df-core.c revision 1.1.1.2
1/* Allocation for dataflow support routines.
2   Copyright (C) 1999-2013 Free Software Foundation, Inc.
3   Originally contributed by Michael P. Hayes
4             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6             and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
12Software Foundation; either version 3, or (at your option) any later
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
21along with GCC; see the file COPYING3.  If not see
22<http://www.gnu.org/licenses/>.  */
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems.  The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains.  However,
34the interface allows other dataflow problems to be defined as well.
35
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish).  It is quite likely
38that these boundaries will be expanded in the future.  The only
39requirement is that there be a correct control flow graph.
40
41There are three variations of the live variable problem that are
42available whenever dataflow is available.  The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
44areas that can be reached from a definition of a variable.  The LIVE
45problem finds the intersection of these two areas.
46
47There are several optional problems.  These can be enabled when they
48are needed and disabled when they are not needed.
49
50Dataflow problems are generally solved in three layers.  The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn.  Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also.  There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
57
58In the middle layer, basic blocks are scanned to produce transfer
59functions which describe the effects of that block on the global
60dataflow solution.  The transfer functions are only rebuilt if the
61some instruction within the block has changed.
62
63The top layer is the dataflow solution itself.  The dataflow solution
64is computed by using an efficient iterative solver and the transfer
65functions.  The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
67
68
69USAGE:
70
71Here is an example of using the dataflow routines.
72
73      df_[chain,live,note,rd]_add_problem (flags);
74
75      df_set_blocks (blocks);
76
77      df_analyze ();
78
79      df_dump (stderr);
80
81      df_finish_pass (false);
82
83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84instance to struct df_problem, to the set of problems solved in this
85instance of df.  All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
87
88Problems can be dependent on other problems.  For instance, solving
89def-use or use-def chains is dependent on solving reaching
90definitions. As long as these dependencies are listed in the problem
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem.  Note that it is not necessary to have a problem.  In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed.  The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution.  The insn level information
103is always kept up to date.
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set.  Care should be taken to call df_set_blocks right
108before the call to analyze in order to eliminate the possibility that
109optimizations that reorder blocks invalidate the bitvector.
110
111DF_ANALYZE causes all of the defined problems to be (re)solved.  When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information.  The DF_*_BB_INFO macros can be used
114to access these bitvectors.  All deferred rescannings are down before
115the transfer functions are recomputed.
116
117DF_DUMP can then be called to dump the information produce to some
118file.  This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information.  These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems.  It also causes any insns whose scanning has been
126deferred to be rescanned as well as clears all of the changeable flags.
127Setting the pass manager TODO_df_finish flag causes this function to
128be run.  However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138   df_bb_delete, df_insn_change_bb have been added to most of
139   the low level service functions that maintain the cfg and change
140   rtl.  Calling and of these routines many cause some number of insns
141   to be rescanned.
142
143   For most modern rtl passes, this is certainly the easiest way to
144   manage rescanning the insns.  This technique also has the advantage
145   that the scanning information is always correct and can be relied
146   upon even after changes have been made to the instructions.  This
147   technique is contra indicated in several cases:
148
149   a) If def-use chains OR use-def chains (but not both) are built,
150      using this is SIMPLY WRONG.  The problem is that when a ref is
151      deleted that is the target of an edge, there is not enough
152      information to efficiently find the source of the edge and
153      delete the edge.  This leaves a dangling reference that may
154      cause problems.
155
156   b) If def-use chains AND use-def chains are built, this may
157      produce unexpected results.  The problem is that the incremental
158      scanning of an insn does not know how to repair the chains that
159      point into an insn when the insn changes.  So the incremental
160      scanning just deletes the chains that enter and exit the insn
161      being changed.  The dangling reference issue in (a) is not a
162      problem here, but if the pass is depending on the chains being
163      maintained after insns have been modified, this technique will
164      not do the correct thing.
165
166   c) If the pass modifies insns several times, this incremental
167      updating may be expensive.
168
169   d) If the pass modifies all of the insns, as does register
170      allocation, it is simply better to rescan the entire function.
171
1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173   df_insn_delete do not immediately change the insn but instead make
174   a note that the insn needs to be rescanned.  The next call to
175   df_analyze, df_finish_pass, or df_process_deferred_rescans will
176   cause all of the pending rescans to be processed.
177
178   This is the technique of choice if either 1a, 1b, or 1c are issues
179   in the pass.  In the case of 1a or 1b, a call to df_finish_pass
180   (either manually or via TODO_df_finish) should be made before the
181   next call to df_analyze or df_process_deferred_rescans.
182
183   This mode is also used by a few passes that still rely on note_uses,
184   note_stores and for_each_rtx instead of using the DF data.  This
185   can be said to fall under case 1c.
186
187   To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188   (This mode can be cleared by calling df_clear_flags
189   (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190   be rescanned.
191
1923) Total rescanning - In this mode the rescanning is disabled.
193   Only when insns are deleted is the df information associated with
194   it also deleted.  At the end of the pass, a call must be made to
195   df_insn_rescan_all.  This method is used by the register allocator
196   since it generally changes each insn multiple times (once for each ref)
197   and does not need to make use of the updated scanning information.
198
1994) Do it yourself - In this mechanism, the pass updates the insns
200   itself using the low level df primitives.  Currently no pass does
201   this, but it has the advantage that it is quite efficient given
202   that the pass generally has exact knowledge of what it is changing.
203
204DATA STRUCTURES
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within.  The refs are linked together in
209chains of uses and defs for each insn and for each register.  Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use.  This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs.  Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable.  The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical.  The amount of work to recompute the chain any
230chain after an arbitrary change is large.  However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date.  The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration.  In general, restarting a
238dataflow iteration is difficult and expensive.  Again, the best way to
239keep the dataflow information up to data (if this is really what is
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c.  However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
249The basic object is a DF_REF (reference) and this may either be a
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists.  For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
261ACCESSING INSNS:
262
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264   The array is indexed by insn uid, and every DF_REF points to the
265   DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268   lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269   DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270   (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271   DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272   DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273   The latter list are the list of references in REG_EQUAL or REG_EQUIV
274   notes.  These macros produce a ref (or NULL), the rest of the list
275   can be obtained by traversal of the NEXT_REF field (accessed by the
276   DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
277   the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280   DF_INSN_INFO object for the insn.  The LUID field is accessed by
281   the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282   When properly set, the LUID is an integer that numbers each insn in
283   the basic block, in order from the start of the block.
284   The numbers are only correct after a call to df_analyze.  They will
285   rot after insns are added deleted or moved round.
286
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
293   REAL refs are associated with instructions.
294
295   ARTIFICIAL refs are associated with basic blocks.  The heads of
296   these lists can be accessed by calling df_get_artificial_defs or
297   df_get_artificial_uses for the particular basic block.
298
299   Artificial defs and uses occur both at the beginning and ends of blocks.
300
301     For blocks that area at the destination of eh edges, the
302     artificial uses and defs occur at the beginning.  The defs relate
303     to the registers specified in EH_RETURN_DATA_REGNO and the uses
304     relate to the registers specified in ED_USES.  Logically these
305     defs and uses should really occur along the eh edge, but there is
306     no convenient way to do this.  Artificial edges that occur at the
307     beginning of the block have the DF_REF_AT_TOP flag set.
308
309     Artificial uses occur at the end of all blocks.  These arise from
310     the hard registers that are always live, such as the stack
311     register and are put there to keep the code from forgetting about
312     them.
313
314     Artificial defs occur at the end of the entry block.  These arise
315     from registers that are live at entry to the function.
316
3172) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
318   uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319
320   All of the eq_uses, uses and defs associated with each pseudo or
321   hard register may be linked in a bidirectional chain.  These are
322   called reg-use or reg_def chains.  If the changeable flag
323   DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324   treated like uses.  If it is not set they are ignored.
325
326   The first use, eq_use or def for a register can be obtained using
327   the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328   macros.  Subsequent uses for the same regno can be obtained by
329   following the next_reg field of the ref.  The number of elements in
330   each of the chains can be found by using the DF_REG_USE_COUNT,
331   DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332
333   In previous versions of this code, these chains were ordered.  It
334   has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
337   get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
338   include the eq_uses.  Otherwise these are ignored when building the
339   chains.
