aarch64.h revision 1.8
1/* Machine description for AArch64 architecture.
2   Copyright (C) 2009-2018 Free Software Foundation, Inc.
3   Contributed by ARM Ltd.
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful, but
13   WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15   General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING3.  If not see
19   <http://www.gnu.org/licenses/>.  */
20
21
22#ifndef GCC_AARCH64_H
23#define GCC_AARCH64_H
24
25/* Target CPU builtins.  */
26#define TARGET_CPU_CPP_BUILTINS()	\
27  aarch64_cpu_cpp_builtins (pfile)
28
29
30
31#define REGISTER_TARGET_PRAGMAS() aarch64_register_pragmas ()
32
33/* Target machine storage layout.  */
34
35#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
36  if (GET_MODE_CLASS (MODE) == MODE_INT		\
37      && GET_MODE_SIZE (MODE) < 4)		\
38    {						\
39      if (MODE == QImode || MODE == HImode)	\
40	{					\
41	  MODE = SImode;			\
42	}					\
43    }
44
45/* Bits are always numbered from the LSBit.  */
46#define BITS_BIG_ENDIAN 0
47
48/* Big/little-endian flavour.  */
49#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
50#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
51
52/* AdvSIMD is supported in the default configuration, unless disabled by
53   -mgeneral-regs-only or by the +nosimd extension.  */
54#define TARGET_SIMD (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_SIMD)
55#define TARGET_FLOAT (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_FP)
56
57#define UNITS_PER_WORD		8
58
59#define UNITS_PER_VREG		16
60
61#define PARM_BOUNDARY		64
62
63#define STACK_BOUNDARY		128
64
65#define FUNCTION_BOUNDARY	32
66
67#define EMPTY_FIELD_BOUNDARY	32
68
69#define BIGGEST_ALIGNMENT	128
70
71#define SHORT_TYPE_SIZE		16
72
73#define INT_TYPE_SIZE		32
74
75#define LONG_TYPE_SIZE		(TARGET_ILP32 ? 32 : 64)
76
77#define POINTER_SIZE		(TARGET_ILP32 ? 32 : 64)
78
79#define LONG_LONG_TYPE_SIZE	64
80
81#define FLOAT_TYPE_SIZE		32
82
83#define DOUBLE_TYPE_SIZE	64
84
85#define LONG_DOUBLE_TYPE_SIZE	128
86
87/* The architecture reserves all bits of the address for hardware use,
88   so the vbit must go into the delta field of pointers to member
89   functions.  This is the same config as that in the AArch32
90   port.  */
91#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
92
93/* Align definitions of arrays, unions and structures so that
94   initializations and copies can be made more efficient.  This is not
95   ABI-changing, so it only affects places where we can see the
96   definition.  Increasing the alignment tends to introduce padding,
97   so don't do this when optimizing for size/conserving stack space.  */
98#define AARCH64_EXPAND_ALIGNMENT(COND, EXP, ALIGN)			\
99  (((COND) && ((ALIGN) < BITS_PER_WORD)					\
100    && (TREE_CODE (EXP) == ARRAY_TYPE					\
101	|| TREE_CODE (EXP) == UNION_TYPE				\
102	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
103
104/* Align global data.  */
105#define DATA_ALIGNMENT(EXP, ALIGN)			\
106  AARCH64_EXPAND_ALIGNMENT (!optimize_size, EXP, ALIGN)
107
108/* Similarly, make sure that objects on the stack are sensibly aligned.  */
109#define LOCAL_ALIGNMENT(EXP, ALIGN)				\
110  AARCH64_EXPAND_ALIGNMENT (!flag_conserve_stack, EXP, ALIGN)
111
112#define STRUCTURE_SIZE_BOUNDARY		8
113
114/* Heap alignment (same as BIGGEST_ALIGNMENT and STACK_BOUNDARY).  */
115#define MALLOC_ABI_ALIGNMENT  128
116
117/* Defined by the ABI */
118#define WCHAR_TYPE "unsigned int"
119#define WCHAR_TYPE_SIZE			32
120
121/* Using long long breaks -ansi and -std=c90, so these will need to be
122   made conditional for an LLP64 ABI.  */
123
124#define SIZE_TYPE	"long unsigned int"
125
126#define PTRDIFF_TYPE	"long int"
127
128#define PCC_BITFIELD_TYPE_MATTERS	1
129
130/* Major revision number of the ARM Architecture implemented by the target.  */
131extern unsigned aarch64_architecture_version;
132
133/* Instruction tuning/selection flags.  */
134
135/* Bit values used to identify processor capabilities.  */
136#define AARCH64_FL_SIMD       (1 << 0)	/* Has SIMD instructions.  */
137#define AARCH64_FL_FP         (1 << 1)	/* Has FP.  */
138#define AARCH64_FL_CRYPTO     (1 << 2)	/* Has crypto.  */
139#define AARCH64_FL_CRC        (1 << 3)	/* Has CRC.  */
140/* ARMv8.1-A architecture extensions.  */
141#define AARCH64_FL_LSE	      (1 << 4)  /* Has Large System Extensions.  */
142#define AARCH64_FL_RDMA       (1 << 5)  /* Has Round Double Multiply Add.  */
143#define AARCH64_FL_V8_1       (1 << 6)  /* Has ARMv8.1-A extensions.  */
144/* ARMv8.2-A architecture extensions.  */
145#define AARCH64_FL_V8_2       (1 << 8)  /* Has ARMv8.2-A features.  */
146#define AARCH64_FL_F16	      (1 << 9)  /* Has ARMv8.2-A FP16 extensions.  */
147#define AARCH64_FL_SVE        (1 << 10) /* Has Scalable Vector Extensions.  */
148/* ARMv8.3-A architecture extensions.  */
149#define AARCH64_FL_V8_3       (1 << 11)  /* Has ARMv8.3-A features.  */
150#define AARCH64_FL_RCPC       (1 << 12)  /* Has support for RCpc model.  */
151#define AARCH64_FL_DOTPROD    (1 << 13)  /* Has ARMv8.2-A Dot Product ins.  */
152/* New flags to split crypto into aes and sha2.  */
153#define AARCH64_FL_AES	      (1 << 14)  /* Has Crypto AES.  */
154#define AARCH64_FL_SHA2	      (1 << 15)  /* Has Crypto SHA2.  */
