layout.h revision 1.1.1.6
1// layout.h -- lay out output file sections for gold  -*- C++ -*-
2
3// Copyright (C) 2006-2018 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#ifndef GOLD_LAYOUT_H
24#define GOLD_LAYOUT_H
25
26#include <cstring>
27#include <list>
28#include <map>
29#include <string>
30#include <utility>
31#include <vector>
32
33#include "script.h"
34#include "workqueue.h"
35#include "object.h"
36#include "dynobj.h"
37#include "stringpool.h"
38
39namespace gold
40{
41
42class General_options;
43class Incremental_inputs;
44class Incremental_binary;
45class Input_objects;
46class Mapfile;
47class Symbol_table;
48class Output_section_data;
49class Output_section;
50class Output_section_headers;
51class Output_segment_headers;
52class Output_file_header;
53class Output_segment;
54class Output_data;
55class Output_data_reloc_generic;
56class Output_data_dynamic;
57class Output_symtab_xindex;
58class Output_reduced_debug_abbrev_section;
59class Output_reduced_debug_info_section;
60class Eh_frame;
61class Gdb_index;
62class Target;
63struct Timespec;
64
65// Return TRUE if SECNAME is the name of a compressed debug section.
66extern bool
67is_compressed_debug_section(const char* secname);
68
69// Return the name of the corresponding uncompressed debug section.
70extern std::string
71corresponding_uncompressed_section_name(std::string secname);
72
73// Maintain a list of free space within a section, segment, or file.
74// Used for incremental update links.
75
76class Free_list
77{
78 public:
79  struct Free_list_node
80  {
81    Free_list_node(off_t start, off_t end)
82      : start_(start), end_(end)
83    { }
84    off_t start_;
85    off_t end_;
86  };
87  typedef std::list<Free_list_node>::const_iterator Const_iterator;
88
89  Free_list()
90    : list_(), last_remove_(list_.begin()), extend_(false), length_(0),
91      min_hole_(0)
92  { }
93
94  // Initialize the free list for a section of length LEN.
95  // If EXTEND is true, free space may be allocated past the end.
96  void
97  init(off_t len, bool extend);
98
99  // Set the minimum hole size that is allowed when allocating
100  // from the free list.
101  void
102  set_min_hole_size(off_t min_hole)
103  { this->min_hole_ = min_hole; }
104
105  // Remove a chunk from the free list.
106  void
107  remove(off_t start, off_t end);
108
109  // Allocate a chunk of space from the free list of length LEN,
110  // with alignment ALIGN, and minimum offset MINOFF.
111  off_t
112  allocate(off_t len, uint64_t align, off_t minoff);
113
114  // Return an iterator for the beginning of the free list.
115  Const_iterator
116  begin() const
117  { return this->list_.begin(); }
118
119  // Return an iterator for the end of the free list.
120  Const_iterator
121  end() const
122  { return this->list_.end(); }
123
124  // Dump the free list (for debugging).
125  void
126  dump();
127
128  // Print usage statistics.
129  static void
130  print_stats();
131
132 private:
133  typedef std::list<Free_list_node>::iterator Iterator;
134
135  // The free list.
136  std::list<Free_list_node> list_;
137
138  // The last node visited during a remove operation.
139  Iterator last_remove_;
140
141  // Whether we can extend past the original length.
142  bool extend_;
143
144  // The total length of the section, segment, or file.
145  off_t length_;
146
147  // The minimum hole size allowed.  When allocating from the free list,
148  // we must not leave a hole smaller than this.
149  off_t min_hole_;
150
151  // Statistics:
152  // The total number of free lists used.
153  static unsigned int num_lists;
154  // The total number of free list nodes used.
155  static unsigned int num_nodes;
156  // The total number of calls to Free_list::remove.
157  static unsigned int num_removes;
158  // The total number of nodes visited during calls to Free_list::remove.
159  static unsigned int num_remove_visits;
160  // The total number of calls to Free_list::allocate.
161  static unsigned int num_allocates;
162  // The total number of nodes visited during calls to Free_list::allocate.
163  static unsigned int num_allocate_visits;
164};
165
166// This task function handles mapping the input sections to output
167// sections and laying them out in memory.
168
169class Layout_task_runner : public Task_function_runner
170{
171 public:
172  // OPTIONS is the command line options, INPUT_OBJECTS is the list of
173  // input objects, SYMTAB is the symbol table, LAYOUT is the layout
174  // object.
175  Layout_task_runner(const General_options& options,
176		     const Input_objects* input_objects,
177		     Symbol_table* symtab,
178		     Target* target,
179		     Layout* layout,
180		     Mapfile* mapfile)
181    : options_(options), input_objects_(input_objects), symtab_(symtab),
182      target_(target), layout_(layout), mapfile_(mapfile)
183  { }
184
185  // Run the operation.
186  void
187  run(Workqueue*, const Task*);
188
189 private:
190  Layout_task_runner(const Layout_task_runner&);
191  Layout_task_runner& operator=(const Layout_task_runner&);
192
193  const General_options& options_;
194  const Input_objects* input_objects_;
195  Symbol_table* symtab_;
196  Target* target_;
197  Layout* layout_;
198  Mapfile* mapfile_;
199};
200
201// This class holds information about the comdat group or
202// .gnu.linkonce section that will be kept for a given signature.
203
204class Kept_section
205{
206 private:
207  // For a comdat group, we build a mapping from the name of each
208  // section in the group to the section index and the size in object.
209  // When we discard a group in some other object file, we use this
210  // map to figure out which kept section the discarded section is
211  // associated with.  We then use that mapping when processing relocs
212  // against discarded sections.
213  struct Comdat_section_info
214  {
215    // The section index.
216    unsigned int shndx;
217    // The section size.
218    uint64_t size;
219
220    Comdat_section_info(unsigned int a_shndx, uint64_t a_size)
221      : shndx(a_shndx), size(a_size)
222    { }
223  };
224
225  // Most comdat groups have only one or two sections, so we use a
226  // std::map rather than an Unordered_map to optimize for that case
227  // without paying too heavily for groups with more sections.
228  typedef std::map<std::string, Comdat_section_info> Comdat_group;
229
230 public:
231  Kept_section()
232    : object_(NULL), shndx_(0), is_comdat_(false), is_group_name_(false)
233  { this->u_.linkonce_size = 0; }
234
235  // We need to support copies for the signature map in the Layout
236  // object, but we should never copy an object after it has been
237  // marked as a comdat section.
238  Kept_section(const Kept_section& k)
239    : object_(k.object_), shndx_(k.shndx_), is_comdat_(false),
240      is_group_name_(k.is_group_name_)
241  {
242    gold_assert(!k.is_comdat_);
243    this->u_.linkonce_size = 0;
244  }
245
246  ~Kept_section()
247  {
248    if (this->is_comdat_)
249      delete this->u_.group_sections;
250  }
251
252  // The object where this section lives.
