1/* Define control flow data structures for the CFG.
2   Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#ifndef GCC_BASIC_BLOCK_H
21#define GCC_BASIC_BLOCK_H
22
23#include <profile-count.h>
24
25/* Control flow edge information.  */
26class GTY((user)) edge_def {
27public:
28  /* The two blocks at the ends of the edge.  */
29  basic_block src;
30  basic_block dest;
31
32  /* Instructions queued on the edge.  */
33  union edge_def_insns {
34    gimple_seq g;
35    rtx_insn *r;
36  } insns;
37
38  /* Auxiliary info specific to a pass.  */
39  PTR aux;
40
41  /* Location of any goto implicit in the edge.  */
42  location_t goto_locus;
43
44  /* The index number corresponding to this edge in the edge vector
45     dest->preds.  */
46  unsigned int dest_idx;
47
48  int flags;			/* see cfg-flags.def */
49  profile_probability probability;
50
51  /* Return count of edge E.  */
52  inline profile_count count () const;
53};
54
55/* Masks for edge.flags.  */
56#define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
57enum cfg_edge_flags {
58#include "cfg-flags.def"
59  LAST_CFG_EDGE_FLAG		/* this is only used for EDGE_ALL_FLAGS */
60};
61#undef DEF_EDGE_FLAG
62
63/* Bit mask for all edge flags.  */
64#define EDGE_ALL_FLAGS		((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
65
66/* The following four flags all indicate something special about an edge.
67   Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
68   control flow transfers.  */
69#define EDGE_COMPLEX \
70  (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
71
72struct GTY(()) rtl_bb_info {
73  /* The first insn of the block is embedded into bb->il.x.  */
74  /* The last insn of the block.  */
75  rtx_insn *end_;
76
77  /* In CFGlayout mode points to insn notes/jumptables to be placed just before
78     and after the block.   */
79  rtx_insn *header_;
80  rtx_insn *footer_;
81};
82
83struct GTY(()) gimple_bb_info {
84  /* Sequence of statements in this block.  */
85  gimple_seq seq;
86
87  /* PHI nodes for this block.  */
88  gimple_seq phi_nodes;
89};
90
91/* A basic block is a sequence of instructions with only one entry and
92   only one exit.  If any one of the instructions are executed, they
93   will all be executed, and in sequence from first to last.
94
95   There may be COND_EXEC instructions in the basic block.  The
96   COND_EXEC *instructions* will be executed -- but if the condition
97   is false the conditionally executed *expressions* will of course
98   not be executed.  We don't consider the conditionally executed
99   expression (which might have side-effects) to be in a separate
100   basic block because the program counter will always be at the same
101   location after the COND_EXEC instruction, regardless of whether the
102   condition is true or not.
103
104   Basic blocks need not start with a label nor end with a jump insn.
105   For example, a previous basic block may just "conditionally fall"
106   into the succeeding basic block, and the last basic block need not
107   end with a jump insn.  Block 0 is a descendant of the entry block.
108
109   A basic block beginning with two labels cannot have notes between
110   the labels.
