df-core.c revision 1.12
1/* Allocation for dataflow support routines.
2   Copyright (C) 1999-2020 Free Software Foundation, Inc.
3   Originally contributed by Michael P. Hayes
4             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6             and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
12Software Foundation; either version 3, or (at your option) any later
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
21along with GCC; see the file COPYING3.  If not see
22<http://www.gnu.org/licenses/>.  */
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems.  The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains.  However,
34the interface allows other dataflow problems to be defined as well.
35
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish).  It is quite likely
38that these boundaries will be expanded in the future.  The only
39requirement is that there be a correct control flow graph.
40
41There are three variations of the live variable problem that are
42available whenever dataflow is available.  The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
44areas that can be reached from a definition of a variable.  The LIVE
45problem finds the intersection of these two areas.
46
47There are several optional problems.  These can be enabled when they
48are needed and disabled when they are not needed.
49
50Dataflow problems are generally solved in three layers.  The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn.  Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also.  There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
57
58In the middle layer, basic blocks are scanned to produce transfer
59functions which describe the effects of that block on the global
60dataflow solution.  The transfer functions are only rebuilt if the
61some instruction within the block has changed.
62
63The top layer is the dataflow solution itself.  The dataflow solution
64is computed by using an efficient iterative solver and the transfer
65functions.  The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
67
68
69USAGE:
70
71Here is an example of using the dataflow routines.
72
73      df_[chain,live,note,rd]_add_problem (flags);
74
75      df_set_blocks (blocks);
76
77      df_analyze ();
78
79      df_dump (stderr);
80
81      df_finish_pass (false);
82
83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84instance to struct df_problem, to the set of problems solved in this
85instance of df.  All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
87
88Problems can be dependent on other problems.  For instance, solving
89def-use or use-def chains is dependent on solving reaching
90definitions. As long as these dependencies are listed in the problem
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem.  Note that it is not necessary to have a problem.  In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed.  The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution.  The insn level information
103is always kept up to date.
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set.  Care should be taken to call df_set_blocks right
108before the call to analyze in order to eliminate the possibility that
109optimizations that reorder blocks invalidate the bitvector.
110
111DF_ANALYZE causes all of the defined problems to be (re)solved.  When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information.  The DF_*_BB_INFO macros can be used
114to access these bitvectors.  All deferred rescannings are down before
115the transfer functions are recomputed.
116
117DF_DUMP can then be called to dump the information produce to some
118file.  This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information.  These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems.  It also causes any insns whose scanning has been
126deferred to be rescanned as well as clears all of the changeable flags.
127Setting the pass manager TODO_df_finish flag causes this function to
128be run.  However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138   df_bb_delete, df_insn_change_bb have been added to most of
139   the low level service functions that maintain the cfg and change
140   rtl.  Calling and of these routines many cause some number of insns
141   to be rescanned.
142
143   For most modern rtl passes, this is certainly the easiest way to
144   manage rescanning the insns.  This technique also has the advantage
145   that the scanning information is always correct and can be relied
146   upon even after changes have been made to the instructions.  This
147   technique is contra indicated in several cases:
148
149   a) If def-use chains OR use-def chains (but not both) are built,
150      using this is SIMPLY WRONG.  The problem is that when a ref is
151      deleted that is the target of an edge, there is not enough
152      information to efficiently find the source of the edge and
153      delete the edge.  This leaves a dangling reference that may
154      cause problems.
155
156   b) If def-use chains AND use-def chains are built, this may
157      produce unexpected results.  The problem is that the incremental
158      scanning of an insn does not know how to repair the chains that
159      point into an insn when the insn changes.  So the incremental
160      scanning just deletes the chains that enter and exit the insn
161      being changed.  The dangling reference issue in (a) is not a
162      problem here, but if the pass is depending on the chains being
163      maintained after insns have been modified, this technique will
164      not do the correct thing.
165
166   c) If the pass modifies insns several times, this incremental
167      updating may be expensive.
168
169   d) If the pass modifies all of the insns, as does register
170      allocation, it is simply better to rescan the entire function.
171
1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173   df_insn_delete do not immediately change the insn but instead make
174   a note that the insn needs to be rescanned.  The next call to
175   df_analyze, df_finish_pass, or df_process_deferred_rescans will
176   cause all of the pending rescans to be processed.
177
178   This is the technique of choice if either 1a, 1b, or 1c are issues
179   in the pass.  In the case of 1a or 1b, a call to df_finish_pass
180   (either manually or via TODO_df_finish) should be made before the
181   next call to df_analyze or df_process_deferred_rescans.
182
183   This mode is also used by a few passes that still rely on note_uses,
184   note_stores and rtx iterators instead of using the DF data.  This
185   can be said to fall under case 1c.
186
187   To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188   (This mode can be cleared by calling df_clear_flags
189   (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190   be rescanned.
191
1923) Total rescanning - In this mode the rescanning is disabled.
193   Only when insns are deleted is the df information associated with
194   it also deleted.  At the end of the pass, a call must be made to
195   df_insn_rescan_all.  This method is used by the register allocator
196   since it generally changes each insn multiple times (once for each ref)
197   and does not need to make use of the updated scanning information.
198
1994) Do it yourself - In this mechanism, the pass updates the insns
200   itself using the low level df primitives.  Currently no pass does
201   this, but it has the advantage that it is quite efficient given
202   that the pass generally has exact knowledge of what it is changing.
203
204DATA STRUCTURES
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within.  The refs are linked together in
209chains of uses and defs for each insn and for each register.  Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use.  This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs.  Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable.  The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical.  The amount of work to recompute the chain any
230chain after an arbitrary change is large.  However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date.  The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration.  In general, restarting a
238dataflow iteration is difficult and expensive.  Again, the best way to
239keep the dataflow information up to data (if this is really what is
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c.  However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
249The basic object is a DF_REF (reference) and this may either be a
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists.  For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
261ACCESSING INSNS:
262
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264   The array is indexed by insn uid, and every DF_REF points to the
265   DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268   lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269   DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270   (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271   DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272   DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273   The latter list are the list of references in REG_EQUAL or REG_EQUIV
274   notes.  These macros produce a ref (or NULL), the rest of the list
275   can be obtained by traversal of the NEXT_REF field (accessed by the
276   DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
277   the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280   DF_INSN_INFO object for the insn.  The LUID field is accessed by
281   the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282   When properly set, the LUID is an integer that numbers each insn in
283   the basic block, in order from the start of the block.
284   The numbers are only correct after a call to df_analyze.  They will
285   rot after insns are added deleted or moved round.
286
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
293   REAL refs are associated with instructions.
294
295   ARTIFICIAL refs are associated with basic blocks.  The heads of
296   these lists can be accessed by calling df_get_artificial_defs or
297   df_get_artificial_uses for the particular basic block.
298
299   Artificial defs and uses occur both at the beginning and ends of blocks.
300
301     For blocks that are at the destination of eh edges, the
302     artificial uses and defs occur at the beginning.  The defs relate
303     to the registers specified in EH_RETURN_DATA_REGNO and the uses
304     relate to the registers specified in EH_USES.  Logically these
305     defs and uses should really occur along the eh edge, but there is
306     no convenient way to do this.  Artificial defs that occur at the
307     beginning of the block have the DF_REF_AT_TOP flag set.
308
309     Artificial uses occur at the end of all blocks.  These arise from
310     the hard registers that are always live, such as the stack
311     register and are put there to keep the code from forgetting about
312     them.
313
314     Artificial defs occur at the end of the entry block.  These arise
315     from registers that are live at entry to the function.
316
3172) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
318   uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319
320   All of the eq_uses, uses and defs associated with each pseudo or
321   hard register may be linked in a bidirectional chain.  These are
322   called reg-use or reg_def chains.  If the changeable flag
323   DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324   treated like uses.  If it is not set they are ignored.
325
326   The first use, eq_use or def for a register can be obtained using
327   the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328   macros.  Subsequent uses for the same regno can be obtained by
329   following the next_reg field of the ref.  The number of elements in
330   each of the chains can be found by using the DF_REG_USE_COUNT,
331   DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332
333   In previous versions of this code, these chains were ordered.  It
334   has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
337   get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
338   include the eq_uses.  Otherwise these are ignored when building the
339   chains.
340
3414) An array of all of the uses (and an array of all of the defs) can
342   be built.  These arrays are indexed by the value in the id
343   structure.  These arrays are only lazily kept up to date, and that
344   process can be expensive.  To have these arrays built, call
345   df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
346   has been set the array will contain the eq_uses.  Otherwise these
347   are ignored when building the array and assigning the ids.  Note
348   that the values in the id field of a ref may change across calls to
349   df_analyze or df_reorganize_defs or df_reorganize_uses.
350
351   If the only use of this array is to find all of the refs, it is
352   better to traverse all of the registers and then traverse all of
353   reg-use or reg-def chains.