340
3414) An array of all of the uses (and an array of all of the defs) can
342   be built.  These arrays are indexed by the value in the id
343   structure.  These arrays are only lazily kept up to date, and that
344   process can be expensive.  To have these arrays built, call
345   df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
346   has been set the array will contain the eq_uses.  Otherwise these
347   are ignored when building the array and assigning the ids.  Note
348   that the values in the id field of a ref may change across calls to
349   df_analyze or df_reorganize_defs or df_reorganize_uses.
350
351   If the only use of this array is to find all of the refs, it is
352   better to traverse all of the registers and then traverse all of
353   reg-use or reg-def chains.
354
355NOTES:
356
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def.  These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
368smaller than that covered by the inner mode, invokes a read-modify-write
369operation.  We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
373are write-only operations.
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
380#include "tm.h"
381#include "rtl.h"
382#include "tm_p.h"
383#include "insn-config.h"
384#include "recog.h"
385#include "function.h"
386#include "regs.h"
387#include "alloc-pool.h"
388#include "flags.h"
389#include "hard-reg-set.h"
390#include "basic-block.h"
391#include "sbitmap.h"
392#include "bitmap.h"
393#include "df.h"
394#include "tree-pass.h"
395#include "params.h"
396
397static void *df_get_bb_info (struct dataflow *, unsigned int);
398static void df_set_bb_info (struct dataflow *, unsigned int, void *);
399static void df_clear_bb_info (struct dataflow *, unsigned int);
400#ifdef DF_DEBUG_CFG
401static void df_set_clean_cfg (void);
402#endif
403
404/* The obstack on which regsets are allocated.  */
405struct bitmap_obstack reg_obstack;
406
407/* An obstack for bitmap not related to specific dataflow problems.
408   This obstack should e.g. be used for bitmaps with a short life time
409   such as temporary bitmaps.  */
410
411bitmap_obstack df_bitmap_obstack;
412
413
414/*----------------------------------------------------------------------------
415  Functions to create, destroy and manipulate an instance of df.
416----------------------------------------------------------------------------*/
417
418struct df_d *df;
419
420/* Add PROBLEM (and any dependent problems) to the DF instance.  */
421
422void
423df_add_problem (struct df_problem *problem)
424{
425  struct dataflow *dflow;
426  int i;
427
428  /* First try to add the dependent problem. */
429  if (problem->dependent_problem)
430    df_add_problem (problem->dependent_problem);
431
432  /* Check to see if this problem has already been defined.  If it
433     has, just return that instance, if not, add it to the end of the
434     vector.  */
435  dflow = df->problems_by_index[problem->id];
436  if (dflow)
437    return;
438
439  /* Make a new one and add it to the end.  */
440  dflow = XCNEW (struct dataflow);
441  dflow->problem = problem;
442  dflow->computed = false;
443  dflow->solutions_dirty = true;
444  df->problems_by_index[dflow->problem->id] = dflow;
445
446  /* Keep the defined problems ordered by index.  This solves the
447     problem that RI will use the information from UREC if UREC has
448     been defined, or from LIVE if LIVE is defined and otherwise LR.
449     However for this to work, the computation of RI must be pushed
450     after which ever of those problems is defined, but we do not
451     require any of those except for LR to have actually been
452     defined.  */
453  df->num_problems_defined++;
454  for (i = df->num_problems_defined - 2; i >= 0; i--)
455    {
456      if (problem->id < df->problems_in_order[i]->problem->id)
457	df->problems_in_order[i+1] = df->problems_in_order[i];
458      else
459	{
460	  df->problems_in_order[i+1] = dflow;
461	  return;
462	}
463    }
464  df->problems_in_order[0] = dflow;
465}
466
467
468/* Set the MASK flags in the DFLOW problem.  The old flags are
469   returned.  If a flag is not allowed to be changed this will fail if
470   checking is enabled.  */
471int
472df_set_flags (int changeable_flags)
473{
474  int old_flags = df->changeable_flags;
475  df->changeable_flags |= changeable_flags;
476  return old_flags;
477}
478
479
480/* Clear the MASK flags in the DFLOW problem.  The old flags are
481   returned.  If a flag is not allowed to be changed this will fail if
482   checking is enabled.  */
483int
484df_clear_flags (int changeable_flags)
485{
486  int old_flags = df->changeable_flags;
487  df->changeable_flags &= ~changeable_flags;
488  return old_flags;
489}
490
491
492/* Set the blocks that are to be considered for analysis.  If this is
493   not called or is called with null, the entire function in
494   analyzed.  */
495
496void
497df_set_blocks (bitmap blocks)
498{
499  if (blocks)
500    {
501      if (dump_file)
502	bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
503      if (df->blocks_to_analyze)
504	{
505	  /* This block is called to change the focus from one subset
506	     to another.  */
507	  int p;
508	  bitmap_head diff;
509	  bitmap_initialize (&diff, &df_bitmap_obstack);
510	  bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
511	  for (p = 0; p < df->num_problems_defined; p++)
512	    {
513	      struct dataflow *dflow = df->problems_in_order[p];
514	      if (dflow->optional_p && dflow->problem->reset_fun)
515		dflow->problem->reset_fun (df->blocks_to_analyze);
516	      else if (dflow->problem->free_blocks_on_set_blocks)
517		{
518		  bitmap_iterator bi;
519		  unsigned int bb_index;
520
521		  EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
522		    {
523		      basic_block bb = BASIC_BLOCK (bb_index);
524		      if (bb)
525			{
526			  void *bb_info = df_get_bb_info (dflow, bb_index);
527			  dflow->problem->free_bb_fun (bb, bb_info);
528			  df_clear_bb_info (dflow, bb_index);
529			}
530		    }
531		}
532	    }
533
534	   bitmap_clear (&diff);
535	}
536      else
537	{
538	  /* This block of code is executed to change the focus from
539	     the entire function to a subset.  */
540	  bitmap_head blocks_to_reset;
541	  bool initialized = false;
542	  int p;
543	  for (p = 0; p < df->num_problems_defined; p++)
544	    {
545	      struct dataflow *dflow = df->problems_in_order[p];
546	      if (dflow->optional_p && dflow->problem->reset_fun)
547		{
548		  if (!initialized)
549		    {
550		      basic_block bb;
551		      bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
552		      FOR_ALL_BB(bb)
553			{
554			  bitmap_set_bit (&blocks_to_reset, bb->index);
555			}
556		    }
557		  dflow->problem->reset_fun (&blocks_to_reset);
558		}
559	    }
560	  if (initialized)
561	    bitmap_clear (&blocks_to_reset);
562
563	  df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
564	}
565      bitmap_copy (df->blocks_to_analyze, blocks);
566      df->analyze_subset = true;
567    }
568  else
569    {
570      /* This block is executed to reset the focus to the entire
571	 function.  */
572      if (dump_file)
573	fprintf (dump_file, "clearing blocks_to_analyze\n");
574      if (df->blocks_to_analyze)
575	{
576	  BITMAP_FREE (df->blocks_to_analyze);
577	  df->blocks_to_analyze = NULL;
578	}
579      df->analyze_subset = false;
580    }
581
582  /* Setting the blocks causes the refs to be unorganized since only
583     the refs in the blocks are seen.  */
584  df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585  df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586  df_mark_solutions_dirty ();
587}
588
589
590/* Delete a DFLOW problem (and any problems that depend on this
591   problem).  */
592
593void
594df_remove_problem (struct dataflow *dflow)
595{
596  struct df_problem *problem;
597  int i;
598
599  if (!dflow)
600    return;
601
602  problem = dflow->problem;
603  gcc_assert (problem->remove_problem_fun);
604
605  /* Delete any problems that depended on this problem first.  */
606  for (i = 0; i < df->num_problems_defined; i++)
607    if (df->problems_in_order[i]->problem->dependent_problem == problem)
608      df_remove_problem (df->problems_in_order[i]);
609
610  /* Now remove this problem.  */
611  for (i = 0; i < df->num_problems_defined; i++)
612    if (df->problems_in_order[i] == dflow)
613      {
614	int j;
615	for (j = i + 1; j < df->num_problems_defined; j++)
616	  df->problems_in_order[j-1] = df->problems_in_order[j];
617	df->problems_in_order[j-1] = NULL;
618	df->num_problems_defined--;
619	break;
620      }
621
622  (problem->remove_problem_fun) ();
623  df->problems_by_index[problem->id] = NULL;
624}
625
626
627/* Remove all of the problems that are not permanent.  Scanning, LR
628   and (at -O2 or higher) LIVE are permanent, the rest are removable.
