1/* An expandable hash tables datatype.
2   Copyright (C) 1999-2022 Free Software Foundation, Inc.
3   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB.  If
18not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19Boston, MA 02110-1301, USA.  */
20
21/* This package implements basic hash table functionality.  It is possible
22   to search for an entry, create an entry and destroy an entry.
23
24   Elements in the table are generic pointers.
25
26   The size of the table is not fixed; if the occupancy of the table
27   grows too high the hash table will be expanded.
28
29   The abstract data implementation is based on generalized Algorithm D
30   from Knuth's book "The art of computer programming".  Hash table is
31   expanded by creation of new hash table and transferring elements from
32   the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38#include <sys/types.h>
39
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
43#ifdef HAVE_STRING_H
44#include <string.h>
45#endif
46#ifdef HAVE_MALLOC_H
47#include <malloc.h>
48#endif
49#ifdef HAVE_LIMITS_H
50#include <limits.h>
51#endif
52#ifdef HAVE_INTTYPES_H
53#include <inttypes.h>
54#endif
55#ifdef HAVE_STDINT_H
56#include <stdint.h>
57#endif
58
59#include <stdio.h>
60
61#include "libiberty.h"
62#include "ansidecl.h"
63#include "hashtab.h"
64
65#ifndef CHAR_BIT
66#define CHAR_BIT 8
67#endif
68
69static unsigned int higher_prime_index (unsigned long);
70static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
71static hashval_t htab_mod (hashval_t, htab_t);
72static hashval_t htab_mod_m2 (hashval_t, htab_t);
73static hashval_t hash_pointer (const void *);
74static int eq_pointer (const void *, const void *);
75static int htab_expand (htab_t);
76static void **find_empty_slot_for_expand (htab_t, hashval_t);
77
78/* At some point, we could make these be NULL, and modify the
79   hash-table routines to handle NULL specially; that would avoid
80   function-call overhead for the common case of hashing pointers.  */
81htab_hash htab_hash_pointer = hash_pointer;
82htab_eq htab_eq_pointer = eq_pointer;
83
84/* Table of primes and multiplicative inverses.
85
86   Note that these are not minimally reduced inverses.  Unlike when generating
87   code to divide by a constant, we want to be able to use the same algorithm
88   all the time.  All of these inverses (are implied to) have bit 32 set.
89
90   For the record, here's the function that computed the table; it's a
91   vastly simplified version of the function of the same name from gcc.  */
92
93#if 0
94unsigned int
95ceil_log2 (unsigned int x)
96{
97  int i;
98  for (i = 31; i >= 0 ; --i)
99    if (x > (1u << i))
100      return i+1;
101  abort ();
102}
103
104unsigned int
105choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
106{
107  unsigned long long mhigh;
108  double nx;
109  int lgup, post_shift;
110  int pow, pow2;
111  int n = 32, precision = 32;
112
113  lgup = ceil_log2 (d);
114  pow = n + lgup;
115  pow2 = n + lgup - precision;
116
117  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
118  mhigh = nx / d;
119
120  *shiftp = lgup - 1;
121  *mlp = mhigh;
122  return mhigh >> 32;
123}
124#endif
125
126struct prime_ent
127{
128  hashval_t prime;
129  hashval_t inv;
130  hashval_t inv_m2;	/* inverse of prime-2 */
131  hashval_t shift;
132};
133
134static struct prime_ent const prime_tab[] = {
135  {          7, 0x24924925, 0x9999999b, 2 },
136  {         13, 0x3b13b13c, 0x745d1747, 3 },
137  {         31, 0x08421085, 0x1a7b9612, 4 },
138  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
139  {        127, 0x02040811, 0x0624dd30, 6 },
140  {        251, 0x05197f7e, 0x073260a5, 7 },
141  {        509, 0x01824366, 0x02864fc8, 8 },
142  {       1021, 0x00c0906d, 0x014191f7, 9 },
143  {       2039, 0x0121456f, 0x0161e69e, 10 },
144  {       4093, 0x00300902, 0x00501908, 11 },
145  {       8191, 0x00080041, 0x00180241, 12 },
146  {      16381, 0x000c0091, 0x00140191, 13 },
147  {      32749, 0x002605a5, 0x002a06e6, 14 },
148  {      65521, 0x000f00e2, 0x00110122, 15 },
149  {     131071, 0x00008001, 0x00018003, 16 },
150  {     262139, 0x00014002, 0x0001c004, 17 },
151  {     524287, 0x00002001, 0x00006001, 18 },
152  {    1048573, 0x00003001, 0x00005001, 19 },
153  {    2097143, 0x00004801, 0x00005801, 20 },
154  {    4194301, 0x00000c01, 0x00001401, 21 },
155  {    8388593, 0x00001e01, 0x00002201, 22 },
156  {   16777213, 0x00000301, 0x00000501, 23 },
157  {   33554393, 0x00001381, 0x00001481, 24 },
158  {   67108859, 0x00000141, 0x000001c1, 25 },
159  {  134217689, 0x000004e1, 0x00000521, 26 },
160  {  268435399, 0x00000391, 0x000003b1, 27 },
161  {  536870909, 0x00000019, 0x00000029, 28 },
162  { 1073741789, 0x0000008d, 0x00000095, 29 },
163  { 2147483647, 0x00000003, 0x00000007, 30 },
164  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
165  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