253  Relobj*
254  object() const
255  { return this->object_; }
256
257  // Set the object.
258  void
259  set_object(Relobj* object)
260  {
261    gold_assert(this->object_ == NULL);
262    this->object_ = object;
263  }
264
265  // The section index.
266  unsigned int
267  shndx() const
268  { return this->shndx_; }
269
270  // Set the section index.
271  void
272  set_shndx(unsigned int shndx)
273  {
274    gold_assert(this->shndx_ == 0);
275    this->shndx_ = shndx;
276  }
277
278  // Whether this is a comdat group.
279  bool
280  is_comdat() const
281  { return this->is_comdat_; }
282
283  // Set that this is a comdat group.
284  void
285  set_is_comdat()
286  {
287    gold_assert(!this->is_comdat_);
288    this->is_comdat_ = true;
289    this->u_.group_sections = new Comdat_group();
290  }
291
292  // Whether this is associated with the name of a group or section
293  // rather than the symbol name derived from a linkonce section.
294  bool
295  is_group_name() const
296  { return this->is_group_name_; }
297
298  // Note that this represents a comdat group rather than a single
299  // linkonce section.
300  void
301  set_is_group_name()
302  { this->is_group_name_ = true; }
303
304  // Add a section to the group list.
305  void
306  add_comdat_section(const std::string& name, unsigned int shndx,
307		     uint64_t size)
308  {
309    gold_assert(this->is_comdat_);
310    Comdat_section_info sinfo(shndx, size);
311    this->u_.group_sections->insert(std::make_pair(name, sinfo));
312  }
313
314  // Look for a section name in the group list, and return whether it
315  // was found.  If found, returns the section index and size.
316  bool
317  find_comdat_section(const std::string& name, unsigned int* pshndx,
318		      uint64_t* psize) const
319  {
320    gold_assert(this->is_comdat_);
321    Comdat_group::const_iterator p = this->u_.group_sections->find(name);
322    if (p == this->u_.group_sections->end())
323      return false;
324    *pshndx = p->second.shndx;
325    *psize = p->second.size;
326    return true;
327  }
328
329  // If there is only one section in the group list, return true, and
330  // return the section index and size.
331  bool
332  find_single_comdat_section(unsigned int* pshndx, uint64_t* psize) const
333  {
334    gold_assert(this->is_comdat_);
335    if (this->u_.group_sections->size() != 1)
336      return false;
337    Comdat_group::const_iterator p = this->u_.group_sections->begin();
338    *pshndx = p->second.shndx;
339    *psize = p->second.size;
340    return true;
341  }
342
343  // Return the size of a linkonce section.
344  uint64_t
345  linkonce_size() const
346  {
347    gold_assert(!this->is_comdat_);
348    return this->u_.linkonce_size;
349  }
350
351  // Set the size of a linkonce section.
352  void
353  set_linkonce_size(uint64_t size)
354  {
355    gold_assert(!this->is_comdat_);
356    this->u_.linkonce_size = size;
357  }
358
359 private:
360  // No assignment.
361  Kept_section& operator=(const Kept_section&);
362
363  // The object containing the comdat group or .gnu.linkonce section.
364  Relobj* object_;
365  // Index of the group section for comdats and the section itself for
366  // .gnu.linkonce.
367  unsigned int shndx_;
368  // True if this is for a comdat group rather than a .gnu.linkonce
369  // section.
370  bool is_comdat_;
371  // The Kept_sections are values of a mapping, that maps names to
372  // them.  This field is true if this struct is associated with the
373  // name of a comdat or .gnu.linkonce, false if it is associated with
374  // the name of a symbol obtained from the .gnu.linkonce.* name
375  // through some heuristics.
376  bool is_group_name_;
377  union
378  {
379    // If the is_comdat_ field is true, this holds a map from names of
380    // the sections in the group to section indexes in object_ and to
381    // section sizes.
382    Comdat_group* group_sections;
383    // If the is_comdat_ field is false, this holds the size of the
384    // single section.
385    uint64_t linkonce_size;
386  } u_;
387};
388
389// The ordering for output sections.  This controls how output
390// sections are ordered within a PT_LOAD output segment.
391
392enum Output_section_order
393{
394  // Unspecified.  Used for non-load segments.  Also used for the file
395  // and segment headers.
396  ORDER_INVALID,
397
398  // The PT_INTERP section should come first, so that the dynamic
399  // linker can pick it up quickly.
400  ORDER_INTERP,
401
402  // Loadable read-only note sections come next so that the PT_NOTE
403  // segment is on the first page of the executable.
404  ORDER_RO_NOTE,
405
406  // Put read-only sections used by the dynamic linker early in the
407  // executable to minimize paging.
408  ORDER_DYNAMIC_LINKER,
409
410  // Put reloc sections used by the dynamic linker after other
411  // sections used by the dynamic linker; otherwise, objcopy and strip
412  // get confused.
413  ORDER_DYNAMIC_RELOCS,
414
415  // Put the PLT reloc section after the other dynamic relocs;
416  // otherwise, prelink gets confused.
417  ORDER_DYNAMIC_PLT_RELOCS,
418
419  // The .init section.
420  ORDER_INIT,
421
422  // The PLT.
423  ORDER_PLT,
424
425  // The regular text sections.
426  ORDER_TEXT,
427
428  // The .fini section.
429  ORDER_FINI,
430
431  // The read-only sections.
432  ORDER_READONLY,
433
434  // The exception frame sections.
435  ORDER_EHFRAME,
436
437  // The TLS sections come first in the data section.
438  ORDER_TLS_DATA,
439  ORDER_TLS_BSS,
440
441  // Local RELRO (read-only after relocation) sections come before
442  // non-local RELRO sections.  This data will be fully resolved by
443  // the prelinker.
444  ORDER_RELRO_LOCAL,
445
446  // Non-local RELRO sections are grouped together after local RELRO
447  // sections.  All RELRO sections must be adjacent so that they can
448  // all be put into a PT_GNU_RELRO segment.
449  ORDER_RELRO,
450
451  // We permit marking exactly one output section as the last RELRO
452  // section.  We do this so that the read-only GOT can be adjacent to
453  // the writable GOT.
454  ORDER_RELRO_LAST,
455
456  // Similarly, we permit marking exactly one output section as the
457  // first non-RELRO section.
458  ORDER_NON_RELRO_FIRST,
459
460  // The regular data sections come after the RELRO sections.
461  ORDER_DATA,
462
463  // Large data sections normally go in large data segments.
464  ORDER_LARGE_DATA,
465
466  // Group writable notes so that we can have a single PT_NOTE
467  // segment.
468  ORDER_RW_NOTE,
469
470  // The small data sections must be at the end of the data sections,
471  // so that they can be adjacent to the small BSS sections.