629   Also clear all of the changeable_flags.  */
630
631void
632df_finish_pass (bool verify ATTRIBUTE_UNUSED)
633{
634  int i;
635  int removed = 0;
636
637#ifdef ENABLE_DF_CHECKING
638  int saved_flags;
639#endif
640
641  if (!df)
642    return;
643
644  df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645  df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
646
647#ifdef ENABLE_DF_CHECKING
648  saved_flags = df->changeable_flags;
649#endif
650
651  for (i = 0; i < df->num_problems_defined; i++)
652    {
653      struct dataflow *dflow = df->problems_in_order[i];
654      struct df_problem *problem = dflow->problem;
655
656      if (dflow->optional_p)
657	{
658	  gcc_assert (problem->remove_problem_fun);
659	  (problem->remove_problem_fun) ();
660	  df->problems_in_order[i] = NULL;
661	  df->problems_by_index[problem->id] = NULL;
662	  removed++;
663	}
664    }
665  df->num_problems_defined -= removed;
666
667  /* Clear all of the flags.  */
668  df->changeable_flags = 0;
669  df_process_deferred_rescans ();
670
671  /* Set the focus back to the whole function.  */
672  if (df->blocks_to_analyze)
673    {
674      BITMAP_FREE (df->blocks_to_analyze);
675      df->blocks_to_analyze = NULL;
676      df_mark_solutions_dirty ();
677      df->analyze_subset = false;
678    }
679
680#ifdef ENABLE_DF_CHECKING
681  /* Verification will fail in DF_NO_INSN_RESCAN.  */
682  if (!(saved_flags & DF_NO_INSN_RESCAN))
683    {
684      df_lr_verify_transfer_functions ();
685      if (df_live)
686	df_live_verify_transfer_functions ();
687    }
688
689#ifdef DF_DEBUG_CFG
690  df_set_clean_cfg ();
691#endif
692#endif
693
694#ifdef ENABLE_CHECKING
695  if (verify)
696    df->changeable_flags |= DF_VERIFY_SCHEDULED;
697#endif
698}
699
700
701/* Set up the dataflow instance for the entire back end.  */
702
703static unsigned int
704rest_of_handle_df_initialize (void)
705{
706  gcc_assert (!df);
707  df = XCNEW (struct df_d);
708  df->changeable_flags = 0;
709
710  bitmap_obstack_initialize (&df_bitmap_obstack);
711
712  /* Set this to a conservative value.  Stack_ptr_mod will compute it
713     correctly later.  */
714  crtl->sp_is_unchanging = 0;
715
716  df_scan_add_problem ();
717  df_scan_alloc (NULL);
718
719  /* These three problems are permanent.  */
720  df_lr_add_problem ();
721  if (optimize > 1)
722    df_live_add_problem ();
723
724  df->postorder = XNEWVEC (int, last_basic_block);
725  df->postorder_inverted = XNEWVEC (int, last_basic_block);
726  df->n_blocks = post_order_compute (df->postorder, true, true);
727  df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728  gcc_assert (df->n_blocks == df->n_blocks_inverted);
729
730  df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
731  memset (df->hard_regs_live_count, 0,
732	  sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
733
734  df_hard_reg_init ();
735  /* After reload, some ports add certain bits to regs_ever_live so
736     this cannot be reset.  */
737  df_compute_regs_ever_live (true);
738  df_scan_blocks ();
739  df_compute_regs_ever_live (false);
740  return 0;
741}
742
743
744static bool
745gate_opt (void)
746{
747  return optimize > 0;
748}
749
750
751struct rtl_opt_pass pass_df_initialize_opt =
752{
753 {
754  RTL_PASS,
755  "dfinit",                             /* name */
756  OPTGROUP_NONE,                        /* optinfo_flags */
757  gate_opt,                             /* gate */
758  rest_of_handle_df_initialize,         /* execute */
759  NULL,                                 /* sub */
760  NULL,                                 /* next */
761  0,                                    /* static_pass_number */
762  TV_DF_SCAN,                           /* tv_id */
763  0,                                    /* properties_required */
764  0,                                    /* properties_provided */
765  0,                                    /* properties_destroyed */
766  0,                                    /* todo_flags_start */
767  0                                     /* todo_flags_finish */
768 }
769};
770
771
772static bool
773gate_no_opt (void)
774{
775  return optimize == 0;
776}
777
778
779struct rtl_opt_pass pass_df_initialize_no_opt =
780{
781 {
782  RTL_PASS,
783  "no-opt dfinit",                      /* name */
784  OPTGROUP_NONE,                        /* optinfo_flags */
785  gate_no_opt,                          /* gate */
786  rest_of_handle_df_initialize,         /* execute */
787  NULL,                                 /* sub */
788  NULL,                                 /* next */
789  0,                                    /* static_pass_number */
790  TV_DF_SCAN,                           /* tv_id */
791  0,                                    /* properties_required */
792  0,                                    /* properties_provided */
793  0,                                    /* properties_destroyed */
794  0,                                    /* todo_flags_start */
795  0                                     /* todo_flags_finish */
796 }
797};
798
799
800/* Free all the dataflow info and the DF structure.  This should be
801   called from the df_finish macro which also NULLs the parm.  */
802
803static unsigned int
804rest_of_handle_df_finish (void)
805{
806  int i;
807
808  gcc_assert (df);
809
810  for (i = 0; i < df->num_problems_defined; i++)
811    {
812      struct dataflow *dflow = df->problems_in_order[i];
813      dflow->problem->free_fun ();
814    }
815
816  free (df->postorder);
817  free (df->postorder_inverted);
818  free (df->hard_regs_live_count);
819  free (df);
820  df = NULL;
821
822  bitmap_obstack_release (&df_bitmap_obstack);
823  return 0;
824}
825
826
827struct rtl_opt_pass pass_df_finish =
828{
829 {
830  RTL_PASS,
831  "dfinish",                            /* name */
832  OPTGROUP_NONE,                        /* optinfo_flags */
833  NULL,					/* gate */
834  rest_of_handle_df_finish,             /* execute */
835  NULL,                                 /* sub */
836  NULL,                                 /* next */
837  0,                                    /* static_pass_number */
838  TV_NONE,                              /* tv_id */
839  0,                                    /* properties_required */
840  0,                                    /* properties_provided */
841  0,                                    /* properties_destroyed */
842  0,                                    /* todo_flags_start */
843  0                                     /* todo_flags_finish */
844 }
845};
846
847
848
849
850
851/*----------------------------------------------------------------------------
852   The general data flow analysis engine.
853----------------------------------------------------------------------------*/
854
855/* Return time BB when it was visited for last time.  */
856#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
857
858/* Helper function for df_worklist_dataflow.
859   Propagate the dataflow forward.
860   Given a BB_INDEX, do the dataflow propagation
861   and set bits on for successors in PENDING
862   if the out set of the dataflow has changed.
863
864   AGE specify time when BB was visited last time.
865   AGE of 0 means we are visiting for first time and need to
866   compute transfer function to initialize datastructures.
867   Otherwise we re-do transfer function only if something change
868   while computing confluence functions.
869   We need to compute confluence only of basic block that are younger
870   then last visit of the BB.
871
872   Return true if BB info has changed.  This is always the case
873   in the first visit.  */
874
875static bool
876df_worklist_propagate_forward (struct dataflow *dataflow,
877                               unsigned bb_index,
878                               unsigned *bbindex_to_postorder,
879                               bitmap pending,
880                               sbitmap considered,
881			       ptrdiff_t age)
882{
883  edge e;
884  edge_iterator ei;
885  basic_block bb = BASIC_BLOCK (bb_index);
886  bool changed = !age;
887
888  /*  Calculate <conf_op> of incoming edges.  */
889  if (EDGE_COUNT (bb->preds) > 0)
890    FOR_EACH_EDGE (e, ei, bb->preds)
891      {
892        if (age <= BB_LAST_CHANGE_AGE (e->src)
893	    && bitmap_bit_p (considered, e->src->index))
894          changed |= dataflow->problem->con_fun_n (e);
895      }
896  else if (dataflow->problem->con_fun_0)
897    dataflow->problem->con_fun_0 (bb);
898
899  if (changed
900      && dataflow->problem->trans_fun (bb_index))
901    {
902      /* The out set of this block has changed.
