED.  */
370
371static inline int
372add_cost (bool speed, machine_mode mode)
373{
374  return *add_cost_ptr (speed, mode);
375}
376
377/* Subroutine of {set_,}neg_cost.  Not to be used otherwise.  */
378
379static inline int *
380neg_cost_ptr (bool speed, machine_mode mode)
381{
382  return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
383}
384
385/* Set the COST of computing a negation in MODE when optimizing for SPEED.  */
386
387static inline void
388set_neg_cost (bool speed, machine_mode mode, int cost)
389{
390  *neg_cost_ptr (speed, mode) = cost;
391}
392
393/* Return the cost of computing a negation in MODE when optimizing for
394   SPEED.  */
395
396static inline int
397neg_cost (bool speed, machine_mode mode)
398{
399  return *neg_cost_ptr (speed, mode);
400}
401
402/* Subroutine of {set_,}shift_cost.  Not to be used otherwise.  */
403
404static inline int *
405shift_cost_ptr (bool speed, machine_mode mode, int bits)
406{
407  return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
408			     speed, mode);
409}
410
411/* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED.  */
412
413static inline void
414set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
415{
416  *shift_cost_ptr (speed, mode, bits) = cost;
417}
418
419/* Return the cost of doing a shift in MODE by BITS when optimizing for
420   SPEED.  */
421
422static inline int
423shift_cost (bool speed, machine_mode mode, int bits)
424{
425  return *shift_cost_ptr (speed, mode, bits);
426}
427
428/* Subroutine of {set_,}shiftadd_cost.  Not to be used otherwise.  */
429
430static inline int *
431shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
432{
433  return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
434			     speed, mode);
435}
436
437/* Set the COST of doing a shift in MODE by BITS followed by an add when
438   optimizing for SPEED.  */
439
440static inline void
441set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
442{
443  *shiftadd_cost_ptr (speed, mode, bits) = cost;
444}
445
446/* Return the cost of doing a shift in MODE by BITS followed by an add
447   when optimizing for SPEED.  */
448
449static inline int
450shiftadd_cost (bool speed, machine_mode mode, int bits)
451{
452  return *shiftadd_cost_ptr (speed, mode, bits);
453}
454
455/* Subroutine of {set_,}shiftsub0_cost.  Not to be used otherwise.  */
456
457static inline int *
458shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
459{
460  return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
461			     speed, mode);
462}
463
464/* Set the COST of doing a shift in MODE by BITS and then subtracting a
465   value when optimizing for SPEED.  */
466
467static inline void
468set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
469{
470  *shiftsub0_cost_ptr (speed, mode, bits) = cost;
471}
472
473/* Return the cost of doing a shift in MODE by BITS and then subtracting
474   a value when optimizing for SPEED.  */
475
476static inline int
477shiftsub0_cost (bool speed, machine_mode mode, int bits)
478{
479  return *shiftsub0_cost_ptr (speed, mode, bits);
480}
481
482/* Subroutine of {set_,}shiftsub1_cost.  Not to be used otherwise.  */
483
484static inline int *
485shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
486{
487  return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
488			     speed, mode);
489}
490
491/* Set the COST of subtracting a shift in MODE by BITS from a value when
492   optimizing for SPEED.  */
493
494static inline void
495set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
496{
497  *shiftsub1_cost_ptr (speed, mode, bits) = cost;
498}
499
500/* Return the cost of subtracting a shift in MODE by BITS from a value
501   when optimizing for SPEED.  */
502
503static inline int
504shiftsub1_cost (bool speed, machine_mode mode, int bits)
505{
506  return *shiftsub1_cost_ptr (speed, mode, bits);
507}
508
509/* Subroutine of {set_,}mul_cost.  Not to be used otherwise.  */
510
511static inline int *
512mul_cost_ptr (bool speed, machine_mode mode)
513{
514  return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
515}
516
517/* Set the COST of doing a multiplication in MODE when optimizing for
518   SPEED.  */
519
520static inline void
521set_mul_cost (bool speed, machine_mode mode, int cost)
522{
523  *mul_cost_ptr (speed, mode) = cost;
524}
525
526/* Return the cost of doing a multiplication in MODE when optimizing
527   for SPEED.  */
528
529static inline int
530mul_cost (bool speed, machine_mode mode)
531{
532  return *mul_cost_ptr (speed, mode);
533}
534
535/* Subroutine of {set_,}sdiv_cost.  Not to be used otherwise.  */
536
537static inline int *
538sdiv_cost_ptr (bool speed, machine_mode mode)
539{
540  return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
541}
542
543/* Set the COST of doing a signed division in MODE when optimizing
544   for SPEED.  */
545
546static inline void
547set_sdiv_cost (bool speed, machine_mode mode, int cost)
548{
549  *sdiv_cost_ptr (speed, mode) = cost;
550}
551
552/* Return the cost of doing a signed division in MODE when optimizing
553   for SPEED.  */
554
555static inline int
556sdiv_cost (bool speed, machine_mode mode)
557{
558  return *sdiv_cost_ptr (speed, mode);
559}
560
561/* Subroutine of {set_,}udiv_cost.  Not to be used otherwise.  */
562
563static inline int *
564udiv_cost_ptr (bool speed, machine_mode mode)
565{