111
112   Data for jump tables are stored in jump_insns that occur in no
113   basic block even though these insns can follow or precede insns in
114   basic blocks.  */
115
116/* Basic block information indexed by block number.  */
117struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
118  /* The edges into and out of the block.  */
119  vec<edge, va_gc> *preds;
120  vec<edge, va_gc> *succs;
121
122  /* Auxiliary info specific to a pass.  */
123  PTR GTY ((skip (""))) aux;
124
125  /* Innermost loop containing the block.  */
126  class loop *loop_father;
127
128  /* The dominance and postdominance information node.  */
129  struct et_node * GTY ((skip (""))) dom[2];
130
131  /* Previous and next blocks in the chain.  */
132  basic_block prev_bb;
133  basic_block next_bb;
134
135  union basic_block_il_dependent {
136      struct gimple_bb_info GTY ((tag ("0"))) gimple;
137      struct {
138        rtx_insn *head_;
139        struct rtl_bb_info * rtl;
140      } GTY ((tag ("1"))) x;
141    } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
142
143  /* Various flags.  See cfg-flags.def.  */
144  int flags;
145
146  /* The index of this block.  */
147  int index;
148
149  /* Expected number of executions: calculated in profile.c.  */
150  profile_count count;
151
152  /* The discriminator for this block.  The discriminator distinguishes
153     among several basic blocks that share a common locus, allowing for
154     more accurate sample-based profiling.  */
155  int discriminator;
156};
157
158/* This ensures that struct gimple_bb_info is smaller than
159   struct rtl_bb_info, so that inlining the former into basic_block_def
160   is the better choice.  */
161typedef int __assert_gimple_bb_smaller_rtl_bb
162              [(int) sizeof (struct rtl_bb_info)
163               - (int) sizeof (struct gimple_bb_info)];
164
165
166#define BB_FREQ_MAX 10000
167
168/* Masks for basic_block.flags.  */
169#define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
170enum cfg_bb_flags
171{
172#include "cfg-flags.def"
173  LAST_CFG_BB_FLAG		/* this is only used for BB_ALL_FLAGS */
174};
175#undef DEF_BASIC_BLOCK_FLAG
176
177/* Bit mask for all basic block flags.  */
178#define BB_ALL_FLAGS		((LAST_CFG_BB_FLAG - 1) * 2 - 1)
179
180/* Bit mask for all basic block flags that must be preserved.  These are
181   the bit masks that are *not* cleared by clear_bb_flags.  */
182#define BB_FLAGS_TO_PRESERVE					\
183  (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET	\
184   | BB_HOT_PARTITION | BB_COLD_PARTITION)
185
186/* Dummy bitmask for convenience in the hot/cold partitioning code.  */
187#define BB_UNPARTITIONED	0
188
189/* Partitions, to be used when partitioning hot and cold basic blocks into
190   separate sections.  */
191#define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
192#define BB_SET_PARTITION(bb, part) do {					\
193  basic_block bb_ = (bb);						\
194  bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))	\
195		| (part));						\
196} while (0)
197
198#define BB_COPY_PARTITION(dstbb, srcbb) \
199  BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
200
201/* Defines for accessing the fields of the CFG structure for function FN.  */
202#define ENTRY_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_entry_block_ptr)
203#define EXIT_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_exit_block_ptr)
204#define basic_block_info_for_fn(FN)	     ((FN)->cfg->x_basic_block_info)
205#define n_basic_blocks_for_fn(FN)	     ((FN)->cfg->x_n_basic_blocks)
206#define n_edges_for_fn(FN)		     ((FN)->cfg->x_n_edges)
207#define last_basic_block_for_fn(FN)	     ((FN)->cfg->x_last_basic_block)
208#define label_to_block_map_for_fn(FN)	     ((FN)->cfg->x_label_to_block_map)
209#define profile_status_for_fn(FN)	     ((FN)->cfg->x_profile_status)
210
211#define BASIC_BLOCK_FOR_FN(FN,N) \
212  ((*basic_block_info_for_fn (FN))[(N)])
213#define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
214  ((*basic_block_info_for_fn (FN))[(N)] = (BB))
215
216/* For iterating over basic blocks.  */
217#define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
218  for (BB = FROM; BB != TO; BB = BB->DIR)
219
220#define FOR_EACH_BB_FN(BB, FN) \
221  FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
222
223#define FOR_EACH_BB_REVERSE_FN(BB, FN) \
224  FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
225
226/* For iterating over insns in basic block.  */
227#define FOR_BB_INSNS(BB, INSN)			\
228  for ((INSN) = BB_HEAD (BB);			\
229       (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
230       (INSN) = NEXT_INSN (INSN))
231
232/* For iterating over insns in basic block when we might remove the
233   current insn.  */
234#define FOR_BB_INSNS_SAFE(BB, INSN, CURR)			\
235  for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;	\
236       (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
237       (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
238
239#define FOR_BB_INSNS_REVERSE(BB, INSN)		\
240  for ((INSN) = BB_END (BB);			\
241       (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
242       (INSN) = PREV_INSN (INSN))
243
244#define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)	\
245  for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;	\
246       (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
247       (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
248
249/* Cycles through _all_ basic blocks, even the fake ones (entry and
250   exit block).  */
251
252#define FOR_ALL_BB_FN(BB, FN) \
253  for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
254
255
256/* Stuff for recording basic block info.  */
257
258/* For now, these will be functions (so that they can include checked casts
259   to rtx_insn.   Once the underlying fields are converted from rtx
260   to rtx_insn, these can be converted back to macros.  */
261
262#define BB_HEAD(B)      (B)->il.x.head_
263#define BB_END(B)       (B)->il.x.rtl->end_
264#define BB_HEADER(B)    (B)->il.x.rtl->header_
265#define BB_FOOTER(B)    (B)->il.x.rtl->footer_
266
267/* Special block numbers [markers] for entry and exit.
