1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright (C) 2006-2022 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "x86_64.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "freebsd.h"
42#include "nacl.h"
43#include "gc.h"
44#include "icf.h"
45
46namespace
47{
48
49using namespace gold;
50
51// A class to handle the .got.plt section.
52
53class Output_data_got_plt_x86_64 : public Output_section_data_build
54{
55 public:
56  Output_data_got_plt_x86_64(Layout* layout)
57    : Output_section_data_build(8),
58      layout_(layout)
59  { }
60
61  Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62    : Output_section_data_build(data_size, 8),
63      layout_(layout)
64  { }
65
66 protected:
67  // Write out the PLT data.
68  void
69  do_write(Output_file*);
70
71  // Write to a map file.
72  void
73  do_print_to_mapfile(Mapfile* mapfile) const
74  { mapfile->print_output_data(this, "** GOT PLT"); }
75
76 private:
77  // A pointer to the Layout class, so that we can find the .dynamic
78  // section when we write out the GOT PLT section.
79  Layout* layout_;
80};
81
82// A class to handle the PLT data.
83// This is an abstract base class that handles most of the linker details
84// but does not know the actual contents of PLT entries.  The derived
85// classes below fill in those details.
86
87template<int size>
88class Output_data_plt_x86_64 : public Output_section_data
89{
90 public:
91  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93  Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94			 Output_data_got<64, false>* got,
95			 Output_data_got_plt_x86_64* got_plt,
96			 Output_data_space* got_irelative)
97    : Output_section_data(addralign), tlsdesc_rel_(NULL),
98      irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99      got_irelative_(got_irelative), count_(0), irelative_count_(0),
100      tlsdesc_got_offset_(-1U), free_list_()
101  { this->init(layout); }
102
103  Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104			 Output_data_got<64, false>* got,
105			 Output_data_got_plt_x86_64* got_plt,
106			 Output_data_space* got_irelative,
107			 unsigned int plt_count)
108    : Output_section_data((plt_count + 1) * plt_entry_size,
109			  plt_entry_size, false),
110      tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111      got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112      irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113  {
114    this->init(layout);
115
116    // Initialize the free list and reserve the first entry.
117    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118    this->free_list_.remove(0, plt_entry_size);
119  }
120
121  // Initialize the PLT section.
122  void
123  init(Layout* layout);
124
125  // Add an entry to the PLT.
126  void
127  add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130  unsigned int
131  add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132			Sized_relobj_file<size, false>* relobj,
133			unsigned int local_sym_index);
134
135  // Add the relocation for a PLT entry.
136  void
137  add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138		 unsigned int got_offset);
139
140  // Add the reserved TLSDESC_PLT entry to the PLT.
141  void
142  reserve_tlsdesc_entry(unsigned int got_offset)
143  { this->tlsdesc_got_offset_ = got_offset; }
144
145  // Return true if a TLSDESC_PLT entry has been reserved.
146  bool
147  has_tlsdesc_entry() const
148  { return this->tlsdesc_got_offset_ != -1U; }
149
150  // Return the GOT offset for the reserved TLSDESC_PLT entry.
151  unsigned int
152  get_tlsdesc_got_offset() const
153  { return this->tlsdesc_got_offset_; }
154
155  // Return the offset of the reserved TLSDESC_PLT entry.
156  unsigned int
157  get_tlsdesc_plt_offset() const
158  {
159    return ((this->count_ + this->irelative_count_ + 1)
160	    * this->get_plt_entry_size());
161  }
162
163  // Return the .rela.plt section data.
164  Reloc_section*
165  rela_plt()
166  { return this->rel_; }
167
168  // Return where the TLSDESC relocations should go.
169  Reloc_section*
170  rela_tlsdesc(Layout*);
171
172  // Return where the IRELATIVE relocations should go in the PLT
173  // relocations.
174  Reloc_section*
175  rela_irelative(Symbol_table*, Layout*);
176
177  // Return whether we created a section for IRELATIVE relocations.
178  bool
179  has_irelative_section() const
180  { return this->irelative_rel_ != NULL; }
181
182  // Get count of regular PLT entries.
183  unsigned int
184  regular_count() const
185  { return this->count_; }
186
187  // Return the total number of PLT entries.
188  unsigned int
189  entry_count() const
190  { return this->count_ + this->irelative_count_; }
191
192  // Return the offset of the first non-reserved PLT entry.
193  unsigned int
194  first_plt_entry_offset()
195  { return this->get_plt_entry_size(); }
196
197  // Return the size of a PLT entry.
198  unsigned int
199  get_plt_entry_size() const
200  { return this->do_get_plt_entry_size(); }
201
202  // Reserve a slot in the PLT for an existing symbol in an incremental update.
203  void
204  reserve_slot(unsigned int plt_index)
205  {
206    this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
207			    (plt_index + 2) * this->get_plt_entry_size());
208  }
209
210  // Return the PLT address to use for a global symbol.
211  uint64_t
212  address_for_global(const Symbol* sym)
213  { return do_address_for_global(sym); }
214
215  // Return the PLT address to use for a local symbol.
216  uint64_t
217  address_for_local(const Relobj* obj, unsigned int symndx)
218  { return do_address_for_local(obj, symndx); }
219
220  // Add .eh_frame information for the PLT.
221  void
222  add_eh_frame(Layout* layout)
223  { this->do_add_eh_frame(layout); }
224
225 protected:
226  Output_data_got<64, false>*
227  got() const
228  { return this->got_; }
229
230  Output_data_got_plt_x86_64*
231  got_plt() const
232  { return this->got_plt_; }
233
234  Output_data_space*
235  got_irelative() const
236  { return this->got_irelative_; }
237
238  // Fill in the first PLT entry.
239  void
240  fill_first_plt_entry(unsigned char* pov,
241		       typename elfcpp::Elf_types<size>::Elf_Addr got_address,
242		       typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
243  { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
244
245  // Fill in a normal PLT entry.  Returns the offset into the entry that
246  // should be the initial GOT slot value.
247  unsigned int
248  fill_plt_entry(unsigned char* pov,
249		 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
250		 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
251		 unsigned int got_offset,
252		 unsigned int plt_offset,
253		 unsigned int plt_index)
254  {
255    return this->do_fill_plt_entry(pov, got_address, plt_address,
256				   got_offset, plt_offset, plt_index);
257  }
258
259  // Fill in the reserved TLSDESC PLT entry.
260  void
261  fill_tlsdesc_entry(unsigned char* pov,
262		     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
263		     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
264		     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
265		     unsigned int tlsdesc_got_offset,
266		     unsigned int plt_offset)
267  {
268    this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
269				tlsdesc_got_offset, plt_offset);
270  }
271
272  virtual unsigned int
273  do_get_plt_entry_size() const = 0;
274
275  virtual void
276  do_fill_first_plt_entry(unsigned char* pov,
277			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
278			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
279    = 0;
280
281  virtual unsigned int
282  do_fill_plt_entry(unsigned char* pov,
283		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
284		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
285		    unsigned int got_offset,
286		    unsigned int plt_offset,
287		    unsigned int plt_index) = 0;
288
289  virtual void
290  do_fill_tlsdesc_entry(unsigned char* pov,
291			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
292			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
293			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
294			unsigned int tlsdesc_got_offset,
295			unsigned int plt_offset) = 0;
296
297  // Return the PLT address to use for a global symbol.
298  virtual uint64_t
299  do_address_for_global(const Symbol* sym);
300
301  // Return the PLT address to use for a local symbol.
302  virtual uint64_t
303  do_address_for_local(const Relobj* obj, unsigned int symndx);
304
305  virtual void
306  do_add_eh_frame(Layout* layout) = 0;
307
308  void
309  do_adjust_output_section(Output_section* os);
310
311  // Write to a map file.
312  void
313  do_print_to_mapfile(Mapfile* mapfile) const
314  { mapfile->print_output_data(this, _("** PLT")); }
315
316  // The CIE of the .eh_frame unwind information for the PLT.
317  static const int plt_eh_frame_cie_size = 16;
318  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
319
320 private:
321  // Set the final size.
322  void
323  set_final_data_size();
324
325  // Write out the PLT data.
326  void
327  do_write(Output_file*);
328
329  // The reloc section.
330  Reloc_section* rel_;
331  // The TLSDESC relocs, if necessary.  These must follow the regular
332  // PLT relocs.
333  Reloc_section* tlsdesc_rel_;
334  // The IRELATIVE relocs, if necessary.  These must follow the
335  // regular PLT relocations and the TLSDESC relocations.
336  Reloc_section* irelative_rel_;
337  // The .got section.
338  Output_data_got<64, false>* got_;
339  // The .got.plt section.
340  Output_data_got_plt_x86_64* got_plt_;
341  // The part of the .got.plt section used for IRELATIVE relocs.
342  Output_data_space* got_irelative_;
343  // The number of PLT entries.
344  unsigned int count_;
345  // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
346  // follow the regular PLT entries.
347  unsigned int irelative_count_;
348  // Offset of the reserved TLSDESC_GOT entry when needed.
349  unsigned int tlsdesc_got_offset_;
350  // List of available regions within the section, for incremental
351  // update links.
352  Free_list free_list_;
353};
354
355template<int size>
356class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
357{
358 public:
359  Output_data_plt_x86_64_standard(Layout* layout,
360				  Output_data_got<64, false>* got,
361				  Output_data_got_plt_x86_64* got_plt,
362				  Output_data_space* got_irelative)
363    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
364				   got, got_plt, got_irelative)
365  { }
366
367  Output_data_plt_x86_64_standard(Layout* layout,
368				  Output_data_got<64, false>* got,
369				  Output_data_got_plt_x86_64* got_plt,
370				  Output_data_space* got_irelative,
371				  unsigned int plt_count)
372    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
373				   got, got_plt, got_irelative,
374				   plt_count)
375  { }
376
377 protected:
378  virtual unsigned int
379  do_get_plt_entry_size() const
380  { return plt_entry_size; }
381
382  virtual void
383  do_add_eh_frame(Layout* layout)
384  {
385    layout->add_eh_frame_for_plt(this,
386				 this->plt_eh_frame_cie,
387				 this->plt_eh_frame_cie_size,
388				 plt_eh_frame_fde,
389				 plt_eh_frame_fde_size);
390  }
391
392  virtual void
393  do_fill_first_plt_entry(unsigned char* pov,
394			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
395			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
396
397  virtual unsigned int
398  do_fill_plt_entry(unsigned char* pov,
399		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
400		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
401		    unsigned int got_offset,
402		    unsigned int plt_offset,
403		    unsigned int plt_index);
404
405  virtual void
406  do_fill_tlsdesc_entry(unsigned char* pov,
407			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
408			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
409			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
410			unsigned int tlsdesc_got_offset,
411			unsigned int plt_offset);
412
413 private:
414  // The size of an entry in the PLT.
