1/* blast.c
2 * Copyright (C) 2003, 2012, 2013 Mark Adler
3 * For conditions of distribution and use, see copyright notice in blast.h
4 * version 1.3, 24 Aug 2013
5 *
6 * blast.c decompresses data compressed by the PKWare Compression Library.
7 * This function provides functionality similar to the explode() function of
8 * the PKWare library, hence the name "blast".
9 *
10 * This decompressor is based on the excellent format description provided by
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001.  Interestingly, the
12 * example Ben provided in the post is incorrect.  The distance 110001 should
13 * instead be 111000.  When corrected, the example byte stream becomes:
14 *
15 *    00 04 82 24 25 8f 80 7f
16 *
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
18 */
19
20/*
21 * Change history:
22 *
23 * 1.0  12 Feb 2003     - First version
24 * 1.1  16 Feb 2003     - Fixed distance check for > 4 GB uncompressed data
25 * 1.2  24 Oct 2012     - Add note about using binary mode in stdio
26 *                      - Fix comparisons of differently signed integers
27 * 1.3  24 Aug 2013     - Return unused input from blast()
28 *                      - Fix test code to correctly report unused input
29 *                      - Enable the provision of initial input to blast()
30 */
31
32#include <stddef.h>             /* for NULL */
33#include <setjmp.h>             /* for setjmp(), longjmp(), and jmp_buf */
34#include "blast.h"              /* prototype for blast() */
35
36#define local static            /* for local function definitions */
37#define MAXBITS 13              /* maximum code length */
38#define MAXWIN 4096             /* maximum window size */
39
40/* input and output state */
41struct state {
42    /* input state */
43    blast_in infun;             /* input function provided by user */
44    void *inhow;                /* opaque information passed to infun() */
45    unsigned char *in;          /* next input location */
46    unsigned left;              /* available input at in */
47    int bitbuf;                 /* bit buffer */
48    int bitcnt;                 /* number of bits in bit buffer */
49
50    /* input limit error return state for bits() and decode() */
51    jmp_buf env;
52
53    /* output state */
54    blast_out outfun;           /* output function provided by user */
55    void *outhow;               /* opaque information passed to outfun() */
56    unsigned next;              /* index of next write location in out[] */
57    int first;                  /* true to check distances (for first 4K) */
58    unsigned char out[MAXWIN];  /* output buffer and sliding window */
59};
60
61/*
62 * Return need bits from the input stream.  This always leaves less than
63 * eight bits in the buffer.  bits() works properly for need == 0.
64 *
65 * Format notes:
66 *
67 * - Bits are stored in bytes from the least significant bit to the most
68 *   significant bit.  Therefore bits are dropped from the bottom of the bit
69 *   buffer, using shift right, and new bytes are appended to the top of the
70 *   bit buffer, using shift left.
71 */
72local int bits(struct state *s, int need)
73{
74    int val;            /* bit accumulator */
75
76    /* load at least need bits into val */
77    val = s->bitbuf;
78    while (s->bitcnt < need) {
79        if (s->left == 0) {
80            s->left = s->infun(s->inhow, &(s->in));
81            if (s->left == 0) longjmp(s->env, 1);       /* out of input */
82        }
83        val |= (int)(*(s->in)++) << s->bitcnt;          /* load eight bits */
84        s->left--;
85        s->bitcnt += 8;
86    }
87
88    /* drop need bits and update buffer, always zero to seven bits left */
89    s->bitbuf = val >> need;
90    s->bitcnt -= need;
91
92    /* return need bits, zeroing the bits above that */
93    return val & ((1 << need) - 1);
94}
95
96/*
97 * Huffman code decoding tables.  count[1..MAXBITS] is the number of symbols of
98 * each length, which for a canonical code are stepped through in order.
99 * symbol[] are the symbol values in canonical order, where the number of
100 * entries is the sum of the counts in count[].  The decoding process can be
101 * seen in the function decode() below.
102 */
103struct huffman {
104    short *count;       /* number of symbols of each length */
105    short *symbol;      /* canonically ordered symbols */
106};
107
108/*
109 * Decode a code from the stream s using huffman table h.  Return the symbol or
110 * a negative value if there is an error.  If all of the lengths are zero, i.e.
111 * an empty code, or if the code is incomplete and an invalid code is received,
112 * then -9 is returned after reading MAXBITS bits.