354
355NOTES:
356
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def.  These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
368smaller than that covered by the inner mode, invokes a read-modify-write
369operation.  We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
373are write-only operations.
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
380#include "backend.h"
381#include "rtl.h"
382#include "df.h"
383#include "memmodel.h"
384#include "emit-rtl.h"
385#include "cfganal.h"
386#include "tree-pass.h"
387#include "cfgloop.h"
388
389static void *df_get_bb_info (struct dataflow *, unsigned int);
390static void df_set_bb_info (struct dataflow *, unsigned int, void *);
391static void df_clear_bb_info (struct dataflow *, unsigned int);
392#ifdef DF_DEBUG_CFG
393static void df_set_clean_cfg (void);
394#endif
395
396/* The obstack on which regsets are allocated.  */
397struct bitmap_obstack reg_obstack;
398
399/* An obstack for bitmap not related to specific dataflow problems.
400   This obstack should e.g. be used for bitmaps with a short life time
401   such as temporary bitmaps.  */
402
403bitmap_obstack df_bitmap_obstack;
404
405
406/*----------------------------------------------------------------------------
407  Functions to create, destroy and manipulate an instance of df.
408----------------------------------------------------------------------------*/
409
410class df_d *df;
411
412/* Add PROBLEM (and any dependent problems) to the DF instance.  */
413
414void
415df_add_problem (const struct df_problem *problem)
416{
417  struct dataflow *dflow;
418  int i;
419
420  /* First try to add the dependent problem. */
421  if (problem->dependent_problem)
422    df_add_problem (problem->dependent_problem);
423
424  /* Check to see if this problem has already been defined.  If it
425     has, just return that instance, if not, add it to the end of the
426     vector.  */
427  dflow = df->problems_by_index[problem->id];
428  if (dflow)
429    return;
430
431  /* Make a new one and add it to the end.  */
432  dflow = XCNEW (struct dataflow);
433  dflow->problem = problem;
434  dflow->computed = false;
435  dflow->solutions_dirty = true;
436  df->problems_by_index[dflow->problem->id] = dflow;
437
438  /* Keep the defined problems ordered by index.  This solves the
439     problem that RI will use the information from UREC if UREC has
440     been defined, or from LIVE if LIVE is defined and otherwise LR.
441     However for this to work, the computation of RI must be pushed
442     after which ever of those problems is defined, but we do not
443     require any of those except for LR to have actually been
444     defined.  */
445  df->num_problems_defined++;
446  for (i = df->num_problems_defined - 2; i >= 0; i--)
447    {
448      if (problem->id < df->problems_in_order[i]->problem->id)
449	df->problems_in_order[i+1] = df->problems_in_order[i];
450      else
451	{
452	  df->problems_in_order[i+1] = dflow;
453	  return;
454	}
455    }
456  df->problems_in_order[0] = dflow;
457}
458
459
460/* Set the MASK flags in the DFLOW problem.  The old flags are
461   returned.  If a flag is not allowed to be changed this will fail if
462   checking is enabled.  */
463int
464df_set_flags (int changeable_flags)
465{
466  int old_flags = df->changeable_flags;
467  df->changeable_flags |= changeable_flags;
468  return old_flags;
469}
470
471
472/* Clear the MASK flags in the DFLOW problem.  The old flags are
473   returned.  If a flag is not allowed to be changed this will fail if
474   checking is enabled.  */
475int
476df_clear_flags (int changeable_flags)
477{
478  int old_flags = df->changeable_flags;
479  df->changeable_flags &= ~changeable_flags;
480  return old_flags;
481}
482
483
484/* Set the blocks that are to be considered for analysis.  If this is
485   not called or is called with null, the entire function in
486   analyzed.  */
487
488void
489df_set_blocks (bitmap blocks)
490{
491  if (blocks)
492    {
493      if (dump_file)
494	bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
495      if (df->blocks_to_analyze)
496	{
497	  /* This block is called to change the focus from one subset
498	     to another.  */
499	  int p;
500	  auto_bitmap diff (&df_bitmap_obstack);
501	  bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
502	  for (p = 0; p < df->num_problems_defined; p++)
503	    {
504	      struct dataflow *dflow = df->problems_in_order[p];
505	      if (dflow->optional_p && dflow->problem->reset_fun)
506		dflow->problem->reset_fun (df->blocks_to_analyze);
507	      else if (dflow->problem->free_blocks_on_set_blocks)
508		{
509		  bitmap_iterator bi;
510		  unsigned int bb_index;
511
512		  EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
513		    {
514		      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515		      if (bb)
516			{
517			  void *bb_info = df_get_bb_info (dflow, bb_index);
518			  dflow->problem->free_bb_fun (bb, bb_info);
519			  df_clear_bb_info (dflow, bb_index);
520			}
521		    }
522		}
523	    }
524	}
525      else
526	{
527	  /* This block of code is executed to change the focus from
528	     the entire function to a subset.  */
529	  bitmap_head blocks_to_reset;
530	  bool initialized = false;
531	  int p;
532	  for (p = 0; p < df->num_problems_defined; p++)
533	    {
534	      struct dataflow *dflow = df->problems_in_order[p];
535	      if (dflow->optional_p && dflow->problem->reset_fun)
536		{
537		  if (!initialized)
538		    {
539		      basic_block bb;
540		      bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
541		      FOR_ALL_BB_FN (bb, cfun)
542			{
543			  bitmap_set_bit (&blocks_to_reset, bb->index);
544			}
545		    }
546		  dflow->problem->reset_fun (&blocks_to_reset);
547		}
548	    }
549	  if (initialized)
550	    bitmap_clear (&blocks_to_reset);
551
552	  df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
553	}
554      bitmap_copy (df->blocks_to_analyze, blocks);
555      df->analyze_subset = true;
556    }
557  else
558    {
559      /* This block is executed to reset the focus to the entire
560	 function.  */
561      if (dump_file)
562	fprintf (dump_file, "clearing blocks_to_analyze\n");
563      if (df->blocks_to_analyze)
564	{
565	  BITMAP_FREE (df->blocks_to_analyze);
566	  df->blocks_to_analyze = NULL;
567	}
568      df->analyze_subset = false;
569    }
570
571  /* Setting the blocks causes the refs to be unorganized since only
572     the refs in the blocks are seen.  */
573  df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574  df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575  df_mark_solutions_dirty ();
576}
577
578
579/* Delete a DFLOW problem (and any problems that depend on this
580   problem).  */
581
582void
583df_remove_problem (struct dataflow *dflow)
584{
585  const struct df_problem *problem;
586  int i;
587
588  if (!dflow)
589    return;
590
591  problem = dflow->problem;
592  gcc_assert (problem->remove_problem_fun);
593
594  /* Delete any problems that depended on this problem first.  */
595  for (i = 0; i < df->num_problems_defined; i++)
596    if (df->problems_in_order[i]->problem->dependent_problem == problem)
597      df_remove_problem (df->problems_in_order[i]);
598
599  /* Now remove this problem.  */
600  for (i = 0; i < df->num_problems_defined; i++)
601    if (df->problems_in_order[i] == dflow)
602      {
603	int j;
604	for (j = i + 1; j < df->num_problems_defined; j++)
605	  df->problems_in_order[j-1] = df->problems_in_order[j];
606	df->problems_in_order[j-1] = NULL;
607	df->num_problems_defined--;
608	break;
609      }
610
611  (problem->remove_problem_fun) ();
612  df->problems_by_index[problem->id] = NULL;
613}
614
615
616/* Remove all of the problems that are not permanent.  Scanning, LR
617   and (at -O2 or higher) LIVE are permanent, the rest are removable.