472  ORDER_SMALL_DATA,
473
474  // The BSS sections start here.
475
476  // The small BSS sections must be at the start of the BSS sections,
477  // so that they can be adjacent to the small data sections.
478  ORDER_SMALL_BSS,
479
480  // The regular BSS sections.
481  ORDER_BSS,
482
483  // The large BSS sections come after the other BSS sections.
484  ORDER_LARGE_BSS,
485
486  // Maximum value.
487  ORDER_MAX
488};
489
490// This class handles the details of laying out input sections.
491
492class Layout
493{
494 public:
495  Layout(int number_of_input_files, Script_options*);
496
497  ~Layout()
498  {
499    delete this->relaxation_debug_check_;
500    delete this->segment_states_;
501  }
502
503  // For incremental links, record the base file to be modified.
504  void
505  set_incremental_base(Incremental_binary* base);
506
507  Incremental_binary*
508  incremental_base()
509  { return this->incremental_base_; }
510
511  // For incremental links, record the initial fixed layout of a section
512  // from the base file, and return a pointer to the Output_section.
513  template<int size, bool big_endian>
514  Output_section*
515  init_fixed_output_section(const char*, elfcpp::Shdr<size, big_endian>&);
516
517  // Given an input section SHNDX, named NAME, with data in SHDR, from
518  // the object file OBJECT, return the output section where this
519  // input section should go.  RELOC_SHNDX is the index of a
520  // relocation section which applies to this section, or 0 if none,
521  // or -1U if more than one.  RELOC_TYPE is the type of the
522  // relocation section if there is one.  Set *OFFSET to the offset
523  // within the output section.
524  template<int size, bool big_endian>
525  Output_section*
526  layout(Sized_relobj_file<size, big_endian> *object, unsigned int shndx,
527	 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
528	 unsigned int reloc_shndx, unsigned int reloc_type, off_t* offset);
529
530  std::map<Section_id, unsigned int>*
531  get_section_order_map()
532  { return &this->section_order_map_; }
533
534  // Struct to store segment info when mapping some input sections to
535  // unique segments using linker plugins.  Mapping an input section to
536  // a unique segment is done by first placing such input sections in
537  // unique output sections and then mapping the output section to a
538  // unique segment.  NAME is the name of the output section.  FLAGS
539  // and ALIGN are the extra flags and alignment of the segment.
540  struct Unique_segment_info
541  {
542    // Identifier for the segment.  ELF segments don't have names.  This
543    // is used as the name of the output section mapped to the segment.
544    const char* name;
545    // Additional segment flags.
546    uint64_t flags;
547    // Segment alignment.
548    uint64_t align;
549  };
550
551  // Mapping from input section to segment.
552  typedef std::map<Const_section_id, Unique_segment_info*>
553  Section_segment_map;
554
555  // Maps section SECN to SEGMENT s.
556  void
557  insert_section_segment_map(Const_section_id secn, Unique_segment_info *s);
558
559  // Some input sections require special ordering, for compatibility
560  // with GNU ld.  Given the name of an input section, return -1 if it
561  // does not require special ordering.  Otherwise, return the index
562  // by which it should be ordered compared to other input sections
563  // that require special ordering.
564  static int
565  special_ordering_of_input_section(const char* name);
566
567  bool
568  is_section_ordering_specified()
569  { return this->section_ordering_specified_; }
570
571  void
572  set_section_ordering_specified()
573  { this->section_ordering_specified_ = true; }
574
575  bool
576  is_unique_segment_for_sections_specified() const
577  { return this->unique_segment_for_sections_specified_; }
578
579  void
580  set_unique_segment_for_sections_specified()
581  { this->unique_segment_for_sections_specified_ = true; }
582
583  // For incremental updates, allocate a block of memory from the
584  // free list.  Find a block starting at or after MINOFF.
585  off_t
586  allocate(off_t len, uint64_t align, off_t minoff)
587  { return this->free_list_.allocate(len, align, minoff); }
588
589  unsigned int
590  find_section_order_index(const std::string&);
591
592  // Read the sequence of input sections from the file specified with
593  // linker option --section-ordering-file.
594  void
595  read_layout_from_file();
596
597  // Layout an input reloc section when doing a relocatable link.  The
598  // section is RELOC_SHNDX in OBJECT, with data in SHDR.
599  // DATA_SECTION is the reloc section to which it refers.  RR is the
600  // relocatable information.
601  template<int size, bool big_endian>
602  Output_section*
603  layout_reloc(Sized_relobj_file<size, big_endian>* object,
604	       unsigned int reloc_shndx,
605	       const elfcpp::Shdr<size, big_endian>& shdr,
606	       Output_section* data_section,
607	       Relocatable_relocs* rr);
608
609  // Layout a group section when doing a relocatable link.
610  template<int size, bool big_endian>
611  void
612  layout_group(Symbol_table* symtab,
613	       Sized_relobj_file<size, big_endian>* object,
614	       unsigned int group_shndx,
615	       const char* group_section_name,
616	       const char* signature,
617	       const elfcpp::Shdr<size, big_endian>& shdr,
618	       elfcpp::Elf_Word flags,
619	       std::vector<unsigned int>* shndxes);
620
621  // Like layout, only for exception frame sections.  OBJECT is an
622  // object file.  SYMBOLS is the contents of the symbol table
623  // section, with size SYMBOLS_SIZE.  SYMBOL_NAMES is the contents of
624  // the symbol name section, with size SYMBOL_NAMES_SIZE.  SHNDX is a
625  // .eh_frame section in OBJECT.  SHDR is the section header.
626  // RELOC_SHNDX is the index of a relocation section which applies to
627  // this section, or 0 if none, or -1U if more than one.  RELOC_TYPE
628  // is the type of the relocation section if there is one.  This
629  // returns the output section, and sets *OFFSET to the offset.
630  template<int size, bool big_endian>
631  Output_section*
632  layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
633		  const unsigned char* symbols,
634		  off_t symbols_size,
635		  const unsigned char* symbol_names,
636		  off_t symbol_names_size,
637		  unsigned int shndx,
638		  const elfcpp::Shdr<size, big_endian>& shdr,
639		  unsigned int reloc_shndx, unsigned int reloc_type,
640		  off_t* offset);
641
642  // After processing all input files, we call this to make sure that
643  // the optimized .eh_frame sections have been added to the output
644  // section.
645  void
646  finalize_eh_frame_section();
647
648  // Add .eh_frame information for a PLT.  The FDE must start with a
649  // 4-byte PC-relative reference to the start of the PLT, followed by
650  // a 4-byte size of PLT.
651  void
652  add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
653		       size_t cie_length, const unsigned char* fde_data,
654		       size_t fde_length);
655
656  // Remove .eh_frame information for a PLT.  FDEs using the CIE must
657  // be removed in reverse order to the order they were added.