113 *
114 * Format notes:
115 *
116 * - The codes as stored in the compressed data are bit-reversed relative to
117 *   a simple integer ordering of codes of the same lengths.  Hence below the
118 *   bits are pulled from the compressed data one at a time and used to
119 *   build the code value reversed from what is in the stream in order to
120 *   permit simple integer comparisons for decoding.
121 *
122 * - The first code for the shortest length is all ones.  Subsequent codes of
123 *   the same length are simply integer decrements of the previous code.  When
124 *   moving up a length, a one bit is appended to the code.  For a complete
125 *   code, the last code of the longest length will be all zeros.  To support
126 *   this ordering, the bits pulled during decoding are inverted to apply the
127 *   more "natural" ordering starting with all zeros and incrementing.
128 */
129local int decode(struct state *s, struct huffman *h)
130{
131    int len;            /* current number of bits in code */
132    int code;           /* len bits being decoded */
133    int first;          /* first code of length len */
134    int count;          /* number of codes of length len */
135    int index;          /* index of first code of length len in symbol table */
136    int bitbuf;         /* bits from stream */
137    int left;           /* bits left in next or left to process */
138    short *next;        /* next number of codes */
139
140    bitbuf = s->bitbuf;
141    left = s->bitcnt;
142    code = first = index = 0;
143    len = 1;
144    next = h->count + 1;
145    while (1) {
146        while (left--) {
147            code |= (bitbuf & 1) ^ 1;   /* invert code */
148            bitbuf >>= 1;
149            count = *next++;
150            if (code < first + count) { /* if length len, return symbol */
151                s->bitbuf = bitbuf;
152                s->bitcnt = (s->bitcnt - len) & 7;
153                return h->symbol[index + (code - first)];
154            }
155            index += count;             /* else update for next length */
156            first += count;
157            first <<= 1;
158            code <<= 1;
159            len++;
160        }
161        left = (MAXBITS+1) - len;
162        if (left == 0) break;
163        if (s->left == 0) {
164            s->left = s->infun(s->inhow, &(s->in));
165            if (s->left == 0) longjmp(s->env, 1);       /* out of input */
166        }
167        bitbuf = *(s->in)++;
168        s->left--;
169        if (left > 8) left = 8;
170    }
171    return -9;                          /* ran out of codes */
172}
173
174/*
175 * Given a list of repeated code lengths rep[0..n-1], where each byte is a
176 * count (high four bits + 1) and a code length (low four bits), generate the
177 * list of code lengths.  This compaction reduces the size of the object code.
178 * Then given the list of code lengths length[0..n-1] representing a canonical
179 * Huffman code for n symbols, construct the tables required to decode those
180 * codes.  Those tables are the number of codes of each length, and the symbols
181 * sorted by length, retaining their original order within each length.  The
182 * return value is zero for a complete code set, negative for an over-
183 * subscribed code set, and positive for an incomplete code set.  The tables
184 * can be used if the return value is zero or positive, but they cannot be used
185 * if the return value is negative.  If the return value is zero, it is not
186 * possible for decode() using that table to return an error--any stream of
187 * enough bits will resolve to a symbol.  If the return value is positive, then
188 * it is possible for decode() using that table to return an error for received
189 * codes past the end of the incomplete lengths.
