1/* Configuration for GCC-compiler for PA-RISC.
2   Copyright (C) 1999-2020 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20/* Standard register usage.
21
22   It is safe to refer to actual register numbers in this file.  */
23
24/* Number of actual hardware registers.
25   The hardware registers are assigned numbers for the compiler
26   from 0 to just below FIRST_PSEUDO_REGISTER.
27   All registers that the compiler knows about must be given numbers,
28   even those that are not normally considered general registers.
29
30   HP-PA 2.0w has 32 fullword registers and 32 floating point
31   registers. However, the floating point registers behave
32   differently: the left and right halves of registers are addressable
33   as 32-bit registers.
34
35   Due to limitations within GCC itself, we do not expose the left/right
36   half addressability when in wide mode.  This is not a major performance
37   issue as using the halves independently triggers false dependency stalls
38   anyway.  */
39
40#define FIRST_PSEUDO_REGISTER 62  /* 32 general regs + 28 fp regs +
41				     + 1 shift reg + frame pointer */
42
43/* 1 for registers that have pervasive standard uses
44   and are not available for the register allocator.
45
46   On the HP-PA, these are:
47   Reg 0	= 0 (hardware). However, 0 is used for condition code,
48                  so is not fixed.
49   Reg 1	= ADDIL target/Temporary (hardware).
50   Reg 2	= Return Pointer
51   Reg 3	= Frame Pointer
52   Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)
53   Reg 4-18	= Preserved Registers
54   Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.
55   Reg 20-22	= Temporary Registers
56   Reg 23-26	= Temporary/Parameter Registers
57   Reg 27	= Global Data Pointer (hp)
58   Reg 28	= Temporary/Return Value register
59   Reg 29	= Temporary/Static Chain/Return Value register #2
60   Reg 30	= stack pointer
61   Reg 31	= Temporary/Millicode Return Pointer (hp)
62
63   Freg 0-3	= Status Registers	-- Not known to the compiler.
64   Freg 4-7	= Arguments/Return Value
65   Freg 8-11	= Temporary Registers
66   Freg 12-21	= Preserved Registers
67   Freg 22-31 = Temporary Registers
68
69*/
70
71#define FIXED_REGISTERS  \
72 {0, 0, 0, 0, 0, 0, 0, 0, \
73  0, 0, 0, 0, 0, 0, 0, 0, \
74  0, 0, 0, 0, 0, 0, 0, 0, \
75  0, 0, 0, 1, 0, 0, 1, 0, \
76  /* fp registers */	  \
77  0, 0, 0, 0, 0, 0, 0, 0, \
78  0, 0, 0, 0, 0, 0, 0, 0, \
79  0, 0, 0, 0, 0, 0, 0, 0, \
80  0, 0, 0, 0,		  \
81  /* shift register and soft frame pointer */	  \
82  0, 1}
83
84/* 1 for registers not available across function calls.
85   These must include the FIXED_REGISTERS and also any
86   registers that can be used without being saved.
87   The latter must include the registers where values are returned
88   and the register where structure-value addresses are passed.
89   Aside from that, you can include as many other registers as you like.  */
90#define CALL_USED_REGISTERS  \
91 {1, 1, 1, 0, 0, 0, 0, 0, \
92  0, 0, 0, 0, 0, 0, 0, 0, \
93  0, 0, 0, 1, 1, 1, 1, 1, \
94  1, 1, 1, 1, 1, 1, 1, 1, \
95  /* fp registers */	  \
96  1, 1, 1, 1, 1, 1, 1, 1, \
97  0, 0, 0, 0, 0, 0, 0, 0, \
98  0, 0, 1, 1, 1, 1, 1, 1, \
99  1, 1, 1, 1, 		  \
100  /* shift register and soft frame pointer */    \
101  1, 1}
102
103/* Allocate the call used registers first.  This should minimize
104   the number of registers that need to be saved (as call used
105   registers will generally not be allocated across a call).
106
107   Experimentation has shown slightly better results by allocating
108   FP registers first.  We allocate the caller-saved registers more
109   or less in reverse order to their allocation as arguments.  */
110
111#define REG_ALLOC_ORDER \
112 {					\
113  /* caller-saved fp regs.  */		\
114  50, 51, 52, 53, 54, 55, 56, 57,	\
115  58, 59, 39, 38, 37, 36, 35, 34,	\
116  33, 32,				\
117  /* caller-saved general regs.  */	\
118  28, 31, 19, 20, 21, 22, 23, 24,	\
119  25, 26, 29,  2,			\
120  /* callee-saved fp regs.  */		\
121  40, 41, 42, 43, 44, 45, 46, 47,	\
122  48, 49,				\
123  /* callee-saved general regs.  */	\
124   3,  4,  5,  6,  7,  8,  9, 10, 	\
125  11, 12, 13, 14, 15, 16, 17, 18,	\
126  /* special registers.  */		\
127   1, 27, 30,  0, 60, 61}
128
129
130/* Return number of consecutive hard regs needed starting at reg REGNO
131   to hold something of mode MODE.
132   This is ordinarily the length in words of a value of mode MODE
133   but can be less for certain modes in special long registers.