658  void
659  remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
660			  size_t cie_length, const unsigned char* fde_data,
661			  size_t fde_length);
662
663  // Scan a .debug_info or .debug_types section, and add summary
664  // information to the .gdb_index section.
665  template<int size, bool big_endian>
666  void
667  add_to_gdb_index(bool is_type_unit,
668		   Sized_relobj<size, big_endian>* object,
669		   const unsigned char* symbols,
670		   off_t symbols_size,
671		   unsigned int shndx,
672		   unsigned int reloc_shndx,
673		   unsigned int reloc_type);
674
675  // Handle a GNU stack note.  This is called once per input object
676  // file.  SEEN_GNU_STACK is true if the object file has a
677  // .note.GNU-stack section.  GNU_STACK_FLAGS is the section flags
678  // from that section if there was one.
679  void
680  layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
681		   const Object*);
682
683  // Add an Output_section_data to the layout.  This is used for
684  // special sections like the GOT section.  ORDER is where the
685  // section should wind up in the output segment.  IS_RELRO is true
686  // for relro sections.
687  Output_section*
688  add_output_section_data(const char* name, elfcpp::Elf_Word type,
689			  elfcpp::Elf_Xword flags,
690			  Output_section_data*, Output_section_order order,
691			  bool is_relro);
692
693  // Increase the size of the relro segment by this much.
694  void
695  increase_relro(unsigned int s)
696  { this->increase_relro_ += s; }
697
698  // Create dynamic sections if necessary.
699  void
700  create_initial_dynamic_sections(Symbol_table*);
701
702  // Define __start and __stop symbols for output sections.
703  void
704  define_section_symbols(Symbol_table*);
705
706  // Create automatic note sections.
707  void
708  create_notes();
709
710  // Create sections for linker scripts.
711  void
712  create_script_sections()
713  { this->script_options_->create_script_sections(this); }
714
715  // Define symbols from any linker script.
716  void
717  define_script_symbols(Symbol_table* symtab)
718  { this->script_options_->add_symbols_to_table(symtab); }
719
720  // Define symbols for group signatures.
721  void
722  define_group_signatures(Symbol_table*);
723
724  // Return the Stringpool used for symbol names.
725  const Stringpool*
726  sympool() const
727  { return &this->sympool_; }
728
729  // Return the Stringpool used for dynamic symbol names and dynamic
730  // tags.
731  const Stringpool*
732  dynpool() const
733  { return &this->dynpool_; }
734
735  // Return the .dynamic output section.  This is only valid after the
736  // layout has been finalized.
737  Output_section*
738  dynamic_section() const
739  { return this->dynamic_section_; }
740
741  // Return the symtab_xindex section used to hold large section
742  // indexes for the normal symbol table.
743  Output_symtab_xindex*
744  symtab_xindex() const
745  { return this->symtab_xindex_; }
746
747  // Return the dynsym_xindex section used to hold large section
748  // indexes for the dynamic symbol table.
749  Output_symtab_xindex*
750  dynsym_xindex() const
751  { return this->dynsym_xindex_; }
752
753  // Return whether a section is a .gnu.linkonce section, given the
754  // section name.
755  static inline bool
756  is_linkonce(const char* name)
757  { return strncmp(name, ".gnu.linkonce", sizeof(".gnu.linkonce") - 1) == 0; }
758
759  // Whether we have added an input section.
760  bool
761  have_added_input_section() const
762  { return this->have_added_input_section_; }
763
764  // Return true if a section is a debugging section.
765  static inline bool
766  is_debug_info_section(const char* name)
767  {
768    // Debugging sections can only be recognized by name.
769    return (strncmp(name, ".debug", sizeof(".debug") - 1) == 0
770	    || strncmp(name, ".zdebug", sizeof(".zdebug") - 1) == 0
771	    || strncmp(name, ".gnu.linkonce.wi.",
772		       sizeof(".gnu.linkonce.wi.") - 1) == 0
773	    || strncmp(name, ".line", sizeof(".line") - 1) == 0
774	    || strncmp(name, ".stab", sizeof(".stab") - 1) == 0
775	    || strncmp(name, ".pdr", sizeof(".pdr") - 1) == 0);
776  }
777
778  // Return true if RELOBJ is an input file whose base name matches
779  // FILE_NAME.  The base name must have an extension of ".o", and
780  // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
781  static bool
782  match_file_name(const Relobj* relobj, const char* file_name);
783
784  // Return whether section SHNDX in RELOBJ is a .ctors/.dtors section
785  // with more than one word being mapped to a .init_array/.fini_array
786  // section.
787  bool
788  is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const;
789
790  // Check if a comdat group or .gnu.linkonce section with the given
791  // NAME is selected for the link.  If there is already a section,
792  // *KEPT_SECTION is set to point to the signature and the function
793  // returns false.  Otherwise, OBJECT, SHNDX,IS_COMDAT, and
794  // IS_GROUP_NAME are recorded for this NAME in the layout object,
795  // *KEPT_SECTION is set to the internal copy and the function return
796  // false.
797  bool
798  find_or_add_kept_section(const std::string& name, Relobj* object,
799			   unsigned int shndx, bool is_comdat,
800			   bool is_group_name, Kept_section** kept_section);
801
802  // Finalize the layout after all the input sections have been added.
803  off_t
804  finalize(const Input_objects*, Symbol_table*, Target*, const Task*);
805
806  // Return whether any sections require postprocessing.
807  bool
808  any_postprocessing_sections() const
809  { return this->any_postprocessing_sections_; }
810
811  // Return the size of the output file.
812  off_t
813  output_file_size() const
814  { return this->output_file_size_; }
815
816  // Return the TLS segment.  This will return NULL if there isn't
817  // one.
818  Output_segment*
819  tls_segment() const
820  { return this->tls_segment_; }
821
822  // Return the normal symbol table.
823  Output_section*
824  symtab_section() const
825  {
826    gold_assert(this->symtab_section_ != NULL);
827    return this->symtab_section_;
828  }
829
830  // Return the file offset of the normal symbol table.
831  off_t
832  symtab_section_offset() const;
833
834  // Return the section index of the normal symbol tabl.e
835  unsigned int
836  symtab_section_shndx() const;
837
838  // Return the dynamic symbol table.
839  Output_section*
840  dynsym_section() const
841  {
842    gold_assert(this->dynsym_section_ != NULL);
843    return this->dynsym_section_;
844  }
845
846  // Return the dynamic tags.
847  Output_data_dynamic*
848  dynamic_data() const
849  { return this->dynamic_data_; }
850
851  // Write out the output sections.
852  void
853  write_output_sections(Output_file* of) const;
854
855  // Write out data not associated with an input file or the symbol
856  // table.