415  static const int plt_entry_size = 16;
416
417  // The first entry in the PLT.
418  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
419  // procedure linkage table for both programs and shared objects."
420  static const unsigned char first_plt_entry[plt_entry_size];
421
422  // Other entries in the PLT for an executable.
423  static const unsigned char plt_entry[plt_entry_size];
424
425  // The reserved TLSDESC entry in the PLT for an executable.
426  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
427
428  // The .eh_frame unwind information for the PLT.
429  static const int plt_eh_frame_fde_size = 32;
430  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
431};
432
433class Output_data_plt_x86_64_bnd : public Output_data_plt_x86_64<64>
434{
435 public:
436  Output_data_plt_x86_64_bnd(Layout* layout,
437			     Output_data_got<64, false>* got,
438			     Output_data_got_plt_x86_64* got_plt,
439			     Output_data_space* got_irelative)
440    : Output_data_plt_x86_64<64>(layout, plt_entry_size,
441				 got, got_plt, got_irelative),
442      aplt_offset_(0)
443  { }
444
445  Output_data_plt_x86_64_bnd(Layout* layout,
446			     Output_data_got<64, false>* got,
447			     Output_data_got_plt_x86_64* got_plt,
448			     Output_data_space* got_irelative,
449			     unsigned int plt_count)
450    : Output_data_plt_x86_64<64>(layout, plt_entry_size,
451				 got, got_plt, got_irelative,
452				 plt_count),
453      aplt_offset_(0)
454  { }
455
456 protected:
457  virtual unsigned int
458  do_get_plt_entry_size() const
459  { return plt_entry_size; }
460
461  // Return the PLT address to use for a global symbol.
462  uint64_t
463  do_address_for_global(const Symbol*);
464
465  // Return the PLT address to use for a local symbol.
466  uint64_t
467  do_address_for_local(const Relobj*, unsigned int symndx);
468
469  virtual void
470  do_add_eh_frame(Layout* layout)
471  {
472    layout->add_eh_frame_for_plt(this,
473				 this->plt_eh_frame_cie,
474				 this->plt_eh_frame_cie_size,
475				 plt_eh_frame_fde,
476				 plt_eh_frame_fde_size);
477  }
478
479  virtual void
480  do_fill_first_plt_entry(unsigned char* pov,
481			  elfcpp::Elf_types<64>::Elf_Addr got_addr,
482			  elfcpp::Elf_types<64>::Elf_Addr plt_addr);
483
484  virtual unsigned int
485  do_fill_plt_entry(unsigned char* pov,
486		    elfcpp::Elf_types<64>::Elf_Addr got_address,
487		    elfcpp::Elf_types<64>::Elf_Addr plt_address,
488		    unsigned int got_offset,
489		    unsigned int plt_offset,
490		    unsigned int plt_index);
491
492  virtual void
493  do_fill_tlsdesc_entry(unsigned char* pov,
494			elfcpp::Elf_types<64>::Elf_Addr got_address,
495			elfcpp::Elf_types<64>::Elf_Addr plt_address,
496			elfcpp::Elf_types<64>::Elf_Addr got_base,
497			unsigned int tlsdesc_got_offset,
498			unsigned int plt_offset);
499
500  void
501  fill_aplt_entry(unsigned char* pov,
502		  elfcpp::Elf_types<64>::Elf_Addr got_address,
503		  elfcpp::Elf_types<64>::Elf_Addr plt_address,
504		  unsigned int got_offset,
505		  unsigned int plt_offset,
506		  unsigned int plt_index);
507
508 private:
509  // Set the final size.
510  void
511  set_final_data_size();
512
513  // Write out the BND PLT data.
514  void
515  do_write(Output_file*);
516
517  // Offset of the Additional PLT (if using -z bndplt).
518  unsigned int aplt_offset_;
519
520  // The size of an entry in the PLT.
521  static const int plt_entry_size = 16;
522
523  // The size of an entry in the additional PLT.
524  static const int aplt_entry_size = 8;
525
526  // The first entry in the PLT.
527  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
528  // procedure linkage table for both programs and shared objects."
529  static const unsigned char first_plt_entry[plt_entry_size];
530
531  // Other entries in the PLT for an executable.
532  static const unsigned char plt_entry[plt_entry_size];
533
534  // Entries in the additional PLT.
535  static const unsigned char aplt_entry[aplt_entry_size];
536
537  // The reserved TLSDESC entry in the PLT for an executable.
538  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
539
540  // The .eh_frame unwind information for the PLT.
541  static const int plt_eh_frame_fde_size = 32;
542  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
543};
544
545// We use this PLT when Indirect Branch Tracking (IBT) is enabled.
546
547template <int size>
548class Output_data_plt_x86_64_ibt : public Output_data_plt_x86_64<size>
549{
550 public:
551  Output_data_plt_x86_64_ibt(Layout* layout,
552			     Output_data_got<64, false>* got,
553			     Output_data_got_plt_x86_64* got_plt,
554			     Output_data_space* got_irelative)
555    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
556				   got, got_plt, got_irelative),
557      aplt_offset_(0)
558  { }
559
560  Output_data_plt_x86_64_ibt(Layout* layout,
561			     Output_data_got<64, false>* got,
562			     Output_data_got_plt_x86_64* got_plt,
563			     Output_data_space* got_irelative,
564			     unsigned int plt_count)
565    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
566				   got, got_plt, got_irelative,
567				   plt_count),
568      aplt_offset_(0)
569  { }
570
571 protected:
572  virtual unsigned int
573  do_get_plt_entry_size() const
574  { return plt_entry_size; }
575
576  // Return the PLT address to use for a global symbol.
577  uint64_t
578  do_address_for_global(const Symbol*);
579
580  // Return the PLT address to use for a local symbol.
581  uint64_t
582  do_address_for_local(const Relobj*, unsigned int symndx);
583
584  virtual void
585  do_add_eh_frame(Layout* layout)
586  {
587    layout->add_eh_frame_for_plt(this,
588				 this->plt_eh_frame_cie,
589				 this->plt_eh_frame_cie_size,
590				 plt_eh_frame_fde,
591				 plt_eh_frame_fde_size);
592  }
593
594  virtual void
595  do_fill_first_plt_entry(unsigned char* pov,
596			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
597			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
598
599  virtual unsigned int
600  do_fill_plt_entry(unsigned char* pov,
601		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
602		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
603		    unsigned int got_offset,
604		    unsigned int plt_offset,
605		    unsigned int plt_index);
606
607  virtual void
608  do_fill_tlsdesc_entry(unsigned char* pov,
609			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
610			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
611			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
612			unsigned int tlsdesc_got_offset,
613			unsigned int plt_offset);
614
615  void
616  fill_aplt_entry(unsigned char* pov,
617		  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
618		  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
619		  unsigned int got_offset,
620		  unsigned int plt_offset,
621		  unsigned int plt_index);
622
623 private:
624  // Set the final size.
625  void
626  set_final_data_size();
627
628  // Write out the BND PLT data.
629  void
630  do_write(Output_file*);
631
632  // Offset of the Additional PLT (if using -z bndplt).
633  unsigned int aplt_offset_;
634
635  // The size of an entry in the PLT.
636  static const int plt_entry_size = 16;
637
638  // The size of an entry in the additional PLT.
639  static const int aplt_entry_size = 16;
640
641  // The first entry in the PLT.
642  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
643  // procedure linkage table for both programs and shared objects."
644  static const unsigned char first_plt_entry[plt_entry_size];
645
646  // Other entries in the PLT for an executable.
647  static const unsigned char plt_entry[plt_entry_size];
648
649  // Entries in the additional PLT.
650  static const unsigned char aplt_entry[aplt_entry_size];
651
652  // The reserved TLSDESC entry in the PLT for an executable.
653  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
654
655  // The .eh_frame unwind information for the PLT.
656  static const int plt_eh_frame_fde_size = 32;
657  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
658};
659
660template<int size>
661class Lazy_view
662{
663 public:
664  Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
665    : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
666  { }
667
668  inline unsigned char
669  operator[](size_t offset)
670  {
671    if (this->view_ == NULL)
672      this->view_ = this->object_->section_contents(this->data_shndx_,
673                                                    &this->view_size_,
674                                                    true);
675    if (offset >= this->view_size_)
676      return 0;
677    return this->view_[offset];
678  }
679
680 private:
681  Sized_relobj_file<size, false>* object_;
682  unsigned int data_shndx_;
683  const unsigned char* view_;
684  section_size_type view_size_;
685};
686
687// The x86_64 target class.
688// See the ABI at
689//   http://www.x86-64.org/documentation/abi.pdf
690// TLS info comes from
691//   http://people.redhat.com/drepper/tls.pdf
692//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
693
694template<int size>
695class Target_x86_64 : public Sized_target<size, false>
696{
697 public:
698  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
699  // uses only Elf64_Rela relocation entries with explicit addends."
700  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
701
702  Target_x86_64(const Target::Target_info* info = &x86_64_info)
703    : Sized_target<size, false>(info),
704      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
705      got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
706      rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
707      got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
708      tls_base_symbol_defined_(false), isa_1_used_(0), isa_1_needed_(0),
709      feature_1_(0), feature_2_used_(0), feature_2_needed_(0),
710      object_isa_1_used_(0), object_feature_1_(0),
711      object_feature_2_used_(0), seen_first_object_(false)
712  { }
713
714  // Hook for a new output section.
