1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988-2020 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23<http://www.gnu.org/licenses/>.  */
24
25/* The purpose of this file is to define the characteristics of the i386,
26   independent of assembler syntax or operating system.
27
28   Three other files build on this one to describe a specific assembler syntax:
29   bsd386.h, att386.h, and sun386.h.
30
31   The actual tm.h file for a particular system should include
32   this file, and then the file for the appropriate assembler syntax.
33
34   Many macros that specify assembler syntax are omitted entirely from
35   this file because they really belong in the files for particular
36   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38   that start with ASM_ or end in ASM_OP.  */
39
40/* Redefines for option macros.  */
41
42#define TARGET_64BIT	TARGET_ISA_64BIT
43#define TARGET_64BIT_P(x)	TARGET_ISA_64BIT_P(x)
44#define TARGET_MMX	TARGET_ISA_MMX
45#define TARGET_MMX_P(x)	TARGET_ISA_MMX_P(x)
46#define TARGET_3DNOW	TARGET_ISA_3DNOW
47#define TARGET_3DNOW_P(x)	TARGET_ISA_3DNOW_P(x)
48#define TARGET_3DNOW_A	TARGET_ISA_3DNOW_A
49#define TARGET_3DNOW_A_P(x)	TARGET_ISA_3DNOW_A_P(x)
50#define TARGET_SSE	TARGET_ISA_SSE
51#define TARGET_SSE_P(x)	TARGET_ISA_SSE_P(x)
52#define TARGET_SSE2	TARGET_ISA_SSE2
53#define TARGET_SSE2_P(x)	TARGET_ISA_SSE2_P(x)
54#define TARGET_SSE3	TARGET_ISA_SSE3
55#define TARGET_SSE3_P(x)	TARGET_ISA_SSE3_P(x)
56#define TARGET_SSSE3	TARGET_ISA_SSSE3
57#define TARGET_SSSE3_P(x)	TARGET_ISA_SSSE3_P(x)
58#define TARGET_SSE4_1	TARGET_ISA_SSE4_1
59#define TARGET_SSE4_1_P(x)	TARGET_ISA_SSE4_1_P(x)
60#define TARGET_SSE4_2	TARGET_ISA_SSE4_2
61#define TARGET_SSE4_2_P(x)	TARGET_ISA_SSE4_2_P(x)
62#define TARGET_AVX	TARGET_ISA_AVX
63#define TARGET_AVX_P(x)	TARGET_ISA_AVX_P(x)
64#define TARGET_AVX2	TARGET_ISA_AVX2
65#define TARGET_AVX2_P(x)	TARGET_ISA_AVX2_P(x)
66#define TARGET_AVX512F	TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x)	TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF	TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x)	TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER	TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x)	TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD	TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x)	TARGET_ISA_AVX512CD_P(x)
74#define TARGET_AVX512DQ	TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x)	TARGET_ISA_AVX512DQ_P(x)
76#define TARGET_AVX512BW	TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x)	TARGET_ISA_AVX512BW_P(x)
78#define TARGET_AVX512VL	TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x)	TARGET_ISA_AVX512VL_P(x)
80#define TARGET_AVX512VBMI	TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x)	TARGET_ISA_AVX512VBMI_P(x)
82#define TARGET_AVX512IFMA	TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x)	TARGET_ISA_AVX512IFMA_P(x)
84#define TARGET_AVX5124FMAPS	TARGET_ISA2_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA2_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW	TARGET_ISA2_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA2_AVX5124VNNIW_P(x)
88#define TARGET_AVX512VBMI2	TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
90#define TARGET_AVX512VPOPCNTDQ	TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
92#define TARGET_AVX512VNNI	TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
94#define TARGET_AVX512BITALG	TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
96#define TARGET_AVX512VP2INTERSECT	TARGET_ISA2_AVX512VP2INTERSECT
97#define TARGET_AVX512VP2INTERSECT_P(x) TARGET_ISA2_AVX512VP2INTERSECT_P(x)
98#define TARGET_FMA	TARGET_ISA_FMA
99#define TARGET_FMA_P(x)	TARGET_ISA_FMA_P(x)
100#define TARGET_SSE4A	TARGET_ISA_SSE4A
101#define TARGET_SSE4A_P(x)	TARGET_ISA_SSE4A_P(x)
102#define TARGET_FMA4	TARGET_ISA_FMA4
103#define TARGET_FMA4_P(x)	TARGET_ISA_FMA4_P(x)
104#define TARGET_XOP	TARGET_ISA_XOP
105#define TARGET_XOP_P(x)	TARGET_ISA_XOP_P(x)
106#define TARGET_LWP	TARGET_ISA_LWP
107#define TARGET_LWP_P(x)	TARGET_ISA_LWP_P(x)
108#define TARGET_ABM	TARGET_ISA_ABM
109#define TARGET_ABM_P(x)	TARGET_ISA_ABM_P(x)
110#define TARGET_PCONFIG	TARGET_ISA2_PCONFIG
111#define TARGET_PCONFIG_P(x)	TARGET_ISA2_PCONFIG_P(x)
112#define TARGET_WBNOINVD	TARGET_ISA2_WBNOINVD
113#define TARGET_WBNOINVD_P(x)	TARGET_ISA2_WBNOINVD_P(x)
114#define TARGET_SGX	TARGET_ISA2_SGX
115#define TARGET_SGX_P(x)	TARGET_ISA2_SGX_P(x)
116#define TARGET_RDPID	TARGET_ISA2_RDPID
117#define TARGET_RDPID_P(x)	TARGET_ISA2_RDPID_P(x)
118#define TARGET_GFNI	TARGET_ISA_GFNI
119#define TARGET_GFNI_P(x)	TARGET_ISA_GFNI_P(x)
120#define TARGET_VAES	TARGET_ISA2_VAES
121#define TARGET_VAES_P(x)	TARGET_ISA2_VAES_P(x)
122#define TARGET_VPCLMULQDQ	TARGET_ISA_VPCLMULQDQ
123#define TARGET_VPCLMULQDQ_P(x)	TARGET_ISA_VPCLMULQDQ_P(x)
124#define TARGET_BMI	TARGET_ISA_BMI
125#define TARGET_BMI_P(x)	TARGET_ISA_BMI_P(x)
126#define TARGET_BMI2	TARGET_ISA_BMI2
127#define TARGET_BMI2_P(x)	TARGET_ISA_BMI2_P(x)
128#define TARGET_LZCNT	TARGET_ISA_LZCNT
129#define TARGET_LZCNT_P(x)	TARGET_ISA_LZCNT_P(x)
130#define TARGET_TBM	TARGET_ISA_TBM
131#define TARGET_TBM_P(x)	TARGET_ISA_TBM_P(x)
132#define TARGET_POPCNT	TARGET_ISA_POPCNT
133#define TARGET_POPCNT_P(x)	TARGET_ISA_POPCNT_P(x)
134#define TARGET_SAHF	TARGET_ISA_SAHF
135#define TARGET_SAHF_P(x)	TARGET_ISA_SAHF_P(x)
136#define TARGET_MOVBE	TARGET_ISA2_MOVBE
137#define TARGET_MOVBE_P(x)	TARGET_ISA2_MOVBE_P(x)
138#define TARGET_CRC32	TARGET_ISA_CRC32
139#define TARGET_CRC32_P(x)	TARGET_ISA_CRC32_P(x)
140#define TARGET_AES	TARGET_ISA_AES
141#define TARGET_AES_P(x)	TARGET_ISA_AES_P(x)
142#define TARGET_SHA	TARGET_ISA_SHA
143#define TARGET_SHA_P(x)	TARGET_ISA_SHA_P(x)
144#define TARGET_CLFLUSHOPT	TARGET_ISA_CLFLUSHOPT
145#define TARGET_CLFLUSHOPT_P(x)	TARGET_ISA_CLFLUSHOPT_P(x)
146#define TARGET_CLZERO	TARGET_ISA2_CLZERO
147#define TARGET_CLZERO_P(x)	TARGET_ISA2_CLZERO_P(x)
148#define TARGET_XSAVEC	TARGET_ISA_XSAVEC
149#define TARGET_XSAVEC_P(x)	TARGET_ISA_XSAVEC_P(x)
150#define TARGET_XSAVES	TARGET_ISA_XSAVES
151#define TARGET_XSAVES_P(x)	TARGET_ISA_XSAVES_P(x)
152#define TARGET_PCLMUL	TARGET_ISA_PCLMUL
153#define TARGET_PCLMUL_P(x)	TARGET_ISA_PCLMUL_P(x)
154#define TARGET_CMPXCHG16B	TARGET_ISA2_CX16
155#define TARGET_CMPXCHG16B_P(x)	TARGET_ISA2_CX16_P(x)
156#define TARGET_FSGSBASE	TARGET_ISA_FSGSBASE
157#define TARGET_FSGSBASE_P(x)	TARGET_ISA_FSGSBASE_P(x)
158#define TARGET_RDRND	TARGET_ISA_RDRND
159#define TARGET_RDRND_P(x)	TARGET_ISA_RDRND_P(x)
160#define TARGET_F16C	TARGET_ISA_F16C
161#define TARGET_F16C_P(x)	TARGET_ISA_F16C_P(x)
162#define TARGET_RTM	TARGET_ISA_RTM
163#define TARGET_RTM_P(x)	TARGET_ISA_RTM_P(x)
164#define TARGET_HLE	TARGET_ISA2_HLE
165#define TARGET_HLE_P(x)	TARGET_ISA2_HLE_P(x)
166#define TARGET_RDSEED	TARGET_ISA_RDSEED
167#define TARGET_RDSEED_P(x)	TARGET_ISA_RDSEED_P(x)
168#define TARGET_PRFCHW	TARGET_ISA_PRFCHW
169#define TARGET_PRFCHW_P(x)	TARGET_ISA_PRFCHW_P(x)
170#define TARGET_ADX	TARGET_ISA_ADX
171#define TARGET_ADX_P(x)	TARGET_ISA_ADX_P(x)
172#define TARGET_FXSR	TARGET_ISA_FXSR
173#define TARGET_FXSR_P(x)	TARGET_ISA_FXSR_P(x)
174#define TARGET_XSAVE	TARGET_ISA_XSAVE
175#define TARGET_XSAVE_P(x)	TARGET_ISA_XSAVE_P(x)
176#define TARGET_XSAVEOPT	TARGET_ISA_XSAVEOPT
177#define TARGET_XSAVEOPT_P(x)	TARGET_ISA_XSAVEOPT_P(x)
178#define TARGET_PREFETCHWT1	TARGET_ISA_PREFETCHWT1
179#define TARGET_PREFETCHWT1_P(x)	TARGET_ISA_PREFETCHWT1_P(x)
180#define TARGET_CLWB	TARGET_ISA_CLWB
181#define TARGET_CLWB_P(x)	TARGET_ISA_CLWB_P(x)
182#define TARGET_MWAITX	TARGET_ISA2_MWAITX
183#define TARGET_MWAITX_P(x)	TARGET_ISA2_MWAITX_P(x)
184#define TARGET_PKU	TARGET_ISA_PKU
185#define TARGET_PKU_P(x)	TARGET_ISA_PKU_P(x)
186#define TARGET_SHSTK	TARGET_ISA_SHSTK
187#define TARGET_SHSTK_P(x)	TARGET_ISA_SHSTK_P(x)
188#define TARGET_MOVDIRI	TARGET_ISA_MOVDIRI
189#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
190#define TARGET_MOVDIR64B	TARGET_ISA2_MOVDIR64B
191#define TARGET_MOVDIR64B_P(x) TARGET_ISA2_MOVDIR64B_P(x)
192#define TARGET_WAITPKG	TARGET_ISA2_WAITPKG
193#define TARGET_WAITPKG_P(x)	TARGET_ISA2_WAITPKG_P(x)
194#define TARGET_CLDEMOTE	TARGET_ISA2_CLDEMOTE
195#define TARGET_CLDEMOTE_P(x) TARGET_ISA2_CLDEMOTE_P(x)
196#define TARGET_PTWRITE	TARGET_ISA2_PTWRITE
197#define TARGET_PTWRITE_P(x)	TARGET_ISA2_PTWRITE_P(x)
198#define TARGET_AVX512BF16	TARGET_ISA2_AVX512BF16
199#define TARGET_AVX512BF16_P(x)	TARGET_ISA2_AVX512BF16_P(x)
200#define TARGET_ENQCMD	TARGET_ISA2_ENQCMD
201#define TARGET_ENQCMD_P(x) TARGET_ISA2_ENQCMD_P(x)
202
203#define TARGET_LP64	TARGET_ABI_64
204#define TARGET_LP64_P(x)	TARGET_ABI_64_P(x)
205#define TARGET_X32	TARGET_ABI_X32
206#define TARGET_X32_P(x)	TARGET_ABI_X32_P(x)
207#define TARGET_16BIT	TARGET_CODE16
208#define TARGET_16BIT_P(x)	TARGET_CODE16_P(x)
209
210#define TARGET_MMX_WITH_SSE	(TARGET_64BIT && TARGET_SSE2)
211
212#include "config/vxworks-dummy.h"
213
214#include "config/i386/i386-opts.h"
215
216#define MAX_STRINGOP_ALGS 4
217
218/* Specify what algorithm to use for stringops on known size.
219   When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
220   known at compile time or estimated via feedback, the SIZE array
221   is walked in order until MAX is greater then the estimate (or -1
222   means infinity).  Corresponding ALG is used then.
223   When NOALIGN is true the code guaranting the alignment of the memory
224   block is skipped.