166};
167
168/* The following function returns an index into the above table of the
169   nearest prime number which is greater than N, and near a power of two. */
170
171static unsigned int
172higher_prime_index (unsigned long n)
173{
174  unsigned int low = 0;
175  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
176
177  while (low != high)
178    {
179      unsigned int mid = low + (high - low) / 2;
180      if (n > prime_tab[mid].prime)
181	low = mid + 1;
182      else
183	high = mid;
184    }
185
186  /* If we've run out of primes, abort.  */
187  if (n > prime_tab[low].prime)
188    {
189      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
190      abort ();
191    }
192
193  return low;
194}
195
196/* Returns non-zero if P1 and P2 are equal.  */
197
198static int
199eq_pointer (const void *p1, const void *p2)
200{
201  return p1 == p2;
202}
203
204
205/* The parens around the function names in the next two definitions
206   are essential in order to prevent macro expansions of the name.
207   The bodies, however, are expanded as expected, so they are not
208   recursive definitions.  */
209
210/* Return the current size of given hash table.  */
211
212#define htab_size(htab)  ((htab)->size)
213
214size_t
215(htab_size) (htab_t htab)
216{
217  return htab_size (htab);
218}
219
220/* Return the current number of elements in given hash table. */
221
222#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
223
224size_t
225(htab_elements) (htab_t htab)
226{
227  return htab_elements (htab);
228}
229
230/* Return X % Y.  */
231
232static inline hashval_t
233htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
234{
235  /* The multiplicative inverses computed above are for 32-bit types, and
236     requires that we be able to compute a highpart multiply.  */
237#ifdef UNSIGNED_64BIT_TYPE
238  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
239  if (sizeof (hashval_t) * CHAR_BIT <= 32)
240    {
241      hashval_t t1, t2, t3, t4, q, r;
242
243      t1 = ((ull)x * inv) >> 32;
244      t2 = x - t1;
245      t3 = t2 >> 1;
246      t4 = t1 + t3;
247      q  = t4 >> shift;
248      r  = x - (q * y);
249
250      return r;
251    }
252#endif
253
254  /* Otherwise just use the native division routines.  */
255  return x % y;
256}
257
258/* Compute the primary hash for HASH given HTAB's current size.  */
259
260static inline hashval_t
261htab_mod (hashval_t hash, htab_t htab)
262{
263  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
264  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
265}
266
267/* Compute the secondary hash for HASH given HTAB's current size.  */
268
269static inline hashval_t
270htab_mod_m2 (hashval_t hash, htab_t htab)
271{
272  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
274}
275
276/* This function creates table with length slightly longer than given
277   source length.  Created hash table is initiated as empty (all the
278   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
279   created hash table, or NULL if memory allocation fails.  */
280
281htab_t
282htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
283                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
284{
285  return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
286				  free_f);
287}
288
289/* As above, but uses the variants of ALLOC_F and FREE_F which accept
290   an extra argument.  */
291
292htab_t
293htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
294		      htab_del del_f, void *alloc_arg,
295		      htab_alloc_with_arg alloc_f,
296		      htab_free_with_arg free_f)
297{
298  htab_t result;
299  unsigned int size_prime_index;
300
301  size_prime_index = higher_prime_index (size);
302  size = prime_tab[size_prime_index].prime;
303
304  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
305  if (result == NULL)
306    return NULL;
307  result->entries = (void **) (*alloc_f) (alloc_arg, size, sizeof (void *));
308  if (result->entries == NULL)
309    {
310      if (free_f != NULL)
311	(*free_f) (alloc_arg, result);
312      return NULL;
313    }
314  result->size = size;
315  result->size_prime_index = size_prime_index;
316  result->hash_f = hash_f;
317  result->eq_f = eq_f;
318  result->del_f = del_f;
319  result->alloc_arg = alloc_arg;
320  result->alloc_with_arg_f = alloc_f;
321  result->free_with_arg_f = free_f;
322  return result;
323}
324
325/*
326
327@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
328htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
329htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
330htab_free @var{free_f})
331
332This function creates a hash table that uses two different allocators
333@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
334and its entries respectively.  This is useful when variables of different
335types need to be allocated with different allocators.