857  void
858  write_data(const Symbol_table*, Output_file*) const;
859
860  // Write out output sections which can not be written until all the
861  // input sections are complete.
862  void
863  write_sections_after_input_sections(Output_file* of);
864
865  // Return an output section named NAME, or NULL if there is none.
866  Output_section*
867  find_output_section(const char* name) const;
868
869  // Return an output segment of type TYPE, with segment flags SET set
870  // and segment flags CLEAR clear.  Return NULL if there is none.
871  Output_segment*
872  find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
873		      elfcpp::Elf_Word clear) const;
874
875  // Return the number of segments we expect to produce.
876  size_t
877  expected_segment_count() const;
878
879  // Set a flag to indicate that an object file uses the static TLS model.
880  void
881  set_has_static_tls()
882  { this->has_static_tls_ = true; }
883
884  // Return true if any object file uses the static TLS model.
885  bool
886  has_static_tls() const
887  { return this->has_static_tls_; }
888
889  // Return the options which may be set by a linker script.
890  Script_options*
891  script_options()
892  { return this->script_options_; }
893
894  const Script_options*
895  script_options() const
896  { return this->script_options_; }
897
898  // Return the object managing inputs in incremental build. NULL in
899  // non-incremental builds.
900  Incremental_inputs*
901  incremental_inputs() const
902  { return this->incremental_inputs_; }
903
904  // For the target-specific code to add dynamic tags which are common
905  // to most targets.
906  void
907  add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
908			  const Output_data* plt_rel,
909			  const Output_data_reloc_generic* dyn_rel,
910			  bool add_debug, bool dynrel_includes_plt);
911
912  // Add a target-specific dynamic tag with constant value.
913  void
914  add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val);
915
916  // Compute and write out the build ID if needed.
917  void
918  write_build_id(Output_file*, unsigned char*, size_t) const;
919
920  // Rewrite output file in binary format.
921  void
922  write_binary(Output_file* in) const;
923
924  // Print output sections to the map file.
925  void
926  print_to_mapfile(Mapfile*) const;
927
928  // Dump statistical information to stderr.
929  void
930  print_stats() const;
931
932  // A list of segments.
933
934  typedef std::vector<Output_segment*> Segment_list;
935
936  // A list of sections.
937
938  typedef std::vector<Output_section*> Section_list;
939
940  // The list of information to write out which is not attached to
941  // either a section or a segment.
942  typedef std::vector<Output_data*> Data_list;
943
944  // Store the allocated sections into the section list.  This is used
945  // by the linker script code.
946  void
947  get_allocated_sections(Section_list*) const;
948
949  // Store the executable sections into the section list.
950  void
951  get_executable_sections(Section_list*) const;
952
953  // Make a section for a linker script to hold data.
954  Output_section*
955  make_output_section_for_script(const char* name,
956				 Script_sections::Section_type section_type);
957
958  // Make a segment.  This is used by the linker script code.
959  Output_segment*
960  make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags);
961
962  // Return the number of segments.
963  size_t
964  segment_count() const
965  { return this->segment_list_.size(); }
966
967  // Map from section flags to segment flags.
968  static elfcpp::Elf_Word
969  section_flags_to_segment(elfcpp::Elf_Xword flags);
970
971  // Attach sections to segments.
972  void
973  attach_sections_to_segments(const Target*);
974
975  // For relaxation clean up, we need to know output section data created
976  // from a linker script.
977  void
978  new_output_section_data_from_script(Output_section_data* posd)
979  {
980    if (this->record_output_section_data_from_script_)
981      this->script_output_section_data_list_.push_back(posd);
982  }
983
984  // Return section list.
985  const Section_list&
986  section_list() const
987  { return this->section_list_; }
988
989  // Returns TRUE iff NAME (an input section from RELOBJ) will
990  // be mapped to an output section that should be KEPT.
991  bool
992  keep_input_section(const Relobj*, const char*);
993
994  // Add a special output object that will be recreated afresh
995  // if there is another relaxation iteration.
996  void
997  add_relax_output(Output_data* data)
998  { this->relax_output_list_.push_back(data); }
999
1000  // Clear out (and free) everything added by add_relax_output.
1001  void
1002  reset_relax_output();
1003
1004 private:
1005  Layout(const Layout&);
1006  Layout& operator=(const Layout&);
1007
1008  // Mapping from input section names to output section names.
1009  struct Section_name_mapping
1010  {
1011    const char* from;
1012    int fromlen;
1013    const char* to;
1014    int tolen;
1015  };
1016  static const Section_name_mapping section_name_mapping[];
1017  static const int section_name_mapping_count;
1018
1019  // During a relocatable link, a list of group sections and
1020  // signatures.
1021  struct Group_signature
1022  {
1023    // The group section.
1024    Output_section* section;
1025    // The signature.
1026    const char* signature;
1027
1028    Group_signature()
1029      : section(NULL), signature(NULL)
1030    { }
1031
1032    Group_signature(Output_section* sectiona, const char* signaturea)
1033      : section(sectiona), signature(signaturea)
1034    { }
1035  };
1036  typedef std::vector<Group_signature> Group_signatures;
1037
1038  // Create a note section, filling in the header.
1039  Output_section*
1040  create_note(const char* name, int note_type, const char* section_name,
1041	      size_t descsz, bool allocate, size_t* trailing_padding);
1042
1043  // Create a note section for gold version.
1044  void
1045  create_gold_note();
1046
1047  // Record whether the stack must be executable, and a user-supplied size.
1048  void
1049  create_stack_segment();
1050
1051  // Create a build ID note if needed.
1052  void
1053  create_build_id();
1054
1055  // Link .stab and .stabstr sections.
1056  void
1057  link_stabs_sections();
1058
1059  // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1060  // for the next run of incremental linking to check what has changed.
1061  void
1062  create_incremental_info_sections(Symbol_table*);
1063
1064  // Find the first read-only PT_LOAD segment, creating one if
1065  // necessary.
1066  Output_segment*
1067  find_first_load_seg(const Target*);
1068
1069  // Count the local symbols in the regular symbol table and the dynamic
1070  // symbol table, and build the respective string pools.
1071  void
1072  count_local_symbols(const Task*, const Input_objects*);
1073
1074  // Create the output sections for the symbol table.
1075  void
1076  create_symtab_sections(const Input_objects*, Symbol_table*,
1077			 unsigned int, off_t*, unsigned int);
1078
1079  // Create the .shstrtab section.
1080  Output_section*
1081  create_shstrtab();
1082
1083  // Create the section header table.
1084  void
1085  create_shdrs(const Output_section* shstrtab_section, off_t*);
1086
1087  // Create the dynamic symbol table.