618   Also clear all of the changeable_flags.  */
619
620void
621df_finish_pass (bool verify ATTRIBUTE_UNUSED)
622{
623  int i;
624
625#ifdef ENABLE_DF_CHECKING
626  int saved_flags;
627#endif
628
629  if (!df)
630    return;
631
632  df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633  df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634
635#ifdef ENABLE_DF_CHECKING
636  saved_flags = df->changeable_flags;
637#endif
638
639  /* We iterate over problems by index as each problem removed will
640     lead to problems_in_order to be reordered.  */
641  for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
642    {
643      struct dataflow *dflow = df->problems_by_index[i];
644
645      if (dflow && dflow->optional_p)
646	df_remove_problem (dflow);
647    }
648
649  /* Clear all of the flags.  */
650  df->changeable_flags = 0;
651  df_process_deferred_rescans ();
652
653  /* Set the focus back to the whole function.  */
654  if (df->blocks_to_analyze)
655    {
656      BITMAP_FREE (df->blocks_to_analyze);
657      df->blocks_to_analyze = NULL;
658      df_mark_solutions_dirty ();
659      df->analyze_subset = false;
660    }
661
662#ifdef ENABLE_DF_CHECKING
663  /* Verification will fail in DF_NO_INSN_RESCAN.  */
664  if (!(saved_flags & DF_NO_INSN_RESCAN))
665    {
666      df_lr_verify_transfer_functions ();
667      if (df_live)
668	df_live_verify_transfer_functions ();
669    }
670
671#ifdef DF_DEBUG_CFG
672  df_set_clean_cfg ();
673#endif
674#endif
675
676  if (flag_checking && verify)
677    df->changeable_flags |= DF_VERIFY_SCHEDULED;
678}
679
680
681/* Set up the dataflow instance for the entire back end.  */
682
683static unsigned int
684rest_of_handle_df_initialize (void)
685{
686  gcc_assert (!df);
687  df = XCNEW (class df_d);
688  df->changeable_flags = 0;
689
690  bitmap_obstack_initialize (&df_bitmap_obstack);
691
692  /* Set this to a conservative value.  Stack_ptr_mod will compute it
693     correctly later.  */
694  crtl->sp_is_unchanging = 0;
695
696  df_scan_add_problem ();
697  df_scan_alloc (NULL);
698
699  /* These three problems are permanent.  */
700  df_lr_add_problem ();
701  if (optimize > 1)
702    df_live_add_problem ();
703
704  df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
705  df->n_blocks = post_order_compute (df->postorder, true, true);
706  inverted_post_order_compute (&df->postorder_inverted);
707  gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
708
709  df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
710
711  df_hard_reg_init ();
712  /* After reload, some ports add certain bits to regs_ever_live so
713     this cannot be reset.  */
714  df_compute_regs_ever_live (true);
715  df_scan_blocks ();
716  df_compute_regs_ever_live (false);
717  return 0;
718}
719
720
721namespace {
722
723const pass_data pass_data_df_initialize_opt =
724{
725  RTL_PASS, /* type */
726  "dfinit", /* name */
727  OPTGROUP_NONE, /* optinfo_flags */
728  TV_DF_SCAN, /* tv_id */
729  0, /* properties_required */
730  0, /* properties_provided */
731  0, /* properties_destroyed */
732  0, /* todo_flags_start */
733  0, /* todo_flags_finish */
734};
735
736class pass_df_initialize_opt : public rtl_opt_pass
737{
738public:
739  pass_df_initialize_opt (gcc::context *ctxt)
740    : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
741  {}
742
743  /* opt_pass methods: */
744  virtual bool gate (function *) { return optimize > 0; }
745  virtual unsigned int execute (function *)
746    {
747      return rest_of_handle_df_initialize ();
748    }
749
750}; // class pass_df_initialize_opt
751
752} // anon namespace
753
754rtl_opt_pass *
755make_pass_df_initialize_opt (gcc::context *ctxt)
756{
757  return new pass_df_initialize_opt (ctxt);
758}
759
760
761namespace {
762
763const pass_data pass_data_df_initialize_no_opt =
764{
765  RTL_PASS, /* type */
766  "no-opt dfinit", /* name */
767  OPTGROUP_NONE, /* optinfo_flags */
768  TV_DF_SCAN, /* tv_id */
769  0, /* properties_required */
770  0, /* properties_provided */
771  0, /* properties_destroyed */
772  0, /* todo_flags_start */
773  0, /* todo_flags_finish */
774};
775
776class pass_df_initialize_no_opt : public rtl_opt_pass
777{
778public:
779  pass_df_initialize_no_opt (gcc::context *ctxt)
780    : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
781  {}
782
783  /* opt_pass methods: */
784  virtual bool gate (function *) { return optimize == 0; }
785  virtual unsigned int execute (function *)
786    {
787      return rest_of_handle_df_initialize ();
788    }
789
790}; // class pass_df_initialize_no_opt
791
792} // anon namespace
793
794rtl_opt_pass *
795make_pass_df_initialize_no_opt (gcc::context *ctxt)
796{
797  return new pass_df_initialize_no_opt (ctxt);
798}
799
800
801/* Free all the dataflow info and the DF structure.  This should be
802   called from the df_finish macro which also NULLs the parm.  */
803
804static unsigned int
805rest_of_handle_df_finish (void)
806{
807  int i;
808
809  gcc_assert (df);
810
811  for (i = 0; i < df->num_problems_defined; i++)
812    {
813      struct dataflow *dflow = df->problems_in_order[i];
814      dflow->problem->free_fun ();
815    }
816
817  free (df->postorder);
818  df->postorder_inverted.release ();
819  free (df->hard_regs_live_count);
820  free (df);
821  df = NULL;
822
823  bitmap_obstack_release (&df_bitmap_obstack);
824  return 0;
825}
826
827
828namespace {
829
830const pass_data pass_data_df_finish =
831{
832  RTL_PASS, /* type */
833  "dfinish", /* name */
834  OPTGROUP_NONE, /* optinfo_flags */
835  TV_NONE, /* tv_id */
836  0, /* properties_required */
837  0, /* properties_provided */
838  0, /* properties_destroyed */
839  0, /* todo_flags_start */
840  0, /* todo_flags_finish */
841};
842
843class pass_df_finish : public rtl_opt_pass
844{
845public:
846  pass_df_finish (gcc::context *ctxt)
847    : rtl_opt_pass (pass_data_df_finish, ctxt)
848  {}
849
850  /* opt_pass methods: */
851  virtual unsigned int execute (function *)
852    {
853      return rest_of_handle_df_finish ();
854    }
855
856}; // class pass_df_finish
857
858} // anon namespace
859
860rtl_opt_pass *
861make_pass_df_finish (gcc::context *ctxt)
862{
863  return new pass_df_finish (ctxt);
864}
865
866
867
868
869
870/*----------------------------------------------------------------------------
871   The general data flow analysis engine.
872----------------------------------------------------------------------------*/
873
874/* Helper function for df_worklist_dataflow.
875   Propagate the dataflow forward.
876   Given a BB_INDEX, do the dataflow propagation
877   and set bits on for successors in PENDING
878   if the out set of the dataflow has changed.
879
880   AGE specify time when BB was visited last time.
881   AGE of 0 means we are visiting for first time and need to
882   compute transfer function to initialize datastructures.
883   Otherwise we re-do transfer function only if something change
884   while computing confluence functions.
885   We need to compute confluence only of basic block that are younger
886   then last visit of the BB.
887
888   Return true if BB info has changed.  This is always the case
889   in the first visit.  */
890
891static bool
892df_worklist_propagate_forward (struct dataflow *dataflow,
893                               unsigned bb_index,
894                               unsigned *bbindex_to_postorder,
895                               bitmap pending,
896                               sbitmap considered,
897			       vec<int> &last_change_age,
898			       int age)
899{
900  edge e;
901  edge_iterator ei;
902  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
903  bool changed = !age;
904
905  /*  Calculate <conf_op> of incoming edges.  */
906  if (EDGE_COUNT (bb->preds) > 0)
907    FOR_EACH_EDGE (e, ei, bb->preds)
908      {
909	if (bbindex_to_postorder[e->src->index] < last_change_age.length ()
910	    && age <= last_change_age[bbindex_to_postorder[e->src->index]]
911	    && bitmap_bit_p (considered, e->src->index))
912          changed |= dataflow->problem->con_fun_n (e);
913      }
914  else if (dataflow->problem->con_fun_0)
915    dataflow->problem->con_fun_0 (bb);
916
917  if (changed
918      && dataflow->problem->trans_fun (bb_index))
919    {
920      /* The out set of this block has changed.
921         Propagate to the outgoing blocks.  */
922      FOR_EACH_EDGE (e, ei, bb->succs)
923        {
924          unsigned ob_index = e->dest->index;
925
926          if (bitmap_bit_p (considered, ob_index))
927            bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
928        }
929      return true;
930    }
931  return false;
932}
933
934
935/* Helper function for df_worklist_dataflow.
936   Propagate the dataflow backward.  */
937
938static bool
939df_worklist_propagate_backward (struct dataflow *dataflow,
940                                unsigned bb_index,
941                                unsigned *bbindex_to_postorder,
942                                bitmap pending,
943                                sbitmap considered,
944				vec<int> &last_change_age,
945				int age)
946{
947  edge e;
948  edge_iterator ei;
949  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
950  bool changed = !age;
951
952  /*  Calculate <conf_op> of incoming edges.  */
953  if (EDGE_COUNT (bb->succs) > 0)
954    FOR_EACH_EDGE (e, ei, bb->succs)
955      {
956	if (bbindex_to_postorder[e->dest->index] < last_change_age.length ()
957	    && age <= last_change_age[bbindex_to_postorder[e->dest->index]]
958	    && bitmap_bit_p (considered, e->dest->index))
959          changed |= dataflow->problem->con_fun_n (e);
960      }
961  else if (dataflow->problem->con_fun_0)
962    dataflow->problem->con_fun_0 (bb);
963
964  if (changed
965      && dataflow->problem->trans_fun (bb_index))
966    {
967      /* The out set of this block has changed.