715  void
716  do_new_output_section(Output_section*) const;
717
718  // Scan the relocations to look for symbol adjustments.
719  void
720  gc_process_relocs(Symbol_table* symtab,
721		    Layout* layout,
722		    Sized_relobj_file<size, false>* object,
723		    unsigned int data_shndx,
724		    unsigned int sh_type,
725		    const unsigned char* prelocs,
726		    size_t reloc_count,
727		    Output_section* output_section,
728		    bool needs_special_offset_handling,
729		    size_t local_symbol_count,
730		    const unsigned char* plocal_symbols);
731
732  // Scan the relocations to look for symbol adjustments.
733  void
734  scan_relocs(Symbol_table* symtab,
735	      Layout* layout,
736	      Sized_relobj_file<size, false>* object,
737	      unsigned int data_shndx,
738	      unsigned int sh_type,
739	      const unsigned char* prelocs,
740	      size_t reloc_count,
741	      Output_section* output_section,
742	      bool needs_special_offset_handling,
743	      size_t local_symbol_count,
744	      const unsigned char* plocal_symbols);
745
746  // Finalize the sections.
747  void
748  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
749
750  // Return the value to use for a dynamic which requires special
751  // treatment.
752  uint64_t
753  do_dynsym_value(const Symbol*) const;
754
755  // Relocate a section.
756  void
757  relocate_section(const Relocate_info<size, false>*,
758		   unsigned int sh_type,
759		   const unsigned char* prelocs,
760		   size_t reloc_count,
761		   Output_section* output_section,
762		   bool needs_special_offset_handling,
763		   unsigned char* view,
764		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
765		   section_size_type view_size,
766		   const Reloc_symbol_changes*);
767
768  // Scan the relocs during a relocatable link.
769  void
770  scan_relocatable_relocs(Symbol_table* symtab,
771			  Layout* layout,
772			  Sized_relobj_file<size, false>* object,
773			  unsigned int data_shndx,
774			  unsigned int sh_type,
775			  const unsigned char* prelocs,
776			  size_t reloc_count,
777			  Output_section* output_section,
778			  bool needs_special_offset_handling,
779			  size_t local_symbol_count,
780			  const unsigned char* plocal_symbols,
781			  Relocatable_relocs*);
782
783  // Scan the relocs for --emit-relocs.
784  void
785  emit_relocs_scan(Symbol_table* symtab,
786		   Layout* layout,
787		   Sized_relobj_file<size, false>* object,
788		   unsigned int data_shndx,
789		   unsigned int sh_type,
790		   const unsigned char* prelocs,
791		   size_t reloc_count,
792		   Output_section* output_section,
793		   bool needs_special_offset_handling,
794		   size_t local_symbol_count,
795		   const unsigned char* plocal_syms,
796		   Relocatable_relocs* rr);
797
798  // Emit relocations for a section.
799  void
800  relocate_relocs(
801      const Relocate_info<size, false>*,
802      unsigned int sh_type,
803      const unsigned char* prelocs,
804      size_t reloc_count,
805      Output_section* output_section,
806      typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
807      unsigned char* view,
808      typename elfcpp::Elf_types<size>::Elf_Addr view_address,
809      section_size_type view_size,
810      unsigned char* reloc_view,
811      section_size_type reloc_view_size);
812
813  // Return a string used to fill a code section with nops.
814  std::string
815  do_code_fill(section_size_type length) const;
816
817  // Return whether SYM is defined by the ABI.
818  bool
819  do_is_defined_by_abi(const Symbol* sym) const
820  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
821
822  // Return the symbol index to use for a target specific relocation.
823  // The only target specific relocation is R_X86_64_TLSDESC for a
824  // local symbol, which is an absolute reloc.
825  unsigned int
826  do_reloc_symbol_index(void*, unsigned int r_type) const
827  {
828    gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
829    return 0;
830  }
831
832  // Return the addend to use for a target specific relocation.
833  uint64_t
834  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
835
836  // Return the PLT section.
837  uint64_t
838  do_plt_address_for_global(const Symbol* gsym) const
839  { return this->plt_section()->address_for_global(gsym); }
840
841  uint64_t
842  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
843  { return this->plt_section()->address_for_local(relobj, symndx); }
844
845  // This function should be defined in targets that can use relocation
846  // types to determine (implemented in local_reloc_may_be_function_pointer
847  // and global_reloc_may_be_function_pointer)
848  // if a function's pointer is taken.  ICF uses this in safe mode to only
849  // fold those functions whose pointer is defintely not taken.  For x86_64
850  // pie binaries, safe ICF cannot be done by looking at only relocation
851  // types, and for certain cases (e.g. R_X86_64_PC32), the instruction
852  // opcode is checked as well to distinguish a function call from taking
853  // a function's pointer.
854  bool
855  do_can_check_for_function_pointers() const
856  { return true; }
857
858  // Return the base for a DW_EH_PE_datarel encoding.
859  uint64_t
860  do_ehframe_datarel_base() const;
861
862  // Adjust -fsplit-stack code which calls non-split-stack code.
863  void
864  do_calls_non_split(Relobj* object, unsigned int shndx,
865		     section_offset_type fnoffset, section_size_type fnsize,
866		     const unsigned char* prelocs, size_t reloc_count,
867		     unsigned char* view, section_size_type view_size,
868		     std::string* from, std::string* to) const;
869
870  // Return the size of the GOT section.
871  section_size_type
872  got_size() const
873  {
874    gold_assert(this->got_ != NULL);
875    return this->got_->data_size();
876  }
877
878  // Return the number of entries in the GOT.
879  unsigned int
880  got_entry_count() const
881  {
882    if (this->got_ == NULL)
883      return 0;
884    return this->got_size() / 8;
885  }
886
887  // Return the number of entries in the PLT.
888  unsigned int
889  plt_entry_count() const;
890
891  // Return the offset of the first non-reserved PLT entry.
892  unsigned int
893  first_plt_entry_offset() const;
894
895  // Return the size of each PLT entry.
896  unsigned int
897  plt_entry_size() const;
898
899  // Return the size of each GOT entry.
900  unsigned int
901  got_entry_size() const
902  { return 8; };
903
904  // Create the GOT section for an incremental update.
905  Output_data_got_base*
906  init_got_plt_for_update(Symbol_table* symtab,
907			  Layout* layout,
908			  unsigned int got_count,
909			  unsigned int plt_count);
910
911  // Reserve a GOT entry for a local symbol, and regenerate any
912  // necessary dynamic relocations.
913  void
914  reserve_local_got_entry(unsigned int got_index,
915			  Sized_relobj<size, false>* obj,
916			  unsigned int r_sym,
917			  unsigned int got_type);
918
919  // Reserve a GOT entry for a global symbol, and regenerate any
920  // necessary dynamic relocations.
921  void
922  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
923			   unsigned int got_type);
924
925  // Register an existing PLT entry for a global symbol.
926  void
927  register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
928			    Symbol* gsym);
929
930  // Force a COPY relocation for a given symbol.
931  void
932  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
933
934  // Apply an incremental relocation.
935  void
936  apply_relocation(const Relocate_info<size, false>* relinfo,
937		   typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
938		   unsigned int r_type,
939		   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
940		   const Symbol* gsym,
941		   unsigned char* view,
942		   typename elfcpp::Elf_types<size>::Elf_Addr address,
943		   section_size_type view_size);
944
945  // Add a new reloc argument, returning the index in the vector.
946  size_t
947  add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
948  {
949    this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
950    return this->tlsdesc_reloc_info_.size() - 1;
951  }
952
953  Output_data_plt_x86_64<size>*
954  make_data_plt(Layout* layout,
955		Output_data_got<64, false>* got,
956		Output_data_got_plt_x86_64* got_plt,
957		Output_data_space* got_irelative)
958  {
959    return this->do_make_data_plt(layout, got, got_plt, got_irelative);
960  }
961
962  Output_data_plt_x86_64<size>*
963  make_data_plt(Layout* layout,
964		Output_data_got<64, false>* got,
965		Output_data_got_plt_x86_64* got_plt,
966		Output_data_space* got_irelative,
967		unsigned int plt_count)
968  {
969    return this->do_make_data_plt(layout, got, got_plt, got_irelative,
970				  plt_count);
971  }
972
973  virtual Output_data_plt_x86_64<size>*
974  do_make_data_plt(Layout* layout,
975		   Output_data_got<64, false>* got,
976		   Output_data_got_plt_x86_64* got_plt,
977		   Output_data_space* got_irelative);
978
979  virtual Output_data_plt_x86_64<size>*
980  do_make_data_plt(Layout* layout,
981		   Output_data_got<64, false>* got,
982		   Output_data_got_plt_x86_64* got_plt,
983		   Output_data_space* got_irelative,
984		   unsigned int plt_count);
985
986 private:
987  // The class which scans relocations.
