1// symtab.h -- the gold symbol table   -*- C++ -*-
2
3// Copyright (C) 2006-2022 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Symbol_table
24//   The symbol table.
25
26#ifndef GOLD_SYMTAB_H
27#define GOLD_SYMTAB_H
28
29#include <string>
30#include <utility>
31#include <vector>
32
33#include "elfcpp.h"
34#include "parameters.h"
35#include "stringpool.h"
36#include "object.h"
37
38namespace gold
39{
40
41class Mapfile;
42class Object;
43class Relobj;
44template<int size, bool big_endian>
45class Sized_relobj_file;
46template<int size, bool big_endian>
47class Sized_pluginobj;
48class Dynobj;
49template<int size, bool big_endian>
50class Sized_dynobj;
51template<int size, bool big_endian>
52class Sized_incrobj;
53class Versions;
54class Version_script_info;
55class Input_objects;
56class Output_data;
57class Output_section;
58class Output_segment;
59class Output_file;
60class Output_symtab_xindex;
61class Garbage_collection;
62class Icf;
63
64// The base class of an entry in the symbol table.  The symbol table
65// can have a lot of entries, so we don't want this class too big.
66// Size dependent fields can be found in the template class
67// Sized_symbol.  Targets may support their own derived classes.
68
69class Symbol
70{
71 public:
72  // Because we want the class to be small, we don't use any virtual
73  // functions.  But because symbols can be defined in different
74  // places, we need to classify them.  This enum is the different
75  // sources of symbols we support.
76  enum Source
77  {
78    // Symbol defined in a relocatable or dynamic input file--this is
79    // the most common case.
80    FROM_OBJECT,
81    // Symbol defined in an Output_data, a special section created by
82    // the target.
83    IN_OUTPUT_DATA,
84    // Symbol defined in an Output_segment, with no associated
85    // section.
86    IN_OUTPUT_SEGMENT,
87    // Symbol value is constant.
88    IS_CONSTANT,
89    // Symbol is undefined.
90    IS_UNDEFINED
91  };
92
93  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94  // the offset means.
95  enum Segment_offset_base
96  {
97    // From the start of the segment.
98    SEGMENT_START,
99    // From the end of the segment.
100    SEGMENT_END,
101    // From the filesz of the segment--i.e., after the loaded bytes
102    // but before the bytes which are allocated but zeroed.
103    SEGMENT_BSS
104  };
105
106  // Return the symbol name.
107  const char*
108  name() const
109  { return this->name_; }
110
111  // Return the (ANSI) demangled version of the name, if
112  // parameters.demangle() is true.  Otherwise, return the name.  This
113  // is intended to be used only for logging errors, so it's not
114  // super-efficient.
115  std::string
116  demangled_name() const;
117
118  // Return the symbol version.  This will return NULL for an
119  // unversioned symbol.
120  const char*
121  version() const
122  { return this->version_; }
123
124  void
125  clear_version()
126  { this->version_ = NULL; }
127
128  // Return whether this version is the default for this symbol name
129  // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
130  // meaningful for versioned symbols.
131  bool
132  is_default() const
133  {
134    gold_assert(this->version_ != NULL);
135    return this->is_def_;
136  }
137
138  // Set that this version is the default for this symbol name.
139  void
140  set_is_default()
141  { this->is_def_ = true; }
142
143  // Set that this version is not the default for this symbol name.
144  void
145  set_is_not_default()
146  { this->is_def_ = false; }
147
148  // Return the symbol's name as name@version (or name@@version).
149  std::string
150  versioned_name() const;
151
152  // Return the symbol source.
153  Source
154  source() const
155  { return this->source_; }
156
157  // Return the object with which this symbol is associated.
158  Object*
159  object() const
160  {
161    gold_assert(this->source_ == FROM_OBJECT);
162    return this->u1_.object;
163  }
164
165  // Return the index of the section in the input relocatable or
166  // dynamic object file.
167  unsigned int
168  shndx(bool* is_ordinary) const
169  {
170    gold_assert(this->source_ == FROM_OBJECT);
171    *is_ordinary = this->is_ordinary_shndx_;
172    return this->u2_.shndx;
173  }
174
175  // Return the output data section with which this symbol is
176  // associated, if the symbol was specially defined with respect to
177  // an output data section.
178  Output_data*
179  output_data() const
180  {
181    gold_assert(this->source_ == IN_OUTPUT_DATA);
182    return this->u1_.output_data;
183  }
184
185  // If this symbol was defined with respect to an output data
186  // section, return whether the value is an offset from end.
187  bool
188  offset_is_from_end() const
189  {
190    gold_assert(this->source_ == IN_OUTPUT_DATA);
191    return this->u2_.offset_is_from_end;
192  }
193
194  // Return the output segment with which this symbol is associated,
195  // if the symbol was specially defined with respect to an output
196  // segment.
197  Output_segment*
198  output_segment() const
199  {
200    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201    return this->u1_.output_segment;
202  }
203
204  // If this symbol was defined with respect to an output segment,
205  // return the offset base.
206  Segment_offset_base
207  offset_base() const
208  {
209    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210    return this->u2_.offset_base;
211  }
212
213  // Return the symbol binding.
214  elfcpp::STB
215  binding() const
216  { return this->binding_; }
217
218  // Return the symbol type.
219  elfcpp::STT
220  type() const
221  { return this->type_; }
222
223  // Set the symbol type.
224  void
225  set_type(elfcpp::STT type)
226  { this->type_ = type; }
227
228  // Return true for function symbol.
229  bool
230  is_func() const
231  {
232    return (this->type_ == elfcpp::STT_FUNC
233	    || this->type_ == elfcpp::STT_GNU_IFUNC);
234  }
235
236  // Return the symbol visibility.
237  elfcpp::STV
238  visibility() const
239  { return this->visibility_; }
240
241  // Set the visibility.
242  void
243  set_visibility(elfcpp::STV visibility)
244  { this->visibility_ = visibility; }
245
246  // Override symbol visibility.
247  void
248  override_visibility(elfcpp::STV);
249
250  // Set whether the symbol was originally a weak undef or a regular undef
251  // when resolved by a dynamic def or by a special symbol.
252  inline void
253  set_undef_binding(elfcpp::STB bind)
254  {
255    if (!this->undef_binding_set_ || this->undef_binding_weak_)
256      {
257        this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258        this->undef_binding_set_ = true;
259      }
260  }
261
262  // Return TRUE if a weak undef was resolved by a dynamic def or
263  // by a special symbol.
264  inline bool
265  is_undef_binding_weak() const
266  { return this->undef_binding_weak_; }
267
268  // Return the non-visibility part of the st_other field.
269  unsigned char
270  nonvis() const
271  { return this->nonvis_; }
272
273  // Set the non-visibility part of the st_other field.
274  void
275  set_nonvis(unsigned int nonvis)
276  { this->nonvis_ = nonvis; }
277
278  // Return whether this symbol is a forwarder.  This will never be
279  // true of a symbol found in the hash table, but may be true of
280  // symbol pointers attached to object files.
281  bool
282  is_forwarder() const
283  { return this->is_forwarder_; }
284
285  // Mark this symbol as a forwarder.
286  void
287  set_forwarder()
288  { this->is_forwarder_ = true; }
289
290  // Return whether this symbol has an alias in the weak aliases table
291  // in Symbol_table.
292  bool
293  has_alias() const
294  { return this->has_alias_; }
295
296  // Mark this symbol as having an alias.
297  void
298  set_has_alias()
299  { this->has_alias_ = true; }
300
301  // Return whether this symbol needs an entry in the dynamic symbol
302  // table.
303  bool
304  needs_dynsym_entry() const
305  {
306    return (this->needs_dynsym_entry_
307            || (this->in_reg()
308		&& this->in_dyn()
309		&& this->is_externally_visible()));
310  }
311
312  // Mark this symbol as needing an entry in the dynamic symbol table.
313  void
314  set_needs_dynsym_entry()
315  { this->needs_dynsym_entry_ = true; }
316
317  // Return whether this symbol should be added to the dynamic symbol
318  // table.
319  bool
320  should_add_dynsym_entry(Symbol_table*) const;
321
322  // Return whether this symbol has been seen in a regular object.
323  bool
324  in_reg() const
325  { return this->in_reg_; }
326
327  // Mark this symbol as having been seen in a regular object.
328  void
329  set_in_reg()
330  { this->in_reg_ = true; }
331
332  // Forget this symbol was seen in a regular object.
