1/* Generate information regarding function declarations and definitions based
2   on information stored in GCC's tree structure.  This code implements the
3   -aux-info option.
4   Copyright (C) 1989-2020 Free Software Foundation, Inc.
5   Contributed by Ron Guilmette (rfg@segfault.us.com).
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 3, or (at your option) any later
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3.  If not see
21<http://www.gnu.org/licenses/>.  */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "c-tree.h"
28
29enum formals_style {
30  ansi,
31  k_and_r_names,
32  k_and_r_decls
33};
34
35
36static const char *data_type;
37
38static char *affix_data_type (const char *) ATTRIBUTE_MALLOC;
39static const char *gen_formal_list_for_type (tree, formals_style);
40static const char *gen_formal_list_for_func_def (tree, formals_style);
41static const char *gen_type (const char *, tree, formals_style);
42static const char *gen_decl (tree, int, formals_style);
43
44/* Given a string representing an entire type or an entire declaration
45   which only lacks the actual "data-type" specifier (at its left end),
46   affix the data-type specifier to the left end of the given type
47   specification or object declaration.
48
49   Because of C language weirdness, the data-type specifier (which normally
50   goes in at the very left end) may have to be slipped in just to the
51   right of any leading "const" or "volatile" qualifiers (there may be more
52   than one).  Actually this may not be strictly necessary because it seems
53   that GCC (at least) accepts `<data-type> const foo;' and treats it the
54   same as `const <data-type> foo;' but people are accustomed to seeing
55   `const char *foo;' and *not* `char const *foo;' so we try to create types
56   that look as expected.  */
57
58static char *
59affix_data_type (const char *param)
60{
61  char *const type_or_decl = ASTRDUP (param);
62  char *p = type_or_decl;
63  char *qualifiers_then_data_type;
64  char saved;
65
66  /* Skip as many leading const's or volatile's as there are.  */
67
68  for (;;)
69    {
70      if (!strncmp (p, "volatile ", 9))
71	{
72	  p += 9;
73	  continue;
74	}
75      if (!strncmp (p, "const ", 6))
76	{
77	  p += 6;
78	  continue;
79	}
80      break;
81    }
82
83  /* p now points to the place where we can insert the data type.  We have to
84     add a blank after the data-type of course.  */
85
86  if (p == type_or_decl)
87    return concat (data_type, " ", type_or_decl, NULL);
88
89  saved = *p;
90  *p = '\0';
91  qualifiers_then_data_type = concat (type_or_decl, data_type, NULL);
92  *p = saved;
93  return reconcat (qualifiers_then_data_type,
94		   qualifiers_then_data_type, " ", p, NULL);
95}
96
97/* Given a tree node which represents some "function type", generate the
98   source code version of a formal parameter list (of some given style) for
99   this function type.  Return the whole formal parameter list (including
100   a pair of surrounding parens) as a string.   Note that if the style
101   we are currently aiming for is non-ansi, then we just return a pair
102   of empty parens here.  */
103
104static const char *
105gen_formal_list_for_type (tree fntype, formals_style style)
106{
107  const char *formal_list = "";
108  tree formal_type;
109
110  if (style != ansi)
111    return "()";
112
113  formal_type = TYPE_ARG_TYPES (fntype);
114  while (formal_type && TREE_VALUE (formal_type) != void_type_node)
115    {
116      const char *this_type;
117
118      if (*formal_list)
119	formal_list = concat (formal_list, ", ", NULL);
120
121      this_type = gen_type ("", TREE_VALUE (formal_type), ansi);
122      formal_list
123	= ((strlen (this_type))
124	   ? concat (formal_list, affix_data_type (this_type), NULL)
125	   : concat (formal_list, data_type, NULL));
126
127      formal_type = TREE_CHAIN (formal_type);
128    }
129
130  /* If we got to here, then we are trying to generate an ANSI style formal
131     parameters list.
132
133     New style prototyped ANSI formal parameter lists should in theory always
134     contain some stuff between the opening and closing parens, even if it is
135     only "void".