155/* ARMv8.4-A architecture extensions.  */
156#define AARCH64_FL_V8_4	      (1 << 16)  /* Has ARMv8.4-A features.  */
157#define AARCH64_FL_SM4	      (1 << 17)  /* Has ARMv8.4-A SM3 and SM4.  */
158#define AARCH64_FL_SHA3	      (1 << 18)  /* Has ARMv8.4-a SHA3 and SHA512.  */
159#define AARCH64_FL_F16FML     (1 << 19)  /* Has ARMv8.4-a FP16 extensions.  */
160
161/* Has FP and SIMD.  */
162#define AARCH64_FL_FPSIMD     (AARCH64_FL_FP | AARCH64_FL_SIMD)
163
164/* Has FP without SIMD.  */
165#define AARCH64_FL_FPQ16      (AARCH64_FL_FP & ~AARCH64_FL_SIMD)
166
167/* Architecture flags that effect instruction selection.  */
168#define AARCH64_FL_FOR_ARCH8       (AARCH64_FL_FPSIMD)
169#define AARCH64_FL_FOR_ARCH8_1			       \
170  (AARCH64_FL_FOR_ARCH8 | AARCH64_FL_LSE | AARCH64_FL_CRC \
171   | AARCH64_FL_RDMA | AARCH64_FL_V8_1)
172#define AARCH64_FL_FOR_ARCH8_2			\
173  (AARCH64_FL_FOR_ARCH8_1 | AARCH64_FL_V8_2)
174#define AARCH64_FL_FOR_ARCH8_3			\
175  (AARCH64_FL_FOR_ARCH8_2 | AARCH64_FL_V8_3)
176#define AARCH64_FL_FOR_ARCH8_4			\
177  (AARCH64_FL_FOR_ARCH8_3 | AARCH64_FL_V8_4 | AARCH64_FL_F16FML \
178   | AARCH64_FL_DOTPROD)
179
180/* Macros to test ISA flags.  */
181
182#define AARCH64_ISA_CRC            (aarch64_isa_flags & AARCH64_FL_CRC)
183#define AARCH64_ISA_CRYPTO         (aarch64_isa_flags & AARCH64_FL_CRYPTO)
184#define AARCH64_ISA_FP             (aarch64_isa_flags & AARCH64_FL_FP)
185#define AARCH64_ISA_SIMD           (aarch64_isa_flags & AARCH64_FL_SIMD)
186#define AARCH64_ISA_LSE		   (aarch64_isa_flags & AARCH64_FL_LSE)
187#define AARCH64_ISA_RDMA	   (aarch64_isa_flags & AARCH64_FL_RDMA)
188#define AARCH64_ISA_V8_2	   (aarch64_isa_flags & AARCH64_FL_V8_2)
189#define AARCH64_ISA_F16		   (aarch64_isa_flags & AARCH64_FL_F16)
190#define AARCH64_ISA_SVE            (aarch64_isa_flags & AARCH64_FL_SVE)
191#define AARCH64_ISA_V8_3	   (aarch64_isa_flags & AARCH64_FL_V8_3)
192#define AARCH64_ISA_DOTPROD	   (aarch64_isa_flags & AARCH64_FL_DOTPROD)
193#define AARCH64_ISA_AES	           (aarch64_isa_flags & AARCH64_FL_AES)
194#define AARCH64_ISA_SHA2	   (aarch64_isa_flags & AARCH64_FL_SHA2)
195#define AARCH64_ISA_V8_4	   (aarch64_isa_flags & AARCH64_FL_V8_4)
196#define AARCH64_ISA_SM4	           (aarch64_isa_flags & AARCH64_FL_SM4)
197#define AARCH64_ISA_SHA3	   (aarch64_isa_flags & AARCH64_FL_SHA3)
198#define AARCH64_ISA_F16FML	   (aarch64_isa_flags & AARCH64_FL_F16FML)
199
200/* Crypto is an optional extension to AdvSIMD.  */
201#define TARGET_CRYPTO (TARGET_SIMD && AARCH64_ISA_CRYPTO)
202
203/* SHA2 is an optional extension to AdvSIMD.  */
204#define TARGET_SHA2 ((TARGET_SIMD && AARCH64_ISA_SHA2) || TARGET_CRYPTO)
205
206/* SHA3 is an optional extension to AdvSIMD.  */
207#define TARGET_SHA3 (TARGET_SIMD && AARCH64_ISA_SHA3)
208
209/* AES is an optional extension to AdvSIMD.  */
210#define TARGET_AES ((TARGET_SIMD && AARCH64_ISA_AES) || TARGET_CRYPTO)
211
212/* SM is an optional extension to AdvSIMD.  */
213#define TARGET_SM4 (TARGET_SIMD && AARCH64_ISA_SM4)
214
215/* FP16FML is an optional extension to AdvSIMD.  */
216#define TARGET_F16FML (TARGET_SIMD && AARCH64_ISA_F16FML && TARGET_FP_F16INST)
217
218/* CRC instructions that can be enabled through +crc arch extension.  */
219#define TARGET_CRC32 (AARCH64_ISA_CRC)
220
221/* Atomic instructions that can be enabled through the +lse extension.  */
222#define TARGET_LSE (AARCH64_ISA_LSE)
223
224/* ARMv8.2-A FP16 support that can be enabled through the +fp16 extension.  */
225#define TARGET_FP_F16INST (TARGET_FLOAT && AARCH64_ISA_F16)
226#define TARGET_SIMD_F16INST (TARGET_SIMD && AARCH64_ISA_F16)
227
228/* Dot Product is an optional extension to AdvSIMD enabled through +dotprod.  */
229#define TARGET_DOTPROD (TARGET_SIMD && AARCH64_ISA_DOTPROD)
230
231/* SVE instructions, enabled through +sve.  */
232#define TARGET_SVE (AARCH64_ISA_SVE)
233
234/* ARMv8.3-A features.  */
235#define TARGET_ARMV8_3	(AARCH64_ISA_V8_3)
236
237/* Make sure this is always defined so we don't have to check for ifdefs
238   but rather use normal ifs.  */
239#ifndef TARGET_FIX_ERR_A53_835769_DEFAULT
240#define TARGET_FIX_ERR_A53_835769_DEFAULT 0
241#else
242#undef TARGET_FIX_ERR_A53_835769_DEFAULT
243#define TARGET_FIX_ERR_A53_835769_DEFAULT 1
244#endif
245
246/* Apply the workaround for Cortex-A53 erratum 835769.  */
247#define TARGET_FIX_ERR_A53_835769	\
248  ((aarch64_fix_a53_err835769 == 2)	\
249  ? TARGET_FIX_ERR_A53_835769_DEFAULT : aarch64_fix_a53_err835769)
250
251/* Make sure this is always defined so we don't have to check for ifdefs
252   but rather use normal ifs.  */
253#ifndef TARGET_FIX_ERR_A53_843419_DEFAULT
254#define TARGET_FIX_ERR_A53_843419_DEFAULT 0
255#else
256#undef TARGET_FIX_ERR_A53_843419_DEFAULT
257#define TARGET_FIX_ERR_A53_843419_DEFAULT 1
258#endif
259
260/* Apply the workaround for Cortex-A53 erratum 843419.  */
261#define TARGET_FIX_ERR_A53_843419	\
262  ((aarch64_fix_a53_err843419 == 2)	\
263  ? TARGET_FIX_ERR_A53_843419_DEFAULT : aarch64_fix_a53_err843419)
264
265/* ARMv8.1-A Adv.SIMD support.  */
266#define TARGET_SIMD_RDMA (TARGET_SIMD && AARCH64_ISA_RDMA)
267
268/* Standard register usage.  */
269
270/* 31 64-bit general purpose registers R0-R30:
271   R30		LR (link register)
272   R29		FP (frame pointer)
273   R19-R28	Callee-saved registers
274   R18		The platform register; use as temporary register.
275   R17		IP1 The second intra-procedure-call temporary register
276		(can be used by call veneers and PLT code); otherwise use
277		as a temporary register
278   R16		IP0 The first intra-procedure-call temporary register (can
279		be used by call veneers and PLT code); otherwise use as a
280		temporary register
281   R9-R15	Temporary registers
282   R8		Structure value parameter / temporary register
283   R0-R7	Parameter/result registers
284
285   SP		stack pointer, encoded as X/R31 where permitted.
286   ZR		zero register, encoded as X/R31 elsewhere
287
288   32 x 128-bit floating-point/vector registers
289   V16-V31	Caller-saved (temporary) registers
290   V8-V15	Callee-saved registers
291   V0-V7	Parameter/result registers
292
293   The vector register V0 holds scalar B0, H0, S0 and D0 in its least
294   significant bits.  Unlike AArch32 S1 is not packed into D0, etc.
295
296   P0-P7        Predicate low registers: valid in all predicate contexts
297   P8-P15       Predicate high registers: used as scratch space
298
299   VG           Pseudo "vector granules" register
300
301   VG is the number of 64-bit elements in an SVE vector.  We define
302   it as a hard register so that we can easily map it to the DWARF VG
303   register.  GCC internally uses the poly_int variable aarch64_sve_vg
304   instead.  */
305
306/* Note that we don't mark X30 as a call-clobbered register.  The idea is
307   that it's really the call instructions themselves which clobber X30.
308   We don't care what the called function does with it afterwards.
309
310   This approach makes it easier to implement sibcalls.  Unlike normal
311   calls, sibcalls don't clobber X30, so the register reaches the
312   called function intact.  EPILOGUE_USES says that X30 is useful
313   to the called function.  */
314
315#define FIXED_REGISTERS					\
316  {							\
317    0, 0, 0, 0,   0, 0, 0, 0,	/* R0 - R7 */		\
318    0, 0, 0, 0,   0, 0, 0, 0,	/* R8 - R15 */		\
319    0, 0, 0, 0,   0, 0, 0, 0,	/* R16 - R23 */		\
320    0, 0, 0, 0,   0, 1, 0, 1,	/* R24 - R30, SP */	\
321    0, 0, 0, 0,   0, 0, 0, 0,   /* V0 - V7 */           \
322    0, 0, 0, 0,   0, 0, 0, 0,   /* V8 - V15 */		\
323    0, 0, 0, 0,   0, 0, 0, 0,   /* V16 - V23 */         \
324    0, 0, 0, 0,   0, 0, 0, 0,   /* V24 - V31 */         \
325    1, 1, 1, 1,			/* SFP, AP, CC, VG */	\
326    0, 0, 0, 0,   0, 0, 0, 0,   /* P0 - P7 */           \
327    0, 0, 0, 0,   0, 0, 0, 0,   /* P8 - P15 */          \
328  }
329
330#define CALL_USED_REGISTERS				\
331  {							\
332    1, 1, 1, 1,   1, 1, 1, 1,	/* R0 - R7 */		\
333    1, 1, 1, 1,   1, 1, 1, 1,	/* R8 - R15 */		\
334    1, 1, 1, 0,   0, 0, 0, 0,	/* R16 - R23 */		\
335    0, 0, 0, 0,   0, 1, 1, 1,	/* R24 - R30, SP */	\
336    1, 1, 1, 1,   1, 1, 1, 1,	/* V0 - V7 */		\
337    0, 0, 0, 0,   0, 0, 0, 0,	/* V8 - V15 */		\
338    1, 1, 1, 1,   1, 1, 1, 1,   /* V16 - V23 */         \
339    1, 1, 1, 1,   1, 1, 1, 1,   /* V24 - V31 */         \
340    1, 1, 1, 1,			/* SFP, AP, CC, VG */	\
341    1, 1, 1, 1,   1, 1, 1, 1,	/* P0 - P7 */		\
342    1, 1, 1, 1,   1, 1, 1, 1,	/* P8 - P15 */		\
343  }
344
345#define REGISTER_NAMES						\
346  {								\
347    "x0",  "x1",  "x2",  "x3",  "x4",  "x5",  "x6",  "x7",	\
348    "x8",  "x9",  "x10", "x11", "x12", "x13", "x14", "x15",	\
349    "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",	\
350    "x24", "x25", "x26", "x27", "x28", "x29", "x30", "sp",	\
351    "v0",  "v1",  "v2",  "v3",  "v4",  "v5",  "v6",  "v7",	\
352    "v8",  "v9",  "v10", "v11", "v12", "v13", "v14", "v15",	\
353    "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",	\
354    "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",	\
355    "sfp", "ap",  "cc",  "vg",					\
356    "p0",  "p1",  "p2",  "p3",  "p4",  "p5",  "p6",  "p7",	\
357    "p8",  "p9",  "p10", "p11", "p12", "p13", "p14", "p15",	\
358  }
359
360/* Generate the register aliases for core register N */
361#define R_ALIASES(N) {"r" # N, R0_REGNUM + (N)}, \
362                     {"w" # N, R0_REGNUM + (N)}
363
364#define V_ALIASES(N) {"q" # N, V0_REGNUM + (N)}, \
365                     {"d" # N, V0_REGNUM + (N)}, \
366                     {"s" # N, V0_REGNUM + (N)}, \
367                     {"h" # N, V0_REGNUM + (N)}, \
368                     {"b" # N, V0_REGNUM + (N)}, \
369                     {"z" # N, V0_REGNUM + (N)}
370
371/* Provide aliases for all of the ISA defined register name forms.