268   Neither of them is supposed to hold actual statements.  */
269#define ENTRY_BLOCK (0)
270#define EXIT_BLOCK (1)
271
272/* The two blocks that are always in the cfg.  */
273#define NUM_FIXED_BLOCKS (2)
274
275/* This is the value which indicates no edge is present.  */
276#define EDGE_INDEX_NO_EDGE	-1
277
278/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
279   if there is no edge between the 2 basic blocks.  */
280#define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
281
282/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
283   block which is either the pred or succ end of the indexed edge.  */
284#define INDEX_EDGE_PRED_BB(el, index)	((el)->index_to_edge[(index)]->src)
285#define INDEX_EDGE_SUCC_BB(el, index)	((el)->index_to_edge[(index)]->dest)
286
287/* INDEX_EDGE returns a pointer to the edge.  */
288#define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
289
290/* Number of edges in the compressed edge list.  */
291#define NUM_EDGES(el)			((el)->num_edges)
292
293/* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
294#define FALLTHRU_EDGE(bb)		(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
295					 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
296
297/* BB is assumed to contain conditional jump.  Return the branch edge.  */
298#define BRANCH_EDGE(bb)			(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
299					 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
300
301/* Return expected execution frequency of the edge E.  */
302#define EDGE_FREQUENCY(e)		e->count ().to_frequency (cfun)
303
304/* Compute a scale factor (or probability) suitable for scaling of
305   gcov_type values via apply_probability() and apply_scale().  */
306#define GCOV_COMPUTE_SCALE(num,den) \
307  ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
308
309/* Return nonzero if edge is critical.  */
310#define EDGE_CRITICAL_P(e)		(EDGE_COUNT ((e)->src->succs) >= 2 \
311					 && EDGE_COUNT ((e)->dest->preds) >= 2)
312
313#define EDGE_COUNT(ev)			vec_safe_length (ev)
314#define EDGE_I(ev,i)			(*ev)[(i)]
315#define EDGE_PRED(bb,i)			(*(bb)->preds)[(i)]
316#define EDGE_SUCC(bb,i)			(*(bb)->succs)[(i)]
317
318/* Returns true if BB has precisely one successor.  */
319
320static inline bool
321single_succ_p (const_basic_block bb)
322{
323  return EDGE_COUNT (bb->succs) == 1;
324}
325
326/* Returns true if BB has precisely one predecessor.  */
327
328static inline bool
329single_pred_p (const_basic_block bb)
330{
331  return EDGE_COUNT (bb->preds) == 1;
332}
333
334/* Returns the single successor edge of basic block BB.  Aborts if
335   BB does not have exactly one successor.  */
336
337static inline edge
338single_succ_edge (const_basic_block bb)
339{
340  gcc_checking_assert (single_succ_p (bb));
341  return EDGE_SUCC (bb, 0);
342}
343
344/* Returns the single predecessor edge of basic block BB.  Aborts