336
337The created hash table is slightly larger than @var{size} and it is
338initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
339The function returns the created hash table, or @code{NULL} if memory
340allocation fails.
341
342@end deftypefn
343
344*/
345
346htab_t
347htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
348			 htab_del del_f, htab_alloc alloc_tab_f,
349			 htab_alloc alloc_f, htab_free free_f)
350{
351  htab_t result;
352  unsigned int size_prime_index;
353
354  size_prime_index = higher_prime_index (size);
355  size = prime_tab[size_prime_index].prime;
356
357  result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
358  if (result == NULL)
359    return NULL;
360  result->entries = (void **) (*alloc_f) (size, sizeof (void *));
361  if (result->entries == NULL)
362    {
363      if (free_f != NULL)
364	(*free_f) (result);
365      return NULL;
366    }
367  result->size = size;
368  result->size_prime_index = size_prime_index;
369  result->hash_f = hash_f;
370  result->eq_f = eq_f;
371  result->del_f = del_f;
372  result->alloc_f = alloc_f;
373  result->free_f = free_f;
374  return result;
375}
376
377
378/* Update the function pointers and allocation parameter in the htab_t.  */
379
380void
381htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
382                       htab_del del_f, void *alloc_arg,
383                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
384{
385  htab->hash_f = hash_f;
386  htab->eq_f = eq_f;
387  htab->del_f = del_f;
388  htab->alloc_arg = alloc_arg;
389  htab->alloc_with_arg_f = alloc_f;
390  htab->free_with_arg_f = free_f;
391}
392
393/* These functions exist solely for backward compatibility.  */
394
395#undef htab_create
396htab_t
397htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
398{
399  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
400}
401
402htab_t
403htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
404{
405  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
406}
407
408/* This function frees all memory allocated for given hash table.
409   Naturally the hash table must already exist. */
410
411void
412htab_delete (htab_t htab)
413{
414  size_t size = htab_size (htab);
415  void **entries = htab->entries;
416  int i;
417
418  if (htab->del_f)
419    for (i = size - 1; i >= 0; i--)
420      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
421	(*htab->del_f) (entries[i]);
422
423  if (htab->free_f != NULL)
424    {
425      (*htab->free_f) (entries);
426      (*htab->free_f) (htab);
427    }
428  else if (htab->free_with_arg_f != NULL)
429    {
430      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
431      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
432    }
433}
434
435/* This function clears all entries in the given hash table.  */
436
437void
438htab_empty (htab_t htab)
439{
440  size_t size = htab_size (htab);
441  void **entries = htab->entries;
442  int i;
443
444  if (htab->del_f)
445    for (i = size - 1; i >= 0; i--)
446      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
447	(*htab->del_f) (entries[i]);
448
449  /* Instead of clearing megabyte, downsize the table.  */
450  if (size > 1024*1024 / sizeof (void *))
451    {
452      int nindex = higher_prime_index (1024 / sizeof (void *));
453      int nsize = prime_tab[nindex].prime;
454
455      if (htab->free_f != NULL)
456	(*htab->free_f) (htab->entries);
457      else if (htab->free_with_arg_f != NULL)
458	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
459      if (htab->alloc_with_arg_f != NULL)
460	htab->entries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
461							     sizeof (void *));
462      else
463	htab->entries = (void **) (*htab->alloc_f) (nsize, sizeof (void *));
464     htab->size = nsize;
465     htab->size_prime_index = nindex;
466    }
467  else
468    memset (entries, 0, size * sizeof (void *));
469  htab->n_deleted = 0;
470  htab->n_elements = 0;
471}
472
473/* Similar to htab_find_slot, but without several unwanted side effects:
474    - Does not call htab->eq_f when it finds an existing entry.