225
226   For example initializer:
227    {{256, loop}, {-1, rep_prefix_4_byte}}
228   will use loop for blocks smaller or equal to 256 bytes, rep prefix will
229   be used otherwise.  */
230struct stringop_algs
231{
232  const enum stringop_alg unknown_size;
233  const struct stringop_strategy {
234    const int max;
235    const enum stringop_alg alg;
236    int noalign;
237  } size [MAX_STRINGOP_ALGS];
238};
239
240/* Define the specific costs for a given cpu.  NB: hard_register is used
241   by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
242   hard register move costs by register allocator.  Relative costs of
243   pseudo register load and store versus pseudo register moves in RTL
244   expressions for TARGET_RTX_COSTS can be different from relative
245   costs of hard registers to get the most efficient operations with
246   pseudo registers.  */
247
248struct processor_costs {
249  /* Costs used by register allocator.  integer->integer register move
250     cost is 2.  */
251  struct
252    {
253      const int movzbl_load;	/* cost of loading using movzbl */
254      const int int_load[3];	/* cost of loading integer registers
255				   in QImode, HImode and SImode relative
256				   to reg-reg move (2).  */
257      const int int_store[3];	/* cost of storing integer register
258				   in QImode, HImode and SImode */
259      const int fp_move;	/* cost of reg,reg fld/fst */
260      const int fp_load[3];	/* cost of loading FP register
261				   in SFmode, DFmode and XFmode */
262      const int fp_store[3];	/* cost of storing FP register
263				   in SFmode, DFmode and XFmode */
264      const int mmx_move;	/* cost of moving MMX register.  */
265      const int mmx_load[2];	/* cost of loading MMX register
266				   in SImode and DImode */
267      const int mmx_store[2];	/* cost of storing MMX register
268				   in SImode and DImode */
269      const int xmm_move;	/* cost of moving XMM register.  */
270      const int ymm_move;	/* cost of moving XMM register.  */
271      const int zmm_move;	/* cost of moving XMM register.  */
272      const int sse_load[5];	/* cost of loading SSE register
273				   in 32bit, 64bit, 128bit, 256bit and 512bit */
274      const int sse_store[5];	/* cost of storing SSE register
275				   in SImode, DImode and TImode.  */
276      const int sse_to_integer;	/* cost of moving SSE register to integer.  */
277      const int integer_to_sse;	/* cost of moving integer register to SSE. */
278    } hard_register;
279
280  const int add;		/* cost of an add instruction */
281  const int lea;		/* cost of a lea instruction */
282  const int shift_var;		/* variable shift costs */
283  const int shift_const;	/* constant shift costs */
284  const int mult_init[5];	/* cost of starting a multiply
285				   in QImode, HImode, SImode, DImode, TImode*/
286  const int mult_bit;		/* cost of multiply per each bit set */
287  const int divide[5];		/* cost of a divide/mod
288				   in QImode, HImode, SImode, DImode, TImode*/
289  int movsx;			/* The cost of movsx operation.  */
290  int movzx;			/* The cost of movzx operation.  */
291  const int large_insn;		/* insns larger than this cost more */
292  const int move_ratio;		/* The threshold of number of scalar
293				   memory-to-memory move insns.  */
294  const int clear_ratio;	/* The threshold of number of scalar
295				   memory clearing insns.  */
296  const int int_load[3];	/* cost of loading integer registers
297				   in QImode, HImode and SImode relative
298				   to reg-reg move (2).  */
299  const int int_store[3];	/* cost of storing integer register
300				   in QImode, HImode and SImode */
301  const int sse_load[5];	/* cost of loading SSE register
302				   in 32bit, 64bit, 128bit, 256bit and 512bit */
303  const int sse_store[5];	/* cost of storing SSE register
304				   in 32bit, 64bit, 128bit, 256bit and 512bit */
305  const int sse_unaligned_load[5];/* cost of unaligned load.  */
306  const int sse_unaligned_store[5];/* cost of unaligned store.  */
307  const int xmm_move, ymm_move, /* cost of moving XMM and YMM register.  */
308	    zmm_move;
309  const int sse_to_integer;	/* cost of moving SSE register to integer.  */
310  const int gather_static, gather_per_elt; /* Cost of gather load is computed
311				   as static + per_item * nelts. */
312  const int scatter_static, scatter_per_elt; /* Cost of gather store is
313				   computed as static + per_item * nelts.  */
314  const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
315  const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
316  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
317  const int simultaneous_prefetches; /* number of parallel prefetch
318				   operations.  */
319  const int branch_cost;	/* Default value for BRANCH_COST.  */
320  const int fadd;		/* cost of FADD and FSUB instructions.  */
321  const int fmul;		/* cost of FMUL instruction.  */
322  const int fdiv;		/* cost of FDIV instruction.  */
323  const int fabs;		/* cost of FABS instruction.  */
324  const int fchs;		/* cost of FCHS instruction.  */
325  const int fsqrt;		/* cost of FSQRT instruction.  */
326				/* Specify what algorithm
327				   to use for stringops on unknown size.  */
328  const int sse_op;		/* cost of cheap SSE instruction.  */
329  const int addss;		/* cost of ADDSS/SD SUBSS/SD instructions.  */
330  const int mulss;		/* cost of MULSS instructions.  */
331  const int mulsd;		/* cost of MULSD instructions.  */
332  const int fmass;		/* cost of FMASS instructions.  */
333  const int fmasd;		/* cost of FMASD instructions.  */
334  const int divss;		/* cost of DIVSS instructions.  */
335  const int divsd;		/* cost of DIVSD instructions.  */
336  const int sqrtss;		/* cost of SQRTSS instructions.  */
337  const int sqrtsd;		/* cost of SQRTSD instructions.  */
338  const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
339				/* Specify reassociation width for integer,
340				   fp, vector integer and vector fp
341				   operations.  Generally should correspond
342				   to number of instructions executed in
343				   parallel.  See also
344				   ix86_reassociation_width.  */
345  struct stringop_algs *memcpy, *memset;
346  const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
347					  cost model.  */
348  const int cond_not_taken_branch_cost;/* Cost of not taken branch for
349					  vectorizer cost model.  */
350
351  /* The "0:0:8" label alignment specified for some processors generates
352     secondary 8-byte alignment only for those label/jump/loop targets
353     which have primary alignment.  */
354  const char *const align_loop;		/* Loop alignment.  */
355  const char *const align_jump;		/* Jump alignment.  */
356  const char *const align_label;	/* Label alignment.  */
357  const char *const align_func;		/* Function alignment.  */
358};
359
360extern const struct processor_costs *ix86_cost;
361extern const struct processor_costs ix86_size_cost;
362
363#define ix86_cur_cost() \
364  (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
365
366/* Macros used in the machine description to test the flags.  */
367
368/* configure can arrange to change it.  */
369
370#ifndef TARGET_CPU_DEFAULT
371#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
372#endif
373
374#ifndef TARGET_FPMATH_DEFAULT
375#define TARGET_FPMATH_DEFAULT \
376  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
377#endif
378
379#ifndef TARGET_FPMATH_DEFAULT_P
380#define TARGET_FPMATH_DEFAULT_P(x) \
381  (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
382#endif
383
384/* If the i387 is disabled or -miamcu is used , then do not return
385   values in it. */
386#define TARGET_FLOAT_RETURNS_IN_80387 \
387  (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
388#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
389  (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
390
391/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
392   compile-time constant.  */
393#ifdef IN_LIBGCC2
394#undef TARGET_64BIT
395#ifdef __x86_64__
396#define TARGET_64BIT 1
397#else
398#define TARGET_64BIT 0
399#endif
400#else
401#ifndef TARGET_BI_ARCH
402#undef TARGET_64BIT
403#undef TARGET_64BIT_P
404#if TARGET_64BIT_DEFAULT
405#define TARGET_64BIT 1
406#define TARGET_64BIT_P(x) 1
407#else
408#define TARGET_64BIT 0
409#define TARGET_64BIT_P(x) 0
410#endif
411#endif
412#endif
413
414#define HAS_LONG_COND_BRANCH 1
415#define HAS_LONG_UNCOND_BRANCH 1
416
417#define TARGET_386 (ix86_tune == PROCESSOR_I386)
418#define TARGET_486 (ix86_tune == PROCESSOR_I486)
419#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
420#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
421#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
422#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
423#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
424#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
425#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
426#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
427#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
428#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
429#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
430#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
431#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
432#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
433#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
434#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
435#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
436#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
437#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
438#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
439#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
440#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
441#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
442#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
443#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
444#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
445#define TARGET_TIGERLAKE (ix86_tune == PROCESSOR_TIGERLAKE)
446#define TARGET_COOPERLAKE (ix86_tune == PROCESSOR_COOPERLAKE)
447#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
448#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
449#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
450#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
451#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
452#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
453#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
454#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
455#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
456#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
457#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
458#define TARGET_ZNVER3 (ix86_tune == PROCESSOR_ZNVER3)
459
460/* Feature tests against the various tunings.  */
461enum ix86_tune_indices {
462#undef DEF_TUNE
463#define DEF_TUNE(tune, name, selector) tune,
464#include "x86-tune.def"
465#undef DEF_TUNE
466X86_TUNE_LAST
467};
468
469extern unsigned char ix86_tune_features[X86_TUNE_LAST];
470
471#define TARGET_USE_LEAVE	ix86_tune_features[X86_TUNE_USE_LEAVE]
472#define TARGET_PUSH_MEMORY	ix86_tune_features[X86_TUNE_PUSH_MEMORY]
473#define TARGET_ZERO_EXTEND_WITH_AND \
474	ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
475#define TARGET_UNROLL_STRLEN	ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
476#define TARGET_BRANCH_PREDICTION_HINTS \
477	ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
478#define TARGET_DOUBLE_WITH_ADD	ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
479#define TARGET_USE_SAHF		ix86_tune_features[X86_TUNE_USE_SAHF]
480#define TARGET_MOVX		ix86_tune_features[X86_TUNE_MOVX]
481#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
482#define TARGET_PARTIAL_FLAG_REG_STALL \
483	ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
484#define TARGET_LCP_STALL \
485	ix86_tune_features[X86_TUNE_LCP_STALL]
486#define TARGET_USE_HIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
487#define TARGET_USE_SIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
488#define TARGET_USE_MOV0		ix86_tune_features[X86_TUNE_USE_MOV0]
489#define TARGET_USE_CLTD		ix86_tune_features[X86_TUNE_USE_CLTD]
490#define TARGET_USE_XCHGB	ix86_tune_features[X86_TUNE_USE_XCHGB]
491#define TARGET_SPLIT_LONG_MOVES	ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
492#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
493#define TARGET_READ_MODIFY	ix86_tune_features[X86_TUNE_READ_MODIFY]
494#define TARGET_PROMOTE_QImode	ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
495#define TARGET_FAST_PREFIX	ix86_tune_features[X86_TUNE_FAST_PREFIX]
496#define TARGET_SINGLE_STRINGOP	ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
497#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
498	ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
499#define TARGET_QIMODE_MATH	ix86_tune_features[X86_TUNE_QIMODE_MATH]
500#define TARGET_HIMODE_MATH	ix86_tune_features[X86_TUNE_HIMODE_MATH]
501#define TARGET_PROMOTE_QI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
502#define TARGET_PROMOTE_HI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
503#define TARGET_SINGLE_POP	ix86_tune_features[X86_TUNE_SINGLE_POP]
504#define TARGET_DOUBLE_POP	ix86_tune_features[X86_TUNE_DOUBLE_POP]
505#define TARGET_SINGLE_PUSH	ix86_tune_features[X86_TUNE_SINGLE_PUSH]
506#define TARGET_DOUBLE_PUSH	ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
507#define TARGET_INTEGER_DFMODE_MOVES \
508	ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
509#define TARGET_PARTIAL_REG_DEPENDENCY \
510	ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
511#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
512	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
513#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
514	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
515#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
516	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
517#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
518	ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
519#define TARGET_SSE_SPLIT_REGS	ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
520#define TARGET_SSE_TYPELESS_STORES \
521	ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
522#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
523#define TARGET_MEMORY_MISMATCH_STALL \
524	ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
525#define TARGET_PROLOGUE_USING_MOVE \
526	ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
527#define TARGET_EPILOGUE_USING_MOVE \
528	ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
529#define TARGET_SHIFT1		ix86_tune_features[X86_TUNE_SHIFT1]
530#define TARGET_USE_FFREEP	ix86_tune_features[X86_TUNE_USE_FFREEP]
531#define TARGET_INTER_UNIT_MOVES_TO_VEC \
532	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
533#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
534	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
535#define TARGET_INTER_UNIT_CONVERSIONS \
536	ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
537#define TARGET_FOUR_JUMP_LIMIT	ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
538#define TARGET_SCHEDULE		ix86_tune_features[X86_TUNE_SCHEDULE]
539#define TARGET_USE_BT		ix86_tune_features[X86_TUNE_USE_BT]
540#define TARGET_USE_INCDEC	ix86_tune_features[X86_TUNE_USE_INCDEC]
541#define TARGET_PAD_RETURNS	ix86_tune_features[X86_TUNE_PAD_RETURNS]
542#define TARGET_PAD_SHORT_FUNCTION \
543	ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
544#define TARGET_EXT_80387_CONSTANTS \
545	ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
546#define TARGET_AVOID_VECTOR_DECODE \
547	ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
548#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
549	ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
550#define TARGET_SLOW_IMUL_IMM32_MEM \
551	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
552#define TARGET_SLOW_IMUL_IMM8	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
553#define	TARGET_MOVE_M1_VIA_OR	ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
554#define TARGET_NOT_UNPAIRABLE	ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
555#define TARGET_NOT_VECTORMODE	ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
556#define TARGET_USE_VECTOR_FP_CONVERTS \
557	ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
558#define TARGET_USE_VECTOR_CONVERTS \
559	ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
560#define TARGET_SLOW_PSHUFB \
561	ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
562#define TARGET_AVOID_4BYTE_PREFIXES \
563	ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
564#define TARGET_USE_GATHER \
565	ix86_tune_features[X86_TUNE_USE_GATHER]
566#define TARGET_FUSE_CMP_AND_BRANCH_32 \
567	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
568#define TARGET_FUSE_CMP_AND_BRANCH_64 \
569	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
570#define TARGET_FUSE_CMP_AND_BRANCH \
571	(TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
572	 : TARGET_FUSE_CMP_AND_BRANCH_32)
573#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
574	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
575#define TARGET_FUSE_ALU_AND_BRANCH \
576	ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
577#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
578#define TARGET_AVOID_LEA_FOR_ADDR \
579	ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
580#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
581	ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
582#define TARGET_AVX256_SPLIT_REGS \
583	ix86_tune_features[X86_TUNE_AVX256_SPLIT_REGS]
584#define TARGET_GENERAL_REGS_SSE_SPILL \
585	ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
586#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
587	ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
588#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
589	ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
590#define TARGET_ADJUST_UNROLL \
591    ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
592#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
593	ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
594#define TARGET_ONE_IF_CONV_INSN \
595	ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
596#define TARGET_AVOID_MFENCE ix86_tune_features[X86_TUNE_AVOID_MFENCE]
597#define TARGET_EMIT_VZEROUPPER \
598	ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
599#define TARGET_EXPAND_ABS \
600	ix86_tune_features[X86_TUNE_EXPAND_ABS]
601
602/* Feature tests against the various architecture variations.  */
603enum ix86_arch_indices {
604  X86_ARCH_CMOV,
605  X86_ARCH_CMPXCHG,
606  X86_ARCH_CMPXCHG8B,
607  X86_ARCH_XADD,
608  X86_ARCH_BSWAP,
609
610  X86_ARCH_LAST
611};
612
613extern unsigned char ix86_arch_features[X86_ARCH_LAST];
614
615#define TARGET_CMOV		ix86_arch_features[X86_ARCH_CMOV]
616#define TARGET_CMPXCHG		ix86_arch_features[X86_ARCH_CMPXCHG]
617#define TARGET_CMPXCHG8B	ix86_arch_features[X86_ARCH_CMPXCHG8B]
618#define TARGET_XADD		ix86_arch_features[X86_ARCH_XADD]
619#define TARGET_BSWAP		ix86_arch_features[X86_ARCH_BSWAP]
620
621/* For sane SSE instruction set generation we need fcomi instruction.