903         Propagate to the outgoing blocks.  */
904      FOR_EACH_EDGE (e, ei, bb->succs)
905        {
906          unsigned ob_index = e->dest->index;
907
908          if (bitmap_bit_p (considered, ob_index))
909            bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
910        }
911      return true;
912    }
913  return false;
914}
915
916
917/* Helper function for df_worklist_dataflow.
918   Propagate the dataflow backward.  */
919
920static bool
921df_worklist_propagate_backward (struct dataflow *dataflow,
922                                unsigned bb_index,
923                                unsigned *bbindex_to_postorder,
924                                bitmap pending,
925                                sbitmap considered,
926			        ptrdiff_t age)
927{
928  edge e;
929  edge_iterator ei;
930  basic_block bb = BASIC_BLOCK (bb_index);
931  bool changed = !age;
932
933  /*  Calculate <conf_op> of incoming edges.  */
934  if (EDGE_COUNT (bb->succs) > 0)
935    FOR_EACH_EDGE (e, ei, bb->succs)
936      {
937        if (age <= BB_LAST_CHANGE_AGE (e->dest)
938	    && bitmap_bit_p (considered, e->dest->index))
939          changed |= dataflow->problem->con_fun_n (e);
940      }
941  else if (dataflow->problem->con_fun_0)
942    dataflow->problem->con_fun_0 (bb);
943
944  if (changed
945      && dataflow->problem->trans_fun (bb_index))
946    {
947      /* The out set of this block has changed.
948         Propagate to the outgoing blocks.  */
949      FOR_EACH_EDGE (e, ei, bb->preds)
950        {
951          unsigned ob_index = e->src->index;
952
953          if (bitmap_bit_p (considered, ob_index))
954            bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
955        }
956      return true;
957    }
958  return false;
959}
960
961/* Main dataflow solver loop.
962
963   DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
964   need to visit.
965   BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
966   BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
967   PENDING will be freed.
968
969   The worklists are bitmaps indexed by postorder positions.
970
971   The function implements standard algorithm for dataflow solving with two
972   worklists (we are processing WORKLIST and storing new BBs to visit in
973   PENDING).
974
975   As an optimization we maintain ages when BB was changed (stored in bb->aux)
976   and when it was last visited (stored in last_visit_age).  This avoids need
977   to re-do confluence function for edges to basic blocks whose source
978   did not change since destination was visited last time.  */
979
980static void
981df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
982			  	  bitmap pending,
983                                  sbitmap considered,
984                                  int *blocks_in_postorder,
985				  unsigned *bbindex_to_postorder,
986				  int n_blocks)
987{
988  enum df_flow_dir dir = dataflow->problem->dir;
989  int dcount = 0;
990  bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
991  int age = 0;
992  bool changed;
993  vec<int> last_visit_age = vNULL;
994  int prev_age;
995  basic_block bb;
996  int i;
997
998  last_visit_age.safe_grow_cleared (n_blocks);
999
1000  /* Double-queueing. Worklist is for the current iteration,
1001     and pending is for the next. */
1002  while (!bitmap_empty_p (pending))
1003    {
1004      bitmap_iterator bi;
1005      unsigned int index;
1006
1007      /* Swap pending and worklist. */
1008      bitmap temp = worklist;
1009      worklist = pending;
1010      pending = temp;
1011
1012      EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1013	{
1014	  unsigned bb_index;
1015	  dcount++;
1016
1017	  bitmap_clear_bit (pending, index);
1018	  bb_index = blocks_in_postorder[index];
1019	  bb = BASIC_BLOCK (bb_index);
1020	  prev_age = last_visit_age[index];
1021	  if (dir == DF_FORWARD)
1022	    changed = df_worklist_propagate_forward (dataflow, bb_index,
1023						     bbindex_to_postorder,
1024						     pending, considered,
1025						     prev_age);
1026	  else
1027	    changed = df_worklist_propagate_backward (dataflow, bb_index,
1028						      bbindex_to_postorder,
1029						      pending, considered,
1030						      prev_age);
1031	  last_visit_age[index] = ++age;
1032	  if (changed)
1033	    bb->aux = (void *)(ptrdiff_t)age;
1034	}
1035      bitmap_clear (worklist);
1036    }
1037  for (i = 0; i < n_blocks; i++)
1038    BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
1039
1040  BITMAP_FREE (worklist);
1041  BITMAP_FREE (pending);
1042  last_visit_age.release ();
1043
1044  /* Dump statistics. */
1045  if (dump_file)
1046    fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1047	     "n_basic_blocks %d n_edges %d"
1048	     " count %d (%5.2g)\n",
1049	     n_basic_blocks, n_edges,
1050	     dcount, dcount / (float)n_basic_blocks);
1051}
1052
1053/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1054   with "n"-th bit representing the n-th block in the reverse-postorder order.
1055   The solver is a double-queue algorithm similar to the "double stack" solver
1056   from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1057   The only significant difference is that the worklist in this implementation
1058   is always sorted in RPO of the CFG visiting direction.  */
1059
1060void
1061df_worklist_dataflow (struct dataflow *dataflow,
1062                      bitmap blocks_to_consider,
1063                      int *blocks_in_postorder,
1064                      int n_blocks)
1065{
1066  bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1067  sbitmap considered = sbitmap_alloc (last_basic_block);
1068  bitmap_iterator bi;
1069  unsigned int *bbindex_to_postorder;
1070  int i;
1071  unsigned int index;
1072  enum df_flow_dir dir = dataflow->problem->dir;
1073
1074  gcc_assert (dir != DF_NONE);
1075
1076  /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1077  bbindex_to_postorder =
1078    (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1079
1080  /* Initialize the array to an out-of-bound value.  */
1081  for (i = 0; i < last_basic_block; i++)
1082    bbindex_to_postorder[i] = last_basic_block;
1083
1084  /* Initialize the considered map.  */
1085  bitmap_clear (considered);
1086  EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1087    {
1088      bitmap_set_bit (considered, index);
1089    }
1090
1091  /* Initialize the mapping of block index to postorder.  */
1092  for (i = 0; i < n_blocks; i++)
1093    {
1094      bbindex_to_postorder[blocks_in_postorder[i]] = i;
1095      /* Add all blocks to the worklist.  */
1096      bitmap_set_bit (pending, i);
1097    }
1098
1099  /* Initialize the problem. */
1100  if (dataflow->problem->init_fun)
1101    dataflow->problem->init_fun (blocks_to_consider);
1102
1103  /* Solve it.  */
1104  df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1105				    blocks_in_postorder,
1106				    bbindex_to_postorder,
1107				    n_blocks);
1108  sbitmap_free (considered);
1109  free (bbindex_to_postorder);
1110}
1111
1112
1113/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1114   the order of the remaining entries.  Returns the length of the resulting
1115   list.  */
1116
1117static unsigned
1118df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1119{
1120  unsigned act, last;
1121
1122  for (act = 0, last = 0; act < len; act++)
1123    if (bitmap_bit_p (blocks, list[act]))
1124      list[last++] = list[act];
1125
1126  return last;
1127}
1128
1129
1130/* Execute dataflow analysis on a single dataflow problem.
1131
1132   BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1133   examined or will be computed.  For calls from DF_ANALYZE, this is
1134   the set of blocks that has been passed to DF_SET_BLOCKS.