136
137     The brutal truth though is that there is lots of old K&R code out there
138     which contains declarations of "pointer-to-function" parameters and
139     these almost never have fully specified formal parameter lists associated
140     with them.  That is, the pointer-to-function parameters are declared
141     with just empty parameter lists.
142
143     In cases such as these, protoize should really insert *something* into
144     the vacant parameter lists, but what?  It has no basis on which to insert
145     anything in particular.
146
147     Here, we make life easy for protoize by trying to distinguish between
148     K&R empty parameter lists and new-style prototyped parameter lists
149     that actually contain "void".  In the latter case we (obviously) want
150     to output the "void" verbatim, and that what we do.  In the former case,
151     we do our best to give protoize something nice to insert.
152
153     This "something nice" should be something that is still valid (when
154     re-compiled) but something that can clearly indicate to the user that
155     more typing information (for the parameter list) should be added (by
156     hand) at some convenient moment.
157
158     The string chosen here is a comment with question marks in it.  */
159
160  if (!*formal_list)
161    {
162      if (prototype_p (fntype))
163	/* assert (TREE_VALUE (TYPE_ARG_TYPES (fntype)) == void_type_node);  */
164	formal_list = "void";
165      else
166	formal_list = "/* ??? */";
167    }
168  else
169    {
170      /* If there were at least some parameters, and if the formals-types-list
171	 petered out to a NULL (i.e. without being terminated by a
172	 void_type_node) then we need to tack on an ellipsis.  */
173      if (!formal_type)
174	formal_list = concat (formal_list, ", ...", NULL);
175    }
176
177  return concat (" (", formal_list, ")", NULL);
178}
179
180/* Generate a parameter list for a function definition (in some given style).
181
182   Note that this routine has to be separate (and different) from the code that
183   generates the prototype parameter lists for function declarations, because
184   in the case of a function declaration, all we have to go on is a tree node
185   representing the function's own "function type".  This can tell us the types
186   of all of the formal parameters for the function, but it cannot tell us the
187   actual *names* of each of the formal parameters.  We need to output those
188   parameter names for each function definition.
189
190   This routine gets a pointer to a tree node which represents the actual
191   declaration of the given function, and this DECL node has a list of formal
192   parameter (variable) declarations attached to it.  These formal parameter
193   (variable) declaration nodes give us the actual names of the formal
194   parameters for the given function definition.
195
196   This routine returns a string which is the source form for the entire
197   function formal parameter list.  */
198
199static const char *
200gen_formal_list_for_func_def (tree fndecl, formals_style style)
201{
202  const char *formal_list = "";
203  tree formal_decl;
204
205  formal_decl = DECL_ARGUMENTS (fndecl);
206  while (formal_decl)
207    {
208      const char *this_formal;
209
210      if (*formal_list && ((style == ansi) || (style == k_and_r_names)))
211	formal_list = concat (formal_list, ", ", NULL);
212      this_formal = gen_decl (formal_decl, 0, style);
213      if (style == k_and_r_decls)
214	formal_list = concat (formal_list, this_formal, "; ", NULL);
215      else
216	formal_list = concat (formal_list, this_formal, NULL);
217      formal_decl = TREE_CHAIN (formal_decl);
218    }
219  if (style == ansi)
220    {
221      if (!DECL_ARGUMENTS (fndecl))
222	formal_list = concat (formal_list, "void", NULL);
223      if (stdarg_p (TREE_TYPE (fndecl)))
224	formal_list = concat (formal_list, ", ...", NULL);
225    }
226  if ((style == ansi) || (style == k_and_r_names))
227    formal_list = concat (" (", formal_list, ")", NULL);
228  return formal_list;
229}
230
231/* Generate a string which is the source code form for a given type (t).  This
232   routine is ugly and complex because the C syntax for declarations is ugly
233   and complex.  This routine is straightforward so long as *no* pointer types,
234   array types, or function types are involved.
235
236   In the simple cases, this routine will return the (string) value which was
237   passed in as the "ret_val" argument.  Usually, this starts out either as an
238   empty string, or as the name of the declared item (i.e. the formal function
239   parameter variable).
240
241   This routine will also return with the global variable "data_type" set to
242   some string value which is the "basic" data-type of the given complete type.