475    - Does not change the count of elements/searches/collisions in the
476      hash table.
477   This function also assumes there are no deleted entries in the table.
478   HASH is the hash value for the element to be inserted.  */
479
480static void **
481find_empty_slot_for_expand (htab_t htab, hashval_t hash)
482{
483  hashval_t index = htab_mod (hash, htab);
484  size_t size = htab_size (htab);
485  void **slot = htab->entries + index;
486  hashval_t hash2;
487
488  if (*slot == HTAB_EMPTY_ENTRY)
489    return slot;
490  else if (*slot == HTAB_DELETED_ENTRY)
491    abort ();
492
493  hash2 = htab_mod_m2 (hash, htab);
494  for (;;)
495    {
496      index += hash2;
497      if (index >= size)
498	index -= size;
499
500      slot = htab->entries + index;
501      if (*slot == HTAB_EMPTY_ENTRY)
502	return slot;
503      else if (*slot == HTAB_DELETED_ENTRY)
504	abort ();
505    }
506}
507
508/* The following function changes size of memory allocated for the
509   entries and repeatedly inserts the table elements.  The occupancy
510   of the table after the call will be about 50%.  Naturally the hash
511   table must already exist.  Remember also that the place of the
512   table entries is changed.  If memory allocation failures are allowed,
513   this function will return zero, indicating that the table could not be
514   expanded.  If all goes well, it will return a non-zero value.  */
515
516static int
517htab_expand (htab_t htab)
518{
519  void **oentries;
520  void **olimit;
521  void **p;
522  void **nentries;
523  size_t nsize, osize, elts;
524  unsigned int oindex, nindex;
525
526  oentries = htab->entries;
527  oindex = htab->size_prime_index;
528  osize = htab->size;
529  olimit = oentries + osize;
530  elts = htab_elements (htab);
531
532  /* Resize only when table after removal of unused elements is either
533     too full or too empty.  */
534  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
535    {
536      nindex = higher_prime_index (elts * 2);
537      nsize = prime_tab[nindex].prime;
538    }
539  else
540    {
541      nindex = oindex;
542      nsize = osize;
543    }
544
545  if (htab->alloc_with_arg_f != NULL)
546    nentries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
547						    sizeof (void *));
548  else
549    nentries = (void **) (*htab->alloc_f) (nsize, sizeof (void *));
550  if (nentries == NULL)
551    return 0;
552  htab->entries = nentries;
553  htab->size = nsize;
554  htab->size_prime_index = nindex;
555  htab->n_elements -= htab->n_deleted;
556  htab->n_deleted = 0;
557
558  p = oentries;
559  do
560    {
561      void *x = *p;
562
563      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
564	{
565	  void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
566
567	  *q = x;
568	}
569
570      p++;
571    }
572  while (p < olimit);
573
574  if (htab->free_f != NULL)
575    (*htab->free_f) (oentries);
576  else if (htab->free_with_arg_f != NULL)
577    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
578  return 1;
579}
580
581/* This function searches for a hash table entry equal to the given
582   element.  It cannot be used to insert or delete an element.  */
583
584void *
585htab_find_with_hash (htab_t htab, const void *element, hashval_t hash)
586{
587  hashval_t index, hash2;
588  size_t size;
589  void *entry;
590
591  htab->searches++;
592  size = htab_size (htab);
593  index = htab_mod (hash, htab);
594
595  entry = htab->entries[index];
596  if (entry == HTAB_EMPTY_ENTRY
597      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
598    return entry;
599
600  hash2 = htab_mod_m2 (hash, htab);
601  for (;;)
602    {
603      htab->collisions++;
604      index += hash2;
605      if (index >= size)
606	index -= size;
607
608      entry = htab->entries[index];
609      if (entry == HTAB_EMPTY_ENTRY
610	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
611	return entry;
612    }
613}
614
615/* Like htab_find_slot_with_hash, but compute the hash value from the
616   element.  */
617
618void *
619htab_find (htab_t htab, const void *element)
620{
621  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
622}