333  void
334  clear_in_reg()
335  { this->in_reg_ = false; }
336
337  // Return whether this symbol has been seen in a dynamic object.
338  bool
339  in_dyn() const
340  { return this->in_dyn_; }
341
342  // Mark this symbol as having been seen in a dynamic object.
343  void
344  set_in_dyn()
345  { this->in_dyn_ = true; }
346
347  // Return whether this symbol is defined in a dynamic object.
348  bool
349  from_dyn() const
350  { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }
351
352  // Return whether this symbol has been seen in a real ELF object.
353  // (IN_REG will return TRUE if the symbol has been seen in either
354  // a real ELF object or an object claimed by a plugin.)
355  bool
356  in_real_elf() const
357  { return this->in_real_elf_; }
358
359  // Mark this symbol as having been seen in a real ELF object.
360  void
361  set_in_real_elf()
362  { this->in_real_elf_ = true; }
363
364  // Return whether this symbol was defined in a section that was
365  // discarded from the link.  This is used to control some error
366  // reporting.
367  bool
368  is_defined_in_discarded_section() const
369  { return this->is_defined_in_discarded_section_; }
370
371  // Mark this symbol as having been defined in a discarded section.
372  void
373  set_is_defined_in_discarded_section()
374  { this->is_defined_in_discarded_section_ = true; }
375
376  // Return the index of this symbol in the output file symbol table.
377  // A value of -1U means that this symbol is not going into the
378  // output file.  This starts out as zero, and is set to a non-zero
379  // value by Symbol_table::finalize.  It is an error to ask for the
380  // symbol table index before it has been set.
381  unsigned int
382  symtab_index() const
383  {
384    gold_assert(this->symtab_index_ != 0);
385    return this->symtab_index_;
386  }
387
388  // Set the index of the symbol in the output file symbol table.
389  void
390  set_symtab_index(unsigned int index)
391  {
392    gold_assert(index != 0);
393    this->symtab_index_ = index;
394  }
395
396  // Return whether this symbol already has an index in the output
397  // file symbol table.
398  bool
399  has_symtab_index() const
400  { return this->symtab_index_ != 0; }
401
402  // Return the index of this symbol in the dynamic symbol table.  A
403  // value of -1U means that this symbol is not going into the dynamic
404  // symbol table.  This starts out as zero, and is set to a non-zero
405  // during Layout::finalize.  It is an error to ask for the dynamic
406  // symbol table index before it has been set.
407  unsigned int
408  dynsym_index() const
409  {
410    gold_assert(this->dynsym_index_ != 0);
411    return this->dynsym_index_;
412  }
413
414  // Set the index of the symbol in the dynamic symbol table.
415  void
416  set_dynsym_index(unsigned int index)
417  {
418    gold_assert(index != 0);
419    this->dynsym_index_ = index;
420  }
421
422  // Return whether this symbol already has an index in the dynamic
423  // symbol table.
424  bool
425  has_dynsym_index() const
426  { return this->dynsym_index_ != 0; }
427
428  // Return whether this symbol has an entry in the GOT section.
429  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
430  bool
431  has_got_offset(unsigned int got_type, uint64_t addend = 0) const
432  { return this->got_offsets_.get_offset(got_type, addend) != -1U; }
433
434  // Return the offset into the GOT section of this symbol.
435  unsigned int
436  got_offset(unsigned int got_type, uint64_t addend = 0) const
437  {
438    unsigned int got_offset = this->got_offsets_.get_offset(got_type, addend);
439    gold_assert(got_offset != -1U);
440    return got_offset;
441  }
442
443  // Set the GOT offset of this symbol.
444  void
445  set_got_offset(unsigned int got_type, unsigned int got_offset,
446		 uint64_t addend = 0)
447  { this->got_offsets_.set_offset(got_type, got_offset, addend); }
448
449  // Return the GOT offset list.
450  const Got_offset_list*
451  got_offset_list() const
452  { return this->got_offsets_.get_list(); }
453
454  // Return whether this symbol has an entry in the PLT section.
455  bool
456  has_plt_offset() const
457  { return this->plt_offset_ != -1U; }
458
459  // Return the offset into the PLT section of this symbol.
460  unsigned int
461  plt_offset() const
462  {
463    gold_assert(this->has_plt_offset());
464    return this->plt_offset_;
465  }
466
467  // Set the PLT offset of this symbol.
468  void
469  set_plt_offset(unsigned int plt_offset)
470  {
471    gold_assert(plt_offset != -1U);
472    this->plt_offset_ = plt_offset;
473  }
474
475  // Return whether this dynamic symbol needs a special value in the
476  // dynamic symbol table.
477  bool
478  needs_dynsym_value() const
479  { return this->needs_dynsym_value_; }
480
481  // Set that this dynamic symbol needs a special value in the dynamic
482  // symbol table.
483  void
484  set_needs_dynsym_value()
485  {
486    gold_assert(this->object()->is_dynamic());
487    this->needs_dynsym_value_ = true;
488  }
489
490  // Return true if the final value of this symbol is known at link
491  // time.
492  bool
493  final_value_is_known() const;
494
495  // Return true if SHNDX represents a common symbol.  This depends on
496  // the target.
497  static bool
498  is_common_shndx(unsigned int shndx);
499
500  // Return whether this is a defined symbol (not undefined or
501  // common).
502  bool
503  is_defined() const
504  {
505    bool is_ordinary;
506    if (this->source_ != FROM_OBJECT)
507      return this->source_ != IS_UNDEFINED;
508    unsigned int shndx = this->shndx(&is_ordinary);
509    return (is_ordinary
510	    ? shndx != elfcpp::SHN_UNDEF
511	    : !Symbol::is_common_shndx(shndx));
512  }
513
514  // Return true if this symbol is from a dynamic object.
515  bool
516  is_from_dynobj() const
517  {
518    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
519  }
520
521  // Return whether this is a placeholder symbol from a plugin object.
522  bool
523  is_placeholder() const
524  {
525    return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
526  }
527
528  // Return whether this is an undefined symbol.
529  bool
530  is_undefined() const
531  {
532    bool is_ordinary;
533    return ((this->source_ == FROM_OBJECT
534	     && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
535	     && is_ordinary)
536	    || this->source_ == IS_UNDEFINED);
537  }
538
539  // Return whether this is a weak undefined symbol.
540  bool
541  is_weak_undefined() const
542  {
543    return (this->is_undefined()
544	    && (this->binding() == elfcpp::STB_WEAK
545		|| this->is_undef_binding_weak()
546		|| parameters->options().weak_unresolved_symbols()));
547  }
548
549  // Return whether this is a strong undefined symbol.
550  bool
551  is_strong_undefined() const
552  {
553    return (this->is_undefined()
554	    && this->binding() != elfcpp::STB_WEAK
555	    && !this->is_undef_binding_weak()
556	    && !parameters->options().weak_unresolved_symbols());
557  }
558
559  // Return whether this is an absolute symbol.
560  bool
561  is_absolute() const
562  {
563    bool is_ordinary;
564    return ((this->source_ == FROM_OBJECT
565	     && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
566	     && !is_ordinary)
567	    || this->source_ == IS_CONSTANT);
568  }
569
570  // Return whether this is a common symbol.
571  bool
572  is_common() const
573  {
574    if (this->source_ != FROM_OBJECT)
575      return false;
576    bool is_ordinary;
577    unsigned int shndx = this->shndx(&is_ordinary);
578    return !is_ordinary && Symbol::is_common_shndx(shndx);
579  }
580
581  // Return whether this symbol can be seen outside this object.
582  bool
583  is_externally_visible() const
584  {
585    return ((this->visibility_ == elfcpp::STV_DEFAULT
586             || this->visibility_ == elfcpp::STV_PROTECTED)
587	    && !this->is_forced_local_);
588  }
589
590  // Return true if this symbol can be preempted by a definition in
591  // another link unit.
592  bool
593  is_preemptible() const
594  {
595    // It doesn't make sense to ask whether a symbol defined in
596    // another object is preemptible.
597    gold_assert(!this->is_from_dynobj());
598
599    // It doesn't make sense to ask whether an undefined symbol
600    // is preemptible.
601    gold_assert(!this->is_undefined());
602
603    // If a symbol does not have default visibility, it can not be
604    // seen outside this link unit and therefore is not preemptible.