968         Propagate to the outgoing blocks.  */
969      FOR_EACH_EDGE (e, ei, bb->preds)
970        {
971          unsigned ob_index = e->src->index;
972
973          if (bitmap_bit_p (considered, ob_index))
974            bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
975        }
976      return true;
977    }
978  return false;
979}
980
981/* Main dataflow solver loop.
982
983   DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
984   need to visit.
985   BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
986   BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
987   PENDING will be freed.
988
989   The worklists are bitmaps indexed by postorder positions.
990
991   The function implements standard algorithm for dataflow solving with two
992   worklists (we are processing WORKLIST and storing new BBs to visit in
993   PENDING).
994
995   As an optimization we maintain ages when BB was changed (stored in
996   last_change_age) and when it was last visited (stored in last_visit_age).
997   This avoids need to re-do confluence function for edges to basic blocks
998   whose source did not change since destination was visited last time.  */
999
1000static void
1001df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1002			  	  bitmap pending,
1003                                  sbitmap considered,
1004                                  int *blocks_in_postorder,
1005				  unsigned *bbindex_to_postorder,
1006				  int n_blocks)
1007{
1008  enum df_flow_dir dir = dataflow->problem->dir;
1009  int dcount = 0;
1010  bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1011  int age = 0;
1012  bool changed;
1013  vec<int> last_visit_age = vNULL;
1014  vec<int> last_change_age = vNULL;
1015  int prev_age;
1016
1017  last_visit_age.safe_grow_cleared (n_blocks);
1018  last_change_age.safe_grow_cleared (n_blocks);
1019
1020  /* Double-queueing. Worklist is for the current iteration,
1021     and pending is for the next. */
1022  while (!bitmap_empty_p (pending))
1023    {
1024      bitmap_iterator bi;
1025      unsigned int index;
1026
1027      std::swap (pending, worklist);
1028
1029      EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1030	{
1031	  unsigned bb_index;
1032	  dcount++;
1033
1034	  bitmap_clear_bit (pending, index);
1035	  bb_index = blocks_in_postorder[index];
1036	  prev_age = last_visit_age[index];
1037	  if (dir == DF_FORWARD)
1038	    changed = df_worklist_propagate_forward (dataflow, bb_index,
1039						     bbindex_to_postorder,
1040						     pending, considered,
1041						     last_change_age,
1042						     prev_age);
1043	  else
1044	    changed = df_worklist_propagate_backward (dataflow, bb_index,
1045						      bbindex_to_postorder,
1046						      pending, considered,
1047						      last_change_age,
1048						      prev_age);
1049	  last_visit_age[index] = ++age;
1050	  if (changed)
1051	    last_change_age[index] = age;
1052	}
1053      bitmap_clear (worklist);
1054    }
1055
1056  BITMAP_FREE (worklist);
1057  BITMAP_FREE (pending);
1058  last_visit_age.release ();
1059  last_change_age.release ();
1060
1061  /* Dump statistics. */
1062  if (dump_file)
1063    fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1064	     " n_basic_blocks %d n_edges %d"
1065	     " count %d (%5.2g)\n",
1066	     n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1067	     dcount, dcount / (double)n_basic_blocks_for_fn (cfun));
1068}
1069
1070/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1071   with "n"-th bit representing the n-th block in the reverse-postorder order.
1072   The solver is a double-queue algorithm similar to the "double stack" solver
1073   from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1074   The only significant difference is that the worklist in this implementation
1075   is always sorted in RPO of the CFG visiting direction.  */
1076
1077void
1078df_worklist_dataflow (struct dataflow *dataflow,
1079                      bitmap blocks_to_consider,
1080                      int *blocks_in_postorder,
1081                      int n_blocks)
1082{
1083  bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1084  bitmap_iterator bi;
1085  unsigned int *bbindex_to_postorder;
1086  int i;
1087  unsigned int index;
1088  enum df_flow_dir dir = dataflow->problem->dir;
1089
1090  gcc_assert (dir != DF_NONE);
1091
1092  /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1093  bbindex_to_postorder = XNEWVEC (unsigned int,
1094				  last_basic_block_for_fn (cfun));
1095
1096  /* Initialize the array to an out-of-bound value.  */
1097  for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1098    bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1099
1100  /* Initialize the considered map.  */
1101  auto_sbitmap considered (last_basic_block_for_fn (cfun));
1102  bitmap_clear (considered);
1103  EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1104    {
1105      bitmap_set_bit (considered, index);
1106    }
1107
1108  /* Initialize the mapping of block index to postorder.  */
1109  for (i = 0; i < n_blocks; i++)
1110    {
1111      bbindex_to_postorder[blocks_in_postorder[i]] = i;
1112      /* Add all blocks to the worklist.  */
1113      bitmap_set_bit (pending, i);
1114    }
1115
1116  /* Initialize the problem. */
1117  if (dataflow->problem->init_fun)
1118    dataflow->problem->init_fun (blocks_to_consider);
1119
1120  /* Solve it.  */
1121  df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1122				    blocks_in_postorder,
1123				    bbindex_to_postorder,
1124				    n_blocks);
1125  free (bbindex_to_postorder);
1126}
1127
1128
1129/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1130   the order of the remaining entries.  Returns the length of the resulting
1131   list.  */
1132
1133static unsigned
1134df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1135{
1136  unsigned act, last;
1137
1138  for (act = 0, last = 0; act < len; act++)
1139    if (bitmap_bit_p (blocks, list[act]))
1140      list[last++] = list[act];
1141
1142  return last;
1143}
1144
1145
1146/* Execute dataflow analysis on a single dataflow problem.
1147
1148   BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1149   examined or will be computed.  For calls from DF_ANALYZE, this is
1150   the set of blocks that has been passed to DF_SET_BLOCKS.
1151*/
1152
1153void
1154df_analyze_problem (struct dataflow *dflow,
1155		    bitmap blocks_to_consider,
1156		    int *postorder, int n_blocks)
1157{
1158  timevar_push (dflow->problem->tv_id);
1159
1160  /* (Re)Allocate the datastructures necessary to solve the problem.  */
1161  if (dflow->problem->alloc_fun)
1162    dflow->problem->alloc_fun (blocks_to_consider);
1163
1164#ifdef ENABLE_DF_CHECKING
1165  if (dflow->problem->verify_start_fun)
1166    dflow->problem->verify_start_fun ();
1167#endif
1168
1169  /* Set up the problem and compute the local information.  */
1170  if (dflow->problem->local_compute_fun)
1171    dflow->problem->local_compute_fun (blocks_to_consider);
1172
1173  /* Solve the equations.  */
1174  if (dflow->problem->dataflow_fun)
1175    dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1176				  postorder, n_blocks);
1177
1178  /* Massage the solution.  */
1179  if (dflow->problem->finalize_fun)
1180    dflow->problem->finalize_fun (blocks_to_consider);
1181
1182#ifdef ENABLE_DF_CHECKING
1183  if (dflow->problem->verify_end_fun)
1184    dflow->problem->verify_end_fun ();
1185#endif
1186
1187  timevar_pop (dflow->problem->tv_id);
1188
1189  dflow->computed = true;
1190}
1191
1192
1193/* Analyze dataflow info.  */
1194
1195static void
1196df_analyze_1 (void)
1197{
1198  int i;
1199
1200  /* These should be the same.  */
1201  gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
1202
1203  /* We need to do this before the df_verify_all because this is
1204     not kept incrementally up to date.  */
1205  df_compute_regs_ever_live (false);
1206  df_process_deferred_rescans ();
1207
1208  if (dump_file)
1209    fprintf (dump_file, "df_analyze called\n");
1210
1211#ifndef ENABLE_DF_CHECKING
1212  if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1213#endif
1214    df_verify ();
1215
1216  /* Skip over the DF_SCAN problem. */
1217  for (i = 1; i < df->num_problems_defined; i++)
1218    {
1219      struct dataflow *dflow = df->problems_in_order[i];
1220      if (dflow->solutions_dirty)
1221        {
1222          if (dflow->problem->dir == DF_FORWARD)
1223            df_analyze_problem (dflow,
1224                                df->blocks_to_analyze,
1225				df->postorder_inverted.address (),
1226				df->postorder_inverted.length ());
1227          else
1228            df_analyze_problem (dflow,
1229                                df->blocks_to_analyze,
1230                                df->postorder,