372   These aliases are convenient for use in the clobber lists of inline
373   asm statements.  */
374
375#define ADDITIONAL_REGISTER_NAMES \
376  { R_ALIASES(0),  R_ALIASES(1),  R_ALIASES(2),  R_ALIASES(3),  \
377    R_ALIASES(4),  R_ALIASES(5),  R_ALIASES(6),  R_ALIASES(7),  \
378    R_ALIASES(8),  R_ALIASES(9),  R_ALIASES(10), R_ALIASES(11), \
379    R_ALIASES(12), R_ALIASES(13), R_ALIASES(14), R_ALIASES(15), \
380    R_ALIASES(16), R_ALIASES(17), R_ALIASES(18), R_ALIASES(19), \
381    R_ALIASES(20), R_ALIASES(21), R_ALIASES(22), R_ALIASES(23), \
382    R_ALIASES(24), R_ALIASES(25), R_ALIASES(26), R_ALIASES(27), \
383    R_ALIASES(28), R_ALIASES(29), R_ALIASES(30), {"wsp", R0_REGNUM + 31}, \
384    V_ALIASES(0),  V_ALIASES(1),  V_ALIASES(2),  V_ALIASES(3),  \
385    V_ALIASES(4),  V_ALIASES(5),  V_ALIASES(6),  V_ALIASES(7),  \
386    V_ALIASES(8),  V_ALIASES(9),  V_ALIASES(10), V_ALIASES(11), \
387    V_ALIASES(12), V_ALIASES(13), V_ALIASES(14), V_ALIASES(15), \
388    V_ALIASES(16), V_ALIASES(17), V_ALIASES(18), V_ALIASES(19), \
389    V_ALIASES(20), V_ALIASES(21), V_ALIASES(22), V_ALIASES(23), \
390    V_ALIASES(24), V_ALIASES(25), V_ALIASES(26), V_ALIASES(27), \
391    V_ALIASES(28), V_ALIASES(29), V_ALIASES(30), V_ALIASES(31)  \
392  }
393
394/* Say that the epilogue uses the return address register.  Note that
395   in the case of sibcalls, the values "used by the epilogue" are
396   considered live at the start of the called function.  */
397
398#define EPILOGUE_USES(REGNO) \
399  (epilogue_completed && (REGNO) == LR_REGNUM)
400
401/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
402   the stack pointer does not matter.  This is only true if the function
403   uses alloca.  */
404#define EXIT_IGNORE_STACK	(cfun->calls_alloca)
405
406#define STATIC_CHAIN_REGNUM		R18_REGNUM
407#define HARD_FRAME_POINTER_REGNUM	R29_REGNUM
408#define FRAME_POINTER_REGNUM		SFP_REGNUM
409#define STACK_POINTER_REGNUM		SP_REGNUM
410#define ARG_POINTER_REGNUM		AP_REGNUM
411#define FIRST_PSEUDO_REGISTER		(P15_REGNUM + 1)
412
413/* The number of (integer) argument register available.  */
414#define NUM_ARG_REGS			8
415#define NUM_FP_ARG_REGS			8
416
417/* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
418   four members.  */
419#define HA_MAX_NUM_FLDS		4
420
421/* External dwarf register number scheme.  These number are used to
422   identify registers in dwarf debug information, the values are
423   defined by the AArch64 ABI.  The numbering scheme is independent of
424   GCC's internal register numbering scheme.  */
425
426#define AARCH64_DWARF_R0        0
427
428/* The number of R registers, note 31! not 32.  */
429#define AARCH64_DWARF_NUMBER_R 31
430
431#define AARCH64_DWARF_SP       31
432#define AARCH64_DWARF_VG       46
433#define AARCH64_DWARF_P0       48
434#define AARCH64_DWARF_V0       64
435
436/* The number of V registers.  */
437#define AARCH64_DWARF_NUMBER_V 32
438
439/* For signal frames we need to use an alternative return column.  This
440   value must not correspond to a hard register and must be out of the
441   range of DWARF_FRAME_REGNUM().  */
442#define DWARF_ALT_FRAME_RETURN_COLUMN   \
443  (AARCH64_DWARF_V0 + AARCH64_DWARF_NUMBER_V)
444
445/* We add 1 extra frame register for use as the
446   DWARF_ALT_FRAME_RETURN_COLUMN.  */
447#define DWARF_FRAME_REGISTERS           (DWARF_ALT_FRAME_RETURN_COLUMN + 1)
448
449
450#define DBX_REGISTER_NUMBER(REGNO)	aarch64_dbx_register_number (REGNO)
451/* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
452   can use DWARF_ALT_FRAME_RETURN_COLUMN defined below.  This is just the same
453   as the default definition in dwarf2out.c.  */
454#undef DWARF_FRAME_REGNUM
455#define DWARF_FRAME_REGNUM(REGNO)	DBX_REGISTER_NUMBER (REGNO)
456
457#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
458
459#define DWARF2_UNWIND_INFO 1
460
461/* Use R0 through R3 to pass exception handling information.  */
462#define EH_RETURN_DATA_REGNO(N) \
463  ((N) < 4 ? ((unsigned int) R0_REGNUM + (N)) : INVALID_REGNUM)
464
465/* Select a format to encode pointers in exception handling data.  */
466#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
467  aarch64_asm_preferred_eh_data_format ((CODE), (GLOBAL))
468
469/* Output the assembly strings we want to add to a function definition.  */
470#define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL)	\
471  aarch64_declare_function_name (STR, NAME, DECL)
472
473/* For EH returns X4 contains the stack adjustment.  */
474#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, R4_REGNUM)
475#define EH_RETURN_HANDLER_RTX  aarch64_eh_return_handler_rtx ()
476
477/* Don't use __builtin_setjmp until we've defined it.  */
478#undef DONT_USE_BUILTIN_SETJMP
479#define DONT_USE_BUILTIN_SETJMP 1
480
481/* Register in which the structure value is to be returned.  */
482#define AARCH64_STRUCT_VALUE_REGNUM R8_REGNUM
483
484/* Non-zero if REGNO is part of the Core register set.