345   if BB does not have exactly one predecessor.  */
346
347static inline edge
348single_pred_edge (const_basic_block bb)
349{
350  gcc_checking_assert (single_pred_p (bb));
351  return EDGE_PRED (bb, 0);
352}
353
354/* Returns the single successor block of basic block BB.  Aborts
355   if BB does not have exactly one successor.  */
356
357static inline basic_block
358single_succ (const_basic_block bb)
359{
360  return single_succ_edge (bb)->dest;
361}
362
363/* Returns the single predecessor block of basic block BB.  Aborts
364   if BB does not have exactly one predecessor.*/
365
366static inline basic_block
367single_pred (const_basic_block bb)
368{
369  return single_pred_edge (bb)->src;
370}
371
372/* Iterator object for edges.  */
373
374struct edge_iterator {
375  unsigned index;
376  vec<edge, va_gc> **container;
377};
378
379static inline vec<edge, va_gc> *
380ei_container (edge_iterator i)
381{
382  gcc_checking_assert (i.container);
383  return *i.container;
384}
385
386#define ei_start(iter) ei_start_1 (&(iter))
387#define ei_last(iter) ei_last_1 (&(iter))
388
389/* Return an iterator pointing to the start of an edge vector.  */
390static inline edge_iterator
391ei_start_1 (vec<edge, va_gc> **ev)
392{
393  edge_iterator i;
394
395  i.index = 0;
396  i.container = ev;
397
398  return i;
399}
400
401/* Return an iterator pointing to the last element of an edge
402   vector.  */
403static inline edge_iterator
404ei_last_1 (vec<edge, va_gc> **ev)
405{
406  edge_iterator i;
407
408  i.index = EDGE_COUNT (*ev) - 1;
409  i.container = ev;
410
411  return i;
412}
413
414/* Is the iterator `i' at the end of the sequence?  */
415static inline bool
416ei_end_p (edge_iterator i)
417{
418  return (i.index == EDGE_COUNT (ei_container (i)));
419}
420
421/* Is the iterator `i' at one position before the end of the
422   sequence?  */
423static inline bool
424ei_one_before_end_p (edge_iterator i)
425{
426  return (i.index + 1 == EDGE_COUNT (ei_container (i)));
427}
428
429/* Advance the iterator to the next element.  */
430static inline void
431ei_next (edge_iterator *i)
432{
433  gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
434  i->index++;
435}
436
437/* Move the iterator to the previous element.  */
438static inline void
439ei_prev (edge_iterator *i)
440{
441  gcc_checking_assert (i->index > 0);
442  i->index--;
443}
444
445/* Return the edge pointed to by the iterator `i'.  */
446static inline edge
447ei_edge (edge_iterator i)
448{
449  return EDGE_I (ei_container (i), i.index);
450}
451
452/* Return an edge pointed to by the iterator.  Do it safely so that
453   NULL is returned when the iterator is pointing at the end of the
454   sequence.  */
455static inline edge
456ei_safe_edge (edge_iterator i)
457{
458  return !ei_end_p (i) ? ei_edge (i) : NULL;
459}
460
461/* Return 1 if we should continue to iterate.  Return 0 otherwise.