190 */
191local int construct(struct huffman *h, const unsigned char *rep, int n)
192{
193    int symbol;         /* current symbol when stepping through length[] */
194    int len;            /* current length when stepping through h->count[] */
195    int left;           /* number of possible codes left of current length */
196    short offs[MAXBITS+1];      /* offsets in symbol table for each length */
197    short length[256];  /* code lengths */
198
199    /* convert compact repeat counts into symbol bit length list */
200    symbol = 0;
201    do {
202        len = *rep++;
203        left = (len >> 4) + 1;
204        len &= 15;
205        do {
206            length[symbol++] = len;
207        } while (--left);
208    } while (--n);
209    n = symbol;
210
211    /* count number of codes of each length */
212    for (len = 0; len <= MAXBITS; len++)
213        h->count[len] = 0;
214    for (symbol = 0; symbol < n; symbol++)
215        (h->count[length[symbol]])++;   /* assumes lengths are within bounds */
216    if (h->count[0] == n)               /* no codes! */
217        return 0;                       /* complete, but decode() will fail */
218
219    /* check for an over-subscribed or incomplete set of lengths */
220    left = 1;                           /* one possible code of zero length */
221    for (len = 1; len <= MAXBITS; len++) {
222        left <<= 1;                     /* one more bit, double codes left */
223        left -= h->count[len];          /* deduct count from possible codes */
224        if (left < 0) return left;      /* over-subscribed--return negative */
225    }                                   /* left > 0 means incomplete */
226
227    /* generate offsets into symbol table for each length for sorting */
228    offs[1] = 0;
229    for (len = 1; len < MAXBITS; len++)
230        offs[len + 1] = offs[len] + h->count[len];
231
232    /*
233     * put symbols in table sorted by length, by symbol order within each
234     * length
235     */
236    for (symbol = 0; symbol < n; symbol++)
237        if (length[symbol] != 0)
238            h->symbol[offs[length[symbol]]++] = symbol;
239
240    /* return zero for complete set, positive for incomplete set */
241    return left;
242}
243
244/*
245 * Decode PKWare Compression Library stream.
246 *
247 * Format notes:
248 *
249 * - First byte is 0 if literals are uncoded or 1 if they are coded.  Second
250 *   byte is 4, 5, or 6 for the number of extra bits in the distance code.
251 *   This is the base-2 logarithm of the dictionary size minus six.
252 *
253 * - Compressed data is a combination of literals and length/distance pairs
254 *   terminated by an end code.  Literals are either Huffman coded or
255 *   uncoded bytes.  A length/distance pair is a coded length followed by a
256 *   coded distance to represent a string that occurs earlier in the
257 *   uncompressed data that occurs again at the current location.
258 *
259 * - A bit preceding a literal or length/distance pair indicates which comes
260 *   next, 0 for literals, 1 for length/distance.
261 *
262 * - If literals are uncoded, then the next eight bits are the literal, in the
263 *   normal bit order in the stream, i.e. no bit-reversal is needed. Similarly,
264 *   no bit reversal is needed for either the length extra bits or the distance
265 *   extra bits.
266 *
267 * - Literal bytes are simply written to the output.  A length/distance pair is
268 *   an instruction to copy previously uncompressed bytes to the output.  The
269 *   copy is from distance bytes back in the output stream, copying for length
270 *   bytes.
271 *
272 * - Distances pointing before the beginning of the output data are not
273 *   permitted.
274 *
275 * - Overlapped copies, where the length is greater than the distance, are
276 *   allowed and common.  For example, a distance of one and a length of 518
277 *   simply copies the last byte 518 times.  A distance of four and a length of
278 *   twelve copies the last four bytes three times.  A simple forward copy
279 *   ignoring whether the length is greater than the distance or not implements
280 *   this correctly.
281 */
282local int decomp(struct state *s)
283{
284    int lit;            /* true if literals are coded */
285    int dict;           /* log2(dictionary size) - 6 */
286    int symbol;         /* decoded symbol, extra bits for distance */
287    int len;            /* length for copy */
288    unsigned dist;      /* distance for copy */
289    int copy;           /* copy counter */
290    unsigned char *from, *to;   /* copy pointers */
291    static int virgin = 1;                              /* build tables once */
292    static short litcnt[MAXBITS+1], litsym[256];        /* litcode memory */
293    static short lencnt[MAXBITS+1], lensym[16];         /* lencode memory */
294    static short distcnt[MAXBITS+1], distsym[64];       /* distcode memory */
295    static struct huffman litcode = {litcnt, litsym};   /* length code */
296    static struct huffman lencode = {lencnt, lensym};   /* length code */
297    static struct huffman distcode = {distcnt, distsym};/* distance code */
298        /* bit lengths of literal codes */
299    static const unsigned char litlen[] = {
300        11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
301        9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