134
135   For PA64, GPRs and FPRs hold 64 bits worth.  We ignore the 32-bit
136   addressability of the FPRs and pretend each register holds precisely
137   WORD_SIZE bits.  Note that SCmode values are placed in a single FPR.
138   Thus, any patterns defined to operate on these values would have to
139   use the 32-bit addressability of the FPR registers.  */
140#define PA_HARD_REGNO_NREGS(REGNO, MODE)				\
141  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
142
143/* These are the valid FP modes.  */
144#define VALID_FP_MODE_P(MODE)						\
145  ((MODE) == SFmode || (MODE) == DFmode					\
146   || (MODE) == SCmode || (MODE) == DCmode				\
147   || (MODE) == SImode || (MODE) == DImode)
148
149/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
150   On the HP-PA, the cpu registers can hold any mode.  We
151   force this to be an even register if it cannot hold the full mode.  */
152#define PA_HARD_REGNO_MODE_OK(REGNO, MODE) \
153  ((REGNO) == 0								\
154   ? (MODE) == CCmode || (MODE) == CCFPmode				\
155   : (REGNO) == 60 ? SCALAR_INT_MODE_P (MODE)				\
156   /* Make wide modes be in aligned registers.  */			\
157   : FP_REGNO_P (REGNO)							\
158     ? (VALID_FP_MODE_P (MODE)						\
159	&& (GET_MODE_SIZE (MODE) <= 8					\
160	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 1) == 0)	\
161	    || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 3) == 0)))	\
162   : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\
163      || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\
164	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\
165      || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\
166	  && ((REGNO) & 3) == 3 && (REGNO) <= 23)))
167
168/* How to renumber registers for dbx and gdb.
169
170   Registers 0  - 31 remain unchanged.
171
172   Registers 32 - 59 are mapped to 72, 74, 76 ...
173
174   Register 60 is mapped to 32.  */
175#define DBX_REGISTER_NUMBER(REGNO) \
176  ((REGNO) <= 31 ? (REGNO) : ((REGNO) < 60 ? (REGNO - 32) * 2 + 72 : 32))
177
178/* We must not use the DBX register numbers for the DWARF 2 CFA column
179   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
180   Instead use the identity mapping.  */
181#define DWARF_FRAME_REGNUM(REG) REG
182
183/* Define the classes of registers for register constraints in the
184   machine description.  Also define ranges of constants.
185
186   One of the classes must always be named ALL_REGS and include all hard regs.
187   If there is more than one class, another class must be named NO_REGS
188   and contain no registers.
189
190   The name GENERAL_REGS must be the name of a class (or an alias for
191   another name such as ALL_REGS).  This is the class of registers
192   that is allowed by "g" or "r" in a register constraint.
193   Also, registers outside this class are allocated only when
194   instructions express preferences for them.
195
196   The classes must be numbered in nondecreasing order; that is,
197   a larger-numbered class must never be contained completely
198   in a smaller-numbered class.
199
200   For any two classes, it is very desirable that there be another
201   class that represents their union.  */
202
203  /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
204     1.1 fp regs, and the high 1.1 fp regs, to which the operands of
205     fmpyadd and fmpysub are restricted.  */
206
207enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
208		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
209
210#define N_REG_CLASSES (int) LIM_REG_CLASSES
211
212/* Give names of register classes as strings for dump file.  */
213
214#define REG_CLASS_NAMES \
215  {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
216   "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
217
218/* Define which registers fit in which classes.
219   This is an initializer for a vector of HARD_REG_SET
220   of length N_REG_CLASSES. Register 0, the "condition code" register,
221   is in no class.  */
222
223#define REG_CLASS_CONTENTS	\
224 {{0x00000000, 0x00000000},	/* NO_REGS */			\
225  {0x00000002, 0x00000000},	/* R1_REGS */			\
226  {0xfffffffe, 0x20000000},	/* GENERAL_REGS */		\
227  {0x00000000, 0x00000000},	/* FPUPPER_REGS */		\
228  {0x00000000, 0x0fffffff},	/* FP_REGS */			\
229  {0xfffffffe, 0x2fffffff},	/* GENERAL_OR_FP_REGS */	\
230  {0x00000000, 0x10000000},	/* SHIFT_REGS */		\
231  {0xfffffffe, 0x3fffffff}}	/* ALL_REGS */
232
233/* Return the class number of the smallest class containing
234   reg number REGNO.  This could be a conditional expression
235   or could index an array.  */
236
237#define REGNO_REG_CLASS(REGNO)						\
238  ((REGNO) == 0 ? NO_REGS 						\
239   : (REGNO) == 1 ? R1_REGS						\
240   : (REGNO) < 32 || (REGNO) == 61 ? GENERAL_REGS			\
241   : (REGNO) < 60 ? FP_REGS						\
242   : SHIFT_REGS)
243
244/* Return the maximum number of consecutive registers
245   needed to represent mode MODE in a register of class CLASS.  */
246#define CLASS_MAX_NREGS(CLASS, MODE)					\
247  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
248
249/* 1 if N is a possible register number for function argument passing.  */
250
251#define FUNCTION_ARG_REGNO_P(N) \
252  ((((N) >= 19) && (N) <= 26) \
253   || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
254
255/* How to refer to registers in assembler output.
256   This sequence is indexed by compiler's hard-register-number (see above).  */
257
258#define REGISTER_NAMES \
259{"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
260 "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
261 "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
262 "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
263 "%fr4",  "%fr5",   "%fr6",  "%fr7",   "%fr8",  "%fr9",   "%fr10", "%fr11",  \
264 "%fr12", "%fr13",  "%fr14", "%fr15",  "%fr16", "%fr17",  "%fr18", "%fr19",  \
265 "%fr20", "%fr21",  "%fr22", "%fr23",  "%fr24", "%fr25",  "%fr26", "%fr27",  \
266 "%fr28", "%fr29",  "%fr30", "%fr31",  "SAR",   "sfp"}
267
268#define ADDITIONAL_REGISTER_NAMES \
269 {{"%cr11",60}}
270
271#define FP_SAVED_REG_LAST 49
272#define FP_SAVED_REG_FIRST 40
273#define FP_REG_STEP 1
274#define FP_REG_FIRST 32
275#define FP_REG_LAST 59
276