243   This "data_type" string can be concatenated onto the front of the returned
244   string after this routine returns to its caller.
245
246   In complicated cases involving pointer types, array types, or function
247   types, the C declaration syntax requires an "inside out" approach, i.e. if
248   you have a type which is a "pointer-to-function" type, you need to handle
249   the "pointer" part first, but it also has to be "innermost" (relative to
250   the declaration stuff for the "function" type).  Thus, is this case, you
251   must prepend a "(*" and append a ")" to the name of the item (i.e. formal
252   variable).  Then you must append and prepend the other info for the
253   "function type" part of the overall type.
254
255   To handle the "innermost precedence" rules of complicated C declarators, we
256   do the following (in this routine).  The input parameter called "ret_val"
257   is treated as a "seed".  Each time gen_type is called (perhaps recursively)
258   some additional strings may be appended or prepended (or both) to the "seed"
259   string.  If yet another (lower) level of the GCC tree exists for the given
260   type (as in the case of a pointer type, an array type, or a function type)
261   then the (wrapped) seed is passed to a (recursive) invocation of gen_type()
262   this recursive invocation may again "wrap" the (new) seed with yet more
263   declarator stuff, by appending, prepending (or both).  By the time the
264   recursion bottoms out, the "seed value" at that point will have a value
265   which is (almost) the complete source version of the declarator (except
266   for the data_type info).  Thus, this deepest "seed" value is simply passed
267   back up through all of the recursive calls until it is given (as the return
268   value) to the initial caller of the gen_type() routine.  All that remains
269   to do at this point is for the initial caller to prepend the "data_type"
270   string onto the returned "seed".  */
271
272static const char *
273gen_type (const char *ret_val, tree t, formals_style style)
274{
275  tree chain_p;
276
277  /* If there is a typedef name for this type, use it.  */
278  if (TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
279    data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
280  else
281    {
282      switch (TREE_CODE (t))
283	{
284	case POINTER_TYPE:
285	  if (TYPE_ATOMIC (t))
286	    ret_val = concat ("_Atomic ", ret_val, NULL);
287	  if (TYPE_READONLY (t))
288	    ret_val = concat ("const ", ret_val, NULL);
289	  if (TYPE_VOLATILE (t))
290	    ret_val = concat ("volatile ", ret_val, NULL);
291
292	  ret_val = concat ("*", ret_val, NULL);
293
294	  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
295	    ret_val = concat ("(", ret_val, ")", NULL);
296
297	  ret_val = gen_type (ret_val, TREE_TYPE (t), style);
298
299	  return ret_val;
300
301	case ARRAY_TYPE:
302	  if (!COMPLETE_TYPE_P (t) || TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
303	    ret_val = gen_type (concat (ret_val, "[]", NULL),
304				TREE_TYPE (t), style);
305	  else if (int_size_in_bytes (t) == 0)
306	    ret_val = gen_type (concat (ret_val, "[0]", NULL),
307				TREE_TYPE (t), style);
308	  else
309	    {
310	      char buff[23];
311	      sprintf (buff, "[" HOST_WIDE_INT_PRINT_DEC"]",
312		       int_size_in_bytes (t)
313		       / int_size_in_bytes (TREE_TYPE (t)));
314	      ret_val = gen_type (concat (ret_val, buff, NULL),
315				  TREE_TYPE (t), style);
316	    }
317	  break;
318
319	case FUNCTION_TYPE:
320	  ret_val = gen_type (concat (ret_val,