1231                                df->n_blocks);
1232        }
1233    }
1234
1235  if (!df->analyze_subset)
1236    {
1237      BITMAP_FREE (df->blocks_to_analyze);
1238      df->blocks_to_analyze = NULL;
1239    }
1240
1241#ifdef DF_DEBUG_CFG
1242  df_set_clean_cfg ();
1243#endif
1244}
1245
1246/* Analyze dataflow info.  */
1247
1248void
1249df_analyze (void)
1250{
1251  bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1252
1253  free (df->postorder);
1254  df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1255  df->n_blocks = post_order_compute (df->postorder, true, true);
1256  df->postorder_inverted.truncate (0);
1257  inverted_post_order_compute (&df->postorder_inverted);
1258
1259  for (int i = 0; i < df->n_blocks; i++)
1260    bitmap_set_bit (current_all_blocks, df->postorder[i]);
1261
1262  if (flag_checking)
1263    {
1264      /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1265	 the ENTRY block.  */
1266      for (unsigned int i = 0; i < df->postorder_inverted.length (); i++)
1267	gcc_assert (bitmap_bit_p (current_all_blocks,
1268				  df->postorder_inverted[i]));
1269    }
1270
1271  /* Make sure that we have pruned any unreachable blocks from these
1272     sets.  */
1273  if (df->analyze_subset)
1274    {
1275      bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1276      df->n_blocks = df_prune_to_subcfg (df->postorder,
1277					 df->n_blocks, df->blocks_to_analyze);
1278      unsigned int newlen = df_prune_to_subcfg (df->postorder_inverted.address (),
1279						df->postorder_inverted.length (),
1280						  df->blocks_to_analyze);
1281      df->postorder_inverted.truncate (newlen);
1282      BITMAP_FREE (current_all_blocks);
1283    }
1284  else
1285    {
1286      df->blocks_to_analyze = current_all_blocks;
1287      current_all_blocks = NULL;
1288    }
1289
1290  df_analyze_1 ();
1291}
1292
1293/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1294   Returns the number of blocks which is always loop->num_nodes.  */
1295
1296static int
1297loop_post_order_compute (int *post_order, class loop *loop)
1298{
1299  edge_iterator *stack;
1300  int sp;
1301  int post_order_num = 0;
1302
1303  /* Allocate stack for back-tracking up CFG.  */
1304  stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1305  sp = 0;
1306
1307  /* Allocate bitmap to track nodes that have been visited.  */
1308  auto_bitmap visited;
1309
1310  /* Push the first edge on to the stack.  */
1311  stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1312
1313  while (sp)
1314    {
1315      edge_iterator ei;
1316      basic_block src;
1317      basic_block dest;
1318
1319      /* Look at the edge on the top of the stack.  */
1320      ei = stack[sp - 1];
1321      src = ei_edge (ei)->src;
1322      dest = ei_edge (ei)->dest;
1323
1324      /* Check if the edge destination has been visited yet and mark it
1325         if not so.  */
1326      if (flow_bb_inside_loop_p (loop, dest)
1327	  && bitmap_set_bit (visited, dest->index))
1328	{
1329	  if (EDGE_COUNT (dest->succs) > 0)
1330	    /* Since the DEST node has been visited for the first
1331	       time, check its successors.  */
1332	    stack[sp++] = ei_start (dest->succs);
1333	  else
1334	    post_order[post_order_num++] = dest->index;
1335	}
1336      else
1337	{
1338	  if (ei_one_before_end_p (ei)
1339	      && src != loop_preheader_edge (loop)->src)
1340	    post_order[post_order_num++] = src->index;
1341
1342	  if (!ei_one_before_end_p (ei))
1343	    ei_next (&stack[sp - 1]);
1344	  else
1345	    sp--;
1346	}
1347    }
1348
1349  free (stack);
1350
1351  return post_order_num;
1352}
1353
1354/* Compute the reverse top sort order of the inverted sub-CFG specified
1355   by LOOP.  Returns the number of blocks which is always loop->num_nodes.  */
1356
1357static void
1358loop_inverted_post_order_compute (vec<int> *post_order, class loop *loop)
1359{
1360  basic_block bb;
1361  edge_iterator *stack;
1362  int sp;
1363
1364  post_order->reserve_exact (loop->num_nodes);
1365
1366  /* Allocate stack for back-tracking up CFG.  */
1367  stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1368  sp = 0;
1369
1370  /* Allocate bitmap to track nodes that have been visited.  */
1371  auto_bitmap visited;
1372
1373  /* Put all latches into the initial work list.  In theory we'd want
1374     to start from loop exits but then we'd have the special case of
1375     endless loops.  It doesn't really matter for DF iteration order and
1376     handling latches last is probably even better.  */
1377  stack[sp++] = ei_start (loop->header->preds);
1378  bitmap_set_bit (visited, loop->header->index);
1379
1380  /* The inverted traversal loop. */
1381  while (sp)
1382    {
1383      edge_iterator ei;
1384      basic_block pred;
1385
1386      /* Look at the edge on the top of the stack.  */
1387      ei = stack[sp - 1];
1388      bb = ei_edge (ei)->dest;
1389      pred = ei_edge (ei)->src;
1390
1391      /* Check if the predecessor has been visited yet and mark it
1392	 if not so.  */
1393      if (flow_bb_inside_loop_p (loop, pred)
1394	  && bitmap_set_bit (visited, pred->index))
1395	{
1396	  if (EDGE_COUNT (pred->preds) > 0)
1397	    /* Since the predecessor node has been visited for the first
1398	       time, check its predecessors.  */
1399	    stack[sp++] = ei_start (pred->preds);
1400	  else
1401	    post_order->quick_push (pred->index);
1402	}
1403      else
1404	{
1405	  if (flow_bb_inside_loop_p (loop, bb)
1406	      && ei_one_before_end_p (ei))
1407	    post_order->quick_push (bb->index);
1408
1409	  if (!ei_one_before_end_p (ei))
1410	    ei_next (&stack[sp - 1]);
1411	  else
1412	    sp--;
1413	}
1414    }
1415
1416  free (stack);
1417}
1418
1419
1420/* Analyze dataflow info for the basic blocks contained in LOOP.  */
1421
1422void
1423df_analyze_loop (class loop *loop)
1424{
1425  free (df->postorder);
1426
1427  df->postorder = XNEWVEC (int, loop->num_nodes);
1428  df->postorder_inverted.truncate (0);
1429  df->n_blocks = loop_post_order_compute (df->postorder, loop);
1430    loop_inverted_post_order_compute (&df->postorder_inverted, loop);
1431  gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1432  gcc_assert (df->postorder_inverted.length () == loop->num_nodes);
1433
1434  bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1435  for (int i = 0; i < df->n_blocks; ++i)
1436    bitmap_set_bit (blocks, df->postorder[i]);
1437  df_set_blocks (blocks);
1438  BITMAP_FREE (blocks);
1439
1440  df_analyze_1 ();
1441}
1442
1443
1444/* Return the number of basic blocks from the last call to df_analyze.  */
1445
1446int
1447df_get_n_blocks (enum df_flow_dir dir)
1448{
1449  gcc_assert (dir != DF_NONE);
1450
1451  if (dir == DF_FORWARD)
1452    {
1453      gcc_assert (df->postorder_inverted.length ());
1454      return df->postorder_inverted.length ();
1455    }
1456
1457  gcc_assert (df->postorder);
1458  return df->n_blocks;
1459}
1460
1461
1462/* Return a pointer to the array of basic blocks in the reverse postorder.
1463   Depending on the direction of the dataflow problem,
1464   it returns either the usual reverse postorder array
1465   or the reverse postorder of inverted traversal. */
1466int *
1467df_get_postorder (enum df_flow_dir dir)
1468{
1469  gcc_assert (dir != DF_NONE);
1470
1471  if (dir == DF_FORWARD)
1472    {
1473      gcc_assert (df->postorder_inverted.length ());
1474      return df->postorder_inverted.address ();
1475    }
1476  gcc_assert (df->postorder);
1477  return df->postorder;
1478}
1479
1480static struct df_problem user_problem;
1481static struct dataflow user_dflow;
1482
1483/* Interface for calling iterative dataflow with user defined
1484   confluence and transfer functions.  All that is necessary is to
1485   supply DIR, a direction, CONF_FUN_0, a confluence function for
1486   blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1487   confluence function, TRANS_FUN, the basic block transfer function,
1488   and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1489   postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1490
1491void
1492df_simple_dataflow (enum df_flow_dir dir,
1493		    df_init_function init_fun,
1494		    df_confluence_function_0 con_fun_0,
1495		    df_confluence_function_n con_fun_n,
1496		    df_transfer_function trans_fun,
1497		    bitmap blocks, int * postorder, int n_blocks)
1498{
1499  memset (&user_problem, 0, sizeof (struct df_problem));
1500  user_problem.dir = dir;
1501  user_problem.init_fun = init_fun;
1502  user_problem.con_fun_0 = con_fun_0;
1503  user_problem.con_fun_n = con_fun_n;
1504  user_problem.trans_fun = trans_fun;
1505  user_dflow.problem = &user_problem;
1506  df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1507}
1508
1509
1510
1511/*----------------------------------------------------------------------------