622   It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
623   expands to a sequence that includes conditional move. */
624#define TARGET_CMOVE		(TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
625
626#define TARGET_FISTTP		(TARGET_SSE3 && TARGET_80387)
627
628extern unsigned char x86_prefetch_sse;
629#define TARGET_PREFETCH_SSE	x86_prefetch_sse
630
631#define ASSEMBLER_DIALECT	(ix86_asm_dialect)
632
633#define TARGET_SSE_MATH		((ix86_fpmath & FPMATH_SSE) != 0)
634#define TARGET_MIX_SSE_I387 \
635 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
636
637#define TARGET_HARD_SF_REGS	(TARGET_80387 || TARGET_MMX || TARGET_SSE)
638#define TARGET_HARD_DF_REGS	(TARGET_80387 || TARGET_SSE)
639#define TARGET_HARD_XF_REGS	(TARGET_80387)
640
641#define TARGET_GNU_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU)
642#define TARGET_GNU2_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU2)
643#define TARGET_ANY_GNU_TLS	(TARGET_GNU_TLS || TARGET_GNU2_TLS)
644#define TARGET_SUN_TLS		0
645
646#ifndef TARGET_64BIT_DEFAULT
647#define TARGET_64BIT_DEFAULT 0
648#endif
649#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
650#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
651#endif
652
653#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
654#define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
655
656/* Fence to use after loop using storent.  */
657
658extern tree x86_mfence;
659#define FENCE_FOLLOWING_MOVNT x86_mfence
660
661/* Once GDB has been enhanced to deal with functions without frame
662   pointers, we can change this to allow for elimination of
663   the frame pointer in leaf functions.  */
664#define TARGET_DEFAULT 0
665
666/* Extra bits to force.  */
667#define TARGET_SUBTARGET_DEFAULT 0
668#define TARGET_SUBTARGET_ISA_DEFAULT 0
669
670/* Extra bits to force on w/ 32-bit mode.  */
671#define TARGET_SUBTARGET32_DEFAULT 0
672#define TARGET_SUBTARGET32_ISA_DEFAULT 0
673
674/* Extra bits to force on w/ 64-bit mode.  */
675#define TARGET_SUBTARGET64_DEFAULT 0
676/* Enable MMX, SSE and SSE2 by default.  */
677#define TARGET_SUBTARGET64_ISA_DEFAULT \
678  (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
679
680/* Replace MACH-O, ifdefs by in-line tests, where possible.
681   (a) Macros defined in config/i386/darwin.h  */
682#define TARGET_MACHO 0
683#define TARGET_MACHO_SYMBOL_STUBS 0
684#define MACHOPIC_ATT_STUB 0
685/* (b) Macros defined in config/darwin.h  */
686#define MACHO_DYNAMIC_NO_PIC_P 0
687#define MACHOPIC_INDIRECT 0
688#define MACHOPIC_PURE 0
689
690/* For the RDOS  */
691#define TARGET_RDOS 0
692
693/* For the Windows 64-bit ABI.  */
694#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
695
696/* For the Windows 32-bit ABI.  */
697#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
698
699/* This is re-defined by cygming.h.  */
700#define TARGET_SEH 0
701
702/* The default abi used by target.  */
703#define DEFAULT_ABI SYSV_ABI
704
705/* The default TLS segment register used by target.  */
706#define DEFAULT_TLS_SEG_REG \
707  (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
708
709/* Subtargets may reset this to 1 in order to enable 96-bit long double
710   with the rounding mode forced to 53 bits.  */
711#define TARGET_96_ROUND_53_LONG_DOUBLE 0
712
713#ifndef SUBTARGET_DRIVER_SELF_SPECS
714# define SUBTARGET_DRIVER_SELF_SPECS ""
715#endif
716
717#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
718
719/* -march=native handling only makes sense with compiler running on
720   an x86 or x86_64 chip.  If changing this condition, also change
721   the condition in driver-i386.c.  */
722#if defined(__i386__) || defined(__x86_64__)
723/* In driver-i386.c.  */
724extern const char *host_detect_local_cpu (int argc, const char **argv);
725#define EXTRA_SPEC_FUNCTIONS \
726  { "local_cpu_detect", host_detect_local_cpu },
727#define HAVE_LOCAL_CPU_DETECT
728#endif
729
730#if TARGET_64BIT_DEFAULT
731#define OPT_ARCH64 "!m32"
732#define OPT_ARCH32 "m32"
733#else
734#define OPT_ARCH64 "m64|mx32"
735#define OPT_ARCH32 "m64|mx32:;"
736#endif
737
738/* Support for configure-time defaults of some command line options.
739   The order here is important so that -march doesn't squash the
740   tune or cpu values.  */
741#define OPTION_DEFAULT_SPECS					   \
742  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
743  {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
744  {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
745  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
746  {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
747  {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
748  {"arch", "%{!march=*:-march=%(VALUE)}"},			   \
749  {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},	   \
750  {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
751
752/* Specs for the compiler proper */
753
754#ifndef CC1_CPU_SPEC
755#define CC1_CPU_SPEC_1 ""
756
757#ifndef HAVE_LOCAL_CPU_DETECT
758#define CC1_CPU_SPEC CC1_CPU_SPEC_1
759#else
760#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
761"%{march=native:%>march=native %:local_cpu_detect(arch) \
762  %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
763%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
764#endif
765#endif
766
767/* Target CPU builtins.  */
768#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
769
770/* Target Pragmas.  */
771#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
772
773/* Target CPU versions for D.  */
774#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
775
776#ifndef CC1_SPEC
777#define CC1_SPEC "%(cc1_cpu) "
778#endif
779
780/* This macro defines names of additional specifications to put in the
781   specs that can be used in various specifications like CC1_SPEC.  Its
782   definition is an initializer with a subgrouping for each command option.
783
784   Each subgrouping contains a string constant, that defines the
785   specification name, and a string constant that used by the GCC driver
786   program.
787
788   Do not define this macro if it does not need to do anything.  */
789
790#ifndef SUBTARGET_EXTRA_SPECS
791#define SUBTARGET_EXTRA_SPECS
792#endif
793
794#define EXTRA_SPECS							\
795  { "cc1_cpu",  CC1_CPU_SPEC },						\
796  SUBTARGET_EXTRA_SPECS
797
798
799/* Whether to allow x87 floating-point arithmetic on MODE (one of
800   SFmode, DFmode and XFmode) in the current excess precision
801   configuration.  */
802#define X87_ENABLE_ARITH(MODE)				\
803  (ix86_unsafe_math_optimizations			\
804   || ix86_excess_precision == EXCESS_PRECISION_FAST	\
805   || (MODE) == XFmode)
806
807/* Likewise, whether to allow direct conversions from integer mode
808   IMODE (HImode, SImode or DImode) to MODE.  */
809#define X87_ENABLE_FLOAT(MODE, IMODE)			\
810  (ix86_unsafe_math_optimizations			\
811   || ix86_excess_precision == EXCESS_PRECISION_FAST	\
812   || (MODE) == XFmode					\
813   || ((MODE) == DFmode && (IMODE) == SImode)		\
814   || (IMODE) == HImode)
815
816/* target machine storage layout */
817
818#define SHORT_TYPE_SIZE 16
819#define INT_TYPE_SIZE 32
820#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
821#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
822#define LONG_LONG_TYPE_SIZE 64
823#define FLOAT_TYPE_SIZE 32
824#define DOUBLE_TYPE_SIZE 64
825#define LONG_DOUBLE_TYPE_SIZE \
826  (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
827
828#define WIDEST_HARDWARE_FP_SIZE 80
829
830#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
831#define MAX_BITS_PER_WORD 64
832#else
833#define MAX_BITS_PER_WORD 32
834#endif
835
836/* Define this if most significant byte of a word is the lowest numbered.  */
837/* That is true on the 80386.  */
838
839#define BITS_BIG_ENDIAN 0
840
841/* Define this if most significant byte of a word is the lowest numbered.  */
842/* That is not true on the 80386.  */
843#define BYTES_BIG_ENDIAN 0
844
845/* Define this if most significant word of a multiword number is the lowest
846   numbered.  */
847/* Not true for 80386 */
848#define WORDS_BIG_ENDIAN 0
849
850/* Width of a word, in units (bytes).  */
851#define UNITS_PER_WORD		(TARGET_64BIT ? 8 : 4)
852
853#ifndef IN_LIBGCC2
854#define MIN_UNITS_PER_WORD	4
855#endif
856
857/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
858#define PARM_BOUNDARY BITS_PER_WORD
859
860/* Boundary (in *bits*) on which stack pointer should be aligned.  */
861#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
862
863/* Stack boundary of the main function guaranteed by OS.  */
864#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
865
866/* Minimum stack boundary.  */
867#define MIN_STACK_BOUNDARY BITS_PER_WORD
868
869/* Boundary (in *bits*) on which the stack pointer prefers to be
870   aligned; the compiler cannot rely on having this alignment.  */
871#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
872
873/* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
874   both 32bit and 64bit, to support codes that need 128 bit stack
875   alignment for SSE instructions, but can't realign the stack.  */
876#define PREFERRED_STACK_BOUNDARY_DEFAULT \
877  (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
878
879/* 1 if -mstackrealign should be turned on by default.  It will
880   generate an alternate prologue and epilogue that realigns the
881   runtime stack if nessary.  This supports mixing codes that keep a
882   4-byte aligned stack, as specified by i386 psABI, with codes that
883   need a 16-byte aligned stack, as required by SSE instructions.  */
884#define STACK_REALIGN_DEFAULT 0
885
886/* Boundary (in *bits*) on which the incoming stack is aligned.  */
887#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
888
889/* According to Windows x64 software convention, the maximum stack allocatable
890   in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
891   instructions allowed to adjust the stack pointer in the epilog, forcing the
892   use of frame pointer for frames larger than 2 GB.  This theorical limit
893   is reduced by 256, an over-estimated upper bound for the stack use by the
894   prologue.
895   We define only one threshold for both the prolog and the epilog.  When the
896   frame size is larger than this threshold, we allocate the area to save SSE
897   regs, then save them, and then allocate the remaining.  There is no SEH
898   unwind info for this later allocation.  */
899#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
900
901/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
902   mandatory for the 64-bit ABI, and may or may not be true for other
903   operating systems.  */
904#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
905
906/* Minimum allocation boundary for the code of a function.  */
907#define FUNCTION_BOUNDARY 8
908
909/* C++ stores the virtual bit in the lowest bit of function pointers.  */
910#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
911
912/* Minimum size in bits of the largest boundary to which any
913   and all fundamental data types supported by the hardware
914   might need to be aligned. No data type wants to be aligned
915   rounder than this.
916
917   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
918   and Pentium Pro XFmode values at 128 bit boundaries.
919
920   When increasing the maximum, also update
921   TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
922
923#define BIGGEST_ALIGNMENT \
924  (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
925
926/* Maximum stack alignment.  */
927#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
928
929/* Alignment value for attribute ((aligned)).  It is a constant since
930   it is the part of the ABI.  We shouldn't change it with -mavx.  */
931#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
932
933/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
934#define ALIGN_MODE_128(MODE) \
935 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
936
937/* The published ABIs say that doubles should be aligned on word
938   boundaries, so lower the alignment for structure fields unless
939   -malign-double is set.  */
940
941/* ??? Blah -- this macro is used directly by libobjc.  Since it
942   supports no vector modes, cut out the complexity and fall back
943   on BIGGEST_FIELD_ALIGNMENT.  */
944#ifdef IN_TARGET_LIBS
945#ifdef __x86_64__
946#define BIGGEST_FIELD_ALIGNMENT 128
947#else
948#define BIGGEST_FIELD_ALIGNMENT 32
949#endif
950#else
951#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
952  x86_field_alignment ((TYPE), (COMPUTED))
953#endif
954
955/* If defined, a C expression to compute the alignment for a static
956   variable.  TYPE is the data type, and ALIGN is the alignment that
957   the object would ordinarily have.  The value of this macro is used
958   instead of that alignment to align the object.
959
960   If this macro is not defined, then ALIGN is used.
961
962   One use of this macro is to increase alignment of medium-size
963   data to make it all fit in fewer cache lines.  Another is to
964   cause character arrays to be word-aligned so that `strcpy' calls
965   that copy constants to character arrays can be done inline.  */
966
967#define DATA_ALIGNMENT(TYPE, ALIGN) \
968  ix86_data_alignment ((TYPE), (ALIGN), true)
969
970/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
971   some alignment increase, instead of optimization only purposes.  E.g.
972   AMD x86-64 psABI says that variables with array type larger than 15 bytes
973   must be aligned to 16 byte boundaries.
974
975   If this macro is not defined, then ALIGN is used.  */
976
977#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
978  ix86_data_alignment ((TYPE), (ALIGN), false)
979
980/* If defined, a C expression to compute the alignment for a local
981   variable.  TYPE is the data type, and ALIGN is the alignment that
982   the object would ordinarily have.  The value of this macro is used
983   instead of that alignment to align the object.
984
985   If this macro is not defined, then ALIGN is used.
986
987   One use of this macro is to increase alignment of medium-size
988   data to make it all fit in fewer cache lines.  */
989
990#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
991  ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
992
993/* If defined, a C expression to compute the alignment for stack slot.