462   *Edge P is set to the next edge if we are to continue to iterate
463   and NULL otherwise.  */
464
465static inline bool
466ei_cond (edge_iterator ei, edge *p)
467{
468  if (!ei_end_p (ei))
469    {
470      *p = ei_edge (ei);
471      return 1;
472    }
473  else
474    {
475      *p = NULL;
476      return 0;
477    }
478}
479
480/* This macro serves as a convenient way to iterate each edge in a
481   vector of predecessor or successor edges.  It must not be used when
482   an element might be removed during the traversal, otherwise
483   elements will be missed.  Instead, use a for-loop like that shown
484   in the following pseudo-code:
485
486   FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
487     {
488	IF (e != taken_edge)
489	  remove_edge (e);
490	ELSE
491	  ei_next (&ei);
492     }
493*/
494
495#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)	\
496  for ((ITER) = ei_start ((EDGE_VEC));		\
497       ei_cond ((ITER), &(EDGE));		\
498       ei_next (&(ITER)))
499
500#define CLEANUP_EXPENSIVE	1	/* Do relatively expensive optimizations
501					   except for edge forwarding */
502#define CLEANUP_CROSSJUMP	2	/* Do crossjumping.  */
503#define CLEANUP_POST_REGSTACK	4	/* We run after reg-stack and need
504					   to care REG_DEAD notes.  */
505#define CLEANUP_THREADING	8	/* Do jump threading.  */
506#define CLEANUP_NO_INSN_DEL	16	/* Do not try to delete trivially dead
507					   insns.  */
508#define CLEANUP_CFGLAYOUT	32	/* Do cleanup in cfglayout mode.  */
509#define CLEANUP_CFG_CHANGED	64      /* The caller changed the CFG.  */
510#define CLEANUP_NO_PARTITIONING	128     /* Do not try to fix partitions.  */
511#define CLEANUP_FORCE_FAST_DCE	0x100	/* Force run_fast_dce to be called
512					   at least once.  */
513
514/* Return true if BB is in a transaction.  */
515
516static inline bool
517bb_in_transaction (basic_block bb)
518{
519  return bb->flags & BB_IN_TRANSACTION;
520}
521
522/* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
523static inline bool
524bb_has_eh_pred (basic_block bb)
525{
526  edge e;
527  edge_iterator ei;
528
529  FOR_EACH_EDGE (e, ei, bb->preds)
530    {
531      if (e->flags & EDGE_EH)
532	return true;
533    }
534  return false;
535}
536
537/* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
538static inline bool
539bb_has_abnormal_pred (basic_block bb)
540{
541  edge e;
542  edge_iterator ei;
543
544  FOR_EACH_EDGE (e, ei, bb->preds)
545    {
546      if (e->flags & EDGE_ABNORMAL)
547	return true;
548    }
549  return false;
550}
551
552/* Return the fallthru edge in EDGES if it exists, NULL otherwise.  */
553static inline edge
554find_fallthru_edge (vec<edge, va_gc> *edges)
555{
556  edge e;
557  edge_iterator ei;
558
559  FOR_EACH_EDGE (e, ei, edges)
560    if (e->flags & EDGE_FALLTHRU)
561      break;
562
563  return e;
564}
565
566/* Check tha probability is sane.  */
567
568static inline void
569check_probability (int prob)
570{
571  gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
572}
573
574/* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
575   Used to combine BB probabilities.  */
576
577static inline int
578combine_probabilities (int prob1, int prob2)
579{
580  check_probability (prob1);
581  check_probability (prob2);
582  return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
583}
584
585/* Apply scale factor SCALE on frequency or count FREQ. Use this
586   interface when potentially scaling up, so that SCALE is not
587   constrained to be < REG_BR_PROB_BASE.  */
588
589static inline gcov_type
590apply_scale (gcov_type freq, gcov_type scale)
591{
592  return RDIV (freq * scale, REG_BR_PROB_BASE);
593}
594
595/* Apply probability PROB on frequency or count FREQ.  */
596
597static inline gcov_type
598apply_probability (gcov_type freq, int prob)
599{
600  check_probability (prob);
601  return apply_scale (freq, prob);
602}
603
604/* Return inverse probability for PROB.  */
605
606static inline int
607inverse_probability (int prob1)
608{
609  check_probability (prob1);
610  return REG_BR_PROB_BASE - prob1;
611}
612
613/* Return true if BB has at least one abnormal outgoing edge.  */
614
615static inline bool
616has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
617{
618  edge e;
619  edge_iterator ei;
620
621  FOR_EACH_EDGE (e, ei, bb->succs)
622    if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
623      return true;
624
625  return false;
626}
627
628/* Return true when one of the predecessor edges of BB is marked with
629   EDGE_ABNORMAL_CALL or EDGE_EH.  */
630
631static inline bool
632has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
633{
634  edge e;
635  edge_iterator ei;
636
637  FOR_EACH_EDGE (e, ei, bb->preds)
638    if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
639      return true;
640
641  return false;
642}
643
644/* Return count of edge E.  */
645inline profile_count edge_def::count () const
646{
647  return src->count.apply_probability (probability);
648}
649
650#endif /* GCC_BASIC_BLOCK_H */
651