1135*/
1136
1137void
1138df_analyze_problem (struct dataflow *dflow,
1139		    bitmap blocks_to_consider,
1140		    int *postorder, int n_blocks)
1141{
1142  timevar_push (dflow->problem->tv_id);
1143
1144  /* (Re)Allocate the datastructures necessary to solve the problem.  */
1145  if (dflow->problem->alloc_fun)
1146    dflow->problem->alloc_fun (blocks_to_consider);
1147
1148#ifdef ENABLE_DF_CHECKING
1149  if (dflow->problem->verify_start_fun)
1150    dflow->problem->verify_start_fun ();
1151#endif
1152
1153  /* Set up the problem and compute the local information.  */
1154  if (dflow->problem->local_compute_fun)
1155    dflow->problem->local_compute_fun (blocks_to_consider);
1156
1157  /* Solve the equations.  */
1158  if (dflow->problem->dataflow_fun)
1159    dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1160				  postorder, n_blocks);
1161
1162  /* Massage the solution.  */
1163  if (dflow->problem->finalize_fun)
1164    dflow->problem->finalize_fun (blocks_to_consider);
1165
1166#ifdef ENABLE_DF_CHECKING
1167  if (dflow->problem->verify_end_fun)
1168    dflow->problem->verify_end_fun ();
1169#endif
1170
1171  timevar_pop (dflow->problem->tv_id);
1172
1173  dflow->computed = true;
1174}
1175
1176
1177/* Analyze dataflow info for the basic blocks specified by the bitmap
1178   BLOCKS, or for the whole CFG if BLOCKS is zero.  */
1179
1180void
1181df_analyze (void)
1182{
1183  bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1184  bool everything;
1185  int i;
1186
1187  free (df->postorder);
1188  free (df->postorder_inverted);
1189  df->postorder = XNEWVEC (int, last_basic_block);
1190  df->postorder_inverted = XNEWVEC (int, last_basic_block);
1191  df->n_blocks = post_order_compute (df->postorder, true, true);
1192  df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1193
1194  /* These should be the same.  */
1195  gcc_assert (df->n_blocks == df->n_blocks_inverted);
1196
1197  /* We need to do this before the df_verify_all because this is
1198     not kept incrementally up to date.  */
1199  df_compute_regs_ever_live (false);
1200  df_process_deferred_rescans ();
1201
1202  if (dump_file)
1203    fprintf (dump_file, "df_analyze called\n");
1204
1205#ifndef ENABLE_DF_CHECKING
1206  if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1207#endif
1208    df_verify ();
1209
1210  for (i = 0; i < df->n_blocks; i++)
1211    bitmap_set_bit (current_all_blocks, df->postorder[i]);
1212
1213#ifdef ENABLE_CHECKING
1214  /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1215     the ENTRY block.  */
1216  for (i = 0; i < df->n_blocks_inverted; i++)
1217    gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1218#endif
1219
1220  /* Make sure that we have pruned any unreachable blocks from these
1221     sets.  */
1222  if (df->analyze_subset)
1223    {
1224      everything = false;
1225      bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1226      df->n_blocks = df_prune_to_subcfg (df->postorder,
1227					 df->n_blocks, df->blocks_to_analyze);
1228      df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1229			                          df->n_blocks_inverted,
1230                                                  df->blocks_to_analyze);
1231      BITMAP_FREE (current_all_blocks);
1232    }
1233  else
1234    {
1235      everything = true;
1236      df->blocks_to_analyze = current_all_blocks;
1237      current_all_blocks = NULL;
1238    }
1239
1240  /* Skip over the DF_SCAN problem. */
1241  for (i = 1; i < df->num_problems_defined; i++)
1242    {
1243      struct dataflow *dflow = df->problems_in_order[i];
1244      if (dflow->solutions_dirty)
1245        {
1246          if (dflow->problem->dir == DF_FORWARD)
1247            df_analyze_problem (dflow,
1248                                df->blocks_to_analyze,
1249                                df->postorder_inverted,
1250                                df->n_blocks_inverted);
1251          else
1252            df_analyze_problem (dflow,
1253                                df->blocks_to_analyze,
1254                                df->postorder,
1255                                df->n_blocks);
1256        }
1257    }
1258
1259  if (everything)
1260    {
1261      BITMAP_FREE (df->blocks_to_analyze);
1262      df->blocks_to_analyze = NULL;
1263    }
1264
1265#ifdef DF_DEBUG_CFG
1266  df_set_clean_cfg ();
1267#endif
1268}
1269
1270
1271/* Return the number of basic blocks from the last call to df_analyze.  */
1272
1273int
1274df_get_n_blocks (enum df_flow_dir dir)
1275{
1276  gcc_assert (dir != DF_NONE);
1277
1278  if (dir == DF_FORWARD)
1279    {
1280      gcc_assert (df->postorder_inverted);
1281      return df->n_blocks_inverted;
1282    }
1283
1284  gcc_assert (df->postorder);
1285  return df->n_blocks;
1286}
1287
1288
1289/* Return a pointer to the array of basic blocks in the reverse postorder.
1290   Depending on the direction of the dataflow problem,
1291   it returns either the usual reverse postorder array
1292   or the reverse postorder of inverted traversal. */
1293int *
1294df_get_postorder (enum df_flow_dir dir)
1295{
1296  gcc_assert (dir != DF_NONE);
1297
1298  if (dir == DF_FORWARD)
1299    {
1300      gcc_assert (df->postorder_inverted);
1301      return df->postorder_inverted;
1302    }
1303  gcc_assert (df->postorder);
1304  return df->postorder;
1305}
1306
1307static struct df_problem user_problem;
1308static struct dataflow user_dflow;
1309
1310/* Interface for calling iterative dataflow with user defined
1311   confluence and transfer functions.  All that is necessary is to
1312   supply DIR, a direction, CONF_FUN_0, a confluence function for
1313   blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1314   confluence function, TRANS_FUN, the basic block transfer function,
1315   and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1316   postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1317
1318void
1319df_simple_dataflow (enum df_flow_dir dir,
1320		    df_init_function init_fun,
1321		    df_confluence_function_0 con_fun_0,
1322		    df_confluence_function_n con_fun_n,
1323		    df_transfer_function trans_fun,
1324		    bitmap blocks, int * postorder, int n_blocks)
1325{
1326  memset (&user_problem, 0, sizeof (struct df_problem));
1327  user_problem.dir = dir;
1328  user_problem.init_fun = init_fun;
1329  user_problem.con_fun_0 = con_fun_0;
1330  user_problem.con_fun_n = con_fun_n;
1331  user_problem.trans_fun = trans_fun;
1332  user_dflow.problem = &user_problem;
1333  df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1334}
1335
1336
1337
1338/*----------------------------------------------------------------------------
1339   Functions to support limited incremental change.
1340----------------------------------------------------------------------------*/
1341
1342
1343/* Get basic block info.  */
1344
1345static void *
1346df_get_bb_info (struct dataflow *dflow, unsigned int index)
1347{
1348  if (dflow->block_info == NULL)
1349    return NULL;
1350  if (index >= dflow->block_info_size)
1351    return NULL;
1352  return (void *)((char *)dflow->block_info
1353		  + index * dflow->problem->block_info_elt_size);
1354}
1355
1356
1357/* Set basic block info.  */
1358
1359static void
1360df_set_bb_info (struct dataflow *dflow, unsigned int index,
1361		void *bb_info)
1362{
1363  gcc_assert (dflow->block_info);
1364  memcpy ((char *)dflow->block_info
1365	  + index * dflow->problem->block_info_elt_size,
1366	  bb_info, dflow->problem->block_info_elt_size);
1367}
1368
1369
1370/* Clear basic block info.  */
1371
1372static void
1373df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1374{
1375  gcc_assert (dflow->block_info);
1376  gcc_assert (dflow->block_info_size > index);
1377  memset ((char *)dflow->block_info
1378	  + index * dflow->problem->block_info_elt_size,
1379	  0, dflow->problem->block_info_elt_size);
1380}
1381
1382
1383/* Mark the solutions as being out of date.  */
1384
1385void
1386df_mark_solutions_dirty (void)
1387{
1388  if (df)
1389    {
1390      int p;
1391      for (p = 1; p < df->num_problems_defined; p++)
1392	df->problems_in_order[p]->solutions_dirty = true;
1393    }
1394}
1395
1396
1397/* Return true if BB needs it's transfer functions recomputed.  */
1398
1399bool
1400df_get_bb_dirty (basic_block bb)
1401{
1402  return bitmap_bit_p ((df_live
1403			? df_live : df_lr)->out_of_date_transfer_functions,
1404		       bb->index);
1405}
1406
1407
1408/* Mark BB as needing it's transfer functions as being out of
1409   date.  */
1410
1411void
1412df_set_bb_dirty (basic_block bb)
1413{
1414  bb->flags |= BB_MODIFIED;
1415  if (df)
1416    {
1417      int p;
1418      for (p = 1; p < df->num_problems_defined; p++)
1419	{
1420	  struct dataflow *dflow = df->problems_in_order[p];
1421	  if (dflow->out_of_date_transfer_functions)