988  class Scan
989  {
990  public:
991    Scan()
992      : issued_non_pic_error_(false)
993    { }
994
995    static inline int
996    get_reference_flags(unsigned int r_type);
997
998    inline void
999    local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
1000	  Sized_relobj_file<size, false>* object,
1001	  unsigned int data_shndx,
1002	  Output_section* output_section,
1003	  const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
1004	  const elfcpp::Sym<size, false>& lsym,
1005	  bool is_discarded);
1006
1007    inline void
1008    global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
1009	   Sized_relobj_file<size, false>* object,
1010	   unsigned int data_shndx,
1011	   Output_section* output_section,
1012	   const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
1013	   Symbol* gsym);
1014
1015    inline bool
1016    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
1017					Target_x86_64* target,
1018					Sized_relobj_file<size, false>* object,
1019					unsigned int data_shndx,
1020					Output_section* output_section,
1021					const elfcpp::Rela<size, false>& reloc,
1022					unsigned int r_type,
1023					const elfcpp::Sym<size, false>& lsym);
1024
1025    inline bool
1026    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
1027					 Target_x86_64* target,
1028					 Sized_relobj_file<size, false>* object,
1029					 unsigned int data_shndx,
1030					 Output_section* output_section,
1031					 const elfcpp::Rela<size, false>& reloc,
1032					 unsigned int r_type,
1033					 Symbol* gsym);
1034
1035  private:
1036    static void
1037    unsupported_reloc_local(Sized_relobj_file<size, false>*,
1038			    unsigned int r_type);
1039
1040    static void
1041    unsupported_reloc_global(Sized_relobj_file<size, false>*,
1042			     unsigned int r_type, Symbol*);
1043
1044    void
1045    check_non_pic(Relobj*, unsigned int r_type, Symbol*);
1046
1047    inline bool
1048    possible_function_pointer_reloc(Sized_relobj_file<size, false>* src_obj,
1049                                    unsigned int src_indx,
1050                                    unsigned int r_offset,
1051                                    unsigned int r_type);
1052
1053    bool
1054    reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
1055			      unsigned int r_type);
1056
1057    // Whether we have issued an error about a non-PIC compilation.
1058    bool issued_non_pic_error_;
1059  };
1060
1061  // The class which implements relocation.
1062  class Relocate
1063  {
1064   public:
1065    Relocate()
1066      : skip_call_tls_get_addr_(false)
1067    { }
1068
1069    ~Relocate()
1070    {
1071      if (this->skip_call_tls_get_addr_)
1072	{
1073	  // FIXME: This needs to specify the location somehow.
1074	  gold_error(_("missing expected TLS relocation"));
1075	}
1076    }
1077
1078    // Do a relocation.  Return false if the caller should not issue
1079    // any warnings about this relocation.
1080    inline bool
1081    relocate(const Relocate_info<size, false>*, unsigned int,
1082	     Target_x86_64*, Output_section*, size_t, const unsigned char*,
1083	     const Sized_symbol<size>*, const Symbol_value<size>*,
1084	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1085	     section_size_type);
1086
1087   private:
1088    // Do a TLS relocation.
1089    inline void
1090    relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
1091		 size_t relnum, const elfcpp::Rela<size, false>&,
1092		 unsigned int r_type, const Sized_symbol<size>*,
1093		 const Symbol_value<size>*,
1094		 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1095		 section_size_type);
1096
1097    // Do a TLS General-Dynamic to Initial-Exec transition.
1098    inline void
1099    tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1100		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1101		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1102		 unsigned char* view,
1103		 typename elfcpp::Elf_types<size>::Elf_Addr,
1104		 section_size_type view_size);
1105
1106    // Do a TLS General-Dynamic to Local-Exec transition.
1107    inline void
1108    tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1109		 Output_segment* tls_segment,
1110		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1111		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1112		 unsigned char* view,
1113		 section_size_type view_size);
1114
1115    // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
1116    inline void
1117    tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1118		      const elfcpp::Rela<size, false>&, unsigned int r_type,
1119		      typename elfcpp::Elf_types<size>::Elf_Addr value,
1120		      unsigned char* view,
1121		      typename elfcpp::Elf_types<size>::Elf_Addr,
1122		      section_size_type view_size);
1123
1124    // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
1125    inline void
1126    tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1127		      Output_segment* tls_segment,
1128		      const elfcpp::Rela<size, false>&, unsigned int r_type,
1129		      typename elfcpp::Elf_types<size>::Elf_Addr value,
1130		      unsigned char* view,
1131		      section_size_type view_size);
1132
1133    // Do a TLS Local-Dynamic to Local-Exec transition.
1134    inline void
1135    tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
1136		 Output_segment* tls_segment,
1137		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1138		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1139		 unsigned char* view,
1140		 section_size_type view_size);
1141
1142    // Do a TLS Initial-Exec to Local-Exec transition.
1143    static inline void
1144    tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
1145		 Output_segment* tls_segment,
1146		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1147		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1148		 unsigned char* view,
1149		 section_size_type view_size);
1150
1151    // This is set if we should skip the next reloc, which should be a
1152    // PLT32 reloc against ___tls_get_addr.
1153    bool skip_call_tls_get_addr_;
1154  };
1155
1156  // Check if relocation against this symbol is a candidate for
1157  // conversion from
1158  // mov foo@GOTPCREL(%rip), %reg
1159  // to lea foo(%rip), %reg.
1160  template<class View_type>
1161  static inline bool
1162  can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
1163                         size_t r_offset, View_type* view)
1164  {
1165    gold_assert(gsym != NULL);
1166    // We cannot do the conversion unless it's one of these relocations.
1167    if (r_type != elfcpp::R_X86_64_GOTPCREL
1168        && r_type != elfcpp::R_X86_64_GOTPCRELX
1169        && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
1170      return false;
1171    // We cannot convert references to IFUNC symbols, or to symbols that
1172    // are not local to the current module.
1173    // We can't do predefined symbols because they may become undefined
1174    // (e.g., __ehdr_start when the headers aren't mapped to a segment).
1175    if (gsym->type() == elfcpp::STT_GNU_IFUNC
1176        || gsym->is_undefined()
1177        || gsym->is_predefined()
1178        || gsym->is_from_dynobj()
1179        || gsym->is_preemptible())
1180      return false;
1181    // If we are building a shared object and the symbol is protected, we may
1182    // need to go through the GOT.
1183    if (parameters->options().shared()
1184        && gsym->visibility() == elfcpp::STV_PROTECTED)
1185      return false;
1186    // We cannot convert references to the _DYNAMIC symbol.
1187    if (strcmp(gsym->name(), "_DYNAMIC") == 0)
1188      return false;
1189    // Check for a MOV opcode.
1190    return (*view)[r_offset - 2] == 0x8b;
1191  }
1192
1193  // Convert
1194  // callq *foo@GOTPCRELX(%rip) to
1195  // addr32 callq foo
1196  // and jmpq *foo@GOTPCRELX(%rip) to
1197  // jmpq foo
1198  // nop
1199  template<class View_type>
1200  static inline bool
1201  can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
1202			      size_t r_offset, View_type* view)
1203  {
1204    gold_assert(gsym != NULL);
1205    // We cannot do the conversion unless it's a GOTPCRELX relocation.
1206    if (r_type != elfcpp::R_X86_64_GOTPCRELX)
1207      return false;
1208    // We cannot convert references to IFUNC symbols, or to symbols that
1209    // are not local to the current module.
1210    if (gsym->type() == elfcpp::STT_GNU_IFUNC
1211        || gsym->is_undefined ()
1212        || gsym->is_from_dynobj()
1213        || gsym->is_preemptible())
1214      return false;
1215    // Check for a CALLQ or JMPQ opcode.
1216    return ((*view)[r_offset - 2] == 0xff
1217            && ((*view)[r_offset - 1] == 0x15
1218                || (*view)[r_offset - 1] == 0x25));
1219  }
1220
1221  // Adjust TLS relocation type based on the options and whether this
1222  // is a local symbol.
1223  static tls::Tls_optimization
1224  optimize_tls_reloc(bool is_final, int r_type);
1225
1226  // Get the GOT section, creating it if necessary.
1227  Output_data_got<64, false>*
1228  got_section(Symbol_table*, Layout*);
1229
1230  // Get the GOT PLT section.
1231  Output_data_got_plt_x86_64*
1232  got_plt_section() const
1233  {
1234    gold_assert(this->got_plt_ != NULL);
1235    return this->got_plt_;
1236  }
1237
1238  // Get the GOT section for TLSDESC entries.
1239  Output_data_got<64, false>*
1240  got_tlsdesc_section() const
1241  {
1242    gold_assert(this->got_tlsdesc_ != NULL);
1243    return this->got_tlsdesc_;
1244  }
1245
1246  // Create the PLT section.
1247  void
1248  make_plt_section(Symbol_table* symtab, Layout* layout);
1249
1250  // Create a PLT entry for a global symbol.
1251  void
1252  make_plt_entry(Symbol_table*, Layout*, Symbol*);
1253
1254  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
1255  void
1256  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1257			     Sized_relobj_file<size, false>* relobj,
1258			     unsigned int local_sym_index);
1259
1260  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1261  void
1262  define_tls_base_symbol(Symbol_table*, Layout*);
1263
1264  // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1265  void
1266  reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
1267
1268  // Create a GOT entry for the TLS module index.
1269  unsigned int
1270  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1271		      Sized_relobj_file<size, false>* object);
1272
1273  // Get the PLT section.
1274  Output_data_plt_x86_64<size>*
1275  plt_section() const
1276  {
1277    gold_assert(this->plt_ != NULL);
1278    return this->plt_;
1279  }
1280
1281  // Get the dynamic reloc section, creating it if necessary.
1282  Reloc_section*
1283  rela_dyn_section(Layout*);
1284
1285  // Get the section to use for TLSDESC relocations.
1286  Reloc_section*
1287  rela_tlsdesc_section(Layout*) const;
1288
1289  // Get the section to use for IRELATIVE relocations.
1290  Reloc_section*
1291  rela_irelative_section(Layout*);
1292
1293  // Add a potential copy relocation.
1294  void
1295  copy_reloc(Symbol_table* symtab, Layout* layout,
1296	     Sized_relobj_file<size, false>* object,
1297	     unsigned int shndx, Output_section* output_section,
1298	     Symbol* sym, const elfcpp::Rela<size, false>& reloc)
1299  {
1300    unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1301    this->copy_relocs_.copy_reloc(symtab, layout,
1302				  symtab->get_sized_symbol<size>(sym),
1303				  object, shndx, output_section,
1304				  r_type, reloc.get_r_offset(),
1305				  reloc.get_r_addend(),
1306				  this->rela_dyn_section(layout));
1307  }
1308
1309  // Record a target-specific program property in the .note.gnu.property
1310  // section.
1311  void
1312  record_gnu_property(unsigned int, unsigned int, size_t,
1313		      const unsigned char*, const Object*);
1314
1315  // Merge the target-specific program properties from the current object.