1512   Functions to support limited incremental change.
1513----------------------------------------------------------------------------*/
1514
1515
1516/* Get basic block info.  */
1517
1518static void *
1519df_get_bb_info (struct dataflow *dflow, unsigned int index)
1520{
1521  if (dflow->block_info == NULL)
1522    return NULL;
1523  if (index >= dflow->block_info_size)
1524    return NULL;
1525  return (void *)((char *)dflow->block_info
1526		  + index * dflow->problem->block_info_elt_size);
1527}
1528
1529
1530/* Set basic block info.  */
1531
1532static void
1533df_set_bb_info (struct dataflow *dflow, unsigned int index,
1534		void *bb_info)
1535{
1536  gcc_assert (dflow->block_info);
1537  memcpy ((char *)dflow->block_info
1538	  + index * dflow->problem->block_info_elt_size,
1539	  bb_info, dflow->problem->block_info_elt_size);
1540}
1541
1542
1543/* Clear basic block info.  */
1544
1545static void
1546df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1547{
1548  gcc_assert (dflow->block_info);
1549  gcc_assert (dflow->block_info_size > index);
1550  memset ((char *)dflow->block_info
1551	  + index * dflow->problem->block_info_elt_size,
1552	  0, dflow->problem->block_info_elt_size);
1553}
1554
1555
1556/* Mark the solutions as being out of date.  */
1557
1558void
1559df_mark_solutions_dirty (void)
1560{
1561  if (df)
1562    {
1563      int p;
1564      for (p = 1; p < df->num_problems_defined; p++)
1565	df->problems_in_order[p]->solutions_dirty = true;
1566    }
1567}
1568
1569
1570/* Return true if BB needs it's transfer functions recomputed.  */
1571
1572bool
1573df_get_bb_dirty (basic_block bb)
1574{
1575  return bitmap_bit_p ((df_live
1576			? df_live : df_lr)->out_of_date_transfer_functions,
1577		       bb->index);
1578}
1579
1580
1581/* Mark BB as needing it's transfer functions as being out of
1582   date.  */
1583
1584void
1585df_set_bb_dirty (basic_block bb)
1586{
1587  bb->flags |= BB_MODIFIED;
1588  if (df)
1589    {
1590      int p;
1591      for (p = 1; p < df->num_problems_defined; p++)
1592	{
1593	  struct dataflow *dflow = df->problems_in_order[p];
1594	  if (dflow->out_of_date_transfer_functions)
1595	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1596	}
1597      df_mark_solutions_dirty ();
1598    }
1599}
1600
1601
1602/* Grow the bb_info array.  */
1603
1604void
1605df_grow_bb_info (struct dataflow *dflow)
1606{
1607  unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1608  if (dflow->block_info_size < new_size)
1609    {
1610      new_size += new_size / 4;
1611      dflow->block_info
1612         = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1613			       new_size
1614			       * dflow->problem->block_info_elt_size);
1615      memset ((char *)dflow->block_info
1616	      + dflow->block_info_size
1617	      * dflow->problem->block_info_elt_size,
1618	      0,
1619	      (new_size - dflow->block_info_size)
1620	      * dflow->problem->block_info_elt_size);
1621      dflow->block_info_size = new_size;
1622    }
1623}
1624
1625
1626/* Clear the dirty bits.  This is called from places that delete
1627   blocks.  */
1628static void
1629df_clear_bb_dirty (basic_block bb)
1630{
1631  int p;
1632  for (p = 1; p < df->num_problems_defined; p++)
1633    {
1634      struct dataflow *dflow = df->problems_in_order[p];
1635      if (dflow->out_of_date_transfer_functions)
1636	bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1637    }
1638}
1639
1640/* Called from the rtl_compact_blocks to reorganize the problems basic
1641   block info.  */
1642
1643void
1644df_compact_blocks (void)
1645{
1646  int i, p;
1647  basic_block bb;
1648  void *problem_temps;
1649
1650  auto_bitmap tmp (&df_bitmap_obstack);
1651  for (p = 0; p < df->num_problems_defined; p++)
1652    {
1653      struct dataflow *dflow = df->problems_in_order[p];
1654
1655      /* Need to reorganize the out_of_date_transfer_functions for the
1656	 dflow problem.  */
1657      if (dflow->out_of_date_transfer_functions)
1658	{
1659	  bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1660	  bitmap_clear (dflow->out_of_date_transfer_functions);
1661	  if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1662	    bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1663	  if (bitmap_bit_p (tmp, EXIT_BLOCK))
1664	    bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1665
1666	  i = NUM_FIXED_BLOCKS;
1667	  FOR_EACH_BB_FN (bb, cfun)
1668	    {
1669	      if (bitmap_bit_p (tmp, bb->index))
1670		bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1671	      i++;
1672	    }
1673	}
1674
1675      /* Now shuffle the block info for the problem.  */
1676      if (dflow->problem->free_bb_fun)
1677	{
1678	  int size = (last_basic_block_for_fn (cfun)
1679		      * dflow->problem->block_info_elt_size);
1680	  problem_temps = XNEWVAR (char, size);
1681	  df_grow_bb_info (dflow);
1682	  memcpy (problem_temps, dflow->block_info, size);
1683
1684	  /* Copy the bb info from the problem tmps to the proper
1685	     place in the block_info vector.  Null out the copied
1686	     item.  The entry and exit blocks never move.  */
1687	  i = NUM_FIXED_BLOCKS;
1688	  FOR_EACH_BB_FN (bb, cfun)
1689	    {
1690	      df_set_bb_info (dflow, i,
1691			      (char *)problem_temps
1692			      + bb->index * dflow->problem->block_info_elt_size);
1693	      i++;
1694	    }
1695	  memset ((char *)dflow->block_info
1696		  + i * dflow->problem->block_info_elt_size, 0,
1697		  (last_basic_block_for_fn (cfun) - i)
1698		  * dflow->problem->block_info_elt_size);
1699	  free (problem_temps);
1700	}
1701    }
1702
1703  /* Shuffle the bits in the basic_block indexed arrays.  */
1704
1705  if (df->blocks_to_analyze)
1706    {
1707      if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1708	bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1709      if (bitmap_bit_p (tmp, EXIT_BLOCK))
1710	bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1711      bitmap_copy (tmp, df->blocks_to_analyze);
1712      bitmap_clear (df->blocks_to_analyze);
1713      i = NUM_FIXED_BLOCKS;
1714      FOR_EACH_BB_FN (bb, cfun)
1715	{
1716	  if (bitmap_bit_p (tmp, bb->index))
1717	    bitmap_set_bit (df->blocks_to_analyze, i);
1718	  i++;
1719	}
1720    }
1721
1722  i = NUM_FIXED_BLOCKS;
1723  FOR_EACH_BB_FN (bb, cfun)
1724    {
1725      SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1726      bb->index = i;
1727      i++;
1728    }
1729
1730  gcc_assert (i == n_basic_blocks_for_fn (cfun));
1731
1732  for (; i < last_basic_block_for_fn (cfun); i++)
1733    SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1734
1735#ifdef DF_DEBUG_CFG
1736  if (!df_lr->solutions_dirty)
1737    df_set_clean_cfg ();
1738#endif
1739}
1740
1741
1742/* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1743   block.  There is no excuse for people to do this kind of thing.  */
1744
1745void
1746df_bb_replace (int old_index, basic_block new_block)
1747{
1748  int new_block_index = new_block->index;
1749  int p;
1750
1751  if (dump_file)
1752    fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1753
1754  gcc_assert (df);
1755  gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1756
1757  for (p = 0; p < df->num_problems_defined; p++)
1758    {
1759      struct dataflow *dflow = df->problems_in_order[p];
1760      if (dflow->block_info)
1761	{
1762	  df_grow_bb_info (dflow);
1763	  df_set_bb_info (dflow, old_index,
1764			  df_get_bb_info (dflow, new_block_index));
1765	}
1766    }
1767
1768  df_clear_bb_dirty (new_block);
1769  SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1770  new_block->index = old_index;
1771  df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1772  SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1773}
1774
1775
1776/* Free all of the per basic block dataflow from all of the problems.