994   TYPE is the data type, MODE is the widest mode available, and ALIGN
995   is the alignment that the slot would ordinarily have.  The value of
996   this macro is used instead of that alignment to align the slot.
997
998   If this macro is not defined, then ALIGN is used when TYPE is NULL,
999   Otherwise, LOCAL_ALIGNMENT will be used.
1000
1001   One use of this macro is to set alignment of stack slot to the
1002   maximum alignment of all possible modes which the slot may have.  */
1003
1004#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
1005  ix86_local_alignment ((TYPE), (MODE), (ALIGN))
1006
1007/* If defined, a C expression to compute the alignment for a local
1008   variable DECL.
1009
1010   If this macro is not defined, then
1011   LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
1012
1013   One use of this macro is to increase alignment of medium-size
1014   data to make it all fit in fewer cache lines.  */
1015
1016#define LOCAL_DECL_ALIGNMENT(DECL) \
1017  ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
1018
1019/* If defined, a C expression to compute the minimum required alignment
1020   for dynamic stack realignment purposes for EXP (a TYPE or DECL),
1021   MODE, assuming normal alignment ALIGN.
1022
1023   If this macro is not defined, then (ALIGN) will be used.  */
1024
1025#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1026  ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
1027
1028
1029/* Set this nonzero if move instructions will actually fail to work
1030   when given unaligned data.  */
1031#define STRICT_ALIGNMENT 0
1032
1033/* If bit field type is int, don't let it cross an int,
1034   and give entire struct the alignment of an int.  */
1035/* Required on the 386 since it doesn't have bit-field insns.  */
1036#define PCC_BITFIELD_TYPE_MATTERS 1
1037
1038/* Standard register usage.  */
1039
1040/* This processor has special stack-like registers.  See reg-stack.c
1041   for details.  */
1042
1043#define STACK_REGS
1044
1045#define IS_STACK_MODE(MODE)				\
1046  (X87_FLOAT_MODE_P (MODE)				\
1047   && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH)	\
1048       || TARGET_MIX_SSE_I387))
1049
1050/* Number of actual hardware registers.
1051   The hardware registers are assigned numbers for the compiler
1052   from 0 to just below FIRST_PSEUDO_REGISTER.
1053   All registers that the compiler knows about must be given numbers,
1054   even those that are not normally considered general registers.
1055
1056   In the 80386 we give the 8 general purpose registers the numbers 0-7.
1057   We number the floating point registers 8-15.
1058   Note that registers 0-7 can be accessed as a  short or int,
1059   while only 0-3 may be used with byte `mov' instructions.
1060
1061   Reg 16 does not correspond to any hardware register, but instead
1062   appears in the RTL as an argument pointer prior to reload, and is
1063   eliminated during reloading in favor of either the stack or frame
1064   pointer.  */
1065
1066#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
1067
1068/* Number of hardware registers that go into the DWARF-2 unwind info.
1069   If not defined, equals FIRST_PSEUDO_REGISTER.  */
1070
1071#define DWARF_FRAME_REGISTERS 17
1072
1073/* 1 for registers that have pervasive standard uses
1074   and are not available for the register allocator.
1075   On the 80386, the stack pointer is such, as is the arg pointer.
1076
1077   REX registers are disabled for 32bit targets in
1078   TARGET_CONDITIONAL_REGISTER_USAGE.  */
1079
1080#define FIXED_REGISTERS						\
1081/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
1082{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
1083/*arg,flags,fpsr,frame*/					\
1084    1,    1,   1,    1,						\
1085/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
1086     0,   0,   0,   0,   0,   0,   0,   0,			\
1087/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
1088     0,   0,   0,   0,   0,   0,   0,   0,			\
1089/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
1090     0,   0,   0,   0,   0,   0,   0,   0,			\
1091/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
1092     0,   0,    0,    0,    0,    0,    0,    0,		\
1093/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
1094     0,   0,    0,    0,    0,    0,    0,    0,		\
1095/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
1096     0,   0,    0,    0,    0,    0,    0,    0,		\
1097/*  k0,  k1, k2, k3, k4, k5, k6, k7*/				\
1098     0,  0,   0,  0,  0,  0,  0,  0 }
1099
1100/* 1 for registers not available across function calls.
1101   These must include the FIXED_REGISTERS and also any
1102   registers that can be used without being saved.
1103   The latter must include the registers where values are returned
1104   and the register where structure-value addresses are passed.
1105   Aside from that, you can include as many other registers as you like.
1106
1107   Value is set to 1 if the register is call used unconditionally.
1108   Bit one is set if the register is call used on TARGET_32BIT ABI.
1109   Bit two is set if the register is call used on TARGET_64BIT ABI.
1110   Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1111
1112   Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
1113
1114#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1115  ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1116
1117#define CALL_USED_REGISTERS					\
1118/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
1119{  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
1120/*arg,flags,fpsr,frame*/					\
1121    1,   1,    1,    1,						\
1122/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
1123     1,   1,   1,   1,   1,   1,   6,   6,			\
1124/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
1125     1,   1,   1,   1,   1,   1,   1,   1,			\
1126/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
1127     1,   1,   1,   1,   2,   2,   2,   2,			\
1128/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
1129     6,   6,    6,    6,    6,    6,    6,    6,		\
1130/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
1131     1,    1,     1,    1,    1,    1,    1,    1,		\
1132/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
1133     1,    1,     1,    1,    1,    1,    1,    1,		\
1134 /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/			\
1135     1,   1,   1,   1,   1,   1,   1,   1 }
1136
1137/* Order in which to allocate registers.  Each register must be
1138   listed once, even those in FIXED_REGISTERS.  List frame pointer
1139   late and fixed registers last.  Note that, in general, we prefer
1140   registers listed in CALL_USED_REGISTERS, keeping the others
1141   available for storage of persistent values.
1142
1143   The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1144   so this is just empty initializer for array.  */
1145
1146#define REG_ALLOC_ORDER							\
1147{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,			\
1148  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
1149  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
1150  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
1151  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
1152
1153/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1154   to be rearranged based on a particular function.  When using sse math,
1155   we want to allocate SSE before x87 registers and vice versa.  */
1156
1157#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1158
1159
1160#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1161
1162#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
1163  (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT				\
1164   && GENERAL_REGNO_P (REGNO)						\
1165   && ((MODE) == XFmode || (MODE) == XCmode))
1166
1167#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1168
1169#define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1170
1171#define VALID_AVX256_REG_MODE(MODE)					\
1172  ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1173   || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode	\
1174   || (MODE) == V4DFmode)
1175
1176#define VALID_AVX256_REG_OR_OI_MODE(MODE)		\
1177  (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1178
1179#define VALID_AVX512F_SCALAR_MODE(MODE)					\
1180  ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode		\
1181   || (MODE) == SFmode)
1182
1183#define VALID_AVX512F_REG_MODE(MODE)					\
1184  ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode	\
1185   || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1186   || (MODE) == V4TImode)
1187
1188#define VALID_AVX512F_REG_OR_XI_MODE(MODE)				\
1189  (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1190
1191#define VALID_AVX512VL_128_REG_MODE(MODE)				\
1192  ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode	\
1193   || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode	\
1194   || (MODE) == TFmode || (MODE) == V1TImode)
1195
1196#define VALID_SSE2_REG_MODE(MODE)					\
1197  ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1198   || (MODE) == V2DImode || (MODE) == DFmode)
1199
1200#define VALID_SSE_REG_MODE(MODE)					\
1201  ((MODE) == V1TImode || (MODE) == TImode				\
1202   || (MODE) == V4SFmode || (MODE) == V4SImode				\
1203   || (MODE) == SFmode || (MODE) == TFmode)
1204
1205#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1206  ((MODE) == V2SFmode || (MODE) == SFmode)
1207
1208#define VALID_MMX_REG_MODE(MODE)					\
1209  ((MODE) == V1DImode || (MODE) == DImode				\
1210   || (MODE) == V2SImode || (MODE) == SImode				\
1211   || (MODE) == V4HImode || (MODE) == V8QImode)
1212
1213#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1214
1215#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1216
1217#define VALID_DFP_MODE_P(MODE) \
1218  ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1219
1220#define VALID_FP_MODE_P(MODE)						\
1221  ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1222   || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)		\
1223
1224#define VALID_INT_MODE_P(MODE)						\
1225  ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1226   || (MODE) == DImode							\
1227   || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1228   || (MODE) == CDImode							\
1229   || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
1230			|| (MODE) == TFmode || (MODE) == TCmode)))
1231
1232/* Return true for modes passed in SSE registers.  */
1233#define SSE_REG_MODE_P(MODE)						\
1234  ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode	\
1235   || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1236   || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1237   || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1238   || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode	\
1239   || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode	\
1240   || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode	\
1241   || (MODE) == V16SFmode)
1242
1243#define X87_FLOAT_MODE_P(MODE)	\
1244  (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1245
1246#define SSE_FLOAT_MODE_P(MODE) \
1247  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1248
1249#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1250  (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1251		  || (MODE) == V8SFmode || (MODE) == V4DFmode))
1252
1253/* It is possible to write patterns to move flags; but until someone
1254   does it,  */
1255#define AVOID_CCMODE_COPIES
1256
1257/* Specify the modes required to caller save a given hard regno.
1258   We do this on i386 to prevent flags from being saved at all.
1259
1260   Kill any attempts to combine saving of modes.  */
1261
1262#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1263  (CC_REGNO_P (REGNO) ? VOIDmode					\
1264   : MMX_REGNO_P (REGNO) ? V8QImode					\
1265   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1266   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL)	\
1267   : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO)			\
1268			    && TARGET_PARTIAL_REG_STALL)		\
1269			   || MASK_REGNO_P (REGNO)) ? SImode		\
1270   : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO)			\
1271			   || MASK_REGNO_P (REGNO)) ? SImode		\
1272   : (MODE))
1273
1274/* Specify the registers used for certain standard purposes.
1275   The values of these macros are register numbers.  */
1276
1277/* on the 386 the pc register is %eip, and is not usable as a general
1278   register.  The ordinary mov instructions won't work */
1279/* #define PC_REGNUM  */
1280
1281/* Base register for access to arguments of the function.  */
1282#define ARG_POINTER_REGNUM ARGP_REG
1283
1284/* Register to use for pushing function arguments.  */
1285#define STACK_POINTER_REGNUM SP_REG
1286
1287/* Base register for access to local variables of the function.  */
1288#define FRAME_POINTER_REGNUM FRAME_REG
1289#define HARD_FRAME_POINTER_REGNUM BP_REG
1290
1291#define FIRST_INT_REG AX_REG
1292#define LAST_INT_REG  SP_REG
1293
1294#define FIRST_QI_REG AX_REG
1295#define LAST_QI_REG  BX_REG
1296
1297/* First & last stack-like regs */
1298#define FIRST_STACK_REG ST0_REG
1299#define LAST_STACK_REG  ST7_REG
1300
1301#define FIRST_SSE_REG XMM0_REG
1302#define LAST_SSE_REG  XMM7_REG
1303
1304#define FIRST_MMX_REG  MM0_REG
1305#define LAST_MMX_REG   MM7_REG
1306
1307#define FIRST_REX_INT_REG  R8_REG
1308#define LAST_REX_INT_REG   R15_REG
1309
1310#define FIRST_REX_SSE_REG  XMM8_REG
1311#define LAST_REX_SSE_REG   XMM15_REG
1312
1313#define FIRST_EXT_REX_SSE_REG  XMM16_REG
1314#define LAST_EXT_REX_SSE_REG   XMM31_REG
1315
1316#define FIRST_MASK_REG  MASK0_REG
1317#define LAST_MASK_REG   MASK7_REG
1318
1319/* Override this in other tm.h files to cope with various OS lossage
1320   requiring a frame pointer.  */
1321#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1322#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1323#endif
1324
1325/* Make sure we can access arbitrary call frames.  */
1326#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1327
1328/* Register to hold the addressing base for position independent
1329   code access to data items.  We don't use PIC pointer for 64bit
1330   mode.  Define the regnum to dummy value to prevent gcc from
1331   pessimizing code dealing with EBX.
1332
1333   To avoid clobbering a call-saved register unnecessarily, we renumber
1334   the pic register when possible.  The change is visible after the
1335   prologue has been emitted.  */
1336
1337#define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
1338
1339#define PIC_OFFSET_TABLE_REGNUM						\
1340  (ix86_use_pseudo_pic_reg ()						\
1341   ? (pic_offset_table_rtx						\
1342      ? INVALID_REGNUM							\
1343      : REAL_PIC_OFFSET_TABLE_REGNUM)					\
1344   : INVALID_REGNUM)
1345
1346#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1347
1348/* This is overridden by <cygwin.h>.  */
1349#define MS_AGGREGATE_RETURN 0
1350
1351#define KEEP_AGGREGATE_RETURN_POINTER 0
1352
1353/* Define the classes of registers for register constraints in the
1354   machine description.  Also define ranges of constants.
1355
1356   One of the classes must always be named ALL_REGS and include all hard regs.
1357   If there is more than one class, another class must be named NO_REGS
1358   and contain no registers.
1359
1360   The name GENERAL_REGS must be the name of a class (or an alias for
1361   another name such as ALL_REGS).  This is the class of registers
1362   that is allowed by "g" or "r" in a register constraint.
1363   Also, registers outside this class are allocated only when
1364   instructions express preferences for them.
1365
1366   The classes must be numbered in nondecreasing order; that is,
1367   a larger-numbered class must never be contained completely
1368   in a smaller-numbered class.  This is why CLOBBERED_REGS class
1369   is listed early, even though in 64-bit mode it contains more
1370   registers than just %eax, %ecx, %edx.
1371
1372   For any two classes, it is very desirable that there be another
1373   class that represents their union.