605    if (this->visibility_ != elfcpp::STV_DEFAULT)
606      return false;
607
608    // If this symbol has been forced to be a local symbol by a
609    // version script, then it is not visible outside this link unit
610    // and is not preemptible.
611    if (this->is_forced_local_)
612      return false;
613
614    // If we are not producing a shared library, then nothing is
615    // preemptible.
616    if (!parameters->options().shared())
617      return false;
618
619    // If the symbol was named in a --dynamic-list script, it is preemptible.
620    if (parameters->options().in_dynamic_list(this->name()))
621      return true;
622
623    // If the user used -Bsymbolic, then nothing (else) is preemptible.
624    if (parameters->options().Bsymbolic())
625      return false;
626
627    // If the user used -Bsymbolic-functions, then functions are not
628    // preemptible.  We explicitly check for not being STT_OBJECT,
629    // rather than for being STT_FUNC, because that is what the GNU
630    // linker does.
631    if (this->type() != elfcpp::STT_OBJECT
632	&& parameters->options().Bsymbolic_functions())
633      return false;
634
635    // Otherwise the symbol is preemptible.
636    return true;
637  }
638
639  // Return true if this symbol is a function that needs a PLT entry.
640  bool
641  needs_plt_entry() const
642  {
643    // An undefined symbol from an executable does not need a PLT entry.
644    if (this->is_undefined() && !parameters->options().shared())
645      return false;
646
647    // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
648    // doing a static link.
649    if (this->type() == elfcpp::STT_GNU_IFUNC)
650      return true;
651
652    // We only need a PLT entry for a function.
653    if (!this->is_func())
654      return false;
655
656    // If we're doing a static link or a -pie link, we don't create
657    // PLT entries.
658    if (parameters->doing_static_link()
659	|| parameters->options().pie())
660      return false;
661
662    // We need a PLT entry if the function is defined in a dynamic
663    // object, or is undefined when building a shared object, or if it
664    // is subject to pre-emption.
665    return (this->is_from_dynobj()
666	    || this->is_undefined()
667	    || this->is_preemptible());
668  }
669
670  // When determining whether a reference to a symbol needs a dynamic
671  // relocation, we need to know several things about the reference.
672  // These flags may be or'ed together.  0 means that the symbol
673  // isn't referenced at all.
674  enum Reference_flags
675  {
676    // A reference to the symbol's absolute address.  This includes
677    // references that cause an absolute address to be stored in the GOT.
678    ABSOLUTE_REF = 1,
679    // A reference that calculates the offset of the symbol from some
680    // anchor point, such as the PC or GOT.
681    RELATIVE_REF = 2,
682    // A TLS-related reference.
683    TLS_REF = 4,
684    // A reference that can always be treated as a function call.
685    FUNCTION_CALL = 8,
686    // When set, says that dynamic relocations are needed even if a
687    // symbol has a plt entry.
688    FUNC_DESC_ABI = 16,
689  };
690
691  // Given a direct absolute or pc-relative static relocation against
692  // the global symbol, this function returns whether a dynamic relocation
693  // is needed.
694
695  bool
696  needs_dynamic_reloc(int flags) const
697  {
698    // No dynamic relocations in a static link!
699    if (parameters->doing_static_link())
700      return false;
701
702    // A reference to an undefined symbol from an executable should be
703    // statically resolved to 0, and does not need a dynamic relocation.
704    // This matches gnu ld behavior.
705    if (this->is_undefined() && !parameters->options().shared())
706      return false;
707
708    // A reference to an absolute symbol does not need a dynamic relocation.
709    if (this->is_absolute())
710      return false;
711
712    // An absolute reference within a position-independent output file
713    // will need a dynamic relocation.
714    if ((flags & ABSOLUTE_REF)
715        && parameters->options().output_is_position_independent())
716      return true;
717
718    // A function call that can branch to a local PLT entry does not need
719    // a dynamic relocation.
720    if ((flags & FUNCTION_CALL) && this->has_plt_offset())
721      return false;
722
723    // A reference to any PLT entry in a non-position-independent executable
724    // does not need a dynamic relocation.
725    if (!(flags & FUNC_DESC_ABI)
726	&& !parameters->options().output_is_position_independent()
727        && this->has_plt_offset())
728      return false;
729
730    // A reference to a symbol defined in a dynamic object or to a
731    // symbol that is preemptible will need a dynamic relocation.
732    if (this->is_from_dynobj()
733        || this->is_undefined()
734        || this->is_preemptible())
735      return true;
736
737    // For all other cases, return FALSE.
738    return false;
739  }
740
741  // Whether we should use the PLT offset associated with a symbol for
742  // a relocation.  FLAGS is a set of Reference_flags.
743
744  bool
745  use_plt_offset(int flags) const
746  {
747    // If the symbol doesn't have a PLT offset, then naturally we
748    // don't want to use it.
749    if (!this->has_plt_offset())
750      return false;
751
752    // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
753    if (this->type() == elfcpp::STT_GNU_IFUNC)
754      return true;
755
756    // If we are going to generate a dynamic relocation, then we will
757    // wind up using that, so no need to use the PLT entry.
758    if (this->needs_dynamic_reloc(flags))
759      return false;
760
761    // If the symbol is from a dynamic object, we need to use the PLT
762    // entry.
763    if (this->is_from_dynobj())
764      return true;
765
766    // If we are generating a shared object, and this symbol is
767    // undefined or preemptible, we need to use the PLT entry.
768    if (parameters->options().shared()
769	&& (this->is_undefined() || this->is_preemptible()))
770      return true;
771
772    // If this is a call to a weak undefined symbol, we need to use
773    // the PLT entry; the symbol may be defined by a library loaded
774    // at runtime.
775    if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
776      return true;
777
778    // Otherwise we can use the regular definition.
779    return false;
780  }
781
782  // Given a direct absolute static relocation against
783  // the global symbol, where a dynamic relocation is needed, this
784  // function returns whether a relative dynamic relocation can be used.
785  // The caller must determine separately whether the static relocation
786  // is compatible with a relative relocation.
787
788  bool
789  can_use_relative_reloc(bool is_function_call) const
790  {
791    // A function call that can branch to a local PLT entry can
792    // use a RELATIVE relocation.
793    if (is_function_call && this->has_plt_offset())
794      return true;
795
796    // A reference to a symbol defined in a dynamic object or to a
797    // symbol that is preemptible can not use a RELATIVE relocation.
798    if (this->is_from_dynobj()
799        || this->is_undefined()
800        || this->is_preemptible())
801      return false;
802
803    // For all other cases, return TRUE.
804    return true;
805  }
806
807  // Return the output section where this symbol is defined.  Return
808  // NULL if the symbol has an absolute value.
809  Output_section*
810  output_section() const;
811
812  // Set the symbol's output section.  This is used for symbols
813  // defined in scripts.  This should only be called after the symbol
814  // table has been finalized.
815  void
816  set_output_section(Output_section*);
817
818  // Set the symbol's output segment.  This is used for pre-defined
819  // symbols whose segments aren't known until after layout is done
820  // (e.g., __ehdr_start).
821  void
822  set_output_segment(Output_segment*, Segment_offset_base);
823
824  // Set the symbol to undefined.  This is used for pre-defined
825  // symbols whose segments aren't known until after layout is done
826  // (e.g., __ehdr_start).
827  void
828  set_undefined();
829
830  // Return whether there should be a warning for references to this
831  // symbol.
832  bool
833  has_warning() const
834  { return this->has_warning_; }
835
836  // Mark this symbol as having a warning.
837  void
838  set_has_warning()
839  { this->has_warning_ = true; }
840
841  // Return whether this symbol is defined by a COPY reloc from a
842  // dynamic object.
843  bool
844  is_copied_from_dynobj() const
845  { return this->is_copied_from_dynobj_; }
846
847  // Mark this symbol as defined by a COPY reloc.
848  void
849  set_is_copied_from_dynobj()
850  { this->is_copied_from_dynobj_ = true; }
851
852  // Return whether this symbol is forced to visibility STB_LOCAL
853  // by a "local:" entry in a version script.
854  bool
855  is_forced_local() const
856  { return this->is_forced_local_; }
857
858  // Mark this symbol as forced to STB_LOCAL visibility.
859  void
860  set_is_forced_local()
861  { this->is_forced_local_ = true; }
862
863  // Return true if this may need a COPY relocation.
864  // References from an executable object to non-function symbols
865  // defined in a dynamic object may need a COPY relocation.