1088  void
1089  create_dynamic_symtab(const Input_objects*, Symbol_table*,
1090			Output_section** pdynstr,
1091			unsigned int* plocal_dynamic_count,
1092			unsigned int* pforced_local_dynamic_count,
1093			std::vector<Symbol*>* pdynamic_symbols,
1094			Versions* versions);
1095
1096  // Assign offsets to each local portion of the dynamic symbol table.
1097  void
1098  assign_local_dynsym_offsets(const Input_objects*);
1099
1100  // Finish the .dynamic section and PT_DYNAMIC segment.
1101  void
1102  finish_dynamic_section(const Input_objects*, const Symbol_table*);
1103
1104  // Set the size of the _DYNAMIC symbol.
1105  void
1106  set_dynamic_symbol_size(const Symbol_table*);
1107
1108  // Create the .interp section and PT_INTERP segment.
1109  void
1110  create_interp(const Target* target);
1111
1112  // Create the version sections.
1113  void
1114  create_version_sections(const Versions*,
1115			  const Symbol_table*,
1116			  unsigned int local_symcount,
1117			  const std::vector<Symbol*>& dynamic_symbols,
1118			  const Output_section* dynstr);
1119
1120  template<int size, bool big_endian>
1121  void
1122  sized_create_version_sections(const Versions* versions,
1123				const Symbol_table*,
1124				unsigned int local_symcount,
1125				const std::vector<Symbol*>& dynamic_symbols,
1126				const Output_section* dynstr);
1127
1128  // Return whether to include this section in the link.
1129  template<int size, bool big_endian>
1130  bool
1131  include_section(Sized_relobj_file<size, big_endian>* object, const char* name,
1132		  const elfcpp::Shdr<size, big_endian>&);
1133
1134  // Return the output section name to use given an input section
1135  // name.  Set *PLEN to the length of the name.  *PLEN must be
1136  // initialized to the length of NAME.
1137  static const char*
1138  output_section_name(const Relobj*, const char* name, size_t* plen);
1139
1140  // Return the number of allocated output sections.
1141  size_t
1142  allocated_output_section_count() const;
1143
1144  // Return the output section for NAME, TYPE and FLAGS.
1145  Output_section*
1146  get_output_section(const char* name, Stringpool::Key name_key,
1147		     elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
1148		     Output_section_order order, bool is_relro);
1149
1150  // Clear the input section flags that should not be copied to the
1151  // output section.
1152  elfcpp::Elf_Xword
1153  get_output_section_flags (elfcpp::Elf_Xword input_section_flags);
1154
1155  // Choose the output section for NAME in RELOBJ.
1156  Output_section*
1157  choose_output_section(const Relobj* relobj, const char* name,
1158			elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
1159			bool is_input_section, Output_section_order order,
1160			bool is_relro, bool is_reloc, bool match_input_spec);
1161
1162  // Create a new Output_section.
1163  Output_section*
1164  make_output_section(const char* name, elfcpp::Elf_Word type,
1165		      elfcpp::Elf_Xword flags, Output_section_order order,
1166		      bool is_relro);
1167
1168  // Attach a section to a segment.
1169  void
1170  attach_section_to_segment(const Target*, Output_section*);
1171
1172  // Get section order.
1173  Output_section_order
1174  default_section_order(Output_section*, bool is_relro_local);
1175
1176  // Attach an allocated section to a segment.
1177  void
1178  attach_allocated_section_to_segment(const Target*, Output_section*);
1179
1180  // Make the .eh_frame section.
1181  Output_section*
1182  make_eh_frame_section(const Relobj*);
1183
1184  // Set the final file offsets of all the segments.
1185  off_t
1186  set_segment_offsets(const Target*, Output_segment*, unsigned int* pshndx);
1187
1188  // Set the file offsets of the sections when doing a relocatable
1189  // link.
1190  off_t
1191  set_relocatable_section_offsets(Output_data*, unsigned int* pshndx);
1192
1193  // Set the final file offsets of all the sections not associated
1194  // with a segment.  We set section offsets in three passes: the
1195  // first handles all allocated sections, the second sections that
1196  // require postprocessing, and the last the late-bound STRTAB
1197  // sections (probably only shstrtab, which is the one we care about
1198  // because it holds section names).
1199  enum Section_offset_pass
1200  {
1201    BEFORE_INPUT_SECTIONS_PASS,
1202    POSTPROCESSING_SECTIONS_PASS,
1203    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1204  };
1205  off_t
1206  set_section_offsets(off_t, Section_offset_pass pass);
1207
1208  // Set the final section indexes of all the sections not associated
1209  // with a segment.  Returns the next unused index.
1210  unsigned int
1211  set_section_indexes(unsigned int pshndx);
1212
1213  // Set the section addresses when using a script.
1214  Output_segment*
1215  set_section_addresses_from_script(Symbol_table*);
1216
1217  // Find appropriate places or orphan sections in a script.
1218  void
1219  place_orphan_sections_in_script();
1220
1221  // Return whether SEG1 comes before SEG2 in the output file.
1222  bool
1223  segment_precedes(const Output_segment* seg1, const Output_segment* seg2);
1224
1225  // Use to save and restore segments during relaxation.
1226  typedef Unordered_map<const Output_segment*, const Output_segment*>
1227    Segment_states;
1228
1229  // Save states of current output segments.
1230  void
1231  save_segments(Segment_states*);
1232
1233  // Restore output segment states.
1234  void
1235  restore_segments(const Segment_states*);
1236
1237  // Clean up after relaxation so that it is possible to lay out the
1238  // sections and segments again.
1239  void
1240  clean_up_after_relaxation();
1241
1242  // Doing preparation work for relaxation.  This is factored out to make
1243  // Layout::finalized a bit smaller and easier to read.
1244  void
1245  prepare_for_relaxation();
1246
1247  // Main body of the relaxation loop, which lays out the section.
1248  off_t
1249  relaxation_loop_body(int, Target*, Symbol_table*, Output_segment**,
1250		       Output_segment*, Output_segment_headers*,
1251		       Output_file_header*, unsigned int*);
1252
1253  // A mapping used for kept comdats/.gnu.linkonce group signatures.
1254  typedef Unordered_map<std::string, Kept_section> Signatures;
1255
1256  // Mapping from input section name/type/flags to output section.  We
1257  // use canonicalized strings here.
1258
1259  typedef std::pair<Stringpool::Key,
1260		    std::pair<elfcpp::Elf_Word, elfcpp::Elf_Xword> > Key;
1261
1262  struct Hash_key
1263  {
1264    size_t
1265    operator()(const Key& k) const;
1266  };
1267
1268  typedef Unordered_map<Key, Output_section*, Hash_key> Section_name_map;
1269
1270  // A comparison class for segments.