623
624/* This function searches for a hash table slot containing an entry
625   equal to the given element.  To delete an entry, call this with
626   insert=NO_INSERT, then call htab_clear_slot on the slot returned
627   (possibly after doing some checks).  To insert an entry, call this
628   with insert=INSERT, then write the value you want into the returned
629   slot.  When inserting an entry, NULL may be returned if memory
630   allocation fails.  */
631
632void **
633htab_find_slot_with_hash (htab_t htab, const void *element,
634                          hashval_t hash, enum insert_option insert)
635{
636  void **first_deleted_slot;
637  hashval_t index, hash2;
638  size_t size;
639  void *entry;
640
641  size = htab_size (htab);
642  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
643    {
644      if (htab_expand (htab) == 0)
645	return NULL;
646      size = htab_size (htab);
647    }
648
649  index = htab_mod (hash, htab);
650
651  htab->searches++;
652  first_deleted_slot = NULL;
653
654  entry = htab->entries[index];
655  if (entry == HTAB_EMPTY_ENTRY)
656    goto empty_entry;
657  else if (entry == HTAB_DELETED_ENTRY)
658    first_deleted_slot = &htab->entries[index];
659  else if ((*htab->eq_f) (entry, element))
660    return &htab->entries[index];
661
662  hash2 = htab_mod_m2 (hash, htab);
663  for (;;)
664    {
665      htab->collisions++;
666      index += hash2;
667      if (index >= size)
668	index -= size;
669
670      entry = htab->entries[index];
671      if (entry == HTAB_EMPTY_ENTRY)
672	goto empty_entry;
673      else if (entry == HTAB_DELETED_ENTRY)
674	{
675	  if (!first_deleted_slot)
676	    first_deleted_slot = &htab->entries[index];
677	}
678      else if ((*htab->eq_f) (entry, element))
679	return &htab->entries[index];
680    }
681
682 empty_entry:
683  if (insert == NO_INSERT)
684    return NULL;
685
686  if (first_deleted_slot)
687    {
688      htab->n_deleted--;
689      *first_deleted_slot = HTAB_EMPTY_ENTRY;
690      return first_deleted_slot;
691    }
692
693  htab->n_elements++;
694  return &htab->entries[index];
695}
696
697/* Like htab_find_slot_with_hash, but compute the hash value from the
698   element.  */
699
700void **
701htab_find_slot (htab_t htab, const void *element, enum insert_option insert)
702{
703  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
704				   insert);
705}
706
707/* This function deletes an element with the given value from hash
708   table (the hash is computed from the element).  If there is no matching
709   element in the hash table, this function does nothing.  */
710
711void
712htab_remove_elt (htab_t htab, const void *element)
713{
714  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
715}
716
717
718/* This function deletes an element with the given value from hash
719   table.  If there is no matching element in the hash table, this
720   function does nothing.  */
721
722void
723htab_remove_elt_with_hash (htab_t htab, const void *element, hashval_t hash)
724{
725  void **slot;
726
727  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
728  if (slot == NULL)
729    return;
730
731  if (htab->del_f)
732    (*htab->del_f) (*slot);
733
734  *slot = HTAB_DELETED_ENTRY;
735  htab->n_deleted++;
736}
737
738/* This function clears a specified slot in a hash table.  It is
739   useful when you've already done the lookup and don't want to do it
740   again.  */
741
742void
743htab_clear_slot (htab_t htab, void **slot)
744{
745  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
746      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
747    abort ();
748
749  if (htab->del_f)
750    (*htab->del_f) (*slot);
751
752  *slot = HTAB_DELETED_ENTRY;
753  htab->n_deleted++;
754}
755
756/* This function scans over the entire hash table calling
757   CALLBACK for each live entry.  If CALLBACK returns false,
758   the iteration stops.  INFO is passed as CALLBACK's second
759   argument.  */
760
761void
762htab_traverse_noresize (htab_t htab, htab_trav callback, void *info)
763{
764  void **slot;
765  void **limit;
766
767  slot = htab->entries;
768  limit = slot + htab_size (htab);
769
770  do