866  bool
867  may_need_copy_reloc() const
868  {
869    return (parameters->options().copyreloc()
870	    && this->is_from_dynobj()
871	    && !this->is_func());
872  }
873
874  // Return true if this symbol was predefined by the linker.
875  bool
876  is_predefined() const
877  { return this->is_predefined_; }
878
879  // Return true if this is a C++ vtable symbol.
880  bool
881  is_cxx_vtable() const
882  { return is_prefix_of("_ZTV", this->name_); }
883
884  // Return true if this symbol is protected in a shared object.
885  // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
886  // because the visibility_ field reflects the symbol's visibility from
887  // outside the shared object.
888  bool
889  is_protected() const
890  { return this->is_protected_; }
891
892  // Mark this symbol as protected in a shared object.
893  void
894  set_is_protected()
895  { this->is_protected_ = true; }
896
897  // Return state of PowerPC64 ELFv2 specific flag.
898  bool
899  non_zero_localentry() const
900  { return this->non_zero_localentry_; }
901
902  // Set PowerPC64 ELFv2 specific flag.
903  void
904  set_non_zero_localentry()
905  { this->non_zero_localentry_ = true; }
906
907  // Completely override existing symbol.  Everything bar name_,
908  // version_, and is_forced_local_ flag are copied.  version_ is
909  // cleared if from->version_ is clear.  Returns true if this symbol
910  // should be forced local.
911  bool
912  clone(const Symbol* from);
913
914 protected:
915  // Instances of this class should always be created at a specific
916  // size.
917  Symbol()
918  { memset(static_cast<void*>(this), 0, sizeof *this); }
919
920  // Initialize the general fields.
921  void
922  init_fields(const char* name, const char* version,
923	      elfcpp::STT type, elfcpp::STB binding,
924	      elfcpp::STV visibility, unsigned char nonvis);
925
926  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
927  // section index, IS_ORDINARY is whether it is a normal section
928  // index rather than a special code.
929  template<int size, bool big_endian>
930  void
931  init_base_object(const char* name, const char* version, Object* object,
932		   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
933		   bool is_ordinary);
934
935  // Initialize fields for an Output_data.
936  void
937  init_base_output_data(const char* name, const char* version, Output_data*,
938			elfcpp::STT, elfcpp::STB, elfcpp::STV,
939			unsigned char nonvis, bool offset_is_from_end,
940			bool is_predefined);
941
942  // Initialize fields for an Output_segment.
943  void
944  init_base_output_segment(const char* name, const char* version,
945			   Output_segment* os, elfcpp::STT type,
946			   elfcpp::STB binding, elfcpp::STV visibility,
947			   unsigned char nonvis,
948			   Segment_offset_base offset_base,
949			   bool is_predefined);
950
951  // Initialize fields for a constant.
952  void
953  init_base_constant(const char* name, const char* version, elfcpp::STT type,
954		     elfcpp::STB binding, elfcpp::STV visibility,
955		     unsigned char nonvis, bool is_predefined);
956
957  // Initialize fields for an undefined symbol.
958  void
959  init_base_undefined(const char* name, const char* version, elfcpp::STT type,
960		      elfcpp::STB binding, elfcpp::STV visibility,
961		      unsigned char nonvis);
962
963  // Override existing symbol.
964  template<int size, bool big_endian>
965  void
966  override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
967		bool is_ordinary, Object* object, const char* version);
968
969  // Override existing symbol with a special symbol.
970  void
971  override_base_with_special(const Symbol* from);
972
973  // Override symbol version.
974  void
975  override_version(const char* version);
976
977  // Allocate a common symbol by giving it a location in the output
978  // file.
979  void
980  allocate_base_common(Output_data*);
981
982 private:
983  Symbol(const Symbol&);
984  Symbol& operator=(const Symbol&);
985
986  // Symbol name (expected to point into a Stringpool).
987  const char* name_;
988  // Symbol version (expected to point into a Stringpool).  This may
989  // be NULL.
990  const char* version_;
991
992  union
993  {
994    // This is used if SOURCE_ == FROM_OBJECT.
995    // Object in which symbol is defined, or in which it was first
996    // seen.
997    Object* object;
998
999    // This is used if SOURCE_ == IN_OUTPUT_DATA.
1000    // Output_data in which symbol is defined.  Before
1001    // Layout::finalize the symbol's value is an offset within the
1002    // Output_data.
1003    Output_data* output_data;
1004
1005    // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1006    // Output_segment in which the symbol is defined.  Before
1007    // Layout::finalize the symbol's value is an offset.
1008    Output_segment* output_segment;
1009  } u1_;
1010
1011  union
1012  {
1013    // This is used if SOURCE_ == FROM_OBJECT.
1014    // Section number in object in which symbol is defined.
1015    unsigned int shndx;
1016
1017    // This is used if SOURCE_ == IN_OUTPUT_DATA.
1018    // True if the offset is from the end, false if the offset is
1019    // from the beginning.
1020    bool offset_is_from_end;
1021
1022    // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1023    // The base to use for the offset before Layout::finalize.
1024    Segment_offset_base offset_base;
1025  } u2_;
1026
1027  // The index of this symbol in the output file.  If the symbol is
1028  // not going into the output file, this value is -1U.  This field
1029  // starts as always holding zero.  It is set to a non-zero value by
1030  // Symbol_table::finalize.
1031  unsigned int symtab_index_;
1032
1033  // The index of this symbol in the dynamic symbol table.  If the
1034  // symbol is not going into the dynamic symbol table, this value is
1035  // -1U.  This field starts as always holding zero.  It is set to a
1036  // non-zero value during Layout::finalize.
1037  unsigned int dynsym_index_;
1038
1039  // If this symbol has an entry in the PLT section, then this is the
1040  // offset from the start of the PLT section.  This is -1U if there
1041  // is no PLT entry.
1042  unsigned int plt_offset_;
1043
1044  // The GOT section entries for this symbol.  A symbol may have more
1045  // than one GOT offset (e.g., when mixing modules compiled with two
1046  // different TLS models), but will usually have at most one.
1047  Got_offset_list got_offsets_;
1048
1049  // Symbol type (bits 0 to 3).
1050  elfcpp::STT type_ : 4;
1051  // Symbol binding (bits 4 to 7).
1052  elfcpp::STB binding_ : 4;
1053  // Symbol visibility (bits 8 to 9).
1054  elfcpp::STV visibility_ : 2;
1055  // Rest of symbol st_other field (bits 10 to 15).
1056  unsigned int nonvis_ : 6;
1057  // The type of symbol (bits 16 to 18).
1058  Source source_ : 3;
1059  // True if this is the default version of the symbol (bit 19).
1060  bool is_def_ : 1;
1061  // True if this symbol really forwards to another symbol.  This is
1062  // used when we discover after the fact that two different entries
1063  // in the hash table really refer to the same symbol.  This will
1064  // never be set for a symbol found in the hash table, but may be set
1065  // for a symbol found in the list of symbols attached to an Object.
1066  // It forwards to the symbol found in the forwarders_ map of
1067  // Symbol_table (bit 20).
1068  bool is_forwarder_ : 1;
1069  // True if the symbol has an alias in the weak_aliases table in
1070  // Symbol_table (bit 21).
1071  bool has_alias_ : 1;
1072  // True if this symbol needs to be in the dynamic symbol table (bit
1073  // 22).
1074  bool needs_dynsym_entry_ : 1;
1075  // True if we've seen this symbol in a regular object (bit 23).
1076  bool in_reg_ : 1;
1077  // True if we've seen this symbol in a dynamic object (bit 24).
1078  bool in_dyn_ : 1;
1079  // True if this is a dynamic symbol which needs a special value in
1080  // the dynamic symbol table (bit 25).
1081  bool needs_dynsym_value_ : 1;
1082  // True if there is a warning for this symbol (bit 26).
1083  bool has_warning_ : 1;
1084  // True if we are using a COPY reloc for this symbol, so that the
1085  // real definition lives in a dynamic object (bit 27).
1086  bool is_copied_from_dynobj_ : 1;
1087  // True if this symbol was forced to local visibility by a version
1088  // script (bit 28).
1089  bool is_forced_local_ : 1;
1090  // True if the field u2_.shndx is an ordinary section
1091  // index, not one of the special codes from SHN_LORESERVE to
1092  // SHN_HIRESERVE (bit 29).
1093  bool is_ordinary_shndx_ : 1;
1094  // True if we've seen this symbol in a "real" ELF object (bit 30).