1316  void
1317  merge_gnu_properties(const Object*);
1318
1319  // Finalize the target-specific program properties and add them back to
1320  // the layout.
1321  void
1322  do_finalize_gnu_properties(Layout*) const;
1323
1324  // Information about this specific target which we pass to the
1325  // general Target structure.
1326  static const Target::Target_info x86_64_info;
1327
1328  // The types of GOT entries needed for this platform.
1329  // These values are exposed to the ABI in an incremental link.
1330  // Do not renumber existing values without changing the version
1331  // number of the .gnu_incremental_inputs section.
1332  enum Got_type
1333  {
1334    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
1335    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
1336    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
1337    GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
1338  };
1339
1340  // This type is used as the argument to the target specific
1341  // relocation routines.  The only target specific reloc is
1342  // R_X86_64_TLSDESC against a local symbol.
1343  struct Tlsdesc_info
1344  {
1345    Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1346      : object(a_object), r_sym(a_r_sym)
1347    { }
1348
1349    // The object in which the local symbol is defined.
1350    Sized_relobj_file<size, false>* object;
1351    // The local symbol index in the object.
1352    unsigned int r_sym;
1353  };
1354
1355  // The GOT section.
1356  Output_data_got<64, false>* got_;
1357  // The PLT section.
1358  Output_data_plt_x86_64<size>* plt_;
1359  // The GOT PLT section.
1360  Output_data_got_plt_x86_64* got_plt_;
1361  // The GOT section for IRELATIVE relocations.
1362  Output_data_space* got_irelative_;
1363  // The GOT section for TLSDESC relocations.
1364  Output_data_got<64, false>* got_tlsdesc_;
1365  // The _GLOBAL_OFFSET_TABLE_ symbol.
1366  Symbol* global_offset_table_;
1367  // The dynamic reloc section.
1368  Reloc_section* rela_dyn_;
1369  // The section to use for IRELATIVE relocs.
1370  Reloc_section* rela_irelative_;
1371  // Relocs saved to avoid a COPY reloc.
1372  Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1373  // Offset of the GOT entry for the TLS module index.
1374  unsigned int got_mod_index_offset_;
1375  // We handle R_X86_64_TLSDESC against a local symbol as a target
1376  // specific relocation.  Here we store the object and local symbol
1377  // index for the relocation.
1378  std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1379  // True if the _TLS_MODULE_BASE_ symbol has been defined.
1380  bool tls_base_symbol_defined_;
1381  // Target-specific program properties, from .note.gnu.property section.
1382  // Each bit represents a specific feature.
1383  uint32_t isa_1_used_;
1384  uint32_t isa_1_needed_;
1385  uint32_t feature_1_;
1386  uint32_t feature_2_used_;
1387  uint32_t feature_2_needed_;
1388  // Target-specific properties from the current object.
1389  // These bits get ORed into ISA_1_USED_ after all properties for the object
1390  // have been processed. But if either is all zeroes (as when the property
1391  // is absent from an object), the result should be all zeroes.
1392  // (See PR ld/23486.)
1393  uint32_t object_isa_1_used_;
1394  // These bits get ANDed into FEATURE_1_ after all properties for the object
1395  // have been processed.
1396  uint32_t object_feature_1_;
1397  uint32_t object_feature_2_used_;
1398  // Whether we have seen our first object, for use in initializing FEATURE_1_.
1399  bool seen_first_object_;
1400};
1401
1402template<>
1403const Target::Target_info Target_x86_64<64>::x86_64_info =
1404{
1405  64,			// size
1406  false,		// is_big_endian
1407  elfcpp::EM_X86_64,	// machine_code
1408  false,		// has_make_symbol
1409  false,		// has_resolve
1410  true,			// has_code_fill
1411  true,			// is_default_stack_executable
1412  true,			// can_icf_inline_merge_sections
1413  '\0',			// wrap_char
1414  "/lib/ld64.so.1",     // program interpreter
1415  0x400000,		// default_text_segment_address
1416  0x1000,		// abi_pagesize (overridable by -z max-page-size)
1417  0x1000,		// common_pagesize (overridable by -z common-page-size)
1418  false,                // isolate_execinstr
1419  0,                    // rosegment_gap
1420  elfcpp::SHN_UNDEF,	// small_common_shndx
1421  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
1422  0,			// small_common_section_flags
1423  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
1424  NULL,			// attributes_section
1425  NULL,			// attributes_vendor
1426  "_start",		// entry_symbol_name
1427  32,			// hash_entry_size
1428  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
1429};
1430
1431template<>
1432const Target::Target_info Target_x86_64<32>::x86_64_info =
1433{
1434  32,			// size
1435  false,		// is_big_endian
1436  elfcpp::EM_X86_64,	// machine_code
1437  false,		// has_make_symbol
1438  false,		// has_resolve
1439  true,			// has_code_fill
1440  true,			// is_default_stack_executable
1441  true,			// can_icf_inline_merge_sections
1442  '\0',			// wrap_char
1443  "/libx32/ldx32.so.1", // program interpreter
1444  0x400000,		// default_text_segment_address
1445  0x1000,		// abi_pagesize (overridable by -z max-page-size)
1446  0x1000,		// common_pagesize (overridable by -z common-page-size)
1447  false,                // isolate_execinstr
1448  0,                    // rosegment_gap
1449  elfcpp::SHN_UNDEF,	// small_common_shndx
1450  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
1451  0,			// small_common_section_flags
1452  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
1453  NULL,			// attributes_section
1454  NULL,			// attributes_vendor
1455  "_start",		// entry_symbol_name
1456  32,			// hash_entry_size
1457  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
1458};
1459
1460// This is called when a new output section is created.  This is where
1461// we handle the SHF_X86_64_LARGE.
1462
1463template<int size>
1464void
1465Target_x86_64<size>::do_new_output_section(Output_section* os) const
1466{
1467  if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1468    os->set_is_large_section();
1469}
1470
1471// Get the GOT section, creating it if necessary.
1472
1473template<int size>
1474Output_data_got<64, false>*
1475Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1476{
1477  if (this->got_ == NULL)
1478    {
1479      gold_assert(symtab != NULL && layout != NULL);
1480
1481      // When using -z now, we can treat .got.plt as a relro section.
1482      // Without -z now, it is modified after program startup by lazy
1483      // PLT relocations.
1484      bool is_got_plt_relro = parameters->options().now();
1485      Output_section_order got_order = (is_got_plt_relro
1486					? ORDER_RELRO
1487					: ORDER_RELRO_LAST);
1488      Output_section_order got_plt_order = (is_got_plt_relro
1489					    ? ORDER_RELRO
1490					    : ORDER_NON_RELRO_FIRST);
1491
1492      this->got_ = new Output_data_got<64, false>();
1493
1494      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1495				      (elfcpp::SHF_ALLOC
1496				       | elfcpp::SHF_WRITE),
1497				      this->got_, got_order, true);
1498
1499      this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1500      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1501				      (elfcpp::SHF_ALLOC
1502				       | elfcpp::SHF_WRITE),
1503				      this->got_plt_, got_plt_order,
1504				      is_got_plt_relro);
1505
1506      // The first three entries are reserved.
1507      this->got_plt_->set_current_data_size(3 * 8);
1508
1509      if (!is_got_plt_relro)
1510	{
1511	  // Those bytes can go into the relro segment.
1512	  layout->increase_relro(3 * 8);
1513	}
1514
1515      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1516      this->global_offset_table_ =
1517	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1518				      Symbol_table::PREDEFINED,
1519				      this->got_plt_,
1520				      0, 0, elfcpp::STT_OBJECT,
1521				      elfcpp::STB_LOCAL,
1522				      elfcpp::STV_HIDDEN, 0,
1523				      false, false);
1524
1525      // If there are any IRELATIVE relocations, they get GOT entries
1526      // in .got.plt after the jump slot entries.
1527      this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1528      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1529				      (elfcpp::SHF_ALLOC
1530				       | elfcpp::SHF_WRITE),
1531				      this->got_irelative_,
1532				      got_plt_order, is_got_plt_relro);
1533
1534      // If there are any TLSDESC relocations, they get GOT entries in
1535      // .got.plt after the jump slot and IRELATIVE entries.
1536      this->got_tlsdesc_ = new Output_data_got<64, false>();
1537      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1538				      (elfcpp::SHF_ALLOC
1539				       | elfcpp::SHF_WRITE),
1540				      this->got_tlsdesc_,
1541				      got_plt_order, is_got_plt_relro);
1542    }
1543
1544  return this->got_;
1545}
1546
1547// Get the dynamic reloc section, creating it if necessary.
1548
1549template<int size>
1550typename Target_x86_64<size>::Reloc_section*
1551Target_x86_64<size>::rela_dyn_section(Layout* layout)
1552{
1553  if (this->rela_dyn_ == NULL)
1554    {
1555      gold_assert(layout != NULL);
1556      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1557      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1558				      elfcpp::SHF_ALLOC, this->rela_dyn_,
1559				      ORDER_DYNAMIC_RELOCS, false);
1560    }
1561  return this->rela_dyn_;
1562}
1563
1564// Get the section to use for IRELATIVE relocs, creating it if
1565// necessary.  These go in .rela.dyn, but only after all other dynamic
1566// relocations.  They need to follow the other dynamic relocations so
1567// that they can refer to global variables initialized by those
1568// relocs.
1569
1570template<int size>
1571typename Target_x86_64<size>::Reloc_section*
1572Target_x86_64<size>::rela_irelative_section(Layout* layout)
1573{
1574  if (this->rela_irelative_ == NULL)
1575    {
1576      // Make sure we have already created the dynamic reloc section.
1577      this->rela_dyn_section(layout);
1578      this->rela_irelative_ = new Reloc_section(false);
1579      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1580				      elfcpp::SHF_ALLOC, this->rela_irelative_,
1581				      ORDER_DYNAMIC_RELOCS, false);
1582      gold_assert(this->rela_dyn_->output_section()
1583		  == this->rela_irelative_->output_section());
1584    }
1585  return this->rela_irelative_;
1586}
1587
1588// Record a target-specific program property from the .note.gnu.property
1589// section.