485
486   The rather unusual way of expressing this check is to avoid
487   warnings when building the compiler when R0_REGNUM is 0 and REGNO
488   is unsigned.  */
489#define GP_REGNUM_P(REGNO)						\
490  (((unsigned) (REGNO - R0_REGNUM)) <= (R30_REGNUM - R0_REGNUM))
491
492#define FP_REGNUM_P(REGNO)			\
493  (((unsigned) (REGNO - V0_REGNUM)) <= (V31_REGNUM - V0_REGNUM))
494
495#define FP_LO_REGNUM_P(REGNO)            \
496  (((unsigned) (REGNO - V0_REGNUM)) <= (V15_REGNUM - V0_REGNUM))
497
498#define PR_REGNUM_P(REGNO)\
499  (((unsigned) (REGNO - P0_REGNUM)) <= (P15_REGNUM - P0_REGNUM))
500
501#define PR_LO_REGNUM_P(REGNO)\
502  (((unsigned) (REGNO - P0_REGNUM)) <= (P7_REGNUM - P0_REGNUM))
503
504
505/* Register and constant classes.  */
506
507enum reg_class
508{
509  NO_REGS,
510  TAILCALL_ADDR_REGS,
511  GENERAL_REGS,
512  STACK_REG,
513  POINTER_REGS,
514  FP_LO_REGS,
515  FP_REGS,
516  POINTER_AND_FP_REGS,
517  PR_LO_REGS,
518  PR_HI_REGS,
519  PR_REGS,
520  ALL_REGS,
521  LIM_REG_CLASSES		/* Last */
522};
523
524#define N_REG_CLASSES	((int) LIM_REG_CLASSES)
525
526#define REG_CLASS_NAMES				\
527{						\
528  "NO_REGS",					\
529  "TAILCALL_ADDR_REGS",				\
530  "GENERAL_REGS",				\
531  "STACK_REG",					\
532  "POINTER_REGS",				\
533  "FP_LO_REGS",					\
534  "FP_REGS",					\
535  "POINTER_AND_FP_REGS",			\
536  "PR_LO_REGS",					\
537  "PR_HI_REGS",					\
538  "PR_REGS",					\
539  "ALL_REGS"					\
540}
541
542#define REG_CLASS_CONTENTS						\
543{									\
544  { 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
545  { 0x0004ffff, 0x00000000, 0x00000000 },	/* TAILCALL_ADDR_REGS */\
546  { 0x7fffffff, 0x00000000, 0x00000003 },	/* GENERAL_REGS */	\
547  { 0x80000000, 0x00000000, 0x00000000 },	/* STACK_REG */		\
548  { 0xffffffff, 0x00000000, 0x00000003 },	/* POINTER_REGS */	\
549  { 0x00000000, 0x0000ffff, 0x00000000 },       /* FP_LO_REGS  */	\
550  { 0x00000000, 0xffffffff, 0x00000000 },       /* FP_REGS  */		\
551  { 0xffffffff, 0xffffffff, 0x00000003 },	/* POINTER_AND_FP_REGS */\
552  { 0x00000000, 0x00000000, 0x00000ff0 },	/* PR_LO_REGS */	\
553  { 0x00000000, 0x00000000, 0x000ff000 },	/* PR_HI_REGS */	\
554  { 0x00000000, 0x00000000, 0x000ffff0 },	/* PR_REGS */		\
555  { 0xffffffff, 0xffffffff, 0x000fffff }	/* ALL_REGS */		\
556}
557
558#define REGNO_REG_CLASS(REGNO)	aarch64_regno_regclass (REGNO)
559
560#define INDEX_REG_CLASS	GENERAL_REGS
561#define BASE_REG_CLASS  POINTER_REGS
562
563/* Register pairs used to eliminate unneeded registers that point into
564   the stack frame.  */
565#define ELIMINABLE_REGS							\
566{									\
567  { ARG_POINTER_REGNUM,		STACK_POINTER_REGNUM		},	\
568  { ARG_POINTER_REGNUM,		HARD_FRAME_POINTER_REGNUM	},	\
569  { FRAME_POINTER_REGNUM,	STACK_POINTER_REGNUM		},	\
570  { FRAME_POINTER_REGNUM,	HARD_FRAME_POINTER_REGNUM	},	\
571}
572
573#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
574  (OFFSET) = aarch64_initial_elimination_offset (FROM, TO)
575
576/* CPU/ARCH option handling.  */
577#include "config/aarch64/aarch64-opts.h"
578
579enum target_cpus
580{
581#define AARCH64_CORE(NAME, INTERNAL_IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART, VARIANT) \
582  TARGET_CPU_##INTERNAL_IDENT,
583#include "aarch64-cores.def"
584  TARGET_CPU_generic
585};
586
587/* If there is no CPU defined at configure, use generic as default.  */
588#ifndef TARGET_CPU_DEFAULT
589#define TARGET_CPU_DEFAULT \
590  (TARGET_CPU_generic | (AARCH64_CPU_DEFAULT_FLAGS << 6))
591#endif
592
593/* If inserting NOP before a mult-accumulate insn remember to adjust the
594   length so that conditional branching code is updated appropriately.  */
595#define ADJUST_INSN_LENGTH(insn, length)	\
596  do						\
597    {						\
598       if (aarch64_madd_needs_nop (insn))	\
599         length += 4;				\
600    } while (0)
601
602#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
603    aarch64_final_prescan_insn (INSN);			\
604
605/* The processor for which instructions should be scheduled.  */
606extern enum aarch64_processor aarch64_tune;
607
608/* RTL generation support.  */
609#define INIT_EXPANDERS aarch64_init_expanders ()
610
611
612/* Stack layout; function entry, exit and calling.  */
613#define STACK_GROWS_DOWNWARD	1
614
615#define FRAME_GROWS_DOWNWARD	1
616
617#define ACCUMULATE_OUTGOING_ARGS	1
618
619#define FIRST_PARM_OFFSET(FNDECL) 0
620
621/* Fix for VFP */
622#define LIBCALL_VALUE(MODE)  \
623  gen_rtx_REG (MODE, FLOAT_MODE_P (MODE) ? V0_REGNUM : R0_REGNUM)
624
625#define DEFAULT_PCC_STRUCT_RETURN 0
626
627#ifdef HAVE_POLY_INT_H
628struct GTY (()) aarch64_frame
629{
630  HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
631
632  /* The number of extra stack bytes taken up by register varargs.