1271
1272  class Compare_segments
1273  {
1274   public:
1275    Compare_segments(Layout* layout)
1276      : layout_(layout)
1277    { }
1278
1279    bool
1280    operator()(const Output_segment* seg1, const Output_segment* seg2)
1281    { return this->layout_->segment_precedes(seg1, seg2); }
1282
1283   private:
1284    Layout* layout_;
1285  };
1286
1287  typedef std::vector<Output_section_data*> Output_section_data_list;
1288
1289  // Debug checker class.
1290  class Relaxation_debug_check
1291  {
1292   public:
1293    Relaxation_debug_check()
1294      : section_infos_()
1295    { }
1296
1297    // Check that sections and special data are in reset states.
1298    void
1299    check_output_data_for_reset_values(const Layout::Section_list&,
1300				       const Layout::Data_list& special_outputs,
1301				       const Layout::Data_list& relax_outputs);
1302
1303    // Record information of a section list.
1304    void
1305    read_sections(const Layout::Section_list&);
1306
1307    // Verify a section list with recorded information.
1308    void
1309    verify_sections(const Layout::Section_list&);
1310
1311   private:
1312    // Information we care about a section.
1313    struct Section_info
1314    {
1315      // Output section described by this.
1316      Output_section* output_section;
1317      // Load address.
1318      uint64_t address;
1319      // Data size.
1320      off_t data_size;
1321      // File offset.
1322      off_t offset;
1323    };
1324
1325    // Section information.
1326    std::vector<Section_info> section_infos_;
1327  };
1328
1329  // The number of input files, for sizing tables.
1330  int number_of_input_files_;
1331  // Information set by scripts or by command line options.
1332  Script_options* script_options_;
1333  // The output section names.
1334  Stringpool namepool_;
1335  // The output symbol names.
1336  Stringpool sympool_;
1337  // The dynamic strings, if needed.
1338  Stringpool dynpool_;
1339  // The list of group sections and linkonce sections which we have seen.
1340  Signatures signatures_;
1341  // The mapping from input section name/type/flags to output sections.
1342  Section_name_map section_name_map_;
1343  // The list of output segments.
1344  Segment_list segment_list_;
1345  // The list of output sections.
1346  Section_list section_list_;
1347  // The list of output sections which are not attached to any output
1348  // segment.
1349  Section_list unattached_section_list_;
1350  // The list of unattached Output_data objects which require special
1351  // handling because they are not Output_sections.
1352  Data_list special_output_list_;
1353  // Like special_output_list_, but cleared and recreated on each
1354  // iteration of relaxation.
1355  Data_list relax_output_list_;
1356  // The section headers.
1357  Output_section_headers* section_headers_;
1358  // A pointer to the PT_TLS segment if there is one.
1359  Output_segment* tls_segment_;
1360  // A pointer to the PT_GNU_RELRO segment if there is one.
1361  Output_segment* relro_segment_;
1362  // A pointer to the PT_INTERP segment if there is one.
1363  Output_segment* interp_segment_;
1364  // A backend may increase the size of the PT_GNU_RELRO segment if
1365  // there is one.  This is the amount to increase it by.
1366  unsigned int increase_relro_;
1367  // The SHT_SYMTAB output section.
1368  Output_section* symtab_section_;
1369  // The SHT_SYMTAB_SHNDX for the regular symbol table if there is one.
1370  Output_symtab_xindex* symtab_xindex_;
1371  // The SHT_DYNSYM output section if there is one.
1372  Output_section* dynsym_section_;
1373  // The SHT_SYMTAB_SHNDX for the dynamic symbol table if there is one.
1374  Output_symtab_xindex* dynsym_xindex_;
1375  // The SHT_DYNAMIC output section if there is one.
1376  Output_section* dynamic_section_;
1377  // The _DYNAMIC symbol if there is one.
1378  Symbol* dynamic_symbol_;
1379  // The dynamic data which goes into dynamic_section_.
1380  Output_data_dynamic* dynamic_data_;
1381  // The exception frame output section if there is one.
1382  Output_section* eh_frame_section_;
1383  // The exception frame data for eh_frame_section_.
1384  Eh_frame* eh_frame_data_;
1385  // Whether we have added eh_frame_data_ to the .eh_frame section.
1386  bool added_eh_frame_data_;
1387  // The exception frame header output section if there is one.
1388  Output_section* eh_frame_hdr_section_;
1389  // The data for the .gdb_index section.
1390  Gdb_index* gdb_index_data_;
1391  // The space for the build ID checksum if there is one.
1392  Output_section_data* build_id_note_;
1393  // The output section containing dwarf abbreviations
1394  Output_reduced_debug_abbrev_section* debug_abbrev_;
1395  // The output section containing the dwarf debug info tree
1396  Output_reduced_debug_info_section* debug_info_;
1397  // A list of group sections and their signatures.
1398  Group_signatures group_signatures_;
1399  // The size of the output file.
1400  off_t output_file_size_;
1401  // Whether we have added an input section to an output section.
1402  bool have_added_input_section_;
1403  // Whether we have attached the sections to the segments.
1404  bool sections_are_attached_;
1405  // Whether we have seen an object file marked to require an
1406  // executable stack.
1407  bool input_requires_executable_stack_;
1408  // Whether we have seen at least one object file with an executable
1409  // stack marker.
1410  bool input_with_gnu_stack_note_;
1411  // Whether we have seen at least one object file without an
1412  // executable stack marker.
1413  bool input_without_gnu_stack_note_;
1414  // Whether we have seen an object file that uses the static TLS model.
1415  bool has_static_tls_;
1416  // Whether any sections require postprocessing.
1417  bool any_postprocessing_sections_;
1418  // Whether we have resized the signatures_ hash table.
1419  bool resized_signatures_;
1420  // Whether we have created a .stab*str output section.
1421  bool have_stabstr_section_;
1422  // True if the input sections in the output sections should be sorted
1423  // as specified in a section ordering file.
1424  bool section_ordering_specified_;
1425  // True if some input sections need to be mapped to a unique segment,
1426  // after being mapped to a unique Output_section.
1427  bool unique_segment_for_sections_specified_;
1428  // In incremental build, holds information check the inputs and build the
1429  // .gnu_incremental_inputs section.
1430  Incremental_inputs* incremental_inputs_;
1431  // Whether we record output section data created in script
1432  bool record_output_section_data_from_script_;
1433  // List of output data that needs to be removed at relaxation clean up.
1434  Output_section_data_list script_output_section_data_list_;
1435  // Structure to save segment states before entering the relaxation loop.
1436  Segment_states* segment_states_;
1437  // A relaxation debug checker.  We only create one when in debugging mode.
1438  Relaxation_debug_check* relaxation_debug_check_;
1439  // Plugins specify section_ordering using this map.  This is set in
1440  // update_section_order in plugin.cc
1441  std::map<Section_id, unsigned int> section_order_map_;
1442  // This maps an input section to a unique segment. This is done by first
1443  // placing such input sections in unique output sections and then mapping
1444  // the output section to a unique segment.  Unique_segment_info stores
1445  // any additional flags and alignment of the new segment.