1590template<int size>
1591void
1592Target_x86_64<size>::record_gnu_property(
1593    unsigned int, unsigned int pr_type,
1594    size_t pr_datasz, const unsigned char* pr_data,
1595    const Object* object)
1596{
1597  uint32_t val = 0;
1598
1599  switch (pr_type)
1600    {
1601    case elfcpp::GNU_PROPERTY_X86_COMPAT_ISA_1_USED:
1602    case elfcpp::GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED:
1603    case elfcpp::GNU_PROPERTY_X86_COMPAT_2_ISA_1_USED:
1604    case elfcpp::GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED:
1605    case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
1606    case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
1607    case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
1608    case elfcpp::GNU_PROPERTY_X86_FEATURE_2_USED:
1609    case elfcpp::GNU_PROPERTY_X86_FEATURE_2_NEEDED:
1610      if (pr_datasz != 4)
1611	{
1612	  gold_warning(_("%s: corrupt .note.gnu.property section "
1613			 "(pr_datasz for property %d is not 4)"),
1614		       object->name().c_str(), pr_type);
1615	  return;
1616	}
1617      val = elfcpp::Swap<32, false>::readval(pr_data);
1618      break;
1619    default:
1620      gold_warning(_("%s: unknown program property type 0x%x "
1621		     "in .note.gnu.property section"),
1622		   object->name().c_str(), pr_type);
1623      break;
1624    }
1625
1626  switch (pr_type)
1627    {
1628    case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
1629      this->object_isa_1_used_ |= val;
1630      break;
1631    case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
1632      this->isa_1_needed_ |= val;
1633      break;
1634    case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
1635      // If we see multiple feature props in one object, OR them together.
1636      this->object_feature_1_ |= val;
1637      break;
1638    case elfcpp::GNU_PROPERTY_X86_FEATURE_2_USED:
1639      this->object_feature_2_used_ |= val;
1640      break;
1641    case elfcpp::GNU_PROPERTY_X86_FEATURE_2_NEEDED:
1642      this->feature_2_needed_ |= val;
1643      break;
1644    }
1645}
1646
1647// Merge the target-specific program properties from the current object.
1648template<int size>
1649void
1650Target_x86_64<size>::merge_gnu_properties(const Object*)
1651{
1652  if (this->seen_first_object_)
1653    {
1654      // If any object is missing the ISA_1_USED property, we must omit
1655      // it from the output file.
1656      if (this->object_isa_1_used_ == 0)
1657	this->isa_1_used_ = 0;
1658      else if (this->isa_1_used_ != 0)
1659	this->isa_1_used_ |= this->object_isa_1_used_;
1660      this->feature_1_ &= this->object_feature_1_;
1661      // If any object is missing the FEATURE_2_USED property, we must
1662      // omit it from the output file.
1663      if (this->object_feature_2_used_ == 0)
1664	this->feature_2_used_ = 0;
1665      else if (this->feature_2_used_ != 0)
1666	this->feature_2_used_ |= this->object_feature_2_used_;
1667    }
1668  else
1669    {
1670      this->isa_1_used_ = this->object_isa_1_used_;
1671      this->feature_1_ = this->object_feature_1_;
1672      this->feature_2_used_ = this->object_feature_2_used_;
1673      this->seen_first_object_ = true;
1674    }
1675  this->object_isa_1_used_ = 0;
1676  this->object_feature_1_ = 0;
1677  this->object_feature_2_used_ = 0;
1678}
1679
1680static inline void
1681add_property(Layout* layout, unsigned int pr_type, uint32_t val)
1682{
1683  unsigned char buf[4];
1684  elfcpp::Swap<32, false>::writeval(buf, val);
1685  layout->add_gnu_property(elfcpp::NT_GNU_PROPERTY_TYPE_0, pr_type, 4, buf);
1686}
1687
1688// Finalize the target-specific program properties and add them back to
1689// the layout.
1690template<int size>
1691void
1692Target_x86_64<size>::do_finalize_gnu_properties(Layout* layout) const
1693{
1694  if (this->isa_1_used_ != 0)
1695    add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_USED,
1696		 this->isa_1_used_);
1697  if (this->isa_1_needed_ != 0)
1698    add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED,
1699		 this->isa_1_needed_);
1700  if (this->feature_1_ != 0)
1701    add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND,
1702		 this->feature_1_);
1703  if (this->feature_2_used_ != 0)
1704    add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_2_USED,
1705		 this->feature_2_used_);
1706  if (this->feature_2_needed_ != 0)
1707    add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_2_NEEDED,
1708		 this->feature_2_needed_);
1709}
1710
1711// Write the first three reserved words of the .got.plt section.
1712// The remainder of the section is written while writing the PLT
1713// in Output_data_plt_i386::do_write.
1714
1715void
1716Output_data_got_plt_x86_64::do_write(Output_file* of)
1717{
1718  // The first entry in the GOT is the address of the .dynamic section
1719  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1720  // We saved space for them when we created the section in
1721  // Target_x86_64::got_section.
1722  const off_t got_file_offset = this->offset();
1723  gold_assert(this->data_size() >= 24);
1724  unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1725  Output_section* dynamic = this->layout_->dynamic_section();
1726  uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1727  elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1728  memset(got_view + 8, 0, 16);
1729  of->write_output_view(got_file_offset, 24, got_view);
1730}
1731
1732// Initialize the PLT section.
1733
1734template<int size>
1735void
1736Output_data_plt_x86_64<size>::init(Layout* layout)
1737{
1738  this->rel_ = new Reloc_section(false);
1739  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1740				  elfcpp::SHF_ALLOC, this->rel_,
1741				  ORDER_DYNAMIC_PLT_RELOCS, false);
1742}
1743
1744template<int size>
1745void
1746Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1747{
1748  os->set_entsize(this->get_plt_entry_size());
1749}
1750
1751// Add an entry to the PLT.
1752
1753template<int size>
1754void
1755Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1756					Symbol* gsym)
1757{
1758  gold_assert(!gsym->has_plt_offset());
1759
1760  unsigned int plt_index;
1761  off_t plt_offset;
1762  section_offset_type got_offset;
1763
1764  unsigned int* pcount;
1765  unsigned int offset;
1766  unsigned int reserved;
1767  Output_section_data_build* got;
1768  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1769      && gsym->can_use_relative_reloc(false))
1770    {
1771      pcount = &this->irelative_count_;
1772      offset = 0;
1773      reserved = 0;
1774      got = this->got_irelative_;
1775    }
1776  else
1777    {
1778      pcount = &this->count_;
1779      offset = 1;
1780      reserved = 3;
1781      got = this->got_plt_;
1782    }
1783
1784  if (!this->is_data_size_valid())
1785    {
1786      // Note that when setting the PLT offset for a non-IRELATIVE
1787      // entry we skip the initial reserved PLT entry.
1788      plt_index = *pcount + offset;
1789      plt_offset = plt_index * this->get_plt_entry_size();
1790
1791      ++*pcount;
1792
1793      got_offset = (plt_index - offset + reserved) * 8;
1794      gold_assert(got_offset == got->current_data_size());
1795
1796      // Every PLT entry needs a GOT entry which points back to the PLT
1797      // entry (this will be changed by the dynamic linker, normally
1798      // lazily when the function is called).
1799      got->set_current_data_size(got_offset + 8);
1800    }
1801  else
1802    {
1803      // FIXME: This is probably not correct for IRELATIVE relocs.
1804
1805      // For incremental updates, find an available slot.
1806      plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1807					     this->get_plt_entry_size(), 0);
1808      if (plt_offset == -1)
1809	gold_fallback(_("out of patch space (PLT);"
1810			" relink with --incremental-full"));
1811
1812      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1813      // can be calculated from the PLT index, adjusting for the three
1814      // reserved entries at the beginning of the GOT.
1815      plt_index = plt_offset / this->get_plt_entry_size() - 1;
1816      got_offset = (plt_index - offset + reserved) * 8;
1817    }
1818
1819  gsym->set_plt_offset(plt_offset);
1820
1821  // Every PLT entry needs a reloc.
1822  this->add_relocation(symtab, layout, gsym, got_offset);
1823
1824  // Note that we don't need to save the symbol.  The contents of the
1825  // PLT are independent of which symbols are used.  The symbols only
1826  // appear in the relocations.
1827}
1828
1829// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1830// the PLT offset.
1831
1832template<int size>
1833unsigned int
1834Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1835    Symbol_table* symtab,
1836    Layout* layout,
1837    Sized_relobj_file<size, false>* relobj,
1838    unsigned int local_sym_index)
1839{
1840  unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1841  ++this->irelative_count_;
1842
1843  section_offset_type got_offset = this->got_irelative_->current_data_size();
1844
1845  // Every PLT entry needs a GOT entry which points back to the PLT
1846  // entry.
1847  this->got_irelative_->set_current_data_size(got_offset + 8);
1848
1849  // Every PLT entry needs a reloc.
1850  Reloc_section* rela = this->rela_irelative(symtab, layout);
1851  rela->add_symbolless_local_addend(relobj, local_sym_index,
1852				    elfcpp::R_X86_64_IRELATIVE,
1853				    this->got_irelative_, got_offset, 0);
1854
1855  return plt_offset;
1856}
1857
1858// Add the relocation for a PLT entry.
1859
1860template<int size>
1861void
1862Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1863					     Layout* layout,
1864					     Symbol* gsym,
1865					     unsigned int got_offset)
1866{
1867  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1868      && gsym->can_use_relative_reloc(false))
1869    {
1870      Reloc_section* rela = this->rela_irelative(symtab, layout);
1871      rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1872					 this->got_irelative_, got_offset, 0);
1873    }
1874  else
1875    {
1876      gsym->set_needs_dynsym_entry();
1877      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1878			     got_offset, 0);
1879    }
1880}
1881
1882// Return where the TLSDESC relocations should go, creating it if
1883// necessary.  These follow the JUMP_SLOT relocations.