1374
1375   The flags and fpsr registers are in no class.  */
1376
1377enum reg_class
1378{
1379  NO_REGS,
1380  AREG, DREG, CREG, BREG, SIREG, DIREG,
1381  AD_REGS,			/* %eax/%edx for DImode */
1382  CLOBBERED_REGS,		/* call-clobbered integer registers */
1383  Q_REGS,			/* %eax %ebx %ecx %edx */
1384  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1385  TLS_GOTBASE_REGS,		/* %ebx %ecx %edx %esi %edi %ebp */
1386  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1387  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1388  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1389				   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1390  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1391  FLOAT_REGS,
1392  SSE_FIRST_REG,
1393  NO_REX_SSE_REGS,
1394  SSE_REGS,
1395  ALL_SSE_REGS,
1396  MMX_REGS,
1397  FLOAT_SSE_REGS,
1398  FLOAT_INT_REGS,
1399  INT_SSE_REGS,
1400  FLOAT_INT_SSE_REGS,
1401  MASK_REGS,
1402  ALL_MASK_REGS,
1403  ALL_REGS,
1404  LIM_REG_CLASSES
1405};
1406
1407#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1408
1409#define INTEGER_CLASS_P(CLASS) \
1410  reg_class_subset_p ((CLASS), GENERAL_REGS)
1411#define FLOAT_CLASS_P(CLASS) \
1412  reg_class_subset_p ((CLASS), FLOAT_REGS)
1413#define SSE_CLASS_P(CLASS) \
1414  reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1415#define MMX_CLASS_P(CLASS) \
1416  ((CLASS) == MMX_REGS)
1417#define MASK_CLASS_P(CLASS) \
1418  reg_class_subset_p ((CLASS), ALL_MASK_REGS)
1419#define MAYBE_INTEGER_CLASS_P(CLASS) \
1420  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1421#define MAYBE_FLOAT_CLASS_P(CLASS) \
1422  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1423#define MAYBE_SSE_CLASS_P(CLASS) \
1424  reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1425#define MAYBE_MMX_CLASS_P(CLASS) \
1426  reg_classes_intersect_p ((CLASS), MMX_REGS)
1427#define MAYBE_MASK_CLASS_P(CLASS) \
1428  reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
1429
1430#define Q_CLASS_P(CLASS) \
1431  reg_class_subset_p ((CLASS), Q_REGS)
1432
1433#define MAYBE_NON_Q_CLASS_P(CLASS) \
1434  reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1435
1436/* Give names of register classes as strings for dump file.  */
1437
1438#define REG_CLASS_NAMES \
1439{  "NO_REGS",				\
1440   "AREG", "DREG", "CREG", "BREG",	\
1441   "SIREG", "DIREG",			\
1442   "AD_REGS",				\
1443   "CLOBBERED_REGS",			\
1444   "Q_REGS", "NON_Q_REGS",		\
1445   "TLS_GOTBASE_REGS",			\
1446   "INDEX_REGS",			\
1447   "LEGACY_REGS",			\
1448   "GENERAL_REGS",			\
1449   "FP_TOP_REG", "FP_SECOND_REG",	\
1450   "FLOAT_REGS",			\
1451   "SSE_FIRST_REG",			\
1452   "NO_REX_SSE_REGS",			\
1453   "SSE_REGS",				\
1454   "ALL_SSE_REGS",			\
1455   "MMX_REGS",				\
1456   "FLOAT_SSE_REGS",			\
1457   "FLOAT_INT_REGS",			\
1458   "INT_SSE_REGS",			\
1459   "FLOAT_INT_SSE_REGS",		\
1460   "MASK_REGS",				\
1461   "ALL_MASK_REGS",			\
1462   "ALL_REGS" }
1463
1464/* Define which registers fit in which classes.  This is an initializer
1465   for a vector of HARD_REG_SET of length N_REG_CLASSES.
1466
1467   Note that CLOBBERED_REGS are calculated by
1468   TARGET_CONDITIONAL_REGISTER_USAGE.  */
1469
1470#define REG_CLASS_CONTENTS						\
1471{      { 0x0,        0x0,   0x0 },	/* NO_REGS */			\
1472      { 0x01,        0x0,   0x0 },	/* AREG */			\
1473      { 0x02,        0x0,   0x0 },	/* DREG */			\
1474      { 0x04,        0x0,   0x0 },	/* CREG */			\
1475      { 0x08,        0x0,   0x0 },	/* BREG */			\
1476      { 0x10,        0x0,   0x0 },	/* SIREG */			\
1477      { 0x20,        0x0,   0x0 },	/* DIREG */			\
1478      { 0x03,        0x0,   0x0 },	/* AD_REGS */			\
1479      { 0x07,        0x0,   0x0 },	/* CLOBBERED_REGS */		\
1480      { 0x0f,        0x0,   0x0 },	/* Q_REGS */			\
1481   { 0x900f0,        0x0,   0x0 },	/* NON_Q_REGS */		\
1482      { 0x7e,      0xff0,   0x0 },	/* TLS_GOTBASE_REGS */		\
1483      { 0x7f,      0xff0,   0x0 },	/* INDEX_REGS */		\
1484   { 0x900ff,        0x0,   0x0 },	/* LEGACY_REGS */		\
1485   { 0x900ff,      0xff0,   0x0 },	/* GENERAL_REGS */		\
1486     { 0x100,        0x0,   0x0 },	/* FP_TOP_REG */		\
1487     { 0x200,        0x0,   0x0 },	/* FP_SECOND_REG */		\
1488    { 0xff00,        0x0,   0x0 },	/* FLOAT_REGS */		\
1489  { 0x100000,        0x0,   0x0 },	/* SSE_FIRST_REG */		\
1490 { 0xff00000,        0x0,   0x0 },	/* NO_REX_SSE_REGS */		\
1491 { 0xff00000,    0xff000,   0x0 },	/* SSE_REGS */			\
1492 { 0xff00000, 0xfffff000,   0xf },	/* ALL_SSE_REGS */		\
1493{ 0xf0000000,        0xf,   0x0 },	/* MMX_REGS */			\
1494 { 0xff0ff00, 0xfffff000,   0xf },	/* FLOAT_SSE_REGS */		\
1495 {   0x9ffff,      0xff0,   0x0 },	/* FLOAT_INT_REGS */		\
1496 { 0xff900ff, 0xfffffff0,   0xf },	/* INT_SSE_REGS */		\
1497 { 0xff9ffff, 0xfffffff0,   0xf },	/* FLOAT_INT_SSE_REGS */	\
1498       { 0x0,        0x0, 0xfe0 },	/* MASK_REGS */			\
1499       { 0x0,        0x0, 0xff0 },	/* ALL_MASK_REGS */		\
1500{ 0xffffffff, 0xffffffff, 0xfff }	/* ALL_REGS  */			\
1501}
1502
1503/* The same information, inverted:
1504   Return the class number of the smallest class containing
1505   reg number REGNO.  This could be a conditional expression
1506   or could index an array.  */
1507
1508#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1509
1510/* When this hook returns true for MODE, the compiler allows
1511   registers explicitly used in the rtl to be used as spill registers
1512   but prevents the compiler from extending the lifetime of these
1513   registers.  */
1514#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1515
1516#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1517#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1518
1519#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1520#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1521
1522#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1523#define REX_INT_REGNO_P(N) \
1524  IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1525
1526#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1527#define GENERAL_REGNO_P(N) \
1528  (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1529
1530#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1531#define ANY_QI_REGNO_P(N) \
1532  (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1533
1534#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1535#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1536
1537#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1538#define SSE_REGNO_P(N)						\
1539  (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)			\
1540   || REX_SSE_REGNO_P (N)					\
1541   || EXT_REX_SSE_REGNO_P (N))
1542
1543#define REX_SSE_REGNO_P(N) \
1544  IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1545
1546#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1547
1548#define EXT_REX_SSE_REGNO_P(N) \
1549  IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1550
1551#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1552#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1553
1554#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1555#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1556#define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
1557
1558#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1559#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1560
1561#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1562#define CC_REGNO_P(X) ((X) == FLAGS_REG)
1563
1564#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1565#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG  \
1566			     || (N) == XMM4_REG  \
1567			     || (N) == XMM8_REG  \
1568			     || (N) == XMM12_REG \
1569			     || (N) == XMM16_REG \
1570			     || (N) == XMM20_REG \
1571			     || (N) == XMM24_REG \
1572			     || (N) == XMM28_REG)
1573
1574/* First floating point reg */
1575#define FIRST_FLOAT_REG FIRST_STACK_REG
1576#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1577
1578#define GET_SSE_REGNO(N)			\
1579  ((N) < 8 ? FIRST_SSE_REG + (N)		\
1580   : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8	\
1581   : FIRST_EXT_REX_SSE_REG + (N) - 16)
1582
1583/* The class value for index registers, and the one for base regs.  */
1584
1585#define INDEX_REG_CLASS INDEX_REGS
1586#define BASE_REG_CLASS GENERAL_REGS
1587
1588/* Stack layout; function entry, exit and calling.  */
1589
1590/* Define this if pushing a word on the stack
1591   makes the stack pointer a smaller address.  */
1592#define STACK_GROWS_DOWNWARD 1
1593
1594/* Define this to nonzero if the nominal address of the stack frame
1595   is at the high-address end of the local variables;
1596   that is, each additional local variable allocated
1597   goes at a more negative offset in the frame.  */
1598#define FRAME_GROWS_DOWNWARD 1
1599
1600#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1601
1602/* If defined, the maximum amount of space required for outgoing arguments
1603   will be computed and placed into the variable `crtl->outgoing_args_size'.
1604   No space will be pushed onto the stack for each call; instead, the
1605   function prologue should increase the stack frame size by this amount.
1606
1607   In 32bit mode enabling argument accumulation results in about 5% code size
1608   growth because move instructions are less compact than push.  In 64bit
1609   mode the difference is less drastic but visible.
1610
1611   FIXME: Unlike earlier implementations, the size of unwind info seems to
1612   actually grow with accumulation.  Is that because accumulated args
1613   unwind info became unnecesarily bloated?
1614
1615   With the 64-bit MS ABI, we can generate correct code with or without
1616   accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1617   generated without accumulated args is terrible.
1618
1619   If stack probes are required, the space used for large function
1620   arguments on the stack must also be probed, so enable
1621   -maccumulate-outgoing-args so this happens in the prologue.
1622
1623   We must use argument accumulation in interrupt function if stack
1624   may be realigned to avoid DRAP.  */
1625
1626#define ACCUMULATE_OUTGOING_ARGS \
1627  ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1628    && optimize_function_for_speed_p (cfun)) \
1629   || (cfun->machine->func_type != TYPE_NORMAL \
1630       && crtl->stack_realign_needed) \
1631   || TARGET_STACK_PROBE \
1632   || TARGET_64BIT_MS_ABI \
1633   || (TARGET_MACHO && crtl->profile))
1634
1635/* If defined, a C expression whose value is nonzero when we want to use PUSH
1636   instructions to pass outgoing arguments.  */
1637
1638#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1639
1640/* We want the stack and args grow in opposite directions, even if
1641   PUSH_ARGS is 0.  */
1642#define PUSH_ARGS_REVERSED 1
1643
1644/* Offset of first parameter from the argument pointer register value.  */
1645#define FIRST_PARM_OFFSET(FNDECL) 0
1646
1647/* Define this macro if functions should assume that stack space has been
1648   allocated for arguments even when their values are passed in registers.
1649
1650   The value of this macro is the size, in bytes, of the area reserved for
1651   arguments passed in registers for the function represented by FNDECL.
1652
1653   This space can be allocated by the caller, or be a part of the
1654   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1655   which.  */
1656#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1657
1658#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1659  (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1660
1661/* Define how to find the value returned by a library function
1662   assuming the value has mode MODE.  */
1663
1664#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1665
1666/* Define the size of the result block used for communication between
1667   untyped_call and untyped_return.  The block contains a DImode value
1668   followed by the block used by fnsave and frstor.  */
1669
1670#define APPLY_RESULT_SIZE (8+108)
1671
1672/* 1 if N is a possible register number for function argument passing.  */
1673#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1674
1675/* Define a data type for recording info about an argument list
1676   during the scan of that argument list.  This data type should
1677   hold all necessary information about the function itself
1678   and about the args processed so far, enough to enable macros
1679   such as FUNCTION_ARG to determine where the next arg should go.  */
1680
1681typedef struct ix86_args {
1682  int words;			/* # words passed so far */
1683  int nregs;			/* # registers available for passing */
1684  int regno;			/* next available register number */
1685  int fastcall;			/* fastcall or thiscall calling convention
1686				   is used */
1687  int sse_words;		/* # sse words passed so far */
1688  int sse_nregs;		/* # sse registers available for passing */
1689  int warn_avx512f;		/* True when we want to warn
1690				   about AVX512F ABI.  */
1691  int warn_avx;			/* True when we want to warn about AVX ABI.  */
1692  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1693  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1694  int warn_empty;		/* True when we want to warn about empty classes
1695				   passing ABI change.  */
1696  int sse_regno;		/* next available sse register number */
1697  int mmx_words;		/* # mmx words passed so far */
1698  int mmx_nregs;		/* # mmx registers available for passing */
1699  int mmx_regno;		/* next available mmx register number */
1700  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1701  int caller;			/* true if it is caller.  */
1702  int float_in_sse;		/* Set to 1 or 2 for 32bit targets if
1703				   SFmode/DFmode arguments should be passed
1704				   in SSE registers.  Otherwise 0.  */
1705  int stdarg;                   /* Set to 1 if function is stdarg.  */
1706  enum calling_abi call_abi;	/* Set to SYSV_ABI for sysv abi. Otherwise
1707 				   MS_ABI for ms abi.  */
1708  tree decl;			/* Callee decl.  */
1709} CUMULATIVE_ARGS;
1710
1711/* Initialize a variable CUM of type CUMULATIVE_ARGS
1712   for a call to a function whose data type is FNTYPE.
1713   For a library call, FNTYPE is 0.  */
1714
1715#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1716  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1717			(N_NAMED_ARGS) != -1)
1718
1719/* Output assembler code to FILE to increment profiler label # LABELNO
1720   for profiling a function entry.  */
1721
1722#define FUNCTION_PROFILER(FILE, LABELNO) \
1723  x86_function_profiler ((FILE), (LABELNO))
1724
1725#define MCOUNT_NAME "_mcount"
1726
1727#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1728
1729#define PROFILE_COUNT_REGISTER "edx"
1730
1731/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1732   the stack pointer does not matter.  The value is tested only in
1733   functions that have frame pointers.