1777   This is typically called before a basic block is deleted and the
1778   problem will be reanalyzed.  */
1779
1780void
1781df_bb_delete (int bb_index)
1782{
1783  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1784  int i;
1785
1786  if (!df)
1787    return;
1788
1789  for (i = 0; i < df->num_problems_defined; i++)
1790    {
1791      struct dataflow *dflow = df->problems_in_order[i];
1792      if (dflow->problem->free_bb_fun)
1793	{
1794	  void *bb_info = df_get_bb_info (dflow, bb_index);
1795	  if (bb_info)
1796	    {
1797	      dflow->problem->free_bb_fun (bb, bb_info);
1798	      df_clear_bb_info (dflow, bb_index);
1799	    }
1800	}
1801    }
1802  df_clear_bb_dirty (bb);
1803  df_mark_solutions_dirty ();
1804}
1805
1806
1807/* Verify that there is a place for everything and everything is in
1808   its place.  This is too expensive to run after every pass in the
1809   mainline.  However this is an excellent debugging tool if the
1810   dataflow information is not being updated properly.  You can just
1811   sprinkle calls in until you find the place that is changing an
1812   underlying structure without calling the proper updating
1813   routine.  */
1814
1815void
1816df_verify (void)
1817{
1818  df_scan_verify ();
1819#ifdef ENABLE_DF_CHECKING
1820  df_lr_verify_transfer_functions ();
1821  if (df_live)
1822    df_live_verify_transfer_functions ();
1823#endif
1824  df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
1825}
1826
1827#ifdef DF_DEBUG_CFG
1828
1829/* Compute an array of ints that describes the cfg.  This can be used
1830   to discover places where the cfg is modified by the appropriate
1831   calls have not been made to the keep df informed.  The internals of
1832   this are unexciting, the key is that two instances of this can be
1833   compared to see if any changes have been made to the cfg.  */
1834
1835static int *
1836df_compute_cfg_image (void)
1837{
1838  basic_block bb;
1839  int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1840  int i;
1841  int * map;
1842
1843  FOR_ALL_BB_FN (bb, cfun)
1844    {
1845      size += EDGE_COUNT (bb->succs);
1846    }
1847
1848  map = XNEWVEC (int, size);
1849  map[0] = size;
1850  i = 1;
1851  FOR_ALL_BB_FN (bb, cfun)
1852    {
1853      edge_iterator ei;
1854      edge e;
1855
1856      map[i++] = bb->index;
1857      FOR_EACH_EDGE (e, ei, bb->succs)
1858	map[i++] = e->dest->index;
1859      map[i++] = -1;
1860    }
1861  map[i] = -1;
1862  return map;
1863}
1864
1865static int *saved_cfg = NULL;
1866
1867
1868/* This function compares the saved version of the cfg with the
1869   current cfg and aborts if the two are identical.  The function
1870   silently returns if the cfg has been marked as dirty or the two are
1871   the same.  */
1872
1873void
1874df_check_cfg_clean (void)
1875{
1876  int *new_map;
1877
1878  if (!df)
1879    return;
1880
1881  if (df_lr->solutions_dirty)
1882    return;
1883
1884  if (saved_cfg == NULL)
1885    return;
1886
1887  new_map = df_compute_cfg_image ();
1888  gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1889  free (new_map);
1890}
1891
1892
1893/* This function builds a cfg fingerprint and squirrels it away in
1894   saved_cfg.  */
1895
1896static void
1897df_set_clean_cfg (void)
1898{
1899  free (saved_cfg);
1900  saved_cfg = df_compute_cfg_image ();
1901}
1902
1903#endif /* DF_DEBUG_CFG  */
1904/*----------------------------------------------------------------------------
1905   PUBLIC INTERFACES TO QUERY INFORMATION.
1906----------------------------------------------------------------------------*/
1907
1908
1909/* Return first def of REGNO within BB.  */
1910
1911df_ref
1912df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1913{
1914  rtx_insn *insn;
1915  df_ref def;
1916
1917  FOR_BB_INSNS (bb, insn)
1918    {
1919      if (!INSN_P (insn))
1920	continue;
1921
1922      FOR_EACH_INSN_DEF (def, insn)
1923	if (DF_REF_REGNO (def) == regno)
1924	  return def;
1925    }
1926  return NULL;
1927}
1928
1929
1930/* Return last def of REGNO within BB.  */
1931
1932df_ref
1933df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1934{
1935  rtx_insn *insn;
1936  df_ref def;
1937
1938  FOR_BB_INSNS_REVERSE (bb, insn)
1939    {
1940      if (!INSN_P (insn))
1941	continue;
1942
1943      FOR_EACH_INSN_DEF (def, insn)
1944	if (DF_REF_REGNO (def) == regno)
1945	  return def;
1946    }
1947
1948  return NULL;
1949}
1950
1951/* Finds the reference corresponding to the definition of REG in INSN.
1952   DF is the dataflow object.  */
1953
1954df_ref
1955df_find_def (rtx_insn *insn, rtx reg)
1956{
1957  df_ref def;
1958
1959  if (GET_CODE (reg) == SUBREG)
1960    reg = SUBREG_REG (reg);
1961  gcc_assert (REG_P (reg));
1962
1963  FOR_EACH_INSN_DEF (def, insn)
1964    if (DF_REF_REGNO (def) == REGNO (reg))
1965      return def;
1966
1967  return NULL;
1968}
1969
1970
1971/* Return true if REG is defined in INSN, zero otherwise.  */
1972
1973bool
1974df_reg_defined (rtx_insn *insn, rtx reg)
1975{
1976  return df_find_def (insn, reg) != NULL;
1977}
1978
1979
1980/* Finds the reference corresponding to the use of REG in INSN.
1981   DF is the dataflow object.  */
1982
1983df_ref
1984df_find_use (rtx_insn *insn, rtx reg)
1985{
1986  df_ref use;
1987
1988  if (GET_CODE (reg) == SUBREG)
1989    reg = SUBREG_REG (reg);
1990  gcc_assert (REG_P (reg));
1991
1992  df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1993  FOR_EACH_INSN_INFO_USE (use, insn_info)
1994    if (DF_REF_REGNO (use) == REGNO (reg))
1995      return use;
1996  if (df->changeable_flags & DF_EQ_NOTES)
1997    FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1998      if (DF_REF_REGNO (use) == REGNO (reg))
1999	return use;
2000  return NULL;
2001}
2002
2003
2004/* Return true if REG is referenced in INSN, zero otherwise.  */
2005
2006bool
2007df_reg_used (rtx_insn *insn, rtx reg)
2008{
2009  return df_find_use (insn, reg) != NULL;
2010}
2011
2012
2013/*----------------------------------------------------------------------------
2014   Debugging and printing functions.
2015----------------------------------------------------------------------------*/
2016
2017/* Write information about registers and basic blocks into FILE.
2018   This is part of making a debugging dump.  */
2019
2020void
2021dump_regset (regset r, FILE *outf)
2022{
2023  unsigned i;
2024  reg_set_iterator rsi;
2025
2026  if (r == NULL)
2027    {
2028      fputs (" (nil)", outf);
2029      return;
2030    }
2031
2032  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2033    {
2034      fprintf (outf, " %d", i);
2035      if (i < FIRST_PSEUDO_REGISTER)
2036	fprintf (outf, " [%s]",
2037		 reg_names[i]);
2038    }
2039}
2040
2041/* Print a human-readable representation of R on the standard error
2042   stream.  This function is designed to be used from within the
2043   debugger.  */
2044extern void debug_regset (regset);
2045DEBUG_FUNCTION void
2046debug_regset (regset r)
2047{
2048  dump_regset (r, stderr);
2049  putc ('\n', stderr);
2050}
2051
2052/* Write information about registers and basic blocks into FILE.