1884
1885template<int size>
1886typename Output_data_plt_x86_64<size>::Reloc_section*
1887Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1888{
1889  if (this->tlsdesc_rel_ == NULL)
1890    {
1891      this->tlsdesc_rel_ = new Reloc_section(false);
1892      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1893				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1894				      ORDER_DYNAMIC_PLT_RELOCS, false);
1895      gold_assert(this->tlsdesc_rel_->output_section()
1896		  == this->rel_->output_section());
1897    }
1898  return this->tlsdesc_rel_;
1899}
1900
1901// Return where the IRELATIVE relocations should go in the PLT.  These
1902// follow the JUMP_SLOT and the TLSDESC relocations.
1903
1904template<int size>
1905typename Output_data_plt_x86_64<size>::Reloc_section*
1906Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1907					     Layout* layout)
1908{
1909  if (this->irelative_rel_ == NULL)
1910    {
1911      // Make sure we have a place for the TLSDESC relocations, in
1912      // case we see any later on.
1913      this->rela_tlsdesc(layout);
1914      this->irelative_rel_ = new Reloc_section(false);
1915      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1916				      elfcpp::SHF_ALLOC, this->irelative_rel_,
1917				      ORDER_DYNAMIC_PLT_RELOCS, false);
1918      gold_assert(this->irelative_rel_->output_section()
1919		  == this->rel_->output_section());
1920
1921      if (parameters->doing_static_link())
1922	{
1923	  // A statically linked executable will only have a .rela.plt
1924	  // section to hold R_X86_64_IRELATIVE relocs for
1925	  // STT_GNU_IFUNC symbols.  The library will use these
1926	  // symbols to locate the IRELATIVE relocs at program startup
1927	  // time.
1928	  symtab->define_in_output_data("__rela_iplt_start", NULL,
1929					Symbol_table::PREDEFINED,
1930					this->irelative_rel_, 0, 0,
1931					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1932					elfcpp::STV_HIDDEN, 0, false, true);
1933	  symtab->define_in_output_data("__rela_iplt_end", NULL,
1934					Symbol_table::PREDEFINED,
1935					this->irelative_rel_, 0, 0,
1936					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1937					elfcpp::STV_HIDDEN, 0, true, true);
1938	}
1939    }
1940  return this->irelative_rel_;
1941}
1942
1943// Return the PLT address to use for a global symbol.
1944
1945template<int size>
1946uint64_t
1947Output_data_plt_x86_64<size>::do_address_for_global(const Symbol* gsym)
1948{
1949  uint64_t offset = 0;
1950  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1951      && gsym->can_use_relative_reloc(false))
1952    offset = (this->count_ + 1) * this->get_plt_entry_size();
1953  return this->address() + offset + gsym->plt_offset();
1954}
1955
1956// Return the PLT address to use for a local symbol.  These are always
1957// IRELATIVE relocs.
1958
1959template<int size>
1960uint64_t
1961Output_data_plt_x86_64<size>::do_address_for_local(const Relobj* object,
1962						   unsigned int r_sym)
1963{
1964  return (this->address()
1965	  + (this->count_ + 1) * this->get_plt_entry_size()
1966	  + object->local_plt_offset(r_sym));
1967}
1968
1969// Set the final size.
1970template<int size>
1971void
1972Output_data_plt_x86_64<size>::set_final_data_size()
1973{
1974  // Number of regular and IFUNC PLT entries, plus the first entry.
1975  unsigned int count = this->count_ + this->irelative_count_ + 1;
1976  // Count the TLSDESC entry, if present.
1977  if (this->has_tlsdesc_entry())
1978    ++count;
1979  this->set_data_size(count * this->get_plt_entry_size());
1980}
1981
1982// The first entry in the PLT for an executable.
1983
1984template<int size>
1985const unsigned char
1986Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1987{
1988  // From AMD64 ABI Draft 0.98, page 76
1989  0xff, 0x35,	// pushq contents of memory address
1990  0, 0, 0, 0,	// replaced with address of .got + 8
1991  0xff, 0x25,	// jmp indirect
1992  0, 0, 0, 0,	// replaced with address of .got + 16
1993  0x90, 0x90, 0x90, 0x90   // noop (x4)
1994};
1995
1996template<int size>
1997void
1998Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1999    unsigned char* pov,
2000    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2001    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
2002{
2003  memcpy(pov, first_plt_entry, plt_entry_size);
2004  // We do a jmp relative to the PC at the end of this instruction.
2005  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2006					      (got_address + 8
2007					       - (plt_address + 6)));
2008  elfcpp::Swap<32, false>::writeval(pov + 8,
2009				    (got_address + 16
2010				     - (plt_address + 12)));
2011}
2012
2013// Subsequent entries in the PLT for an executable.
2014
2015template<int size>
2016const unsigned char
2017Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
2018{
2019  // From AMD64 ABI Draft 0.98, page 76
2020  0xff, 0x25,	// jmpq indirect
2021  0, 0, 0, 0,	// replaced with address of symbol in .got
2022  0x68,		// pushq immediate
2023  0, 0, 0, 0,	// replaced with offset into relocation table
2024  0xe9,		// jmpq relative
2025  0, 0, 0, 0	// replaced with offset to start of .plt
2026};
2027
2028template<int size>
2029unsigned int
2030Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
2031    unsigned char* pov,
2032    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2033    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2034    unsigned int got_offset,
2035    unsigned int plt_offset,
2036    unsigned int plt_index)
2037{
2038  // Check PC-relative offset overflow in PLT entry.
2039  uint64_t plt_got_pcrel_offset = (got_address + got_offset
2040				   - (plt_address + plt_offset + 6));
2041  if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2042    gold_error(_("PC-relative offset overflow in PLT entry %d"),
2043	       plt_index + 1);
2044
2045  memcpy(pov, plt_entry, plt_entry_size);
2046  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2047					      plt_got_pcrel_offset);
2048
2049  elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
2050  elfcpp::Swap<32, false>::writeval(pov + 12,
2051				    - (plt_offset + plt_entry_size));
2052
2053  return 6;
2054}
2055
2056// The reserved TLSDESC entry in the PLT for an executable.
2057
2058template<int size>
2059const unsigned char
2060Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
2061{
2062  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2063  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2064  0xff, 0x35,	// pushq x(%rip)
2065  0, 0, 0, 0,	// replaced with address of linkmap GOT entry (at PLTGOT + 8)
2066  0xff,	0x25,	// jmpq *y(%rip)
2067  0, 0, 0, 0,	// replaced with offset of reserved TLSDESC_GOT entry
2068  0x0f,	0x1f,	// nop
2069  0x40, 0
2070};
2071
2072template<int size>
2073void
2074Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
2075    unsigned char* pov,
2076    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2077    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2078    typename elfcpp::Elf_types<size>::Elf_Addr got_base,
2079    unsigned int tlsdesc_got_offset,
2080    unsigned int plt_offset)
2081{
2082  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2083  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2084					      (got_address + 8
2085					       - (plt_address + plt_offset
2086						  + 6)));
2087  elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
2088					      (got_base
2089					       + tlsdesc_got_offset
2090					       - (plt_address + plt_offset
2091						  + 12)));
2092}
2093
2094// Return the APLT address to use for a global symbol (for -z bndplt).
2095
2096uint64_t
2097Output_data_plt_x86_64_bnd::do_address_for_global(const Symbol* gsym)
2098{
2099  uint64_t offset = this->aplt_offset_;
2100  // Convert the PLT offset into an APLT offset.
2101  unsigned int plt_offset = gsym->plt_offset();
2102  if (gsym->type() == elfcpp::STT_GNU_IFUNC
2103      && gsym->can_use_relative_reloc(false))
2104    offset += this->regular_count() * aplt_entry_size;
2105  else
2106    plt_offset -= plt_entry_size;
2107  plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
2108  return this->address() + offset + plt_offset;
2109}
2110
2111// Return the PLT address to use for a local symbol.  These are always
2112// IRELATIVE relocs.
2113
2114uint64_t
2115Output_data_plt_x86_64_bnd::do_address_for_local(const Relobj* object,
2116						 unsigned int r_sym)
2117{
2118  // Convert the PLT offset into an APLT offset.
2119  const Sized_relobj_file<64, false>* sized_relobj =
2120    static_cast<const Sized_relobj_file<64, false>*>(object);
2121  const Symbol_value<64>* psymval = sized_relobj->local_symbol(r_sym);
2122  unsigned int plt_offset = ((object->local_plt_offset(r_sym)
2123			      - (psymval->is_ifunc_symbol()
2124				 ? 0 : plt_entry_size))
2125			     / (plt_entry_size / aplt_entry_size));
2126  return (this->address()
2127	  + this->aplt_offset_
2128	  + this->regular_count() * aplt_entry_size
2129	  + plt_offset);
2130}
2131
2132// Set the final size.
2133void
2134Output_data_plt_x86_64_bnd::set_final_data_size()
2135{
2136  // Number of regular and IFUNC PLT entries.
2137  unsigned int count = this->entry_count();
2138  // Count the first entry and the TLSDESC entry, if present.
2139  unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
2140  unsigned int plt_size = (count + extra) * plt_entry_size;
2141  // Offset of the APLT.
2142  this->aplt_offset_ = plt_size;
2143  // Size of the APLT.
2144  plt_size += count * aplt_entry_size;
2145  this->set_data_size(plt_size);
2146}
2147
2148// The first entry in the BND PLT.
2149
2150const unsigned char
2151Output_data_plt_x86_64_bnd::first_plt_entry[plt_entry_size] =
2152{
2153  // From AMD64 ABI Draft 0.98, page 76
2154  0xff, 0x35,		// pushq contents of memory address
2155  0, 0, 0, 0,		// replaced with address of .got + 8
2156  0xf2, 0xff, 0x25,	// bnd jmp indirect
2157  0, 0, 0, 0,		// replaced with address of .got + 16
2158  0x0f, 0x1f, 0x00   	// nop
2159};
2160
2161void
2162Output_data_plt_x86_64_bnd::do_fill_first_plt_entry(
2163    unsigned char* pov,
2164    elfcpp::Elf_types<64>::Elf_Addr got_address,
2165    elfcpp::Elf_types<64>::Elf_Addr plt_address)
2166{
2167  memcpy(pov, first_plt_entry, plt_entry_size);
2168  // We do a jmp relative to the PC at the end of this instruction.