1734   No definition is equivalent to always zero.  */
1735/* Note on the 386 it might be more efficient not to define this since
1736   we have to restore it ourselves from the frame pointer, in order to
1737   use pop */
1738
1739#define EXIT_IGNORE_STACK 1
1740
1741/* Define this macro as a C expression that is nonzero for registers
1742   used by the epilogue or the `return' pattern.  */
1743
1744#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1745
1746/* Output assembler code for a block containing the constant parts
1747   of a trampoline, leaving space for the variable parts.  */
1748
1749/* On the 386, the trampoline contains two instructions:
1750     mov #STATIC,ecx
1751     jmp FUNCTION
1752   The trampoline is generated entirely at runtime.  The operand of JMP
1753   is the address of FUNCTION relative to the instruction following the
1754   JMP (which is 5 bytes long).  */
1755
1756/* Length in units of the trampoline for entering a nested function.  */
1757
1758#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1759
1760/* Definitions for register eliminations.
1761
1762   This is an array of structures.  Each structure initializes one pair
1763   of eliminable registers.  The "from" register number is given first,
1764   followed by "to".  Eliminations of the same "from" register are listed
1765   in order of preference.
1766
1767   There are two registers that can always be eliminated on the i386.
1768   The frame pointer and the arg pointer can be replaced by either the
1769   hard frame pointer or to the stack pointer, depending upon the
1770   circumstances.  The hard frame pointer is not used before reload and
1771   so it is not eligible for elimination.  */
1772
1773#define ELIMINABLE_REGS					\
1774{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1775 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1776 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1777 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1778
1779/* Define the offset between two registers, one to be eliminated, and the other
1780   its replacement, at the start of a routine.  */
1781
1782#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1783  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1784
1785/* Addressing modes, and classification of registers for them.  */
1786
1787/* Macros to check register numbers against specific register classes.  */
1788
1789/* These assume that REGNO is a hard or pseudo reg number.
1790   They give nonzero only if REGNO is a hard reg of the suitable class
1791   or a pseudo reg currently allocated to a suitable hard reg.
1792   Since they use reg_renumber, they are safe only once reg_renumber
1793   has been allocated, which happens in reginfo.c during register
1794   allocation.  */
1795
1796#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1797  ((REGNO) < STACK_POINTER_REGNUM 					\
1798   || REX_INT_REGNO_P (REGNO)						\
1799   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM		\
1800   || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1801
1802#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1803  (GENERAL_REGNO_P (REGNO)						\
1804   || (REGNO) == ARG_POINTER_REGNUM 					\
1805   || (REGNO) == FRAME_POINTER_REGNUM 					\
1806   || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1807
1808/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1809   and check its validity for a certain class.
1810   We have two alternate definitions for each of them.
1811   The usual definition accepts all pseudo regs; the other rejects
1812   them unless they have been allocated suitable hard regs.
1813   The symbol REG_OK_STRICT causes the latter definition to be used.
1814
1815   Most source files want to accept pseudo regs in the hope that
1816   they will get allocated to the class that the insn wants them to be in.
1817   Source files for reload pass need to be strict.
1818   After reload, it makes no difference, since pseudo regs have
1819   been eliminated by then.  */
1820
1821
1822/* Non strict versions, pseudos are ok.  */
1823#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1824  (REGNO (X) < STACK_POINTER_REGNUM					\
1825   || REX_INT_REGNO_P (REGNO (X))					\
1826   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1827
1828#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1829  (GENERAL_REGNO_P (REGNO (X))						\
1830   || REGNO (X) == ARG_POINTER_REGNUM					\
1831   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1832   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1833
1834/* Strict versions, hard registers only */
1835#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1836#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1837
1838#ifndef REG_OK_STRICT
1839#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1840#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1841
1842#else
1843#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1844#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1845#endif
1846
1847/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1848   that is a valid memory address for an instruction.
1849   The MODE argument is the machine mode for the MEM expression
1850   that wants to use this address.
1851
1852   The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1853   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1854
1855   See legitimize_pic_address in i386.c for details as to what
1856   constitutes a legitimate address when -fpic is used.  */
1857
1858#define MAX_REGS_PER_ADDRESS 2
1859
1860#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1861
1862/* If defined, a C expression to determine the base term of address X.
1863   This macro is used in only one place: `find_base_term' in alias.c.
1864
1865   It is always safe for this macro to not be defined.  It exists so
1866   that alias analysis can understand machine-dependent addresses.
1867
1868   The typical use of this macro is to handle addresses containing
1869   a label_ref or symbol_ref within an UNSPEC.  */
1870
1871#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1872
1873/* Nonzero if the constant value X is a legitimate general operand
1874   when generating PIC code.  It is given that flag_pic is on and
1875   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1876
1877#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1878
1879#define SYMBOLIC_CONST(X)	\
1880  (GET_CODE (X) == SYMBOL_REF						\
1881   || GET_CODE (X) == LABEL_REF						\
1882   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1883
1884/* Max number of args passed in registers.  If this is more than 3, we will
1885   have problems with ebx (register #4), since it is a caller save register and
1886   is also used as the pic register in ELF.  So for now, don't allow more than
1887   3 registers to be passed in registers.  */
1888
1889/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1890#define X86_64_REGPARM_MAX 6
1891#define X86_64_MS_REGPARM_MAX 4
1892
1893#define X86_32_REGPARM_MAX 3
1894
1895#define REGPARM_MAX							\
1896  (TARGET_64BIT								\
1897   ? (TARGET_64BIT_MS_ABI						\
1898      ? X86_64_MS_REGPARM_MAX						\
1899      : X86_64_REGPARM_MAX)						\
1900   : X86_32_REGPARM_MAX)
1901
1902#define X86_64_SSE_REGPARM_MAX 8
1903#define X86_64_MS_SSE_REGPARM_MAX 4
1904
1905#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1906
1907#define SSE_REGPARM_MAX							\
1908  (TARGET_64BIT								\
1909   ? (TARGET_64BIT_MS_ABI						\
1910      ? X86_64_MS_SSE_REGPARM_MAX					\
1911      : X86_64_SSE_REGPARM_MAX)						\
1912   : X86_32_SSE_REGPARM_MAX)
1913
1914#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1915
1916/* Specify the machine mode that this machine uses
1917   for the index in the tablejump instruction.  */
1918#define CASE_VECTOR_MODE \
1919 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1920
1921/* Define this as 1 if `char' should by default be signed; else as 0.  */
1922#define DEFAULT_SIGNED_CHAR 1
1923
1924/* Max number of bytes we can move from memory to memory
1925   in one reasonably fast instruction.  */
1926#define MOVE_MAX 16
1927
1928/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1929   move efficiently, as opposed to  MOVE_MAX which is the maximum
1930   number of bytes we can move with a single instruction.
1931
1932   ??? We should use TImode in 32-bit mode and use OImode or XImode
1933   if they are available.  But since by_pieces_ninsns determines the
1934   widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1935   64-bit mode.  */
1936#define MOVE_MAX_PIECES \
1937  ((TARGET_64BIT \
1938    && TARGET_SSE2 \
1939    && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1940    && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1941   ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
1942
1943/* If a memory-to-memory move would take MOVE_RATIO or more simple
1944   move-instruction pairs, we will do a cpymem or libcall instead.
1945   Increasing the value will always make code faster, but eventually
1946   incurs high cost in increased code size.
1947
1948   If you don't define this, a reasonable default is used.  */
1949
1950#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1951
1952/* If a clear memory operation would take CLEAR_RATIO or more simple
1953   move-instruction sequences, we will do a clrmem or libcall instead.  */
1954
1955#define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
1956
1957/* Define if shifts truncate the shift count which implies one can
1958   omit a sign-extension or zero-extension of a shift count.
1959
1960   On i386, shifts do truncate the count.  But bit test instructions
1961   take the modulo of the bit offset operand.  */
1962
1963/* #define SHIFT_COUNT_TRUNCATED */
1964
1965/* A macro to update M and UNSIGNEDP when an object whose type is
1966   TYPE and which has the specified mode and signedness is to be
1967   stored in a register.  This macro is only called when TYPE is a
1968   scalar type.
1969
1970   On i386 it is sometimes useful to promote HImode and QImode
1971   quantities to SImode.  The choice depends on target type.  */
1972
1973#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1974do {							\
1975  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1976      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1977    (MODE) = SImode;					\
1978} while (0)
1979
1980/* Specify the machine mode that pointers have.
1981   After generation of rtl, the compiler makes no further distinction
1982   between pointers and any other objects of this machine mode.  */
1983#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1984
1985/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1986   NONLOCAL needs space to save both shadow stack and stack pointers.
1987
1988   FIXME: We only need to save and restore stack pointer in ptr_mode.
1989   But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1990   to save and restore stack pointer.  See
1991   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1992 */
1993#define STACK_SAVEAREA_MODE(LEVEL)			\
1994  ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1995
1996/* Specify the machine_mode of the size increment
1997   operand of an 'allocate_stack' named pattern.  */
1998#define STACK_SIZE_MODE Pmode
1999
2000/* A C expression whose value is zero if pointers that need to be extended
2001   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
2002   greater then zero if they are zero-extended and less then zero if the
2003   ptr_extend instruction should be used.  */
2004
2005#define POINTERS_EXTEND_UNSIGNED 1
2006
2007/* A function address in a call instruction
2008   is a byte address (for indexing purposes)
2009   so give the MEM rtx a byte's mode.  */
2010#define FUNCTION_MODE QImode
2011
2012
2013/* A C expression for the cost of a branch instruction.  A value of 1
2014   is the default; other values are interpreted relative to that.  */
2015
2016#define BRANCH_COST(speed_p, predictable_p) \
2017  (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
2018
2019/* An integer expression for the size in bits of the largest integer machine
2020   mode that should actually be used.  We allow pairs of registers.  */
2021#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2022
2023/* Define this macro as a C expression which is nonzero if accessing
2024   less than a word of memory (i.e. a `char' or a `short') is no
2025   faster than accessing a word of memory, i.e., if such access
2026   require more than one instruction or if there is no difference in
2027   cost between byte and (aligned) word loads.
2028
2029   When this macro is not defined, the compiler will access a field by
2030   finding the smallest containing object; when it is defined, a
2031   fullword load will be used if alignment permits.  Unless bytes
2032   accesses are faster than word accesses, using word accesses is
2033   preferable since it may eliminate subsequent memory access if
2034   subsequent accesses occur to other fields in the same word of the
2035   structure, but to different bytes.  */
2036
2037#define SLOW_BYTE_ACCESS 0
2038
2039/* Nonzero if access to memory by shorts is slow and undesirable.  */
2040#define SLOW_SHORT_ACCESS 0
2041
2042/* Define this macro if it is as good or better to call a constant
2043   function address than to call an address kept in a register.
2044
2045   Desirable on the 386 because a CALL with a constant address is
2046   faster than one with a register address.  */
2047
2048#define NO_FUNCTION_CSE 1
2049
2050/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2051   return the mode to be used for the comparison.
2052
2053   For floating-point equality comparisons, CCFPEQmode should be used.
2054   VOIDmode should be used in all other cases.
2055
2056   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2057   possible, to allow for more combinations.  */
2058
2059#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2060
2061/* Return nonzero if MODE implies a floating point inequality can be
2062   reversed.  */
2063
2064#define REVERSIBLE_CC_MODE(MODE) 1
2065
2066/* A C expression whose value is reversed condition code of the CODE for
2067   comparison done in CC_MODE mode.  */
2068#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2069
2070
2071/* Control the assembler format that we output, to the extent
2072   this does not vary between assemblers.  */
2073
2074/* How to refer to registers in assembler output.
2075   This sequence is indexed by compiler's hard-register-number (see above).  */
2076
2077/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2078   For non floating point regs, the following are the HImode names.
2079
2080   For float regs, the stack top is sometimes referred to as "%st(0)"
2081   instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
2082   "y" code.  */
2083
2084#define HI_REGISTER_NAMES						\
2085{"ax","dx","cx","bx","si","di","bp","sp",				\
2086 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
2087 "argp", "flags", "fpsr", "frame",					\
2088 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2089 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",		\
2090 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2091 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",	\
2092 "xmm16", "xmm17", "xmm18", "xmm19",					\
2093 "xmm20", "xmm21", "xmm22", "xmm23",					\
2094 "xmm24", "xmm25", "xmm26", "xmm27",					\
2095 "xmm28", "xmm29", "xmm30", "xmm31",					\
2096 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
2097
2098#define REGISTER_NAMES HI_REGISTER_NAMES
2099
2100#define QI_REGISTER_NAMES \
2101{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2102
2103#define QI_HIGH_REGISTER_NAMES \
2104{"ah", "dh", "ch", "bh"}
2105
2106/* Table of additional register names to use in user input.  */
2107
2108#define ADDITIONAL_REGISTER_NAMES						\
2109{										\
2110  { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG },	\
2111  { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG },	\
2112  { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG },	\
2113  { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG },	\
2114  { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG },	\
2115  { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG },	\
2116  { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG },	\
2117  { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2118  { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2119  { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2120  { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2121  { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2122  { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2123  { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2124  { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2125  { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2126  { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2127  { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2128  { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2129  { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2130  { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2131  { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2132  { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG }  \
2133}
2134
2135/* How to renumber registers for dbx and gdb.  */
2136
2137#define DBX_REGISTER_NUMBER(N) \
2138  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2139
2140extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2141extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2142extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2143
2144/* Before the prologue, RA is at 0(%esp).  */
2145#define INCOMING_RETURN_ADDR_RTX \
2146  gen_rtx_MEM (Pmode, stack_pointer_rtx)
2147
2148/* After the prologue, RA is at -4(AP) in the current frame.  */
2149#define RETURN_ADDR_RTX(COUNT, FRAME)					\
2150  ((COUNT) == 0								\
2151   ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,		\
2152					-UNITS_PER_WORD))		\
2153   : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2154
2155/* PC is dbx register 8; let's use that column for RA.  */
2156#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2157
2158/* Before the prologue, there are return address and error code for
2159   exception handler on the top of the frame.  */
2160#define INCOMING_FRAME_SP_OFFSET \
2161  (cfun->machine->func_type == TYPE_EXCEPTION \
2162   ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2163
2164/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2165   .cfi_startproc.  */
2166#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2167
2168/* Describe how we implement __builtin_eh_return.  */
2169#define EH_RETURN_DATA_REGNO(N)	((N) <= DX_REG ? (N) : INVALID_REGNUM)
2170#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, CX_REG)
2171
2172
2173/* Select a format to encode pointers in exception handling data.  CODE
2174   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2175   true if the symbol may be affected by dynamic relocations.