1422	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1423	}
1424      df_mark_solutions_dirty ();
1425    }
1426}
1427
1428
1429/* Grow the bb_info array.  */
1430
1431void
1432df_grow_bb_info (struct dataflow *dflow)
1433{
1434  unsigned int new_size = last_basic_block + 1;
1435  if (dflow->block_info_size < new_size)
1436    {
1437      new_size += new_size / 4;
1438      dflow->block_info
1439         = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1440			       new_size
1441			       * dflow->problem->block_info_elt_size);
1442      memset ((char *)dflow->block_info
1443	      + dflow->block_info_size
1444	      * dflow->problem->block_info_elt_size,
1445	      0,
1446	      (new_size - dflow->block_info_size)
1447	      * dflow->problem->block_info_elt_size);
1448      dflow->block_info_size = new_size;
1449    }
1450}
1451
1452
1453/* Clear the dirty bits.  This is called from places that delete
1454   blocks.  */
1455static void
1456df_clear_bb_dirty (basic_block bb)
1457{
1458  int p;
1459  for (p = 1; p < df->num_problems_defined; p++)
1460    {
1461      struct dataflow *dflow = df->problems_in_order[p];
1462      if (dflow->out_of_date_transfer_functions)
1463	bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1464    }
1465}
1466
1467/* Called from the rtl_compact_blocks to reorganize the problems basic
1468   block info.  */
1469
1470void
1471df_compact_blocks (void)
1472{
1473  int i, p;
1474  basic_block bb;
1475  void *problem_temps;
1476  bitmap_head tmp;
1477
1478  bitmap_initialize (&tmp, &df_bitmap_obstack);
1479  for (p = 0; p < df->num_problems_defined; p++)
1480    {
1481      struct dataflow *dflow = df->problems_in_order[p];
1482
1483      /* Need to reorganize the out_of_date_transfer_functions for the
1484	 dflow problem.  */
1485      if (dflow->out_of_date_transfer_functions)
1486	{
1487	  bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1488	  bitmap_clear (dflow->out_of_date_transfer_functions);
1489	  if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1490	    bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1491	  if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1492	    bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1493
1494	  i = NUM_FIXED_BLOCKS;
1495	  FOR_EACH_BB (bb)
1496	    {
1497	      if (bitmap_bit_p (&tmp, bb->index))
1498		bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1499	      i++;
1500	    }
1501	}
1502
1503      /* Now shuffle the block info for the problem.  */
1504      if (dflow->problem->free_bb_fun)
1505	{
1506	  int size = last_basic_block * dflow->problem->block_info_elt_size;
1507	  problem_temps = XNEWVAR (char, size);
1508	  df_grow_bb_info (dflow);
1509	  memcpy (problem_temps, dflow->block_info, size);
1510
1511	  /* Copy the bb info from the problem tmps to the proper
1512	     place in the block_info vector.  Null out the copied
1513	     item.  The entry and exit blocks never move.  */
1514	  i = NUM_FIXED_BLOCKS;
1515	  FOR_EACH_BB (bb)
1516	    {
1517	      df_set_bb_info (dflow, i,
1518			      (char *)problem_temps
1519			      + bb->index * dflow->problem->block_info_elt_size);
1520	      i++;
1521	    }
1522	  memset ((char *)dflow->block_info
1523		  + i * dflow->problem->block_info_elt_size, 0,
1524		  (last_basic_block - i)
1525		  * dflow->problem->block_info_elt_size);
1526	  free (problem_temps);
1527	}
1528    }
1529
1530  /* Shuffle the bits in the basic_block indexed arrays.  */
1531
1532  if (df->blocks_to_analyze)
1533    {
1534      if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1535	bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1536      if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1537	bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1538      bitmap_copy (&tmp, df->blocks_to_analyze);
1539      bitmap_clear (df->blocks_to_analyze);
1540      i = NUM_FIXED_BLOCKS;
1541      FOR_EACH_BB (bb)
1542	{
1543	  if (bitmap_bit_p (&tmp, bb->index))
1544	    bitmap_set_bit (df->blocks_to_analyze, i);
1545	  i++;
1546	}
1547    }
1548
1549  bitmap_clear (&tmp);
1550
1551  i = NUM_FIXED_BLOCKS;
1552  FOR_EACH_BB (bb)
1553    {
1554      SET_BASIC_BLOCK (i, bb);
1555      bb->index = i;
1556      i++;
1557    }
1558
1559  gcc_assert (i == n_basic_blocks);
1560
1561  for (; i < last_basic_block; i++)
1562    SET_BASIC_BLOCK (i, NULL);
1563
1564#ifdef DF_DEBUG_CFG
1565  if (!df_lr->solutions_dirty)
1566    df_set_clean_cfg ();
1567#endif
1568}
1569
1570
1571/* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1572   block.  There is no excuse for people to do this kind of thing.  */
1573
1574void
1575df_bb_replace (int old_index, basic_block new_block)
1576{
1577  int new_block_index = new_block->index;
1578  int p;
1579
1580  if (dump_file)
1581    fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1582
1583  gcc_assert (df);
1584  gcc_assert (BASIC_BLOCK (old_index) == NULL);
1585
1586  for (p = 0; p < df->num_problems_defined; p++)
1587    {
1588      struct dataflow *dflow = df->problems_in_order[p];
1589      if (dflow->block_info)
1590	{
1591	  df_grow_bb_info (dflow);
1592	  df_set_bb_info (dflow, old_index,
1593			  df_get_bb_info (dflow, new_block_index));
1594	}
1595    }
1596
1597  df_clear_bb_dirty (new_block);
1598  SET_BASIC_BLOCK (old_index, new_block);
1599  new_block->index = old_index;
1600  df_set_bb_dirty (BASIC_BLOCK (old_index));
1601  SET_BASIC_BLOCK (new_block_index, NULL);
1602}
1603
1604
1605/* Free all of the per basic block dataflow from all of the problems.
1606   This is typically called before a basic block is deleted and the
1607   problem will be reanalyzed.  */
1608
1609void
1610df_bb_delete (int bb_index)
1611{
1612  basic_block bb = BASIC_BLOCK (bb_index);
1613  int i;
1614
1615  if (!df)
1616    return;
1617
1618  for (i = 0; i < df->num_problems_defined; i++)
1619    {
1620      struct dataflow *dflow = df->problems_in_order[i];
1621      if (dflow->problem->free_bb_fun)
1622	{
1623	  void *bb_info = df_get_bb_info (dflow, bb_index);
1624	  if (bb_info)
1625	    {
1626	      dflow->problem->free_bb_fun (bb, bb_info);
1627	      df_clear_bb_info (dflow, bb_index);
1628	    }
1629	}
1630    }
1631  df_clear_bb_dirty (bb);
1632  df_mark_solutions_dirty ();
1633}
1634
1635
1636/* Verify that there is a place for everything and everything is in
1637   its place.  This is too expensive to run after every pass in the
1638   mainline.  However this is an excellent debugging tool if the
1639   dataflow information is not being updated properly.  You can just
1640   sprinkle calls in until you find the place that is changing an
1641   underlying structure without calling the proper updating
1642   routine.  */
1643
1644void
1645df_verify (void)
1646{
1647  df_scan_verify ();
1648#ifdef ENABLE_DF_CHECKING
1649  df_lr_verify_transfer_functions ();
1650  if (df_live)
1651    df_live_verify_transfer_functions ();
1652#endif
1653}
1654
1655#ifdef DF_DEBUG_CFG
1656
1657/* Compute an array of ints that describes the cfg.  This can be used
1658   to discover places where the cfg is modified by the appropriate
1659   calls have not been made to the keep df informed.  The internals of
1660   this are unexciting, the key is that two instances of this can be
1661   compared to see if any changes have been made to the cfg.  */
1662
1663static int *
1664df_compute_cfg_image (void)
1665{
1666  basic_block bb;
1667  int size = 2 + (2 * n_basic_blocks);
1668  int i;
1669  int * map;
1670
1671  FOR_ALL_BB (bb)
1672    {
1673      size += EDGE_COUNT (bb->succs);
1674    }
1675
1676  map = XNEWVEC (int, size);
1677  map[0] = size;
1678  i = 1;
1679  FOR_ALL_BB (bb)
1680    {
1681      edge_iterator ei;
1682      edge e;
1683
1684      map[i++] = bb->index;
1685      FOR_EACH_EDGE (e, ei, bb->succs)
1686	map[i++] = e->dest->index;
1687      map[i++] = -1;
1688    }
1689  map[i] = -1;
1690  return map;
1691}
1692
1693static int *saved_cfg = NULL;
1694
1695
1696/* This function compares the saved version of the cfg with the
1697   current cfg and aborts if the two are identical.  The function
1698   silently returns if the cfg has been marked as dirty or the two are
1699   the same.  */
1700
1701void
1702df_check_cfg_clean (void)
1703{
1704  int *new_map;
1705
1706  if (!df)
1707    return;
1708
1709  if (df_lr->solutions_dirty)
1710    return;
1711
1712  if (saved_cfg == NULL)
1713    return;
1714
1715  new_map = df_compute_cfg_image ();
1716  gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1717  free (new_map);
1718}
1719
1720
1721/* This function builds a cfg fingerprint and squirrels it away in
1722   saved_cfg.  */
1723
1724static void
1725df_set_clean_cfg (void)
1726{
1727  free (saved_cfg);
1728  saved_cfg = df_compute_cfg_image ();
1729}
1730
1731#endif /* DF_DEBUG_CFG  */
1732/*----------------------------------------------------------------------------