633     This area is allocated by the callee at the very top of the
634     frame.  This value is rounded up to a multiple of
635     STACK_BOUNDARY.  */
636  HOST_WIDE_INT saved_varargs_size;
637
638  /* The size of the saved callee-save int/FP registers.  */
639
640  HOST_WIDE_INT saved_regs_size;
641
642  /* Offset from the base of the frame (incomming SP) to the
643     top of the locals area.  This value is always a multiple of
644     STACK_BOUNDARY.  */
645  poly_int64 locals_offset;
646
647  /* Offset from the base of the frame (incomming SP) to the
648     hard_frame_pointer.  This value is always a multiple of
649     STACK_BOUNDARY.  */
650  poly_int64 hard_fp_offset;
651
652  /* The size of the frame.  This value is the offset from base of the
653     frame (incomming SP) to the stack_pointer.  This value is always
654     a multiple of STACK_BOUNDARY.  */
655  poly_int64 frame_size;
656
657  /* The size of the initial stack adjustment before saving callee-saves.  */
658  poly_int64 initial_adjust;
659
660  /* The writeback value when pushing callee-save registers.
661     It is zero when no push is used.  */
662  HOST_WIDE_INT callee_adjust;
663
664  /* The offset from SP to the callee-save registers after initial_adjust.
665     It may be non-zero if no push is used (ie. callee_adjust == 0).  */
666  poly_int64 callee_offset;
667
668  /* The size of the stack adjustment after saving callee-saves.  */
669  poly_int64 final_adjust;
670
671  /* Store FP,LR and setup a frame pointer.  */
672  bool emit_frame_chain;
673
674  unsigned wb_candidate1;
675  unsigned wb_candidate2;
676
677  bool laid_out;
678};
679
680typedef struct GTY (()) machine_function
681{
682  struct aarch64_frame frame;
683  /* One entry for each hard register.  */
684  bool reg_is_wrapped_separately[LAST_SAVED_REGNUM];
685} machine_function;
686#endif
687
688/* Which ABI to use.  */
689enum aarch64_abi_type
690{
691  AARCH64_ABI_LP64 = 0,
692  AARCH64_ABI_ILP32 = 1
693};
694
695#ifndef AARCH64_ABI_DEFAULT
696#define AARCH64_ABI_DEFAULT AARCH64_ABI_LP64
697#endif
698
699#define TARGET_ILP32	(aarch64_abi & AARCH64_ABI_ILP32)
700
701enum arm_pcs
702{
703  ARM_PCS_AAPCS64,		/* Base standard AAPCS for 64 bit.  */
704  ARM_PCS_UNKNOWN
705};
706
707
708
709
710/* We can't use machine_mode inside a generator file because it
711   hasn't been created yet; we shouldn't be using any code that
712   needs the real definition though, so this ought to be safe.  */
713#ifdef GENERATOR_FILE
714#define MACHMODE int
715#else
716#include "insn-modes.h"
717#define MACHMODE machine_mode
718#endif
719
720#ifndef USED_FOR_TARGET
721/* AAPCS related state tracking.  */
722typedef struct
723{
724  enum arm_pcs pcs_variant;
725  int aapcs_arg_processed;	/* No need to lay out this argument again.  */
726  int aapcs_ncrn;		/* Next Core register number.  */
727  int aapcs_nextncrn;		/* Next next core register number.  */
728  int aapcs_nvrn;		/* Next Vector register number.  */
729  int aapcs_nextnvrn;		/* Next Next Vector register number.  */
730  rtx aapcs_reg;		/* Register assigned to this argument.  This
731				   is NULL_RTX if this parameter goes on
732				   the stack.  */
733  MACHMODE aapcs_vfp_rmode;
734  int aapcs_stack_words;	/* If the argument is passed on the stack, this
735				   is the number of words needed, after rounding
736				   up.  Only meaningful when
737				   aapcs_reg == NULL_RTX.  */
738  int aapcs_stack_size;		/* The total size (in words, per 8 byte) of the
739				   stack arg area so far.  */
740} CUMULATIVE_ARGS;
741#endif
742
743#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
744  (aarch64_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
745
746#define PAD_VARARGS_DOWN	0
747
748#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
749  aarch64_init_cumulative_args (&(CUM), FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS)
750
751#define FUNCTION_ARG_REGNO_P(REGNO) \
752  aarch64_function_arg_regno_p(REGNO)
753
754
755/* ISA Features.  */
756
757/* Addressing modes, etc.  */
758#define HAVE_POST_INCREMENT	1
759#define HAVE_PRE_INCREMENT	1
760#define HAVE_POST_DECREMENT	1
761#define HAVE_PRE_DECREMENT	1
762#define HAVE_POST_MODIFY_DISP	1
763#define HAVE_PRE_MODIFY_DISP	1
764
765#define MAX_REGS_PER_ADDRESS	2
766
767#define CONSTANT_ADDRESS_P(X)		aarch64_constant_address_p(X)
768
769#define REGNO_OK_FOR_BASE_P(REGNO)	\
770  aarch64_regno_ok_for_base_p (REGNO, true)
771
772#define REGNO_OK_FOR_INDEX_P(REGNO) \
773  aarch64_regno_ok_for_index_p (REGNO, true)
774
775#define LEGITIMATE_PIC_OPERAND_P(X) \
776  aarch64_legitimate_pic_operand_p (X)
777
778#define CASE_VECTOR_MODE Pmode
779
780#define DEFAULT_SIGNED_CHAR 0
781
782/* An integer expression for the size in bits of the largest integer machine
783   mode that should actually be used.  We allow pairs of registers.  */
784#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
785
786/* Maximum bytes moved by a single instruction (load/store pair).  */
787#define MOVE_MAX (UNITS_PER_WORD * 2)
788
789/* The base cost overhead of a memcpy call, for MOVE_RATIO and friends.  */
790#define AARCH64_CALL_RATIO 8
791
792/* MOVE_RATIO dictates when we will use the move_by_pieces infrastructure.