2176
2177   ??? All x86 object file formats are capable of representing this.
2178   After all, the relocation needed is the same as for the call insn.
2179   Whether or not a particular assembler allows us to enter such, I
2180   guess we'll have to see.  */
2181#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2182  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2183
2184/* These are a couple of extensions to the formats accepted
2185   by asm_fprintf:
2186     %z prints out opcode suffix for word-mode instruction
2187     %r prints out word-mode name for reg_names[arg]  */
2188#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
2189  case 'z':						\
2190    fputc (TARGET_64BIT ? 'q' : 'l', (FILE));		\
2191    break;						\
2192							\
2193  case 'r':						\
2194    {							\
2195      unsigned int regno = va_arg ((ARGS), int);	\
2196      if (LEGACY_INT_REGNO_P (regno))			\
2197	fputc (TARGET_64BIT ? 'r' : 'e', (FILE));	\
2198      fputs (reg_names[regno], (FILE));			\
2199      break;						\
2200    }
2201
2202/* This is how to output an insn to push a register on the stack.  */
2203
2204#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)		\
2205  asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2206
2207/* This is how to output an insn to pop a register from the stack.  */
2208
2209#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2210  asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2211
2212/* This is how to output an element of a case-vector that is absolute.  */
2213
2214#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2215  ix86_output_addr_vec_elt ((FILE), (VALUE))
2216
2217/* This is how to output an element of a case-vector that is relative.  */
2218
2219#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2220  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2221
2222/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
2223
2224#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)	\
2225{						\
2226  if ((PTR)[0] == '%' && (PTR)[1] == 'v')	\
2227    (PTR) += TARGET_AVX ? 1 : 2;		\
2228}
2229
2230/* A C statement or statements which output an assembler instruction
2231   opcode to the stdio stream STREAM.  The macro-operand PTR is a
2232   variable of type `char *' which points to the opcode name in
2233   its "internal" form--the form that is written in the machine
2234   description.  */
2235
2236#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2237  ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2238
2239/* A C statement to output to the stdio stream FILE an assembler
2240   command to pad the location counter to a multiple of 1<<LOG
2241   bytes if it is within MAX_SKIP bytes.  */
2242
2243#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2244#undef  ASM_OUTPUT_MAX_SKIP_PAD
2245#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)			\
2246  if ((LOG) != 0)							\
2247    {									\
2248      if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1)		\
2249        fprintf ((FILE), "\t.p2align %d\n", (LOG));			\
2250      else								\
2251        fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
2252    }
2253#endif
2254
2255/* Write the extra assembler code needed to declare a function
2256   properly.  */
2257
2258#undef ASM_OUTPUT_FUNCTION_LABEL
2259#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2260  ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2261
2262/* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
2263   If not defined, assemble_name will be used to output the name of the
2264   symbol.  This macro may be used to modify the way a symbol is referenced
2265   depending on information encoded by TARGET_ENCODE_SECTION_INFO.  */
2266
2267#ifndef ASM_OUTPUT_SYMBOL_REF
2268#define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
2269  do {							\
2270    const char *name					\
2271      = assemble_name_resolve (XSTR (x, 0));		\
2272    /* In -masm=att wrap identifiers that start with $	\
2273       into parens.  */					\
2274    if (ASSEMBLER_DIALECT == ASM_ATT			\
2275	&& name[0] == '$'				\
2276	&& user_label_prefix[0] == '\0')		\
2277      {							\
2278	fputc ('(', (FILE));				\
2279	assemble_name_raw ((FILE), name);		\
2280	fputc (')', (FILE));				\
2281      }							\
2282    else						\
2283      assemble_name_raw ((FILE), name);			\
2284  } while (0)
2285#endif
2286
2287/* Under some conditions we need jump tables in the text section,
2288   because the assembler cannot handle label differences between
2289   sections.  */
2290
2291#define JUMP_TABLES_IN_TEXT_SECTION \
2292  (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
2293
2294/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2295   and switch back.  For x86 we do this only to save a few bytes that
2296   would otherwise be unused in the text section.  */
2297#define CRT_MKSTR2(VAL) #VAL
2298#define CRT_MKSTR(x) CRT_MKSTR2(x)
2299
2300#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
2301   asm (SECTION_OP "\n\t"					\
2302	"call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"	\
2303	TEXT_SECTION_ASM_OP);
2304
2305/* Default threshold for putting data in large sections
2306   with x86-64 medium memory model */
2307#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2308
2309/* Which processor to tune code generation for.  These must be in sync
2310   with processor_target_table in i386.c.  */
2311
2312enum processor_type
2313{
2314  PROCESSOR_GENERIC = 0,
2315  PROCESSOR_I386,			/* 80386 */
2316  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2317  PROCESSOR_PENTIUM,
2318  PROCESSOR_LAKEMONT,
2319  PROCESSOR_PENTIUMPRO,
2320  PROCESSOR_PENTIUM4,
2321  PROCESSOR_NOCONA,
2322  PROCESSOR_CORE2,
2323  PROCESSOR_NEHALEM,
2324  PROCESSOR_SANDYBRIDGE,
2325  PROCESSOR_HASWELL,
2326  PROCESSOR_BONNELL,
2327  PROCESSOR_SILVERMONT,
2328  PROCESSOR_GOLDMONT,
2329  PROCESSOR_GOLDMONT_PLUS,
2330  PROCESSOR_TREMONT,
2331  PROCESSOR_KNL,
2332  PROCESSOR_KNM,
2333  PROCESSOR_SKYLAKE,
2334  PROCESSOR_SKYLAKE_AVX512,
2335  PROCESSOR_CANNONLAKE,
2336  PROCESSOR_ICELAKE_CLIENT,
2337  PROCESSOR_ICELAKE_SERVER,
2338  PROCESSOR_CASCADELAKE,
2339  PROCESSOR_TIGERLAKE,
2340  PROCESSOR_COOPERLAKE,
2341  PROCESSOR_INTEL,
2342  PROCESSOR_GEODE,
2343  PROCESSOR_K6,
2344  PROCESSOR_ATHLON,
2345  PROCESSOR_K8,
2346  PROCESSOR_AMDFAM10,
2347  PROCESSOR_BDVER1,
2348  PROCESSOR_BDVER2,
2349  PROCESSOR_BDVER3,
2350  PROCESSOR_BDVER4,
2351  PROCESSOR_BTVER1,
2352  PROCESSOR_BTVER2,
2353  PROCESSOR_ZNVER1,
2354  PROCESSOR_ZNVER2,
2355  PROCESSOR_ZNVER3,
2356  PROCESSOR_max
2357};
2358
2359#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2360extern const char *const processor_names[];
2361
2362#include "wide-int-bitmask.h"
2363
2364const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2365const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2366const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2367const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2368const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2369const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2370const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2371const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2372const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2373const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2374const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2375const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2376const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2377const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2378const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2379const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2380const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2381const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2382const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2383const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2384const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2385const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2386const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2387const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2388const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2389const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2390const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2391const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2392const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2393const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2394const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2395const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2396const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2397const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2398const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2399const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2400const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2401const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2402const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2403const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2404const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2405const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2406const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2407const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2408/* Hole after PTA_MPX was removed.  */
2409const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2410const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2411const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2412const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2413const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2414const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2415const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2416const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2417const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2418const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2419const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2420const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2421const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2422const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2423const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2424const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2425const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2426const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2427const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2428const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2429const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2430const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2431const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2432const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2433const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2434const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2435const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2436const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2437const wide_int_bitmask PTA_AVX512VP2INTERSECT (0, HOST_WIDE_INT_1U << 9);
2438const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
2439const wide_int_bitmask PTA_AVX512BF16 (0, HOST_WIDE_INT_1U << 11);
2440const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 12);
2441const wide_int_bitmask PTA_MOVDIRI (0, HOST_WIDE_INT_1U << 13);
2442const wide_int_bitmask PTA_MOVDIR64B (0, HOST_WIDE_INT_1U << 14);
2443const wide_int_bitmask PTA_CLDEMOTE (0, HOST_WIDE_INT_1U << 16);
2444
2445const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2446  | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2447const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2448  | PTA_POPCNT;
2449const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
2450const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2451  | PTA_XSAVEOPT;
2452const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2453  | PTA_RDRND | PTA_F16C;
2454const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2455  | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2456const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_RDSEED
2457  | PTA_PRFCHW;
2458const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES | PTA_CLFLUSHOPT
2459  | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2460const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2461  | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2462  | PTA_CLWB;
2463const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
2464const wide_int_bitmask PTA_COOPERLAKE = PTA_CASCADELAKE | PTA_AVX512BF16;
2465const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2466  | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2467  | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2468const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2469  | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2470  | PTA_RDPID | PTA_AVX512VPOPCNTDQ;
2471const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2472  | PTA_WBNOINVD | PTA_CLWB;
2473const wide_int_bitmask PTA_TIGERLAKE = PTA_ICELAKE_CLIENT | PTA_MOVDIRI
2474  | PTA_MOVDIR64B | PTA_CLWB | PTA_AVX512VP2INTERSECT;
2475const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2476  | PTA_AVX512F | PTA_AVX512CD | PTA_PREFETCHWT1;
2477const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2478const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND
2479  | PTA_PRFCHW;
2480const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA | PTA_XSAVE
2481  | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2482  | PTA_FSGSBASE;
2483const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2484  | PTA_SGX | PTA_PTWRITE;
2485const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2486  | PTA_GFNI | PTA_MOVDIRI | PTA_MOVDIR64B | PTA_CLDEMOTE | PTA_WAITPKG;
2487const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2488  | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2489
2490#ifndef GENERATOR_FILE
2491
2492#include "insn-attr-common.h"
2493
2494#include "common/config/i386/i386-cpuinfo.h"
2495
2496class pta
2497{
2498public:
2499  const char *const name;		/* processor name or nickname.  */
2500  const enum processor_type processor;
2501  const enum attr_cpu schedule;
2502  const wide_int_bitmask flags;
2503  const int model;
2504  const enum feature_priority priority;
2505};
2506
2507extern const pta processor_alias_table[];
2508extern int const pta_size;
2509extern unsigned int const num_arch_names;
2510#endif
2511
2512#endif
2513
2514extern enum processor_type ix86_tune;
2515extern enum processor_type ix86_arch;
2516
2517/* Size of the RED_ZONE area.  */
2518#define RED_ZONE_SIZE 128
2519/* Reserved area of the red zone for temporaries.  */
2520#define RED_ZONE_RESERVE 8
2521
2522extern unsigned int ix86_preferred_stack_boundary;
2523extern unsigned int ix86_incoming_stack_boundary;
2524
2525/* Smallest class containing REGNO.  */
2526extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2527
2528enum ix86_fpcmp_strategy {
2529  IX86_FPCMP_SAHF,
2530  IX86_FPCMP_COMI,
2531  IX86_FPCMP_ARITH
2532};
2533
2534/* To properly truncate FP values into integers, we need to set i387 control
2535   word.  We can't emit proper mode switching code before reload, as spills
2536   generated by reload may truncate values incorrectly, but we still can avoid
2537   redundant computation of new control word by the mode switching pass.
2538   The fldcw instructions are still emitted redundantly, but this is probably
2539   not going to be noticeable problem, as most CPUs do have fast path for
2540   the sequence.
2541
2542   The machinery is to emit simple truncation instructions and split them
2543   before reload to instructions having USEs of two memory locations that
2544   are filled by this code to old and new control word.
2545
2546   Post-reload pass may be later used to eliminate the redundant fildcw if
2547   needed.  */
2548
2549enum ix86_stack_slot
2550{
2551  SLOT_TEMP = 0,
2552  SLOT_CW_STORED,
2553  SLOT_CW_ROUNDEVEN,
2554  SLOT_CW_TRUNC,
2555  SLOT_CW_FLOOR,
2556  SLOT_CW_CEIL,
2557  SLOT_STV_TEMP,
2558  MAX_386_STACK_LOCALS
2559};
2560
2561enum ix86_entity
2562{
2563  X86_DIRFLAG = 0,
2564  AVX_U128,
2565  I387_ROUNDEVEN,
2566  I387_TRUNC,
2567  I387_FLOOR,
2568  I387_CEIL,
2569  MAX_386_ENTITIES
2570};
2571
2572enum x86_dirflag_state
2573{
2574  X86_DIRFLAG_RESET,
2575  X86_DIRFLAG_ANY
2576};
2577
2578enum avx_u128_state
2579{
2580  AVX_U128_CLEAN,
2581  AVX_U128_DIRTY,
2582  AVX_U128_ANY
2583};
2584
2585/* Define this macro if the port needs extra instructions inserted
2586   for mode switching in an optimizing compilation.  */
2587
2588#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2589   ix86_optimize_mode_switching[(ENTITY)]
2590
2591/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2592   initializer for an array of integers.  Each initializer element N
2593   refers to an entity that needs mode switching, and specifies the
2594   number of different modes that might need to be set for this
2595   entity.  The position of the initializer in the initializer -
2596   starting counting at zero - determines the integer that is used to
2597   refer to the mode-switched entity in question.  */
2598
2599#define NUM_MODES_FOR_MODE_SWITCHING			\
2600  { X86_DIRFLAG_ANY, AVX_U128_ANY,			\
2601    I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY  }
2602
2603
2604/* Avoid renaming of stack registers, as doing so in combination with
2605   scheduling just increases amount of live registers at time and in
2606   the turn amount of fxch instructions needed.
2607
2608   ??? Maybe Pentium chips benefits from renaming, someone can try....
2609
2610   Don't rename evex to non-evex sse registers.  */
2611
2612#define HARD_REGNO_RENAME_OK(SRC, TARGET)				\
2613  (!STACK_REGNO_P (SRC)							\
2614   && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2615
2616
2617#define FASTCALL_PREFIX '@'
2618
2619#ifndef USED_FOR_TARGET
2620/* Structure describing stack frame layout.