1733   PUBLIC INTERFACES TO QUERY INFORMATION.
1734----------------------------------------------------------------------------*/
1735
1736
1737/* Return first def of REGNO within BB.  */
1738
1739df_ref
1740df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1741{
1742  rtx insn;
1743  df_ref *def_rec;
1744  unsigned int uid;
1745
1746  FOR_BB_INSNS (bb, insn)
1747    {
1748      if (!INSN_P (insn))
1749	continue;
1750
1751      uid = INSN_UID (insn);
1752      for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1753	{
1754	  df_ref def = *def_rec;
1755	  if (DF_REF_REGNO (def) == regno)
1756	    return def;
1757	}
1758    }
1759  return NULL;
1760}
1761
1762
1763/* Return last def of REGNO within BB.  */
1764
1765df_ref
1766df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1767{
1768  rtx insn;
1769  df_ref *def_rec;
1770  unsigned int uid;
1771
1772  FOR_BB_INSNS_REVERSE (bb, insn)
1773    {
1774      if (!INSN_P (insn))
1775	continue;
1776
1777      uid = INSN_UID (insn);
1778      for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1779	{
1780	  df_ref def = *def_rec;
1781	  if (DF_REF_REGNO (def) == regno)
1782	    return def;
1783	}
1784    }
1785
1786  return NULL;
1787}
1788
1789/* Finds the reference corresponding to the definition of REG in INSN.
1790   DF is the dataflow object.  */
1791
1792df_ref
1793df_find_def (rtx insn, rtx reg)
1794{
1795  unsigned int uid;
1796  df_ref *def_rec;
1797
1798  if (GET_CODE (reg) == SUBREG)
1799    reg = SUBREG_REG (reg);
1800  gcc_assert (REG_P (reg));
1801
1802  uid = INSN_UID (insn);
1803  for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1804    {
1805      df_ref def = *def_rec;
1806      if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1807	return def;
1808    }
1809
1810  return NULL;
1811}
1812
1813
1814/* Return true if REG is defined in INSN, zero otherwise.  */
1815
1816bool
1817df_reg_defined (rtx insn, rtx reg)
1818{
1819  return df_find_def (insn, reg) != NULL;
1820}
1821
1822
1823/* Finds the reference corresponding to the use of REG in INSN.
1824   DF is the dataflow object.  */
1825
1826df_ref
1827df_find_use (rtx insn, rtx reg)
1828{
1829  unsigned int uid;
1830  df_ref *use_rec;
1831
1832  if (GET_CODE (reg) == SUBREG)
1833    reg = SUBREG_REG (reg);
1834  gcc_assert (REG_P (reg));
1835
1836  uid = INSN_UID (insn);
1837  for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1838    {
1839      df_ref use = *use_rec;
1840      if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1841	return use;
1842    }
1843  if (df->changeable_flags & DF_EQ_NOTES)
1844    for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1845      {
1846	df_ref use = *use_rec;
1847	if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1848	  return use;
1849      }
1850  return NULL;
1851}
1852
1853
1854/* Return true if REG is referenced in INSN, zero otherwise.  */
1855
1856bool
1857df_reg_used (rtx insn, rtx reg)
1858{
1859  return df_find_use (insn, reg) != NULL;
1860}
1861
1862
1863/*----------------------------------------------------------------------------
1864   Debugging and printing functions.
1865----------------------------------------------------------------------------*/
1866
1867/* Write information about registers and basic blocks into FILE.
1868   This is part of making a debugging dump.  */
1869
1870void
1871dump_regset (regset r, FILE *outf)
1872{
1873  unsigned i;
1874  reg_set_iterator rsi;
1875
1876  if (r == NULL)
1877    {
1878      fputs (" (nil)", outf);
1879      return;
1880    }
1881
1882  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
1883    {
1884      fprintf (outf, " %d", i);
1885      if (i < FIRST_PSEUDO_REGISTER)
1886	fprintf (outf, " [%s]",
1887		 reg_names[i]);
1888    }
1889}
1890
1891/* Print a human-readable representation of R on the standard error
1892   stream.  This function is designed to be used from within the
1893   debugger.  */
1894extern void debug_regset (regset);
1895DEBUG_FUNCTION void
1896debug_regset (regset r)
1897{
1898  dump_regset (r, stderr);
1899  putc ('\n', stderr);
1900}
1901
1902/* Write information about registers and basic blocks into FILE.
1903   This is part of making a debugging dump.  */
1904
1905void
1906df_print_regset (FILE *file, bitmap r)
1907{
1908  unsigned int i;
1909  bitmap_iterator bi;
1910
1911  if (r == NULL)
1912    fputs (" (nil)", file);
1913  else
1914    {
1915      EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1916	{
1917	  fprintf (file, " %d", i);
1918	  if (i < FIRST_PSEUDO_REGISTER)
1919	    fprintf (file, " [%s]", reg_names[i]);
1920	}
1921    }
1922  fprintf (file, "\n");
1923}
1924
1925
1926/* Write information about registers and basic blocks into FILE.  The
1927   bitmap is in the form used by df_byte_lr.  This is part of making a
1928   debugging dump.  */
1929
1930void
1931df_print_word_regset (FILE *file, bitmap r)
1932{
1933  unsigned int max_reg = max_reg_num ();
1934
1935  if (r == NULL)
1936    fputs (" (nil)", file);
1937  else
1938    {
1939      unsigned int i;
1940      for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
1941	{
1942	  bool found = (bitmap_bit_p (r, 2 * i)
1943			|| bitmap_bit_p (r, 2 * i + 1));
1944	  if (found)
1945	    {
1946	      int word;
1947	      const char * sep = "";
1948	      fprintf (file, " %d", i);
1949	      fprintf (file, "(");
1950	      for (word = 0; word < 2; word++)
1951		if (bitmap_bit_p (r, 2 * i + word))
1952		  {
1953		    fprintf (file, "%s%d", sep, word);
1954		    sep = ", ";
1955		  }
1956	      fprintf (file, ")");
1957	    }
1958	}
1959    }
1960  fprintf (file, "\n");
1961}
1962
1963
1964/* Dump dataflow info.  */
1965
1966void
1967df_dump (FILE *file)
1968{
1969  basic_block bb;
1970  df_dump_start (file);
1971
1972  FOR_ALL_BB (bb)
1973    {
1974      df_print_bb_index (bb, file);
1975      df_dump_top (bb, file);
1976      df_dump_bottom (bb, file);
1977    }
1978
1979  fprintf (file, "\n");
1980}
1981
1982
1983/* Dump dataflow info for df->blocks_to_analyze.  */
1984
1985void
1986df_dump_region (FILE *file)
1987{
1988  if (df->blocks_to_analyze)
1989    {
1990      bitmap_iterator bi;
1991      unsigned int bb_index;
1992
1993      fprintf (file, "\n\nstarting region dump\n");
1994      df_dump_start (file);
1995
1996      EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1997	{
1998	  basic_block bb = BASIC_BLOCK (bb_index);
1999	  dump_bb (file, bb, 0, TDF_DETAILS);
2000	}
2001      fprintf (file, "\n");
2002    }
2003  else
2004    df_dump (file);
2005}
2006
2007
2008/* Dump the introductory information for each problem defined.  */
2009
2010void
2011df_dump_start (FILE *file)
2012{
2013  int i;
2014
2015  if (!df || !file)
2016    return;
2017
2018  fprintf (file, "\n\n%s\n", current_function_name ());
2019  fprintf (file, "\nDataflow summary:\n");
2020  if (df->blocks_to_analyze)
2021    fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2022	     DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2023
2024  for (i = 0; i < df->num_problems_defined; i++)
2025    {
2026      struct dataflow *dflow = df->problems_in_order[i];
2027      if (dflow->computed)
2028	{
2029	  df_dump_problem_function fun = dflow->problem->dump_start_fun;