771    {
772      void *x = *slot;
773
774      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
775	if (!(*callback) (slot, info))
776	  break;
777    }
778  while (++slot < limit);
779}
780
781/* Like htab_traverse_noresize, but does resize the table when it is
782   too empty to improve effectivity of subsequent calls.  */
783
784void
785htab_traverse (htab_t htab, htab_trav callback, void *info)
786{
787  size_t size = htab_size (htab);
788  if (htab_elements (htab) * 8 < size && size > 32)
789    htab_expand (htab);
790
791  htab_traverse_noresize (htab, callback, info);
792}
793
794/* Return the fraction of fixed collisions during all work with given
795   hash table. */
796
797double
798htab_collisions (htab_t htab)
799{
800  if (htab->searches == 0)
801    return 0.0;
802
803  return (double) htab->collisions / (double) htab->searches;
804}
805
806/* Hash P as a null-terminated string.
807
808   Copied from gcc/hashtable.c.  Zack had the following to say with respect
809   to applicability, though note that unlike hashtable.c, this hash table
810   implementation re-hashes rather than chain buckets.
811
812   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
813   From: Zack Weinberg <zackw@panix.com>
814   Date: Fri, 17 Aug 2001 02:15:56 -0400
815
816   I got it by extracting all the identifiers from all the source code
817   I had lying around in mid-1999, and testing many recurrences of
818   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
819   prime numbers or the appropriate identity.  This was the best one.
820   I don't remember exactly what constituted "best", except I was
821   looking at bucket-length distributions mostly.
822
823   So it should be very good at hashing identifiers, but might not be
824   as good at arbitrary strings.
825
826   I'll add that it thoroughly trounces the hash functions recommended
827   for this use at http://burtleburtle.net/bob/hash/index.html, both
828   on speed and bucket distribution.  I haven't tried it against the
829   function they just started using for Perl's hashes.  */
830
831hashval_t
832htab_hash_string (const void *p)
833{
834  const unsigned char *str = (const unsigned char *) p;
835  hashval_t r = 0;
836  unsigned char c;
837
838  while ((c = *str++) != 0)
839    r = r * 67 + c - 113;
840
841  return r;
842}
843
844/* An equality function for null-terminated strings.  */
845int
846htab_eq_string (const void *a, const void *b)
847{
848  return strcmp ((const char *) a, (const char *) b) == 0;
849}
850
851/* DERIVED FROM:
852--------------------------------------------------------------------
853lookup2.c, by Bob Jenkins, December 1996, Public Domain.
854hash(), hash2(), hash3, and mix() are externally useful functions.
855Routines to test the hash are included if SELF_TEST is defined.
856You can use this free for any purpose.  It has no warranty.
857--------------------------------------------------------------------
858*/
859
860/*
861--------------------------------------------------------------------
862mix -- mix 3 32-bit values reversibly.
863For every delta with one or two bit set, and the deltas of all three
864  high bits or all three low bits, whether the original value of a,b,c
865  is almost all zero or is uniformly distributed,
866* If mix() is run forward or backward, at least 32 bits in a,b,c
867  have at least 1/4 probability of changing.
868* If mix() is run forward, every bit of c will change between 1/3 and
869  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
870mix() was built out of 36 single-cycle latency instructions in a
871  structure that could supported 2x parallelism, like so:
872      a -= b;
873      a -= c; x = (c>>13);
874      b -= c; a ^= x;
875      b -= a; x = (a<<8);
876      c -= a; b ^= x;
877      c -= b; x = (b>>13);
878      ...
879  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
880  of that parallelism.  They've also turned some of those single-cycle
881  latency instructions into multi-cycle latency instructions.  Still,
882  this is the fastest good hash I could find.  There were about 2^^68
883  to choose from.  I only looked at a billion or so.