793   move_by_pieces will continually copy the largest safe chunks.  So a
794   7-byte copy is a 4-byte + 2-byte + byte copy.  This proves inefficient
795   for both size and speed of copy, so we will instead use the "movmem"
796   standard name to implement the copy.  This logic does not apply when
797   targeting -mstrict-align, so keep a sensible default in that case.  */
798#define MOVE_RATIO(speed) \
799  (!STRICT_ALIGNMENT ? 2 : (((speed) ? 15 : AARCH64_CALL_RATIO) / 2))
800
801/* For CLEAR_RATIO, when optimizing for size, give a better estimate
802   of the length of a memset call, but use the default otherwise.  */
803#define CLEAR_RATIO(speed) \
804  ((speed) ? 15 : AARCH64_CALL_RATIO)
805
806/* SET_RATIO is similar to CLEAR_RATIO, but for a non-zero constant, so when
807   optimizing for size adjust the ratio to account for the overhead of loading
808   the constant.  */
809#define SET_RATIO(speed) \
810  ((speed) ? 15 : AARCH64_CALL_RATIO - 2)
811
812/* Disable auto-increment in move_by_pieces et al.  Use of auto-increment is
813   rarely a good idea in straight-line code since it adds an extra address
814   dependency between each instruction.  Better to use incrementing offsets.  */
815#define USE_LOAD_POST_INCREMENT(MODE)   0
816#define USE_LOAD_POST_DECREMENT(MODE)   0
817#define USE_LOAD_PRE_INCREMENT(MODE)    0
818#define USE_LOAD_PRE_DECREMENT(MODE)    0
819#define USE_STORE_POST_INCREMENT(MODE)  0
820#define USE_STORE_POST_DECREMENT(MODE)  0
821#define USE_STORE_PRE_INCREMENT(MODE)   0
822#define USE_STORE_PRE_DECREMENT(MODE)   0
823
824/* WORD_REGISTER_OPERATIONS does not hold for AArch64.
825   The assigned word_mode is DImode but operations narrower than SImode
826   behave as 32-bit operations if using the W-form of the registers rather
827   than as word_mode (64-bit) operations as WORD_REGISTER_OPERATIONS
828   expects.  */
829#define WORD_REGISTER_OPERATIONS 0
830
831/* Define if loading from memory in MODE, an integral mode narrower than
832   BITS_PER_WORD will either zero-extend or sign-extend.  The value of this
833   macro should be the code that says which one of the two operations is
834   implicitly done, or UNKNOWN if none.  */
835#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
836
837/* Define this macro to be non-zero if instructions will fail to work
838   if given data not on the nominal alignment.  */
839#define STRICT_ALIGNMENT		TARGET_STRICT_ALIGN
840
841/* Define this macro to be non-zero if accessing less than a word of
842   memory is no faster than accessing a word of memory, i.e., if such
843   accesses require more than one instruction or if there is no
844   difference in cost.
845   Although there's no difference in instruction count or cycles,
846   in AArch64 we don't want to expand to a sub-word to a 64-bit access
847   if we don't have to, for power-saving reasons.  */
848#define SLOW_BYTE_ACCESS		0
849
850#define NO_FUNCTION_CSE	1
851
852/* Specify the machine mode that the hardware addresses have.
853   After generation of rtl, the compiler makes no further distinction
854   between pointers and any other objects of this machine mode.  */
855#define Pmode		DImode
856
857/* A C expression whose value is zero if pointers that need to be extended
858   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
859   greater then zero if they are zero-extended and less then zero if the
860   ptr_extend instruction should be used.  */
861#define POINTERS_EXTEND_UNSIGNED 1
862
863/* Mode of a function address in a call instruction (for indexing purposes).  */
864#define FUNCTION_MODE	Pmode
865
866#define SELECT_CC_MODE(OP, X, Y)	aarch64_select_cc_mode (OP, X, Y)
867
868#define REVERSIBLE_CC_MODE(MODE) 1
869
870#define REVERSE_CONDITION(CODE, MODE)		\
871  (((MODE) == CCFPmode || (MODE) == CCFPEmode)	\
872   ? reverse_condition_maybe_unordered (CODE)	\
873   : reverse_condition (CODE))
874
875#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
876  ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
877#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
878  ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
879
880#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
881
882#define RETURN_ADDR_RTX aarch64_return_addr
883
884/* 3 insns + padding + 2 pointer-sized entries.  */
885#define TRAMPOLINE_SIZE	(TARGET_ILP32 ? 24 : 32)
886
887/* Trampolines contain dwords, so must be dword aligned.  */
888#define TRAMPOLINE_ALIGNMENT 64
889
890/* Put trampolines in the text section so that mapping symbols work
891   correctly.  */
892#define TRAMPOLINE_SECTION text_section
893
894/* To start with.  */
895#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
896  (aarch64_branch_cost (SPEED_P, PREDICTABLE_P))
897
898
899/* Assembly output.  */
900
901/* For now we'll make all jump tables pc-relative.  */
902#define CASE_VECTOR_PC_RELATIVE	1
903
904#define CASE_VECTOR_SHORTEN_MODE(min, max, body)	\
905  ((min < -0x1fff0 || max > 0x1fff0) ? SImode		\
906   : (min < -0x1f0 || max > 0x1f0) ? HImode		\
907   : QImode)
908
909/* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL.  */
910#define ADDR_VEC_ALIGN(JUMPTABLE) 0
911
912#define MCOUNT_NAME "_mcount"
913
914#define NO_PROFILE_COUNTERS 1
915
916/* Emit rtl for profiling.  Output assembler code to FILE
917   to call "_mcount" for profiling a function entry.  */
918#define PROFILE_HOOK(LABEL)						\
919  {									\
920    rtx fun, lr;							\
921    lr = get_hard_reg_initial_val (Pmode, LR_REGNUM);			\
922    fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME);			\
923    emit_library_call (fun, LCT_NORMAL, VOIDmode, lr, Pmode);		\
924  }
925
926/* All the work done in PROFILE_HOOK, but still required.  */