1095  // If the symbol has been seen in a relocatable, non-IR, object file,
1096  // it's known to be referenced from outside the IR.  A reference from
1097  // a dynamic object doesn't count as a "real" ELF, and we'll simply
1098  // mark the symbol as "visible" from outside the IR.  The compiler
1099  // can use this distinction to guide its handling of COMDAT symbols.
1100  bool in_real_elf_ : 1;
1101  // True if this symbol is defined in a section which was discarded
1102  // (bit 31).
1103  bool is_defined_in_discarded_section_ : 1;
1104  // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1105  bool undef_binding_set_ : 1;
1106  // True if this symbol was a weak undef resolved by a dynamic def
1107  // or by a special symbol (bit 33).
1108  bool undef_binding_weak_ : 1;
1109  // True if this symbol is a predefined linker symbol (bit 34).
1110  bool is_predefined_ : 1;
1111  // True if this symbol has protected visibility in a shared object (bit 35).
1112  // The visibility_ field will be STV_DEFAULT in this case because we
1113  // must treat it as such from outside the shared object.
1114  bool is_protected_  : 1;
1115  // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1116  bool non_zero_localentry_ : 1;
1117};
1118
1119// The parts of a symbol which are size specific.  Using a template
1120// derived class like this helps us use less space on a 32-bit system.
1121
1122template<int size>
1123class Sized_symbol : public Symbol
1124{
1125 public:
1126  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1127  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1128
1129  Sized_symbol()
1130  { }
1131
1132  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1133  // section index, IS_ORDINARY is whether it is a normal section
1134  // index rather than a special code.
1135  template<bool big_endian>
1136  void
1137  init_object(const char* name, const char* version, Object* object,
1138	      const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1139	      bool is_ordinary);
1140
1141  // Initialize fields for an Output_data.
1142  void
1143  init_output_data(const char* name, const char* version, Output_data*,
1144		   Value_type value, Size_type symsize, elfcpp::STT,
1145		   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1146		   bool offset_is_from_end, bool is_predefined);
1147
1148  // Initialize fields for an Output_segment.
1149  void
1150  init_output_segment(const char* name, const char* version, Output_segment*,
1151		      Value_type value, Size_type symsize, elfcpp::STT,
1152		      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1153		      Segment_offset_base offset_base, bool is_predefined);
1154
1155  // Initialize fields for a constant.
1156  void
1157  init_constant(const char* name, const char* version, Value_type value,
1158		Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1159		unsigned char nonvis, bool is_predefined);
1160
1161  // Initialize fields for an undefined symbol.
1162  void
1163  init_undefined(const char* name, const char* version, Value_type value,
1164		 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1165
1166  // Override existing symbol.
1167  template<bool big_endian>
1168  void
1169  override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1170	   bool is_ordinary, Object* object, const char* version);
1171
1172  // Override existing symbol with a special symbol.
1173  void
1174  override_with_special(const Sized_symbol<size>*);
1175
1176  // Return the symbol's value.
1177  Value_type
1178  value() const
1179  { return this->value_; }
1180
1181  // Return the symbol's size (we can't call this 'size' because that
1182  // is a template parameter).
1183  Size_type
1184  symsize() const
1185  { return this->symsize_; }
1186
1187  // Set the symbol size.  This is used when resolving common symbols.
1188  void
1189  set_symsize(Size_type symsize)
1190  { this->symsize_ = symsize; }
1191
1192  // Set the symbol value.  This is called when we store the final
1193  // values of the symbols into the symbol table.
1194  void
1195  set_value(Value_type value)
1196  { this->value_ = value; }
1197
1198  // Allocate a common symbol by giving it a location in the output
1199  // file.
1200  void
1201  allocate_common(Output_data*, Value_type value);
1202
1203  // Completely override existing symbol.  Everything bar name_,
1204  // version_, and is_forced_local_ flag are copied.  version_ is
1205  // cleared if from->version_ is clear.  Returns true if this symbol
1206  // should be forced local.
1207  bool
1208  clone(const Sized_symbol<size>* from);
1209
1210 private:
1211  Sized_symbol(const Sized_symbol&);
1212  Sized_symbol& operator=(const Sized_symbol&);
1213
1214  // Symbol value.  Before Layout::finalize this is the offset in the
1215  // input section.  This is set to the final value during
1216  // Layout::finalize.
1217  Value_type value_;
1218  // Symbol size.
1219  Size_type symsize_;
1220};
1221
1222// A struct describing a symbol defined by the linker, where the value
1223// of the symbol is defined based on an output section.  This is used
1224// for symbols defined by the linker, like "_init_array_start".
1225
1226struct Define_symbol_in_section
1227{
1228  // The symbol name.
1229  const char* name;
1230  // The name of the output section with which this symbol should be
1231  // associated.  If there is no output section with that name, the
1232  // symbol will be defined as zero.
1233  const char* output_section;
1234  // The offset of the symbol within the output section.  This is an
1235  // offset from the start of the output section, unless start_at_end
1236  // is true, in which case this is an offset from the end of the
1237  // output section.
1238  uint64_t value;
1239  // The size of the symbol.
1240  uint64_t size;
1241  // The symbol type.
1242  elfcpp::STT type;
1243  // The symbol binding.
1244  elfcpp::STB binding;
1245  // The symbol visibility.
1246  elfcpp::STV visibility;
1247  // The rest of the st_other field.
1248  unsigned char nonvis;
1249  // If true, the value field is an offset from the end of the output
1250  // section.
1251  bool offset_is_from_end;
1252  // If true, this symbol is defined only if we see a reference to it.
1253  bool only_if_ref;
1254};
1255
1256// A struct describing a symbol defined by the linker, where the value
1257// of the symbol is defined based on a segment.  This is used for
1258// symbols defined by the linker, like "_end".  We describe the
1259// segment with which the symbol should be associated by its
1260// characteristics.  If no segment meets these characteristics, the
1261// symbol will be defined as zero.  If there is more than one segment
1262// which meets these characteristics, we will use the first one.
1263
1264struct Define_symbol_in_segment
1265{
1266  // The symbol name.
1267  const char* name;
1268  // The segment type where the symbol should be defined, typically
1269  // PT_LOAD.
1270  elfcpp::PT segment_type;
1271  // Bitmask of segment flags which must be set.
1272  elfcpp::PF segment_flags_set;
1273  // Bitmask of segment flags which must be clear.
1274  elfcpp::PF segment_flags_clear;
1275  // The offset of the symbol within the segment.  The offset is
1276  // calculated from the position set by offset_base.
1277  uint64_t value;
1278  // The size of the symbol.
1279  uint64_t size;
1280  // The symbol type.
1281  elfcpp::STT type;
1282  // The symbol binding.
1283  elfcpp::STB binding;
1284  // The symbol visibility.
1285  elfcpp::STV visibility;
1286  // The rest of the st_other field.
1287  unsigned char nonvis;
1288  // The base from which we compute the offset.
1289  Symbol::Segment_offset_base offset_base;
1290  // If true, this symbol is defined only if we see a reference to it.
1291  bool only_if_ref;
1292};
1293
1294// Specify an object/section/offset location.  Used by ODR code.
1295
1296struct Symbol_location
1297{
1298  // Object where the symbol is defined.
1299  Object* object;
1300  // Section-in-object where the symbol is defined.
1301  unsigned int shndx;
1302  // For relocatable objects, offset-in-section where the symbol is defined.
1303  // For dynamic objects, address where the symbol is defined.
1304  off_t offset;
1305  bool operator==(const Symbol_location& that) const
1306  {
1307    return (this->object == that.object
1308	    && this->shndx == that.shndx
1309	    && this->offset == that.offset);
1310  }
1311};
1312
1313// A map from symbol name (as a pointer into the namepool) to all
1314// the locations the symbols is (weakly) defined (and certain other
1315// conditions are met).  This map will be used later to detect
1316// possible One Definition Rule (ODR) violations.
1317struct Symbol_location_hash
1318{
1319  size_t operator()(const Symbol_location& loc) const
1320  { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1321};
1322
1323// This class manages warnings.  Warnings are a GNU extension.  When
1324// we see a section named .gnu.warning.SYM in an object file, and if
1325// we wind using the definition of SYM from that object file, then we
1326// will issue a warning for any relocation against SYM from a
1327// different object file.  The text of the warning is the contents of
1328// the section.  This is not precisely the definition used by the old
1329// GNU linker; the old GNU linker treated an occurrence of
1330// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1331// would trigger a warning on any reference.  However, it was
1332// inconsistent in that a warning in a dynamic object only triggered
1333// if there was no definition in a regular object.  This linker is
1334// different in that we only issue a warning if we use the symbol
1335// definition from the same object file as the warning section.