884--------------------------------------------------------------------
885*/
886/* same, but slower, works on systems that might have 8 byte hashval_t's */
887#define mix(a,b,c) \
888{ \
889  a -= b; a -= c; a ^= (c>>13); \
890  b -= c; b -= a; b ^= (a<< 8); \
891  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
892  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
893  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
894  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
895  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
896  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
897  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
898}
899
900/*
901--------------------------------------------------------------------
902hash() -- hash a variable-length key into a 32-bit value
903  k     : the key (the unaligned variable-length array of bytes)
904  len   : the length of the key, counting by bytes
905  level : can be any 4-byte value
906Returns a 32-bit value.  Every bit of the key affects every bit of
907the return value.  Every 1-bit and 2-bit delta achieves avalanche.
908About 36+6len instructions.
909
910The best hash table sizes are powers of 2.  There is no need to do
911mod a prime (mod is sooo slow!).  If you need less than 32 bits,
912use a bitmask.  For example, if you need only 10 bits, do
913  h = (h & hashmask(10));
914In which case, the hash table should have hashsize(10) elements.
915
916If you are hashing n strings (ub1 **)k, do it like this:
917  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
918
919By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
920code any way you wish, private, educational, or commercial.  It's free.
921
922See http://burtleburtle.net/bob/hash/evahash.html
923Use for hash table lookup, or anything where one collision in 2^32 is
924acceptable.  Do NOT use for cryptographic purposes.
925--------------------------------------------------------------------
926*/
927
928hashval_t
929iterative_hash (const void *k_in /* the key */,
930                register size_t  length /* the length of the key */,
931                register hashval_t initval /* the previous hash, or
932                                              an arbitrary value */)
933{
934  register const unsigned char *k = (const unsigned char *)k_in;
935  register hashval_t a,b,c,len;
936
937  /* Set up the internal state */
938  len = length;
939  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
940  c = initval;           /* the previous hash value */
941
942  /*---------------------------------------- handle most of the key */
943#ifndef WORDS_BIGENDIAN
944  /* On a little-endian machine, if the data is 4-byte aligned we can hash
945     by word for better speed.  This gives nondeterministic results on
946     big-endian machines.  */
947  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
948    while (len >= 12)    /* aligned */
949      {
950	a += *(hashval_t *)(k+0);
951	b += *(hashval_t *)(k+4);
952	c += *(hashval_t *)(k+8);
953	mix(a,b,c);
954	k += 12; len -= 12;
955      }
956  else /* unaligned */
957#endif
958    while (len >= 12)
959      {
960	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
961	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
962	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
963	mix(a,b,c);
964	k += 12; len -= 12;
965      }
966
967  /*------------------------------------- handle the last 11 bytes */
968  c += length;
969  switch(len)              /* all the case statements fall through */
970    {
971    case 11: c+=((hashval_t)k[10]<<24);	/* fall through */
972    case 10: c+=((hashval_t)k[9]<<16);	/* fall through */
973    case 9 : c+=((hashval_t)k[8]<<8);	/* fall through */
974      /* the first byte of c is reserved for the length */
975    case 8 : b+=((hashval_t)k[7]<<24);	/* fall through */
976    case 7 : b+=((hashval_t)k[6]<<16);	/* fall through */
977    case 6 : b+=((hashval_t)k[5]<<8);	/* fall through */
978    case 5 : b+=k[4];			/* fall through */
979    case 4 : a+=((hashval_t)k[3]<<24);	/* fall through */
980    case 3 : a+=((hashval_t)k[2]<<16);	/* fall through */
981    case 2 : a+=((hashval_t)k[1]<<8);	/* fall through */
982    case 1 : a+=k[0];
983      /* case 0: nothing left to add */
984    }
985  mix(a,b,c);
986  /*-------------------------------------------- report the result */
987  return c;
988}
989
990/* Returns a hash code for pointer P. Simplified version of evahash */
991
992static hashval_t
993hash_pointer (const void *p)
994{
995  intptr_t v = (intptr_t) p;
996  unsigned a, b, c;
997
998  a = b = 0x9e3779b9;
999  a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
1000  b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
1001  c = 0x42135234;
1002  mix (a, b, c);
1003  return c;
1004}
1005