927#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
928
929/* For some reason, the Linux headers think they know how to define
930   these macros.  They don't!!!  */
931#undef ASM_APP_ON
932#undef ASM_APP_OFF
933#define ASM_APP_ON	"\t" ASM_COMMENT_START " Start of user assembly\n"
934#define ASM_APP_OFF	"\t" ASM_COMMENT_START " End of user assembly\n"
935
936#define CONSTANT_POOL_BEFORE_FUNCTION 0
937
938/* This definition should be relocated to aarch64-elf-raw.h.  This macro
939   should be undefined in aarch64-linux.h and a clear_cache pattern
940   implmented to emit either the call to __aarch64_sync_cache_range()
941   directly or preferably the appropriate sycall or cache clear
942   instructions inline.  */
943#define CLEAR_INSN_CACHE(beg, end)				\
944  extern void  __aarch64_sync_cache_range (void *, void *);	\
945  __aarch64_sync_cache_range (beg, end)
946
947#define SHIFT_COUNT_TRUNCATED (!TARGET_SIMD)
948
949/* Choose appropriate mode for caller saves, so we do the minimum
950   required size of load/store.  */
951#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
952  aarch64_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
953
954#undef SWITCHABLE_TARGET
955#define SWITCHABLE_TARGET 1
956
957/* Check TLS Descriptors mechanism is selected.  */
958#define TARGET_TLS_DESC (aarch64_tls_dialect == TLS_DESCRIPTORS)
959
960extern enum aarch64_code_model aarch64_cmodel;
961
962/* When using the tiny addressing model conditional and unconditional branches
963   can span the whole of the available address space (1MB).  */
964#define HAS_LONG_COND_BRANCH				\
965  (aarch64_cmodel == AARCH64_CMODEL_TINY		\
966   || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
967
968#define HAS_LONG_UNCOND_BRANCH				\
969  (aarch64_cmodel == AARCH64_CMODEL_TINY		\
970   || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
971
972#define TARGET_SUPPORTS_WIDE_INT 1
973
974/* Modes valid for AdvSIMD D registers, i.e. that fit in half a Q register.  */
975#define AARCH64_VALID_SIMD_DREG_MODE(MODE) \
976  ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
977   || (MODE) == V2SFmode || (MODE) == V4HFmode || (MODE) == DImode \
978   || (MODE) == DFmode)
979
980/* Modes valid for AdvSIMD Q registers.  */
981#define AARCH64_VALID_SIMD_QREG_MODE(MODE) \
982  ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
983   || (MODE) == V4SFmode || (MODE) == V8HFmode || (MODE) == V2DImode \
984   || (MODE) == V2DFmode)
985
986#define ENDIAN_LANE_N(NUNITS, N) \
987  (BYTES_BIG_ENDIAN ? NUNITS - 1 - N : N)
988
989/* Support for a configure-time default CPU, etc.  We currently support
990   --with-arch and --with-cpu.  Both are ignored if either is specified
991   explicitly on the command line at run time.  */
992#define OPTION_DEFAULT_SPECS				\
993  {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" },	\
994  {"cpu",  "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" },
995
996#define MCPU_TO_MARCH_SPEC \
997   " %{mcpu=*:-march=%:rewrite_mcpu(%{mcpu=*:%*})}"
998
999extern const char *aarch64_rewrite_mcpu (int argc, const char **argv);
1000#define MCPU_TO_MARCH_SPEC_FUNCTIONS \
1001  { "rewrite_mcpu", aarch64_rewrite_mcpu },
1002
1003#if defined(__aarch64__)
1004extern const char *host_detect_local_cpu (int argc, const char **argv);
1005#define HAVE_LOCAL_CPU_DETECT
1006# define EXTRA_SPEC_FUNCTIONS						\
1007  { "local_cpu_detect", host_detect_local_cpu },			\
1008  MCPU_TO_MARCH_SPEC_FUNCTIONS
1009
1010# define MCPU_MTUNE_NATIVE_SPECS					\
1011   " %{march=native:%<march=native %:local_cpu_detect(arch)}"		\
1012   " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"		\
1013   " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
1014#else
1015# define MCPU_MTUNE_NATIVE_SPECS ""
1016# define EXTRA_SPEC_FUNCTIONS MCPU_TO_MARCH_SPEC_FUNCTIONS
1017#endif
1018
1019#define ASM_CPU_SPEC \
1020   MCPU_TO_MARCH_SPEC
1021
1022#define EXTRA_SPECS						\
1023  { "asm_cpu_spec",		ASM_CPU_SPEC }
1024
1025#define ASM_OUTPUT_POOL_EPILOGUE  aarch64_asm_output_pool_epilogue
1026
1027/* This type is the user-visible __fp16, and a pointer to that type.  We
1028   need it in many places in the backend.  Defined in aarch64-builtins.c.  */
1029extern tree aarch64_fp16_type_node;
1030extern tree aarch64_fp16_ptr_type_node;
1031
1032/* The generic unwind code in libgcc does not initialize the frame pointer.
1033   So in order to unwind a function using a frame pointer, the very first
1034   function that is unwound must save the frame pointer.  That way the frame
1035   pointer is restored and its value is now valid - otherwise _Unwind_GetGR
1036   crashes.  Libgcc can now be safely built with -fomit-frame-pointer.  */
1037#define LIBGCC2_UNWIND_ATTRIBUTE \
1038  __attribute__((optimize ("no-omit-frame-pointer")))
1039
1040#ifndef USED_FOR_TARGET
1041extern poly_uint16 aarch64_sve_vg;
1042
1043/* The number of bits and bytes in an SVE vector.  */
1044#define BITS_PER_SVE_VECTOR (poly_uint16 (aarch64_sve_vg * 64))
1045#define BYTES_PER_SVE_VECTOR (poly_uint16 (aarch64_sve_vg * 8))
1046
1047/* The number of bytes in an SVE predicate.  */
1048#define BYTES_PER_SVE_PRED aarch64_sve_vg
1049
1050/* The SVE mode for a vector of bytes.  */
1051#define SVE_BYTE_MODE VNx16QImode
1052
1053/* The maximum number of bytes in a fixed-size vector.  This is 256 bytes
1054   (for -msve-vector-bits=2048) multiplied by the maximum number of
1055   vectors in a structure mode (4).
1056
1057   This limit must not be used for variable-size vectors, since
1058   VL-agnostic code must work with arbitary vector lengths.  */
1059#define MAX_COMPILE_TIME_VEC_BYTES (256 * 4)
1060#endif
1061
1062#define REGMODE_NATURAL_SIZE(MODE) aarch64_regmode_natural_size (MODE)
1063
1064#endif /* GCC_AARCH64_H */
1065