566  return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
567}
568
569/* Set the COST of doing an unsigned division in MODE when optimizing
570   for SPEED.  */
571
572static inline void
573set_udiv_cost (bool speed, machine_mode mode, int cost)
574{
575  *udiv_cost_ptr (speed, mode) = cost;
576}
577
578/* Return the cost of doing an unsigned division in MODE when
579   optimizing for SPEED.  */
580
581static inline int
582udiv_cost (bool speed, machine_mode mode)
583{
584  return *udiv_cost_ptr (speed, mode);
585}
586
587/* Subroutine of {set_,}mul_widen_cost.  Not to be used otherwise.  */
588
589static inline int *
590mul_widen_cost_ptr (bool speed, machine_mode mode)
591{
592  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
593
594  return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
595}
596
597/* Set the COST for computing a widening multiplication in MODE when
598   optimizing for SPEED.  */
599
600static inline void
601set_mul_widen_cost (bool speed, machine_mode mode, int cost)
602{
603  *mul_widen_cost_ptr (speed, mode) = cost;
604}
605
606/* Return the cost for computing a widening multiplication in MODE when
607   optimizing for SPEED.  */
608
609static inline int
610mul_widen_cost (bool speed, machine_mode mode)
611{
612  return *mul_widen_cost_ptr (speed, mode);
613}
614
615/* Subroutine of {set_,}mul_highpart_cost.  Not to be used otherwise.  */
616
617static inline int *
618mul_highpart_cost_ptr (bool speed, machine_mode mode)
619{
620  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
621  int m = mode - MIN_MODE_INT;
622  gcc_assert (m < NUM_MODE_INT);
623
624  return &this_target_expmed->x_mul_highpart_cost[speed][m];
625}
626
627/* Set the COST for computing the high part of a multiplication in MODE
628   when optimizing for SPEED.  */
629
630static inline void
631set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
632{
633  *mul_highpart_cost_ptr (speed, mode) = cost;
634}
635
636/* Return the cost for computing the high part of a multiplication in MODE
637   when optimizing for SPEED.  */
638
639static inline int
640mul_highpart_cost (bool speed, machine_mode mode)
641{
642  return *mul_highpart_cost_ptr (speed, mode);
643}
644
645/* Subroutine of {set_,}convert_cost.  Not to be used otherwise.  */
646
647static inline int *
648convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
649		  bool speed)
650{
651  int to_idx = expmed_mode_index (to_mode);
652  int from_idx = expmed_mode_index (from_mode);
653
654  gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
655  gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
656
657  return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
658}
659
660/* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
661   for SPEED.  */
662
663static inline void
664set_convert_cost (machine_mode to_mode, machine_mode from_mode,
665		  bool speed, int cost)
666{
667  *convert_cost_ptr (to_mode, from_mode, speed) = cost;
668}
669
670/* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
671   for SPEED.  */
672
673static inline int
674convert_cost (machine_mode to_mode, machine_mode from_mode,
675	      bool speed)
676{
677  return *convert_cost_ptr (to_mode, from_mode, speed);
678}
679
680extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
681extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
682			machine_mode mode, machine_mode compare_mode,
683			int unsignedp, rtx x, rtx y, int normalizep,
684			machine_mode target_mode);
685
686/* Arguments MODE, RTX: return an rtx for the negation of that value.
687   May emit insns.  */
688extern rtx negate_rtx (machine_mode, rtx);
689
690/* Arguments MODE, RTX: return an rtx for the flipping of that value.
691   May emit insns.  */
692extern rtx flip_storage_order (machine_mode, rtx);
693
694/* Expand a logical AND operation.  */
695extern rtx expand_and (machine_mode, rtx, rtx, rtx);
696
697/* Emit a store-flag operation.  */
698extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
699			    int, int);
700
701/* Like emit_store_flag, but always succeeds.  */
702extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
703				  machine_mode, int, int);
704
705extern void canonicalize_comparison (machine_mode, enum rtx_code *, rtx *);
706
707/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
708   replace division by D, and put the least significant N bits of the result
709   in *MULTIPLIER_PTR and return the most significant bit.  */
710extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
711						 int, unsigned HOST_WIDE_INT *,
712						 int *, int *);
713
714#ifdef TREE_CODE
715extern rtx expand_variable_shift (enum tree_code, machine_mode,
716				  rtx, tree, rtx, int);
717extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
718			 int);
719extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
720			  rtx, int);
721#endif
722
723extern void store_bit_field (rtx, poly_uint64, poly_uint64,
724			     poly_uint64, poly_uint64,
725			     machine_mode, rtx, bool);
726extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx,
727			      machine_mode, machine_mode, bool, rtx *);
728extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
729extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false);
730extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx,
731					rtx, int);
732
733#endif  // EXPMED_H
734