321				      gen_formal_list_for_type (t, style),
322				      NULL),
323			      TREE_TYPE (t), style);
324	  break;
325
326	case IDENTIFIER_NODE:
327	  data_type = IDENTIFIER_POINTER (t);
328	  break;
329
330	/* The following three cases are complicated by the fact that a
331	   user may do something really stupid, like creating a brand new
332	   "anonymous" type specification in a formal argument list (or as
333	   part of a function return type specification).  For example:
334
335		int f (enum { red, green, blue } color);
336
337	   In such cases, we have no name that we can put into the prototype
338	   to represent the (anonymous) type.  Thus, we have to generate the
339	   whole darn type specification.  Yuck!  */
340
341	case RECORD_TYPE:
342	  if (TYPE_NAME (t))
343	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
344	  else
345	    {
346	      data_type = "";
347	      chain_p = TYPE_FIELDS (t);
348	      while (chain_p)
349		{
350		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
351				      NULL);
352		  chain_p = TREE_CHAIN (chain_p);
353		  data_type = concat (data_type, "; ", NULL);
354		}
355	      data_type = concat ("{ ", data_type, "}", NULL);
356	    }
357	  data_type = concat ("struct ", data_type, NULL);
358	  break;
359
360	case UNION_TYPE:
361	  if (TYPE_NAME (t))
362	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
363	  else
364	    {
365	      data_type = "";
366	      chain_p = TYPE_FIELDS (t);
367	      while (chain_p)
368		{
369		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
370				      NULL);
371		  chain_p = TREE_CHAIN (chain_p);
372		  data_type = concat (data_type, "; ", NULL);
373		}
374	      data_type = concat ("{ ", data_type, "}", NULL);
375	    }
376	  data_type = concat ("union ", data_type, NULL);
377	  break;
378
379	case ENUMERAL_TYPE:
380	  if (TYPE_NAME (t))
381	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
382	  else
383	    {
384	      data_type = "";
385	      chain_p = TYPE_VALUES (t);
386	      while (chain_p)
387		{
388		  data_type = concat (data_type,
389			IDENTIFIER_POINTER (TREE_PURPOSE (chain_p)), NULL);
390		  chain_p = TREE_CHAIN (chain_p);
391		  if (chain_p)
392		    data_type = concat (data_type, ", ", NULL);
393		}
394	      data_type = concat ("{ ", data_type, " }", NULL);
395	    }
396	  data_type = concat ("enum ", data_type, NULL);
397	  break;
398
399	case TYPE_DECL:
400	  data_type = IDENTIFIER_POINTER (DECL_NAME (t));
401	  break;
402
403	case INTEGER_TYPE:
404	case FIXED_POINT_TYPE:
405	  data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
406	  /* Normally, `unsigned' is part of the deal.  Not so if it comes
407	     with a type qualifier.  */
408	  if (TYPE_UNSIGNED (t) && TYPE_QUALS (t))
409	    data_type = concat ("unsigned ", data_type, NULL);
410	  break;
411
412	case REAL_TYPE:
413	  data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
414	  break;
415
416	case VOID_TYPE:
417	  data_type = "void";
418	  break;
419
420	case ERROR_MARK:
421	  data_type = "[ERROR]";
422	  break;
423
424	default:
425	  gcc_unreachable ();
426	}
427    }
428  if (TYPE_ATOMIC (t))
429    ret_val = concat ("_Atomic ", ret_val, NULL);
430  if (TYPE_READONLY (t))
431    ret_val = concat ("const ", ret_val, NULL);
432  if (TYPE_VOLATILE (t))
433    ret_val = concat ("volatile ", ret_val, NULL);
434  if (TYPE_RESTRICT (t))
435    ret_val = concat ("restrict ", ret_val, NULL);
436  return ret_val;
437}
438
439/* Generate a string (source) representation of an entire entity declaration
440   (using some particular style for function types).