2030	  if (fun)
2031	    fun(file);
2032	}
2033    }
2034}
2035
2036
2037/* Dump the top or bottom of the block information for BB.  */
2038static void
2039df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2040{
2041  int i;
2042
2043  if (!df || !file)
2044    return;
2045
2046  for (i = 0; i < df->num_problems_defined; i++)
2047    {
2048      struct dataflow *dflow = df->problems_in_order[i];
2049      if (dflow->computed)
2050	{
2051	  df_dump_bb_problem_function bbfun;
2052
2053	  if (top)
2054	    bbfun = dflow->problem->dump_top_fun;
2055	  else
2056	    bbfun = dflow->problem->dump_bottom_fun;
2057
2058	  if (bbfun)
2059	    bbfun (bb, file);
2060	}
2061    }
2062}
2063
2064/* Dump the top of the block information for BB.  */
2065
2066void
2067df_dump_top (basic_block bb, FILE *file)
2068{
2069  df_dump_bb_problem_data (bb, file, /*top=*/true);
2070}
2071
2072/* Dump the bottom of the block information for BB.  */
2073
2074void
2075df_dump_bottom (basic_block bb, FILE *file)
2076{
2077  df_dump_bb_problem_data (bb, file, /*top=*/false);
2078}
2079
2080
2081/* Dump information about INSN just before or after dumping INSN itself.  */
2082static void
2083df_dump_insn_problem_data (const_rtx insn, FILE *file, bool top)
2084{
2085  int i;
2086
2087  if (!df || !file)
2088    return;
2089
2090  for (i = 0; i < df->num_problems_defined; i++)
2091    {
2092      struct dataflow *dflow = df->problems_in_order[i];
2093      if (dflow->computed)
2094	{
2095	  df_dump_insn_problem_function insnfun;
2096
2097	  if (top)
2098	    insnfun = dflow->problem->dump_insn_top_fun;
2099	  else
2100	    insnfun = dflow->problem->dump_insn_bottom_fun;
2101
2102	  if (insnfun)
2103	    insnfun (insn, file);
2104	}
2105    }
2106}
2107
2108/* Dump information about INSN before dumping INSN itself.  */
2109
2110void
2111df_dump_insn_top (const_rtx insn, FILE *file)
2112{
2113  df_dump_insn_problem_data (insn,  file, /*top=*/true);
2114}
2115
2116/* Dump information about INSN after dumping INSN itself.  */
2117
2118void
2119df_dump_insn_bottom (const_rtx insn, FILE *file)
2120{
2121  df_dump_insn_problem_data (insn,  file, /*top=*/false);
2122}
2123
2124
2125static void
2126df_ref_dump (df_ref ref, FILE *file)
2127{
2128  fprintf (file, "%c%d(%d)",
2129	   DF_REF_REG_DEF_P (ref)
2130	   ? 'd'
2131	   : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2132	   DF_REF_ID (ref),
2133	   DF_REF_REGNO (ref));
2134}
2135
2136void
2137df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2138{
2139  fprintf (file, "{ ");
2140  while (*ref_rec)
2141    {
2142      df_ref ref = *ref_rec;
2143      df_ref_dump (ref, file);
2144      if (follow_chain)
2145	df_chain_dump (DF_REF_CHAIN (ref), file);
2146      ref_rec++;
2147    }
2148  fprintf (file, "}");
2149}
2150
2151
2152/* Dump either a ref-def or reg-use chain.  */
2153
2154void
2155df_regs_chain_dump (df_ref ref,  FILE *file)
2156{
2157  fprintf (file, "{ ");
2158  while (ref)
2159    {
2160      df_ref_dump (ref, file);
2161      ref = DF_REF_NEXT_REG (ref);
2162    }
2163  fprintf (file, "}");
2164}
2165
2166
2167static void
2168df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2169{
2170  while (*mws)
2171    {
2172      fprintf (file, "mw %c r[%d..%d]\n",
2173	       (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2174	       (*mws)->start_regno, (*mws)->end_regno);
2175      mws++;
2176    }
2177}
2178
2179
2180static void
2181df_insn_uid_debug (unsigned int uid,
2182		   bool follow_chain, FILE *file)
2183{
2184  fprintf (file, "insn %d luid %d",
2185	   uid, DF_INSN_UID_LUID (uid));
2186
2187  if (DF_INSN_UID_DEFS (uid))
2188    {
2189      fprintf (file, " defs ");
2190      df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2191    }
2192
2193  if (DF_INSN_UID_USES (uid))
2194    {
2195      fprintf (file, " uses ");
2196      df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2197    }
2198
2199  if (DF_INSN_UID_EQ_USES (uid))
2200    {
2201      fprintf (file, " eq uses ");
2202      df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2203    }
2204
2205  if (DF_INSN_UID_MWS (uid))
2206    {
2207      fprintf (file, " mws ");
2208      df_mws_dump (DF_INSN_UID_MWS (uid), file);
2209    }
2210  fprintf (file, "\n");
2211}
2212
2213
2214DEBUG_FUNCTION void
2215df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2216{
2217  df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2218}
2219
2220DEBUG_FUNCTION void
2221df_insn_debug_regno (rtx insn, FILE *file)
2222{
2223  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2224
2225  fprintf (file, "insn %d bb %d luid %d defs ",
2226	   INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2227	   DF_INSN_INFO_LUID (insn_info));
2228  df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2229
2230  fprintf (file, " uses ");
2231  df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2232
2233  fprintf (file, " eq_uses ");
2234  df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2235  fprintf (file, "\n");
2236}
2237
2238DEBUG_FUNCTION void
2239df_regno_debug (unsigned int regno, FILE *file)
2240{
2241  fprintf (file, "reg %d defs ", regno);
2242  df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2243  fprintf (file, " uses ");
2244  df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2245  fprintf (file, " eq_uses ");
2246  df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2247  fprintf (file, "\n");
2248}
2249
2250
2251DEBUG_FUNCTION void
2252df_ref_debug (df_ref ref, FILE *file)
2253{
2254  fprintf (file, "%c%d ",
2255	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2256	   DF_REF_ID (ref));
2257  fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2258	   DF_REF_REGNO (ref),
2259	   DF_REF_BBNO (ref),
2260	   DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2261	   DF_REF_FLAGS (ref),
2262	   DF_REF_TYPE (ref));
2263  if (DF_REF_LOC (ref))
2264    {
2265      if (flag_dump_noaddr)
2266	fprintf (file, "loc #(#) chain ");
2267      else
2268	fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2269		 (void *)*DF_REF_LOC (ref));
2270    }
2271  else
2272    fprintf (file, "chain ");
2273  df_chain_dump (DF_REF_CHAIN (ref), file);
2274  fprintf (file, "\n");
2275}
2276
2277/* Functions for debugging from GDB.  */
2278
2279DEBUG_FUNCTION void
2280debug_df_insn (rtx insn)
2281{
2282  df_insn_debug (insn, true, stderr);
2283  debug_rtx (insn);
2284}
2285
2286
2287DEBUG_FUNCTION void
2288debug_df_reg (rtx reg)
2289{
2290  df_regno_debug (REGNO (reg), stderr);
2291}
2292
2293
2294DEBUG_FUNCTION void
2295debug_df_regno (unsigned int regno)
2296{
2297  df_regno_debug (regno, stderr);
2298}
2299
2300
2301DEBUG_FUNCTION void
2302debug_df_ref (df_ref ref)
2303{
2304  df_ref_debug (ref, stderr);
2305}
2306
2307
2308DEBUG_FUNCTION void
2309debug_df_defno (unsigned int defno)
2310{
2311  df_ref_debug (DF_DEFS_GET (defno), stderr);
2312}
2313
2314
2315DEBUG_FUNCTION void
2316debug_df_useno (unsigned int defno)
2317{
2318  df_ref_debug (DF_USES_GET (defno), stderr);
2319}
2320
2321
2322DEBUG_FUNCTION void
2323debug_df_chain (struct df_link *link)
2324{
2325  df_chain_dump (link, stderr);
2326  fputc ('\n', stderr);
2327}
2328