1336
1337class Warnings
1338{
1339 public:
1340  Warnings()
1341    : warnings_()
1342  { }
1343
1344  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1345  // of the warning.
1346  void
1347  add_warning(Symbol_table* symtab, const char* name, Object* obj,
1348	      const std::string& warning);
1349
1350  // For each symbol for which we should give a warning, make a note
1351  // on the symbol.
1352  void
1353  note_warnings(Symbol_table* symtab);
1354
1355  // Issue a warning for a reference to SYM at RELINFO's location.
1356  template<int size, bool big_endian>
1357  void
1358  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1359		size_t relnum, off_t reloffset) const;
1360
1361 private:
1362  Warnings(const Warnings&);
1363  Warnings& operator=(const Warnings&);
1364
1365  // What we need to know to get the warning text.
1366  struct Warning_location
1367  {
1368    // The object the warning is in.
1369    Object* object;
1370    // The warning text.
1371    std::string text;
1372
1373    Warning_location()
1374      : object(NULL), text()
1375    { }
1376
1377    void
1378    set(Object* o, const std::string& t)
1379    {
1380      this->object = o;
1381      this->text = t;
1382    }
1383  };
1384
1385  // A mapping from warning symbol names (canonicalized in
1386  // Symbol_table's namepool_ field) to warning information.
1387  typedef Unordered_map<const char*, Warning_location> Warning_table;
1388
1389  Warning_table warnings_;
1390};
1391
1392// The main linker symbol table.
1393
1394class Symbol_table
1395{
1396 public:
1397  // The different places where a symbol definition can come from.
1398  enum Defined
1399  {
1400    // Defined in an object file--the normal case.
1401    OBJECT,
1402    // Defined for a COPY reloc.
1403    COPY,
1404    // Defined on the command line using --defsym.
1405    DEFSYM,
1406    // Defined (so to speak) on the command line using -u.
1407    UNDEFINED,
1408    // Defined in a linker script.
1409    SCRIPT,
1410    // Predefined by the linker.
1411    PREDEFINED,
1412    // Defined by the linker during an incremental base link, but not
1413    // a predefined symbol (e.g., common, defined in script).
1414    INCREMENTAL_BASE,
1415  };
1416
1417  // The order in which we sort common symbols.
1418  enum Sort_commons_order
1419  {
1420    SORT_COMMONS_BY_SIZE_DESCENDING,
1421    SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1422    SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1423  };
1424
1425  // COUNT is an estimate of how many symbols will be inserted in the
1426  // symbol table.  It's ok to put 0 if you don't know; a correct
1427  // guess will just save some CPU by reducing hashtable resizes.
1428  Symbol_table(unsigned int count, const Version_script_info& version_script);
1429
1430  ~Symbol_table();
1431
1432  void
1433  set_icf(Icf* icf)
1434  { this->icf_ = icf;}
1435
1436  Icf*
1437  icf() const
1438  { return this->icf_; }
1439
1440  // Returns true if ICF determined that this is a duplicate section.
1441  bool
1442  is_section_folded(Relobj* obj, unsigned int shndx) const;
1443
1444  void
1445  set_gc(Garbage_collection* gc)
1446  { this->gc_ = gc; }
1447
1448  Garbage_collection*
1449  gc() const
1450  { return this->gc_; }
1451
1452  // During garbage collection, this keeps undefined symbols.
1453  void
1454  gc_mark_undef_symbols(Layout*);
1455
1456  // This tells garbage collection that this symbol is referenced.
1457  void
1458  gc_mark_symbol(Symbol* sym);
1459
1460  // During garbage collection, this keeps sections that correspond to
1461  // symbols seen in dynamic objects.
1462  inline void
1463  gc_mark_dyn_syms(Symbol* sym);
1464
1465  // Add COUNT external symbols from the relocatable object RELOBJ to
1466  // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1467  // offset in the symbol table of the first symbol, SYM_NAMES is
1468  // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1469  // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1470  // *DEFINED to the number of defined symbols.
1471  template<int size, bool big_endian>
1472  void
1473  add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1474		  const unsigned char* syms, size_t count,
1475		  size_t symndx_offset, const char* sym_names,
1476		  size_t sym_name_size,
1477		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1478		  size_t* defined);
1479
1480  // Add one external symbol from the plugin object OBJ to the symbol table.
1481  // Returns a pointer to the resolved symbol in the symbol table.
1482  template<int size, bool big_endian>
1483  Symbol*
1484  add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1485                     const char* name, const char* ver,
1486                     elfcpp::Sym<size, big_endian>* sym);
1487
1488  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1489  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1490  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1491  // symbol version data.
1492  template<int size, bool big_endian>
1493  void
1494  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1495		  const unsigned char* syms, size_t count,
1496		  const char* sym_names, size_t sym_name_size,
1497		  const unsigned char* versym, size_t versym_size,
1498		  const std::vector<const char*>*,
1499		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1500		  size_t* defined);
1501
1502  // Add one external symbol from the incremental object OBJ to the symbol
1503  // table.  Returns a pointer to the resolved symbol in the symbol table.
1504  template<int size, bool big_endian>
1505  Sized_symbol<size>*
1506  add_from_incrobj(Object* obj, const char* name,
1507		   const char* ver, elfcpp::Sym<size, big_endian>* sym);
1508
1509  // Define a special symbol based on an Output_data.  It is a
1510  // multiple definition error if this symbol is already defined.
1511  Symbol*
1512  define_in_output_data(const char* name, const char* version, Defined,
1513			Output_data*, uint64_t value, uint64_t symsize,
1514			elfcpp::STT type, elfcpp::STB binding,
1515			elfcpp::STV visibility, unsigned char nonvis,
1516			bool offset_is_from_end, bool only_if_ref);
1517
1518  // Define a special symbol based on an Output_segment.  It is a
1519  // multiple definition error if this symbol is already defined.
1520  Symbol*
1521  define_in_output_segment(const char* name, const char* version, Defined,
1522			   Output_segment*, uint64_t value, uint64_t symsize,
1523			   elfcpp::STT type, elfcpp::STB binding,
1524			   elfcpp::STV visibility, unsigned char nonvis,
1525			   Symbol::Segment_offset_base, bool only_if_ref);
1526
1527  // Define a special symbol with a constant value.  It is a multiple
1528  // definition error if this symbol is already defined.
1529  Symbol*
1530  define_as_constant(const char* name, const char* version, Defined,
1531		     uint64_t value, uint64_t symsize, elfcpp::STT type,
1532		     elfcpp::STB binding, elfcpp::STV visibility,
1533		     unsigned char nonvis, bool only_if_ref,
1534                     bool force_override);
1535
1536  // Define a set of symbols in output sections.  If ONLY_IF_REF is
1537  // true, only define them if they are referenced.
1538  void
1539  define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1540		 bool only_if_ref);
1541
1542  // Define a set of symbols in output segments.  If ONLY_IF_REF is
1543  // true, only defined them if they are referenced.
1544  void
1545  define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1546		 bool only_if_ref);
1547
1548  // Add a target-specific global symbol.
1549  // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1550  void
1551  add_target_global_symbol(Symbol* sym)
1552  { this->target_symbols_.push_back(sym); }
1553
1554  // Define SYM using a COPY reloc.  POSD is the Output_data where the
1555  // symbol should be defined--typically a .dyn.bss section.  VALUE is
1556  // the offset within POSD.
1557  template<int size>
1558  void
1559  define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1560			 typename elfcpp::Elf_types<size>::Elf_Addr);
1561
1562  // Look up a symbol.
1563  Symbol*
1564  lookup(const char*, const char* version = NULL) const;
1565
1566  // Return the real symbol associated with the forwarder symbol FROM.
1567  Symbol*
1568  resolve_forwards(const Symbol* from) const;
1569
1570  // Return the sized version of a symbol in this table.
1571  template<int size>
1572  Sized_symbol<size>*
1573  get_sized_symbol(Symbol*) const;
1574
1575  template<int size>
1576  const Sized_symbol<size>*
1577  get_sized_symbol(const Symbol*) const;
1578
1579  // Return the count of undefined symbols seen.