1446  Section_segment_map section_segment_map_;
1447  // Hash a pattern to its position in the section ordering file.
1448  Unordered_map<std::string, unsigned int> input_section_position_;
1449  // Vector of glob only patterns in the section_ordering file.
1450  std::vector<std::string> input_section_glob_;
1451  // For incremental links, the base file to be modified.
1452  Incremental_binary* incremental_base_;
1453  // For incremental links, a list of free space within the file.
1454  Free_list free_list_;
1455};
1456
1457// This task handles writing out data in output sections which is not
1458// part of an input section, or which requires special handling.  When
1459// this is done, it unblocks both output_sections_blocker and
1460// final_blocker.
1461
1462class Write_sections_task : public Task
1463{
1464 public:
1465  Write_sections_task(const Layout* layout, Output_file* of,
1466		      Task_token* output_sections_blocker,
1467		      Task_token* input_sections_blocker,
1468		      Task_token* final_blocker)
1469    : layout_(layout), of_(of),
1470      output_sections_blocker_(output_sections_blocker),
1471      input_sections_blocker_(input_sections_blocker),
1472      final_blocker_(final_blocker)
1473  { }
1474
1475  // The standard Task methods.
1476
1477  Task_token*
1478  is_runnable();
1479
1480  void
1481  locks(Task_locker*);
1482
1483  void
1484  run(Workqueue*);
1485
1486  std::string
1487  get_name() const
1488  { return "Write_sections_task"; }
1489
1490 private:
1491  class Write_sections_locker;
1492
1493  const Layout* layout_;
1494  Output_file* of_;
1495  Task_token* output_sections_blocker_;
1496  Task_token* input_sections_blocker_;
1497  Task_token* final_blocker_;
1498};
1499
1500// This task handles writing out data which is not part of a section
1501// or segment.
1502
1503class Write_data_task : public Task
1504{
1505 public:
1506  Write_data_task(const Layout* layout, const Symbol_table* symtab,
1507		  Output_file* of, Task_token* final_blocker)
1508    : layout_(layout), symtab_(symtab), of_(of), final_blocker_(final_blocker)
1509  { }
1510
1511  // The standard Task methods.
1512
1513  Task_token*
1514  is_runnable();
1515
1516  void
1517  locks(Task_locker*);
1518
1519  void
1520  run(Workqueue*);
1521
1522  std::string
1523  get_name() const
1524  { return "Write_data_task"; }
1525
1526 private:
1527  const Layout* layout_;
1528  const Symbol_table* symtab_;
1529  Output_file* of_;
1530  Task_token* final_blocker_;
1531};
1532
1533// This task handles writing out the global symbols.
1534
1535class Write_symbols_task : public Task
1536{
1537 public:
1538  Write_symbols_task(const Layout* layout, const Symbol_table* symtab,
1539		     const Input_objects* /*input_objects*/,
1540		     const Stringpool* sympool, const Stringpool* dynpool,
1541		     Output_file* of, Task_token* final_blocker)
1542    : layout_(layout), symtab_(symtab),
1543      sympool_(sympool), dynpool_(dynpool), of_(of),
1544      final_blocker_(final_blocker)
1545  { }
1546
1547  // The standard Task methods.
1548
1549  Task_token*
1550  is_runnable();
1551
1552  void
1553  locks(Task_locker*);
1554
1555  void
1556  run(Workqueue*);
1557
1558  std::string
1559  get_name() const
1560  { return "Write_symbols_task"; }
1561
1562 private:
1563  const Layout* layout_;
1564  const Symbol_table* symtab_;
1565  const Stringpool* sympool_;
1566  const Stringpool* dynpool_;
1567  Output_file* of_;
1568  Task_token* final_blocker_;
1569};
1570
1571// This task handles writing out data in output sections which can't
1572// be written out until all the input sections have been handled.
1573// This is for sections whose contents is based on the contents of
1574// other output sections.
1575
1576class Write_after_input_sections_task : public Task
1577{
1578 public:
1579  Write_after_input_sections_task(Layout* layout, Output_file* of,
1580				  Task_token* input_sections_blocker,
1581				  Task_token* final_blocker)
1582    : layout_(layout), of_(of),
1583      input_sections_blocker_(input_sections_blocker),
1584      final_blocker_(final_blocker)
1585  { }
1586
1587  // The standard Task methods.
1588
1589  Task_token*
1590  is_runnable();
1591
1592  void
1593  locks(Task_locker*);
1594
1595  void
1596  run(Workqueue*);
1597
1598  std::string
1599  get_name() const
1600  { return "Write_after_input_sections_task"; }
1601
1602 private:
1603  Layout* layout_;
1604  Output_file* of_;
1605  Task_token* input_sections_blocker_;
1606  Task_token* final_blocker_;
1607};
1608
1609// This task function handles computation of the build id.
1610// When using --build-id=tree, it schedules the tasks that
1611// compute the hashes for each chunk of the file. This task
1612// cannot run until we have finalized the size of the output
1613// file, after the completion of Write_after_input_sections_task.
1614
1615class Build_id_task_runner : public Task_function_runner
1616{
1617 public:
1618  Build_id_task_runner(const General_options* options, const Layout* layout,
1619		       Output_file* of)
1620    : options_(options), layout_(layout), of_(of)
1621  { }
1622
1623  // Run the operation.
1624  void
1625  run(Workqueue*, const Task*);
1626
1627 private:
1628  const General_options* options_;
1629  const Layout* layout_;
1630  Output_file* of_;
1631};
1632
1633// This task function handles closing the file.
1634
1635class Close_task_runner : public Task_function_runner
1636{
1637 public:
1638  Close_task_runner(const General_options* options, const Layout* layout,
1639		    Output_file* of, unsigned char* array_of_hashes,
1640		    size_t size_of_hashes)
1641    : options_(options), layout_(layout), of_(of),
1642      array_of_hashes_(array_of_hashes), size_of_hashes_(size_of_hashes)
1643  { }
1644
1645  // Run the operation.
1646  void
1647  run(Workqueue*, const Task*);
1648
1649 private:
1650  const General_options* options_;
1651  const Layout* layout_;
1652  Output_file* of_;
1653  unsigned char* const array_of_hashes_;
1654  const size_t size_of_hashes_;
1655};
1656
1657// A small helper function to align an address.
1658
1659inline uint64_t
1660align_address(uint64_t address, uint64_t addralign)
1661{
1662  if (addralign != 0)
1663    address = (address + addralign - 1) &~ (addralign - 1);
1664  return address;
1665}
1666
1667} // End namespace gold.
1668
1669#endif // !defined(GOLD_LAYOUT_H)
1670