302        7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
303        8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
304        44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
305        44, 173};
306        /* bit lengths of length codes 0..15 */
307    static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
308        /* bit lengths of distance codes 0..63 */
309    static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
310    static const short base[16] = {     /* base for length codes */
311        3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
312    static const char extra[16] = {     /* extra bits for length codes */
313        0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
314
315    /* set up decoding tables (once--might not be thread-safe) */
316    if (virgin) {
317        construct(&litcode, litlen, sizeof(litlen));
318        construct(&lencode, lenlen, sizeof(lenlen));
319        construct(&distcode, distlen, sizeof(distlen));
320        virgin = 0;
321    }
322
323    /* read header */
324    lit = bits(s, 8);
325    if (lit > 1) return -1;
326    dict = bits(s, 8);
327    if (dict < 4 || dict > 6) return -2;
328
329    /* decode literals and length/distance pairs */
330    do {
331        if (bits(s, 1)) {
332            /* get length */
333            symbol = decode(s, &lencode);
334            len = base[symbol] + bits(s, extra[symbol]);
335            if (len == 519) break;              /* end code */
336
337            /* get distance */
338            symbol = len == 2 ? 2 : dict;
339            dist = decode(s, &distcode) << symbol;
340            dist += bits(s, symbol);
341            dist++;
342            if (s->first && dist > s->next)
343                return -3;              /* distance too far back */
344
345            /* copy length bytes from distance bytes back */
346            do {
347                to = s->out + s->next;
348                from = to - dist;
349                copy = MAXWIN;
350                if (s->next < dist) {
351                    from += copy;
352                    copy = dist;
353                }
354                copy -= s->next;
355                if (copy > len) copy = len;
356                len -= copy;
357                s->next += copy;
358                do {
359                    *to++ = *from++;
360                } while (--copy);
361                if (s->next == MAXWIN) {
362                    if (s->outfun(s->outhow, s->out, s->next)) return 1;
363                    s->next = 0;
364                    s->first = 0;
365                }
366            } while (len != 0);
367        }
368        else {
369            /* get literal and write it */
370            symbol = lit ? decode(s, &litcode) : bits(s, 8);
371            s->out[s->next++] = symbol;
372            if (s->next == MAXWIN) {
373                if (s->outfun(s->outhow, s->out, s->next)) return 1;
374                s->next = 0;
375                s->first = 0;
376            }
377        }
378    } while (1);
379    return 0;
380}
381
382/* See comments in blast.h */
383int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow,
384          unsigned *left, unsigned char **in)
385{
386    struct state s;             /* input/output state */
387    int err;                    /* return value */
388
389    /* initialize input state */
390    s.infun = infun;
391    s.inhow = inhow;
392    if (left != NULL && *left) {
393        s.left = *left;
394        s.in = *in;
395    }
396    else
397        s.left = 0;
398    s.bitbuf = 0;
399    s.bitcnt = 0;
400
401    /* initialize output state */
402    s.outfun = outfun;
403    s.outhow = outhow;
404    s.next = 0;
405    s.first = 1;
406
407    /* return if bits() or decode() tries to read past available input */
408    if (setjmp(s.env) != 0)             /* if came back here via longjmp(), */
409        err = 2;                        /*  then skip decomp(), return error */
410    else
411        err = decomp(&s);               /* decompress */
412
413    /* return unused input */
414    if (left != NULL)
415        *left = s.left;
416    if (in != NULL)
417        *in = s.left ? s.in : NULL;
418
419    /* write any leftover output and update the error code if needed */
420    if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
421        err = 1;
422    return err;
423}
424
425#ifdef TEST
426/* Example of how to use blast() */
427#include <stdio.h>
428#include <stdlib.h>
429
430#define CHUNK 16384
431
432local unsigned inf(void *how, unsigned char **buf)
433{
434    static unsigned char hold[CHUNK];
435
436    *buf = hold;
437    return fread(hold, 1, CHUNK, (FILE *)how);
438}
439
440local int outf(void *how, unsigned char *buf, unsigned len)
441{
442    return fwrite(buf, 1, len, (FILE *)how) != len;
443}
444
445/* Decompress a PKWare Compression Library stream from stdin to stdout */
446int main(void)
447{
448    int ret;
449    unsigned left;
450
451    /* decompress to stdout */
452    left = 0;
453    ret = blast(inf, stdin, outf, stdout, &left, NULL);
454    if (ret != 0)
455        fprintf(stderr, "blast error: %d\n", ret);
456
457    /* count any leftover bytes */
458    while (getchar() != EOF)
459        left++;
460    if (left)
461        fprintf(stderr, "blast warning: %u unused bytes of input\n", left);
462
463    /* return blast() error code */
464    return ret;
465}
466#endif
467