1580  size_t
1581  saw_undefined() const
1582  { return this->saw_undefined_; }
1583
1584  void
1585  set_has_gnu_output()
1586  { this->has_gnu_output_ = true; }
1587
1588  // Allocate the common symbols
1589  void
1590  allocate_commons(Layout*, Mapfile*);
1591
1592  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1593  // of the warning.
1594  void
1595  add_warning(const char* name, Object* obj, const std::string& warning)
1596  { this->warnings_.add_warning(this, name, obj, warning); }
1597
1598  // Canonicalize a symbol name for use in the hash table.
1599  const char*
1600  canonicalize_name(const char* name)
1601  { return this->namepool_.add(name, true, NULL); }
1602
1603  // Possibly issue a warning for a reference to SYM at LOCATION which
1604  // is in OBJ.
1605  template<int size, bool big_endian>
1606  void
1607  issue_warning(const Symbol* sym,
1608		const Relocate_info<size, big_endian>* relinfo,
1609		size_t relnum, off_t reloffset) const
1610  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1611
1612  // Check candidate_odr_violations_ to find symbols with the same name
1613  // but apparently different definitions (different source-file/line-no).
1614  void
1615  detect_odr_violations(const Task*, const char* output_file_name) const;
1616
1617  // Add any undefined symbols named on the command line to the symbol
1618  // table.
1619  void
1620  add_undefined_symbols_from_command_line(Layout*);
1621
1622  // SYM is defined using a COPY reloc.  Return the dynamic object
1623  // where the original definition was found.
1624  Dynobj*
1625  get_copy_source(const Symbol* sym) const;
1626
1627  // Set the dynamic symbol indexes.  INDEX is the index of the first
1628  // global dynamic symbol.  Return the count of forced-local symbols in
1629  // *PFORCED_LOCAL_COUNT.  Pointers to the symbols are stored into
1630  // the vector.  The names are stored into the Stringpool.  This
1631  // returns an updated dynamic symbol index.
1632  unsigned int
1633  set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1634		     std::vector<Symbol*>*, Stringpool*, Versions*);
1635
1636  // Finalize the symbol table after we have set the final addresses
1637  // of all the input sections.  This sets the final symbol indexes,
1638  // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1639  // index of the first global symbol.  OFF is the file offset of the
1640  // global symbol table, DYNOFF is the offset of the globals in the
1641  // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1642  // global dynamic symbol, and DYNCOUNT is the number of global
1643  // dynamic symbols.  This records the parameters, and returns the
1644  // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1645  // local symbols.
1646  off_t
1647  finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1648	   Stringpool* pool, unsigned int* plocal_symcount);
1649
1650  // Set the final file offset of the symbol table.
1651  void
1652  set_file_offset(off_t off)
1653  { this->offset_ = off; }
1654
1655  // Status code of Symbol_table::compute_final_value.
1656  enum Compute_final_value_status
1657  {
1658    // No error.
1659    CFVS_OK,
1660    // Unsupported symbol section.
1661    CFVS_UNSUPPORTED_SYMBOL_SECTION,
1662    // No output section.
1663    CFVS_NO_OUTPUT_SECTION
1664  };
1665
1666  // Compute the final value of SYM and store status in location PSTATUS.
1667  // During relaxation, this may be called multiple times for a symbol to
1668  // compute its would-be final value in each relaxation pass.
1669
1670  template<int size>
1671  typename Sized_symbol<size>::Value_type
1672  compute_final_value(const Sized_symbol<size>* sym,
1673		      Compute_final_value_status* pstatus) const;
1674
1675  // Return the index of the first global symbol.
1676  unsigned int
1677  first_global_index() const
1678  { return this->first_global_index_; }
1679
1680  // Return the total number of symbols in the symbol table.
1681  unsigned int
1682  output_count() const
1683  { return this->output_count_; }
1684
1685  // Write out the global symbols.
1686  void
1687  write_globals(const Stringpool*, const Stringpool*,
1688		Output_symtab_xindex*, Output_symtab_xindex*,
1689		Output_file*) const;
1690
1691  // Write out a section symbol.  Return the updated offset.
1692  void
1693  write_section_symbol(const Output_section*, Output_symtab_xindex*,
1694		       Output_file*, off_t) const;
1695
1696  // Loop over all symbols, applying the function F to each.
1697  template<int size, typename F>
1698  void
1699  for_all_symbols(F f) const
1700  {
1701    for (Symbol_table_type::const_iterator p = this->table_.begin();
1702         p != this->table_.end();
1703         ++p)
1704      {
1705	Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1706	f(sym);
1707      }
1708  }
1709
1710  // Dump statistical information to stderr.
1711  void
1712  print_stats() const;
1713
1714  // Return the version script information.
1715  const Version_script_info&
1716  version_script() const
1717  { return version_script_; }
1718
1719  // Completely override existing symbol.
1720  template<int size>
1721  void
1722  clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1723  {
1724    if (to->clone(from))
1725      this->force_local(to);
1726  }
1727
1728 private:
1729  Symbol_table(const Symbol_table&);
1730  Symbol_table& operator=(const Symbol_table&);
1731
1732  // The type of the list of common symbols.
1733  typedef std::vector<Symbol*> Commons_type;
1734
1735  // The type of the symbol hash table.
1736
1737  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1738
1739  // The hash function.  The key values are Stringpool keys.
1740  struct Symbol_table_hash
1741  {
1742    inline size_t
1743    operator()(const Symbol_table_key& key) const
1744    {
1745      return key.first ^ key.second;
1746    }
1747  };
1748
1749  struct Symbol_table_eq
1750  {
1751    bool
1752    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1753  };
1754
1755  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1756			Symbol_table_eq> Symbol_table_type;
1757
1758  typedef Unordered_map<const char*,
1759                        Unordered_set<Symbol_location, Symbol_location_hash> >
1760  Odr_map;
1761
1762  // Make FROM a forwarder symbol to TO.
1763  void
1764  make_forwarder(Symbol* from, Symbol* to);
1765
1766  // Add a symbol.
1767  template<int size, bool big_endian>
1768  Sized_symbol<size>*
1769  add_from_object(Object*, const char* name, Stringpool::Key name_key,
1770		  const char* version, Stringpool::Key version_key,
1771		  bool def, const elfcpp::Sym<size, big_endian>& sym,
1772		  unsigned int st_shndx, bool is_ordinary,
1773		  unsigned int orig_st_shndx);
1774
1775  // Define a default symbol.
1776  template<int size, bool big_endian>
1777  void
1778  define_default_version(Sized_symbol<size>*, bool,
1779			 Symbol_table_type::iterator);
1780
1781  // Resolve symbols.
1782  template<int size, bool big_endian>
1783  void
1784  resolve(Sized_symbol<size>* to,
1785	  const elfcpp::Sym<size, big_endian>& sym,
1786	  unsigned int st_shndx, bool is_ordinary,
1787	  unsigned int orig_st_shndx,
1788	  Object*, const char* version,
1789	  bool is_default_version);
1790
1791  template<int size, bool big_endian>
1792  void
1793  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1794
1795  // Record that a symbol is forced to be local by a version script or
1796  // by visibility.
1797  void
1798  force_local(Symbol*);
1799
1800  // Adjust NAME and *NAME_KEY for wrapping.
1801  const char*
1802  wrap_symbol(const char* name, Stringpool::Key* name_key);
1803
1804  // Whether we should override a symbol, based on flags in
1805  // resolve.cc.
1806  static bool
1807  should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1808		  Object*, bool*, bool*, bool);
1809
1810  // Report a problem in symbol resolution.
1811  static void
1812  report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1813			 Defined, Object* object);
1814
1815  // Override a symbol.
1816  template<int size, bool big_endian>
1817  void
1818  override(Sized_symbol<size>* tosym,
1819	   const elfcpp::Sym<size, big_endian>& fromsym,
1820	   unsigned int st_shndx, bool is_ordinary,
1821	   Object* object, const char* version);
1822
1823  // Whether we should override a symbol with a special symbol which
1824  // is automatically defined by the linker.
1825  static bool
1826  should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1827
1828  // Override a symbol with a special symbol.
1829  template<int size>
1830  void
1831  override_with_special(Sized_symbol<size>* tosym,
1832			const Sized_symbol<size>* fromsym);
1833
1834  // Record all weak alias sets for a dynamic object.
1835  template<int size>
1836  void
1837  record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1838
1839  // Define a special symbol.