2621   Stack grows downward:
2622
2623   [arguments]
2624					<- ARG_POINTER
2625   saved pc
2626
2627   saved static chain			if ix86_static_chain_on_stack
2628
2629   saved frame pointer			if frame_pointer_needed
2630					<- HARD_FRAME_POINTER
2631   [saved regs]
2632					<- reg_save_offset
2633   [padding0]
2634					<- stack_realign_offset
2635   [saved SSE regs]
2636	OR
2637   [stub-saved registers for ms x64 --> sysv clobbers
2638			<- Start of out-of-line, stub-saved/restored regs
2639			   (see libgcc/config/i386/(sav|res)ms64*.S)
2640     [XMM6-15]
2641     [RSI]
2642     [RDI]
2643     [?RBX]		only if RBX is clobbered
2644     [?RBP]		only if RBP and RBX are clobbered
2645     [?R12]		only if R12 and all previous regs are clobbered
2646     [?R13]		only if R13 and all previous regs are clobbered
2647     [?R14]		only if R14 and all previous regs are clobbered
2648     [?R15]		only if R15 and all previous regs are clobbered
2649			<- end of stub-saved/restored regs
2650     [padding1]
2651   ]
2652					<- sse_reg_save_offset
2653   [padding2]
2654		       |		<- FRAME_POINTER
2655   [va_arg registers]  |
2656		       |
2657   [frame]	       |
2658		       |
2659   [padding2]	       | = to_allocate
2660					<- STACK_POINTER
2661  */
2662struct GTY(()) ix86_frame
2663{
2664  int nsseregs;
2665  int nregs;
2666  int va_arg_size;
2667  int red_zone_size;
2668  int outgoing_arguments_size;
2669
2670  /* The offsets relative to ARG_POINTER.  */
2671  HOST_WIDE_INT frame_pointer_offset;
2672  HOST_WIDE_INT hard_frame_pointer_offset;
2673  HOST_WIDE_INT stack_pointer_offset;
2674  HOST_WIDE_INT hfp_save_offset;
2675  HOST_WIDE_INT reg_save_offset;
2676  HOST_WIDE_INT stack_realign_allocate;
2677  HOST_WIDE_INT stack_realign_offset;
2678  HOST_WIDE_INT sse_reg_save_offset;
2679
2680  /* When save_regs_using_mov is set, emit prologue using
2681     move instead of push instructions.  */
2682  bool save_regs_using_mov;
2683
2684  /* Assume without checking that:
2685       EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT).  */
2686  bool expensive_p;
2687  int expensive_count;
2688};
2689
2690/* Machine specific frame tracking during prologue/epilogue generation.  All
2691   values are positive, but since the x86 stack grows downward, are subtratced
2692   from the CFA to produce a valid address.  */
2693
2694struct GTY(()) machine_frame_state
2695{
2696  /* This pair tracks the currently active CFA as reg+offset.  When reg
2697     is drap_reg, we don't bother trying to record here the real CFA when
2698     it might really be a DW_CFA_def_cfa_expression.  */
2699  rtx cfa_reg;
2700  HOST_WIDE_INT cfa_offset;
2701
2702  /* The current offset (canonically from the CFA) of ESP and EBP.
2703     When stack frame re-alignment is active, these may not be relative
2704     to the CFA.  However, in all cases they are relative to the offsets
2705     of the saved registers stored in ix86_frame.  */
2706  HOST_WIDE_INT sp_offset;
2707  HOST_WIDE_INT fp_offset;
2708
2709  /* The size of the red-zone that may be assumed for the purposes of
2710     eliding register restore notes in the epilogue.  This may be zero
2711     if no red-zone is in effect, or may be reduced from the real
2712     red-zone value by a maximum runtime stack re-alignment value.  */
2713  int red_zone_offset;
2714
2715  /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2716     value within the frame.  If false then the offset above should be
2717     ignored.  Note that DRAP, if valid, *always* points to the CFA and
2718     thus has an offset of zero.  */
2719  BOOL_BITFIELD sp_valid : 1;
2720  BOOL_BITFIELD fp_valid : 1;
2721  BOOL_BITFIELD drap_valid : 1;
2722
2723  /* Indicate whether the local stack frame has been re-aligned.  When
2724     set, the SP/FP offsets above are relative to the aligned frame
2725     and not the CFA.  */
2726  BOOL_BITFIELD realigned : 1;
2727
2728  /* Indicates whether the stack pointer has been re-aligned.  When set,
2729     SP/FP continue to be relative to the CFA, but the stack pointer
2730     should only be used for offsets > sp_realigned_offset, while
2731     the frame pointer should be used for offsets <= sp_realigned_fp_last.
2732     The flags realigned and sp_realigned are mutually exclusive.  */
2733  BOOL_BITFIELD sp_realigned : 1;
2734
2735  /* If sp_realigned is set, this is the last valid offset from the CFA
2736     that can be used for access with the frame pointer.  */
2737  HOST_WIDE_INT sp_realigned_fp_last;
2738
2739  /* If sp_realigned is set, this is the offset from the CFA that the stack
2740     pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2741     Access via the stack pointer is only valid for offsets that are greater than
2742     this value.  */
2743  HOST_WIDE_INT sp_realigned_offset;
2744};
2745
2746/* Private to winnt.c.  */
2747struct seh_frame_state;
2748
2749enum function_type
2750{
2751  TYPE_UNKNOWN = 0,
2752  TYPE_NORMAL,
2753  /* The current function is an interrupt service routine with a
2754     pointer argument as specified by the "interrupt" attribute.  */
2755  TYPE_INTERRUPT,
2756  /* The current function is an interrupt service routine with a
2757     pointer argument and an integer argument as specified by the
2758     "interrupt" attribute.  */
2759  TYPE_EXCEPTION
2760};
2761
2762struct GTY(()) machine_function {
2763  struct stack_local_entry *stack_locals;
2764  int varargs_gpr_size;
2765  int varargs_fpr_size;
2766  int optimize_mode_switching[MAX_386_ENTITIES];
2767
2768  /* Cached initial frame layout for the current function.  */
2769  struct ix86_frame frame;
2770
2771  /* For -fsplit-stack support: A stack local which holds a pointer to
2772     the stack arguments for a function with a variable number of
2773     arguments.  This is set at the start of the function and is used
2774     to initialize the overflow_arg_area field of the va_list
2775     structure.  */
2776  rtx split_stack_varargs_pointer;
2777
2778  /* This value is used for amd64 targets and specifies the current abi
2779     to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
2780  ENUM_BITFIELD(calling_abi) call_abi : 8;
2781
2782  /* Nonzero if the function accesses a previous frame.  */
2783  BOOL_BITFIELD accesses_prev_frame : 1;
2784
2785  /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2786     expander to determine the style used.  */
2787  BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2788
2789  /* Nonzero if the current function calls pc thunk and
2790     must not use the red zone.  */
2791  BOOL_BITFIELD pc_thunk_call_expanded : 1;
2792
2793  /* If true, the current function needs the default PIC register, not
2794     an alternate register (on x86) and must not use the red zone (on
2795     x86_64), even if it's a leaf function.  We don't want the
2796     function to be regarded as non-leaf because TLS calls need not
2797     affect register allocation.  This flag is set when a TLS call
2798     instruction is expanded within a function, and never reset, even
2799     if all such instructions are optimized away.  Use the
2800     ix86_current_function_calls_tls_descriptor macro for a better
2801     approximation.  */
2802  BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2803
2804  /* If true, the current function has a STATIC_CHAIN is placed on the
2805     stack below the return address.  */
2806  BOOL_BITFIELD static_chain_on_stack : 1;
2807
2808  /* If true, it is safe to not save/restore DRAP register.  */
2809  BOOL_BITFIELD no_drap_save_restore : 1;
2810
2811  /* Function type.  */
2812  ENUM_BITFIELD(function_type) func_type : 2;
2813
2814  /* How to generate indirec branch.  */
2815  ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2816
2817  /* If true, the current function has local indirect jumps, like
2818     "indirect_jump" or "tablejump".  */
2819  BOOL_BITFIELD has_local_indirect_jump : 1;
2820
2821  /* How to generate function return.  */
2822  ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2823
2824  /* If true, the current function is a function specified with
2825     the "interrupt" or "no_caller_saved_registers" attribute.  */
2826  BOOL_BITFIELD no_caller_saved_registers : 1;
2827
2828  /* If true, there is register available for argument passing.  This
2829     is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2830     if there is scratch register available for indirect sibcall.  In
2831     64-bit, rax, r10 and r11 are scratch registers which aren't used to
2832     pass arguments and can be used for indirect sibcall.  */
2833  BOOL_BITFIELD arg_reg_available : 1;
2834
2835  /* If true, we're out-of-lining reg save/restore for regs clobbered
2836     by 64-bit ms_abi functions calling a sysv_abi function.  */
2837  BOOL_BITFIELD call_ms2sysv : 1;
2838
2839  /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2840     needs padding prior to out-of-line stub save/restore area.  */
2841  BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2842
2843  /* This is the number of extra registers saved by stub (valid range is
2844     0-6). Each additional register is only saved/restored by the stubs
2845     if all successive ones are. (Will always be zero when using a hard
2846     frame pointer.) */
2847  unsigned int call_ms2sysv_extra_regs:3;
2848
2849  /* Nonzero if the function places outgoing arguments on stack.  */
2850  BOOL_BITFIELD outgoing_args_on_stack : 1;
2851
2852  /* If true, ENDBR is queued at function entrance.  */
2853  BOOL_BITFIELD endbr_queued_at_entrance : 1;
2854
2855  /* True if the function needs a stack frame.  */
2856  BOOL_BITFIELD stack_frame_required : 1;
2857
2858  /* True if __builtin_ia32_vzeroupper () has been expanded in current
2859     function.  */
2860  BOOL_BITFIELD has_explicit_vzeroupper : 1;
2861
2862  /* The largest alignment, in bytes, of stack slot actually used.  */
2863  unsigned int max_used_stack_alignment;
2864
2865  /* During prologue/epilogue generation, the current frame state.
2866     Otherwise, the frame state at the end of the prologue.  */
2867  struct machine_frame_state fs;
2868
2869  /* During SEH output, this is non-null.  */
2870  struct seh_frame_state * GTY((skip(""))) seh;
2871};
2872
2873extern GTY(()) tree sysv_va_list_type_node;
2874extern GTY(()) tree ms_va_list_type_node;
2875#endif
2876
2877#define ix86_stack_locals (cfun->machine->stack_locals)
2878#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2879#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2880#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2881#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2882#define ix86_tls_descriptor_calls_expanded_in_cfun \
2883  (cfun->machine->tls_descriptor_call_expanded_p)
2884/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2885   calls are optimized away, we try to detect cases in which it was
2886   optimized away.  Since such instructions (use (reg REG_SP)), we can
2887   verify whether there's any such instruction live by testing that
2888   REG_SP is live.  */
2889#define ix86_current_function_calls_tls_descriptor \
2890  (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2891#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2892#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
2893
2894/* Control behavior of x86_file_start.  */
2895#define X86_FILE_START_VERSION_DIRECTIVE false
2896#define X86_FILE_START_FLTUSED false
2897
2898/* Flag to mark data that is in the large address area.  */
2899#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2900#define SYMBOL_REF_FAR_ADDR_P(X)	\
2901	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2902
2903/* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
2904   have defined always, to avoid ifdefing.  */
2905#define SYMBOL_FLAG_DLLIMPORT		(SYMBOL_FLAG_MACH_DEP << 1)
2906#define SYMBOL_REF_DLLIMPORT_P(X) \
2907	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2908
2909#define SYMBOL_FLAG_DLLEXPORT		(SYMBOL_FLAG_MACH_DEP << 2)
2910#define SYMBOL_REF_DLLEXPORT_P(X) \
2911	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2912
2913#define SYMBOL_FLAG_STUBVAR	(SYMBOL_FLAG_MACH_DEP << 4)
2914#define SYMBOL_REF_STUBVAR_P(X) \
2915	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2916
2917extern void debug_ready_dispatch (void);
2918extern void debug_dispatch_window (int);
2919
2920/* The value at zero is only defined for the BMI instructions
2921   LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
2922#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2923	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2924#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2925	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2926
2927
2928/* Flags returned by ix86_get_callcvt ().  */
2929#define IX86_CALLCVT_CDECL	0x1
2930#define IX86_CALLCVT_STDCALL	0x2
2931#define IX86_CALLCVT_FASTCALL	0x4
2932#define IX86_CALLCVT_THISCALL	0x8
2933#define IX86_CALLCVT_REGPARM	0x10
2934#define IX86_CALLCVT_SSEREGPARM	0x20
2935
2936#define IX86_BASE_CALLCVT(FLAGS) \
2937	((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2938		    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2939
2940#define RECIP_MASK_NONE		0x00
2941#define RECIP_MASK_DIV		0x01
2942#define RECIP_MASK_SQRT		0x02
2943#define RECIP_MASK_VEC_DIV	0x04
2944#define RECIP_MASK_VEC_SQRT	0x08
2945#define RECIP_MASK_ALL	(RECIP_MASK_DIV | RECIP_MASK_SQRT \
2946			 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2947#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2948
2949#define TARGET_RECIP_DIV	((recip_mask & RECIP_MASK_DIV) != 0)
2950#define TARGET_RECIP_SQRT	((recip_mask & RECIP_MASK_SQRT) != 0)
2951#define TARGET_RECIP_VEC_DIV	((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2952#define TARGET_RECIP_VEC_SQRT	((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2953
2954/* Use 128-bit AVX instructions in the auto-vectorizer.  */
2955#define TARGET_PREFER_AVX128	(prefer_vector_width_type == PVW_AVX128)
2956/* Use 256-bit AVX instructions in the auto-vectorizer.  */
2957#define TARGET_PREFER_AVX256	(TARGET_PREFER_AVX128 \
2958				 || prefer_vector_width_type == PVW_AVX256)
2959
2960#define TARGET_INDIRECT_BRANCH_REGISTER \
2961  (ix86_indirect_branch_register \
2962   || cfun->machine->indirect_branch_type != indirect_branch_keep)
2963
2964#define IX86_HLE_ACQUIRE (1 << 16)
2965#define IX86_HLE_RELEASE (1 << 17)
2966
2967/* For switching between functions with different target attributes.  */
2968#define SWITCHABLE_TARGET 1
2969
2970#define TARGET_SUPPORTS_WIDE_INT 1
2971
2972#if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2973extern enum attr_cpu ix86_schedule;
2974
2975#define NUM_X86_64_MS_CLOBBERED_REGS 12
2976#endif
2977
2978/* Standard location for 32-bit ASAN shadow map.  */
2979#define X86_32_ASAN_BIT_OFFSET 29
2980
2981/*
2982Local variables:
2983version-control: t
2984End:
2985*/
2986