2053   This is part of making a debugging dump.  */
2054
2055void
2056df_print_regset (FILE *file, const_bitmap r)
2057{
2058  unsigned int i;
2059  bitmap_iterator bi;
2060
2061  if (r == NULL)
2062    fputs (" (nil)", file);
2063  else
2064    {
2065      EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2066	{
2067	  fprintf (file, " %d", i);
2068	  if (i < FIRST_PSEUDO_REGISTER)
2069	    fprintf (file, " [%s]", reg_names[i]);
2070	}
2071    }
2072  fprintf (file, "\n");
2073}
2074
2075
2076/* Write information about registers and basic blocks into FILE.  The
2077   bitmap is in the form used by df_byte_lr.  This is part of making a
2078   debugging dump.  */
2079
2080void
2081df_print_word_regset (FILE *file, const_bitmap r)
2082{
2083  unsigned int max_reg = max_reg_num ();
2084
2085  if (r == NULL)
2086    fputs (" (nil)", file);
2087  else
2088    {
2089      unsigned int i;
2090      for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2091	{
2092	  bool found = (bitmap_bit_p (r, 2 * i)
2093			|| bitmap_bit_p (r, 2 * i + 1));
2094	  if (found)
2095	    {
2096	      int word;
2097	      const char * sep = "";
2098	      fprintf (file, " %d", i);
2099	      fprintf (file, "(");
2100	      for (word = 0; word < 2; word++)
2101		if (bitmap_bit_p (r, 2 * i + word))
2102		  {
2103		    fprintf (file, "%s%d", sep, word);
2104		    sep = ", ";
2105		  }
2106	      fprintf (file, ")");
2107	    }
2108	}
2109    }
2110  fprintf (file, "\n");
2111}
2112
2113
2114/* Dump dataflow info.  */
2115
2116void
2117df_dump (FILE *file)
2118{
2119  basic_block bb;
2120  df_dump_start (file);
2121
2122  FOR_ALL_BB_FN (bb, cfun)
2123    {
2124      df_print_bb_index (bb, file);
2125      df_dump_top (bb, file);
2126      df_dump_bottom (bb, file);
2127    }
2128
2129  fprintf (file, "\n");
2130}
2131
2132
2133/* Dump dataflow info for df->blocks_to_analyze.  */
2134
2135void
2136df_dump_region (FILE *file)
2137{
2138  if (df->blocks_to_analyze)
2139    {
2140      bitmap_iterator bi;
2141      unsigned int bb_index;
2142
2143      fprintf (file, "\n\nstarting region dump\n");
2144      df_dump_start (file);
2145
2146      EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2147	{
2148	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2149	  dump_bb (file, bb, 0, TDF_DETAILS);
2150	}
2151      fprintf (file, "\n");
2152    }
2153  else
2154    df_dump (file);
2155}
2156
2157
2158/* Dump the introductory information for each problem defined.  */
2159
2160void
2161df_dump_start (FILE *file)
2162{
2163  int i;
2164
2165  if (!df || !file)
2166    return;
2167
2168  fprintf (file, "\n\n%s\n", current_function_name ());
2169  fprintf (file, "\nDataflow summary:\n");
2170  if (df->blocks_to_analyze)
2171    fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2172	     DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2173
2174  for (i = 0; i < df->num_problems_defined; i++)
2175    {
2176      struct dataflow *dflow = df->problems_in_order[i];
2177      if (dflow->computed)
2178	{
2179	  df_dump_problem_function fun = dflow->problem->dump_start_fun;
2180	  if (fun)
2181	    fun (file);
2182	}
2183    }
2184}
2185
2186
2187/* Dump the top or bottom of the block information for BB.  */
2188static void
2189df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2190{
2191  int i;
2192
2193  if (!df || !file)
2194    return;
2195
2196  for (i = 0; i < df->num_problems_defined; i++)
2197    {
2198      struct dataflow *dflow = df->problems_in_order[i];
2199      if (dflow->computed)
2200	{
2201	  df_dump_bb_problem_function bbfun;
2202
2203	  if (top)
2204	    bbfun = dflow->problem->dump_top_fun;
2205	  else
2206	    bbfun = dflow->problem->dump_bottom_fun;
2207
2208	  if (bbfun)
2209	    bbfun (bb, file);
2210	}
2211    }
2212}
2213
2214/* Dump the top of the block information for BB.  */
2215
2216void
2217df_dump_top (basic_block bb, FILE *file)
2218{
2219  df_dump_bb_problem_data (bb, file, /*top=*/true);
2220}
2221
2222/* Dump the bottom of the block information for BB.  */
2223
2224void
2225df_dump_bottom (basic_block bb, FILE *file)
2226{
2227  df_dump_bb_problem_data (bb, file, /*top=*/false);
2228}
2229
2230
2231/* Dump information about INSN just before or after dumping INSN itself.  */
2232static void
2233df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2234{
2235  int i;
2236
2237  if (!df || !file)
2238    return;
2239
2240  for (i = 0; i < df->num_problems_defined; i++)
2241    {
2242      struct dataflow *dflow = df->problems_in_order[i];
2243      if (dflow->computed)
2244	{
2245	  df_dump_insn_problem_function insnfun;
2246
2247	  if (top)
2248	    insnfun = dflow->problem->dump_insn_top_fun;
2249	  else
2250	    insnfun = dflow->problem->dump_insn_bottom_fun;
2251
2252	  if (insnfun)
2253	    insnfun (insn, file);
2254	}
2255    }
2256}
2257
2258/* Dump information about INSN before dumping INSN itself.  */
2259
2260void
2261df_dump_insn_top (const rtx_insn *insn, FILE *file)
2262{
2263  df_dump_insn_problem_data (insn,  file, /*top=*/true);
2264}
2265
2266/* Dump information about INSN after dumping INSN itself.  */
2267
2268void
2269df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2270{
2271  df_dump_insn_problem_data (insn,  file, /*top=*/false);
2272}
2273
2274
2275static void
2276df_ref_dump (df_ref ref, FILE *file)
2277{
2278  fprintf (file, "%c%d(%d)",
2279	   DF_REF_REG_DEF_P (ref)
2280	   ? 'd'
2281	   : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2282	   DF_REF_ID (ref),
2283	   DF_REF_REGNO (ref));
2284}
2285
2286void
2287df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2288{
2289  fprintf (file, "{ ");
2290  for (; ref; ref = DF_REF_NEXT_LOC (ref))
2291    {
2292      df_ref_dump (ref, file);
2293      if (follow_chain)
2294	df_chain_dump (DF_REF_CHAIN (ref), file);
2295    }
2296  fprintf (file, "}");
2297}
2298
2299
2300/* Dump either a ref-def or reg-use chain.  */
2301
2302void
2303df_regs_chain_dump (df_ref ref,  FILE *file)
2304{
2305  fprintf (file, "{ ");
2306  while (ref)
2307    {
2308      df_ref_dump (ref, file);
2309      ref = DF_REF_NEXT_REG (ref);
2310    }
2311  fprintf (file, "}");
2312}
2313
2314
2315static void
2316df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2317{
2318  for (; mws; mws = DF_MWS_NEXT (mws))
2319    fprintf (file, "mw %c r[%d..%d]\n",
2320	     DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2321	     mws->start_regno, mws->end_regno);
2322}
2323
2324
2325static void
2326df_insn_uid_debug (unsigned int uid,
2327		   bool follow_chain, FILE *file)
2328{
2329  fprintf (file, "insn %d luid %d",
2330	   uid, DF_INSN_UID_LUID (uid));
2331
2332  if (DF_INSN_UID_DEFS (uid))
2333    {
2334      fprintf (file, " defs ");
2335      df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2336    }
2337
2338  if (DF_INSN_UID_USES (uid))
2339    {
2340      fprintf (file, " uses ");
2341      df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2342    }
2343
2344  if (DF_INSN_UID_EQ_USES (uid))
2345    {
2346      fprintf (file, " eq uses ");
2347      df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2348    }
2349
2350  if (DF_INSN_UID_MWS (uid))
2351    {
2352      fprintf (file, " mws ");
2353      df_mws_dump (DF_INSN_UID_MWS (uid), file);
2354    }
2355  fprintf (file, "\n");
2356}
2357
2358
2359DEBUG_FUNCTION void
2360df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2361{
2362  df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2363}
2364
2365DEBUG_FUNCTION void
2366df_insn_debug_regno (rtx_insn *insn, FILE *file)
2367{
2368  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2369
2370  fprintf (file, "insn %d bb %d luid %d defs ",
2371	   INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2372	   DF_INSN_INFO_LUID (insn_info));
2373  df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2374
2375  fprintf (file, " uses ");
2376  df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2377
2378  fprintf (file, " eq_uses ");
2379  df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2380  fprintf (file, "\n");
2381}
2382
2383DEBUG_FUNCTION void
2384df_regno_debug (unsigned int regno, FILE *file)
2385{
2386  fprintf (file, "reg %d defs ", regno);
2387  df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2388  fprintf (file, " uses ");
2389  df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2390  fprintf (file, " eq_uses ");
2391  df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2392  fprintf (file, "\n");
2393}
2394
2395
2396DEBUG_FUNCTION void
2397df_ref_debug (df_ref ref, FILE *file)
2398{
2399  fprintf (file, "%c%d ",
2400	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2401	   DF_REF_ID (ref));
2402  fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2403	   DF_REF_REGNO (ref),
2404	   DF_REF_BBNO (ref),
2405	   DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2406	   DF_REF_FLAGS (ref),
2407	   DF_REF_TYPE (ref));
2408  if (DF_REF_LOC (ref))
2409    {
2410      if (flag_dump_noaddr)
2411	fprintf (file, "loc #(#) chain ");
2412      else
2413	fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2414		 (void *)*DF_REF_LOC (ref));
2415    }
2416  else
2417    fprintf (file, "chain ");
2418  df_chain_dump (DF_REF_CHAIN (ref), file);
2419  fprintf (file, "\n");
2420}
2421
2422/* Functions for debugging from GDB.  */
2423
2424DEBUG_FUNCTION void
2425debug_df_insn (rtx_insn *insn)
2426{
2427  df_insn_debug (insn, true, stderr);
2428  debug_rtx (insn);
2429}
2430
2431
2432DEBUG_FUNCTION void
2433debug_df_reg (rtx reg)
2434{
2435  df_regno_debug (REGNO (reg), stderr);
2436}
2437
2438
2439DEBUG_FUNCTION void
2440debug_df_regno (unsigned int regno)
2441{
2442  df_regno_debug (regno, stderr);
2443}
2444
2445
2446DEBUG_FUNCTION void
2447debug_df_ref (df_ref ref)
2448{
2449  df_ref_debug (ref, stderr);
2450}
2451
2452
2453DEBUG_FUNCTION void
2454debug_df_defno (unsigned int defno)
2455{
2456  df_ref_debug (DF_DEFS_GET (defno), stderr);
2457}
2458
2459
2460DEBUG_FUNCTION void
2461debug_df_useno (unsigned int defno)
2462{
2463  df_ref_debug (DF_USES_GET (defno), stderr);
2464}
2465
2466
2467DEBUG_FUNCTION void
2468debug_df_chain (struct df_link *link)
2469{
2470  df_chain_dump (link, stderr);
2471  fputc ('\n', stderr);
2472}
2473