1840  template<int size, bool big_endian>
1841  Sized_symbol<size>*
1842  define_special_symbol(const char** pname, const char** pversion,
1843			bool only_if_ref, elfcpp::STV visibility,
1844			Sized_symbol<size>** poldsym,
1845			bool* resolve_oldsym, bool is_forced_local);
1846
1847  // Define a symbol in an Output_data, sized version.
1848  template<int size>
1849  Sized_symbol<size>*
1850  do_define_in_output_data(const char* name, const char* version, Defined,
1851			   Output_data*,
1852			   typename elfcpp::Elf_types<size>::Elf_Addr value,
1853			   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1854			   elfcpp::STT type, elfcpp::STB binding,
1855			   elfcpp::STV visibility, unsigned char nonvis,
1856			   bool offset_is_from_end, bool only_if_ref);
1857
1858  // Define a symbol in an Output_segment, sized version.
1859  template<int size>
1860  Sized_symbol<size>*
1861  do_define_in_output_segment(
1862    const char* name, const char* version, Defined, Output_segment* os,
1863    typename elfcpp::Elf_types<size>::Elf_Addr value,
1864    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1865    elfcpp::STT type, elfcpp::STB binding,
1866    elfcpp::STV visibility, unsigned char nonvis,
1867    Symbol::Segment_offset_base offset_base, bool only_if_ref);
1868
1869  // Define a symbol as a constant, sized version.
1870  template<int size>
1871  Sized_symbol<size>*
1872  do_define_as_constant(
1873    const char* name, const char* version, Defined,
1874    typename elfcpp::Elf_types<size>::Elf_Addr value,
1875    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1876    elfcpp::STT type, elfcpp::STB binding,
1877    elfcpp::STV visibility, unsigned char nonvis,
1878    bool only_if_ref, bool force_override);
1879
1880  // Add any undefined symbols named on the command line to the symbol
1881  // table, sized version.
1882  template<int size>
1883  void
1884  do_add_undefined_symbols_from_command_line(Layout*);
1885
1886  // Add one undefined symbol.
1887  template<int size>
1888  void
1889  add_undefined_symbol_from_command_line(const char* name);
1890
1891  // Types of common symbols.
1892
1893  enum Commons_section_type
1894  {
1895    COMMONS_NORMAL,
1896    COMMONS_TLS,
1897    COMMONS_SMALL,
1898    COMMONS_LARGE
1899  };
1900
1901  // Allocate the common symbols, sized version.
1902  template<int size>
1903  void
1904  do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1905
1906  // Allocate the common symbols from one list.
1907  template<int size>
1908  void
1909  do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1910			   Mapfile*, Sort_commons_order);
1911
1912  // Returns all of the lines attached to LOC, not just the one the
1913  // instruction actually came from.  This helps the ODR checker avoid
1914  // false positives.
1915  static std::vector<std::string>
1916  linenos_from_loc(const Task* task, const Symbol_location& loc);
1917
1918  // Implement detect_odr_violations.
1919  template<int size, bool big_endian>
1920  void
1921  sized_detect_odr_violations() const;
1922
1923  // Finalize symbols specialized for size.
1924  template<int size>
1925  off_t
1926  sized_finalize(off_t, Stringpool*, unsigned int*);
1927
1928  // Finalize a symbol.  Return whether it should be added to the
1929  // symbol table.
1930  template<int size>
1931  bool
1932  sized_finalize_symbol(Symbol*);
1933
1934  // Add a symbol the final symtab by setting its index.
1935  template<int size>
1936  void
1937  add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1938
1939  // Write globals specialized for size and endianness.
1940  template<int size, bool big_endian>
1941  void
1942  sized_write_globals(const Stringpool*, const Stringpool*,
1943		      Output_symtab_xindex*, Output_symtab_xindex*,
1944		      Output_file*) const;
1945
1946  // Write out a symbol to P.
1947  template<int size, bool big_endian>
1948  void
1949  sized_write_symbol(Sized_symbol<size>*,
1950		     typename elfcpp::Elf_types<size>::Elf_Addr value,
1951		     unsigned int shndx, elfcpp::STB,
1952		     const Stringpool*, unsigned char* p) const;
1953
1954  // Possibly warn about an undefined symbol from a dynamic object.
1955  void
1956  warn_about_undefined_dynobj_symbol(Symbol*) const;
1957
1958  // Write out a section symbol, specialized for size and endianness.
1959  template<int size, bool big_endian>
1960  void
1961  sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1962			     Output_file*, off_t) const;
1963
1964  // The type of the list of symbols which have been forced local.
1965  typedef std::vector<Symbol*> Forced_locals;
1966
1967  // A map from symbols with COPY relocs to the dynamic objects where
1968  // they are defined.
1969  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1970
1971  // We increment this every time we see a new undefined symbol, for
1972  // use in archive groups.
1973  size_t saw_undefined_;
1974  // The index of the first global symbol in the output file.
1975  unsigned int first_global_index_;
1976  // The file offset within the output symtab section where we should
1977  // write the table.
1978  off_t offset_;
1979  // The number of global symbols we want to write out.
1980  unsigned int output_count_;
1981  // The file offset of the global dynamic symbols, or 0 if none.
1982  off_t dynamic_offset_;
1983  // The index of the first global dynamic symbol (including
1984  // forced-local symbols).
1985  unsigned int first_dynamic_global_index_;
1986  // The number of global dynamic symbols (including forced-local symbols),
1987  // or 0 if none.
1988  unsigned int dynamic_count_;
1989  // Set if a STT_GNU_IFUNC or STB_GNU_UNIQUE symbol will be output.
1990  bool has_gnu_output_;
1991  // The symbol hash table.
1992  Symbol_table_type table_;
1993  // A pool of symbol names.  This is used for all global symbols.
1994  // Entries in the hash table point into this pool.
1995  Stringpool namepool_;
1996  // Forwarding symbols.
1997  Unordered_map<const Symbol*, Symbol*> forwarders_;
1998  // Weak aliases.  A symbol in this list points to the next alias.
1999  // The aliases point to each other in a circular list.
2000  Unordered_map<Symbol*, Symbol*> weak_aliases_;
2001  // We don't expect there to be very many common symbols, so we keep
2002  // a list of them.  When we find a common symbol we add it to this
2003  // list.  It is possible that by the time we process the list the
2004  // symbol is no longer a common symbol.  It may also have become a
2005  // forwarder.
2006  Commons_type commons_;
2007  // This is like the commons_ field, except that it holds TLS common
2008  // symbols.
2009  Commons_type tls_commons_;
2010  // This is for small common symbols.
2011  Commons_type small_commons_;
2012  // This is for large common symbols.
2013  Commons_type large_commons_;
2014  // A list of symbols which have been forced to be local.  We don't
2015  // expect there to be very many of them, so we keep a list of them
2016  // rather than walking the whole table to find them.
2017  Forced_locals forced_locals_;
2018  // Manage symbol warnings.
2019  Warnings warnings_;
2020  // Manage potential One Definition Rule (ODR) violations.
2021  Odr_map candidate_odr_violations_;
2022
2023  // When we emit a COPY reloc for a symbol, we define it in an
2024  // Output_data.  When it's time to emit version information for it,
2025  // we need to know the dynamic object in which we found the original
2026  // definition.  This maps symbols with COPY relocs to the dynamic
2027  // object where they were defined.
2028  Copied_symbol_dynobjs copied_symbol_dynobjs_;
2029  // Information parsed from the version script, if any.
2030  const Version_script_info& version_script_;
2031  Garbage_collection* gc_;
2032  Icf* icf_;
2033  // Target-specific symbols, if any.
2034  std::vector<Symbol*> target_symbols_;
2035};
2036
2037// We inline get_sized_symbol for efficiency.
2038
2039template<int size>
2040Sized_symbol<size>*
2041Symbol_table::get_sized_symbol(Symbol* sym) const
2042{
2043  gold_assert(size == parameters->target().get_size());
2044  return static_cast<Sized_symbol<size>*>(sym);
2045}
2046
2047template<int size>
2048const Sized_symbol<size>*
2049Symbol_table::get_sized_symbol(const Symbol* sym) const
2050{
2051  gold_assert(size == parameters->target().get_size());
2052  return static_cast<const Sized_symbol<size>*>(sym);
2053}
2054
2055} // End namespace gold.
2056
2057#endif // !defined(GOLD_SYMTAB_H)
2058