441
442   The given entity may be either a variable or a function.
443
444   If the "is_func_definition" parameter is nonzero, assume that the thing
445   we are generating a declaration for is a FUNCTION_DECL node which is
446   associated with a function definition.  In this case, we can assume that
447   an attached list of DECL nodes for function formal arguments is present.  */
448
449static const char *
450gen_decl (tree decl, int is_func_definition, formals_style style)
451{
452  const char *ret_val;
453
454  if (DECL_NAME (decl))
455    ret_val = IDENTIFIER_POINTER (DECL_NAME (decl));
456  else
457    ret_val = "";
458
459  /* If we are just generating a list of names of formal parameters, we can
460     simply return the formal parameter name (with no typing information
461     attached to it) now.  */
462
463  if (style == k_and_r_names)
464    return ret_val;
465
466  /* Note that for the declaration of some entity (either a function or a
467     data object, like for instance a parameter) if the entity itself was
468     declared as either const or volatile, then const and volatile properties
469     are associated with just the declaration of the entity, and *not* with
470     the `type' of the entity.  Thus, for such declared entities, we have to
471     generate the qualifiers here.  */
472
473  if (TREE_THIS_VOLATILE (decl))
474    ret_val = concat ("volatile ", ret_val, NULL);
475  if (TREE_READONLY (decl))
476    ret_val = concat ("const ", ret_val, NULL);
477
478  data_type = "";
479
480  /* For FUNCTION_DECL nodes, there are two possible cases here.  First, if
481     this FUNCTION_DECL node was generated from a function "definition", then
482     we will have a list of DECL_NODE's, one for each of the function's formal
483     parameters.  In this case, we can print out not only the types of each
484     formal, but also each formal's name.  In the second case, this
485     FUNCTION_DECL node came from an actual function declaration (and *not*
486     a definition).  In this case, we do nothing here because the formal
487     argument type-list will be output later, when the "type" of the function
488     is added to the string we are building.  Note that the ANSI-style formal
489     parameter list is considered to be a (suffix) part of the "type" of the
490     function.  */
491
492  if (TREE_CODE (decl) == FUNCTION_DECL && is_func_definition)
493    {
494      ret_val = concat (ret_val, gen_formal_list_for_func_def (decl, ansi),
495			NULL);
496
497      /* Since we have already added in the formals list stuff, here we don't
498	 add the whole "type" of the function we are considering (which
499	 would include its parameter-list info), rather, we only add in
500	 the "type" of the "type" of the function, which is really just
501	 the return-type of the function (and does not include the parameter
502	 list info).  */
503
504      ret_val = gen_type (ret_val, TREE_TYPE (TREE_TYPE (decl)), style);
505    }
506  else
507    ret_val = gen_type (ret_val, TREE_TYPE (decl), style);
508
509  ret_val = affix_data_type (ret_val);
510
511  if (TREE_CODE (decl) != FUNCTION_DECL && C_DECL_REGISTER (decl))
512    ret_val = concat ("register ", ret_val, NULL);
513  if (TREE_PUBLIC (decl))
514    ret_val = concat ("extern ", ret_val, NULL);
515  if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
516    ret_val = concat ("static ", ret_val, NULL);
517
518  return ret_val;
519}
520
521extern FILE *aux_info_file;
522
523/* Generate and write a new line of info to the aux-info (.X) file.  This
524   routine is called once for each function declaration, and once for each
525   function definition (even the implicit ones).  */
526
527void
528gen_aux_info_record (tree fndecl, int is_definition, int is_implicit,
529		     int is_prototyped)
530{
531  if (flag_gen_aux_info)
532    {
533      static int compiled_from_record = 0;
534      expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (fndecl));
535
536      /* Each output .X file must have a header line.  Write one now if we
537	 have not yet done so.  */
538
539      if (!compiled_from_record++)
540	{
541	  /* The first line tells which directory file names are relative to.
542	     Currently, -aux-info works only for files in the working
543	     directory, so just use a `.' as a placeholder for now.  */
544	  fprintf (aux_info_file, "/* compiled from: . */\n");
545	}
546
547      /* Write the actual line of auxiliary info.  */
548
549      fprintf (aux_info_file, "/* %s:%d:%c%c */ %s;",
550	       xloc.file, xloc.line,
551	       (is_implicit) ? 'I' : (is_prototyped) ? 'N' : 'O',
552	       (is_definition) ? 'F' : 'C',
553	       gen_decl (fndecl, is_definition, ansi));
554
555      /* If this is an explicit function declaration, we need to also write
556	 out an old-style (i.e. K&R) function header, just in case the user
557	 wants to run unprotoize.  */
558
559      if (is_definition)
560	{
561	  fprintf (aux_info_file, " /*%s %s*/",
562		   gen_formal_list_for_func_def (fndecl, k_and_r_names),
563		   gen_formal_list_for_func_def (fndecl, k_and_r_decls));
564	}
565
566      fprintf (aux_info_file, "\n");
567    }
568}
569