2169  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2170					      (got_address + 8
2171					       - (plt_address + 6)));
2172  elfcpp::Swap<32, false>::writeval(pov + 9,
2173				    (got_address + 16
2174				     - (plt_address + 13)));
2175}
2176
2177// Subsequent entries in the BND PLT.
2178
2179const unsigned char
2180Output_data_plt_x86_64_bnd::plt_entry[plt_entry_size] =
2181{
2182  // From AMD64 ABI Draft 0.99.8, page 139
2183  0x68,				// pushq immediate
2184  0, 0, 0, 0,			// replaced with offset into relocation table
2185  0xf2, 0xe9,			// bnd jmpq relative
2186  0, 0, 0, 0,			// replaced with offset to start of .plt
2187  0x0f, 0x1f, 0x44, 0, 0	// nop
2188};
2189
2190// Entries in the BND Additional PLT.
2191
2192const unsigned char
2193Output_data_plt_x86_64_bnd::aplt_entry[aplt_entry_size] =
2194{
2195  // From AMD64 ABI Draft 0.99.8, page 139
2196  0xf2, 0xff, 0x25,	// bnd jmpq indirect
2197  0, 0, 0, 0,		// replaced with address of symbol in .got
2198  0x90,			// nop
2199};
2200
2201unsigned int
2202Output_data_plt_x86_64_bnd::do_fill_plt_entry(
2203    unsigned char* pov,
2204    elfcpp::Elf_types<64>::Elf_Addr,
2205    elfcpp::Elf_types<64>::Elf_Addr,
2206    unsigned int,
2207    unsigned int plt_offset,
2208    unsigned int plt_index)
2209{
2210  memcpy(pov, plt_entry, plt_entry_size);
2211  elfcpp::Swap_unaligned<32, false>::writeval(pov + 1, plt_index);
2212  elfcpp::Swap<32, false>::writeval(pov + 7, -(plt_offset + 11));
2213  return 0;
2214}
2215
2216void
2217Output_data_plt_x86_64_bnd::fill_aplt_entry(
2218    unsigned char* pov,
2219    elfcpp::Elf_types<64>::Elf_Addr got_address,
2220    elfcpp::Elf_types<64>::Elf_Addr plt_address,
2221    unsigned int got_offset,
2222    unsigned int plt_offset,
2223    unsigned int plt_index)
2224{
2225  // Check PC-relative offset overflow in PLT entry.
2226  uint64_t plt_got_pcrel_offset = (got_address + got_offset
2227				   - (plt_address + plt_offset + 7));
2228  if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2229    gold_error(_("PC-relative offset overflow in APLT entry %d"),
2230	       plt_index + 1);
2231
2232  memcpy(pov, aplt_entry, aplt_entry_size);
2233  elfcpp::Swap_unaligned<32, false>::writeval(pov + 3, plt_got_pcrel_offset);
2234}
2235
2236// The reserved TLSDESC entry in the PLT for an executable.
2237
2238const unsigned char
2239Output_data_plt_x86_64_bnd::tlsdesc_plt_entry[plt_entry_size] =
2240{
2241  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2242  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2243  0xff, 0x35,		// pushq x(%rip)
2244  0, 0, 0, 0,		// replaced with address of linkmap GOT entry (at PLTGOT + 8)
2245  0xf2, 0xff, 0x25,	// jmpq *y(%rip)
2246  0, 0, 0, 0,		// replaced with offset of reserved TLSDESC_GOT entry
2247  0x0f,	0x1f, 0		// nop
2248};
2249
2250void
2251Output_data_plt_x86_64_bnd::do_fill_tlsdesc_entry(
2252    unsigned char* pov,
2253    elfcpp::Elf_types<64>::Elf_Addr got_address,
2254    elfcpp::Elf_types<64>::Elf_Addr plt_address,
2255    elfcpp::Elf_types<64>::Elf_Addr got_base,
2256    unsigned int tlsdesc_got_offset,
2257    unsigned int plt_offset)
2258{
2259  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2260  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2261					      (got_address + 8
2262					       - (plt_address + plt_offset
2263						  + 6)));
2264  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
2265					      (got_base
2266					       + tlsdesc_got_offset
2267					       - (plt_address + plt_offset
2268						  + 13)));
2269}
2270
2271// Return the APLT address to use for a global symbol (for IBT).
2272
2273template<int size>
2274uint64_t
2275Output_data_plt_x86_64_ibt<size>::do_address_for_global(const Symbol* gsym)
2276{
2277  uint64_t offset = this->aplt_offset_;
2278  // Convert the PLT offset into an APLT offset.
2279  unsigned int plt_offset = gsym->plt_offset();
2280  if (gsym->type() == elfcpp::STT_GNU_IFUNC
2281      && gsym->can_use_relative_reloc(false))
2282    offset += this->regular_count() * aplt_entry_size;
2283  else
2284    plt_offset -= plt_entry_size;
2285  plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
2286  return this->address() + offset + plt_offset;
2287}
2288
2289// Return the PLT address to use for a local symbol.  These are always
2290// IRELATIVE relocs.
2291
2292template<int size>
2293uint64_t
2294Output_data_plt_x86_64_ibt<size>::do_address_for_local(const Relobj* object,
2295						 unsigned int r_sym)
2296{
2297  // Convert the PLT offset into an APLT offset.
2298  const Sized_relobj_file<size, false>* sized_relobj =
2299    static_cast<const Sized_relobj_file<size, false>*>(object);
2300  const Symbol_value<size>* psymval = sized_relobj->local_symbol(r_sym);
2301  unsigned int plt_offset = ((object->local_plt_offset(r_sym)
2302			      - (psymval->is_ifunc_symbol()
2303				 ? 0 : plt_entry_size))
2304			     / (plt_entry_size / aplt_entry_size));
2305  return (this->address()
2306	  + this->aplt_offset_
2307	  + this->regular_count() * aplt_entry_size
2308	  + plt_offset);
2309}
2310
2311// Set the final size.
2312
2313template<int size>
2314void
2315Output_data_plt_x86_64_ibt<size>::set_final_data_size()
2316{
2317  // Number of regular and IFUNC PLT entries.
2318  unsigned int count = this->entry_count();
2319  // Count the first entry and the TLSDESC entry, if present.
2320  unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
2321  unsigned int plt_size = (count + extra) * plt_entry_size;
2322  // Offset of the APLT.
2323  this->aplt_offset_ = plt_size;
2324  // Size of the APLT.
2325  plt_size += count * aplt_entry_size;
2326  this->set_data_size(plt_size);
2327}
2328
2329// The first entry in the IBT PLT.
2330
2331template<>
2332const unsigned char
2333Output_data_plt_x86_64_ibt<32>::first_plt_entry[plt_entry_size] =
2334{
2335  // MPX isn't supported for x32, so we don't need the BND prefix.
2336  // From AMD64 ABI Draft 0.98, page 76
2337  0xff, 0x35,		 // pushq contents of memory address
2338  0, 0, 0, 0,		 // replaced with address of .got + 8
2339  0xff, 0x25,		 // jmp indirect
2340  0, 0, 0, 0,		 // replaced with address of .got + 16
2341  0x90, 0x90, 0x90, 0x90 // noop (x4)
2342};
2343
2344template<>
2345const unsigned char
2346Output_data_plt_x86_64_ibt<64>::first_plt_entry[plt_entry_size] =
2347{
2348  // Use the BND prefix so that IBT is compatible with MPX.
2349  0xff, 0x35,		// pushq contents of memory address
2350  0, 0, 0, 0,		// replaced with address of .got + 8
2351  0xf2, 0xff, 0x25,	// bnd jmp indirect
2352  0, 0, 0, 0,		// replaced with address of .got + 16
2353  0x0f, 0x1f, 0x00   	// nop
2354};
2355
2356template<int size>
2357void
2358Output_data_plt_x86_64_ibt<size>::do_fill_first_plt_entry(
2359    unsigned char* pov,
2360    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2361    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
2362{
2363  // Offsets to the addresses needing relocation.
2364  const unsigned int roff1 = 2;
2365  const unsigned int roff2 = (size == 32) ? 8 : 9;
2366
2367  memcpy(pov, first_plt_entry, plt_entry_size);
2368  // We do a jmp relative to the PC at the end of this instruction.
2369  elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1,
2370					      (got_address + 8
2371					       - (plt_address + roff1 + 4)));
2372  elfcpp::Swap<32, false>::writeval(pov + roff2,
2373				    (got_address + 16
2374				     - (plt_address + roff2 + 4)));
2375}
2376
2377// Subsequent entries in the IBT PLT.
2378
2379template<>
2380const unsigned char
2381Output_data_plt_x86_64_ibt<32>::plt_entry[plt_entry_size] =
2382{
2383  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2384  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2385  0x68,				// pushq immediate
2386  0, 0, 0, 0,			// replaced with offset into relocation table
2387  0xe9,				// jmpq relative
2388  0, 0, 0, 0,			// replaced with offset to start of .plt
2389  0x90, 0x90			// nop
2390};
2391
2392template<>
2393const unsigned char
2394Output_data_plt_x86_64_ibt<64>::plt_entry[plt_entry_size] =
2395{
2396  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2397  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2398  0x68,				// pushq immediate
2399  0, 0, 0, 0,			// replaced with offset into relocation table
2400  0xf2, 0xe9,			// bnd jmpq relative
2401  0, 0, 0, 0,			// replaced with offset to start of .plt
2402  0x90				// nop
2403};
2404
2405// Entries in the IBT Additional PLT.
2406
2407template<>
2408const unsigned char
2409Output_data_plt_x86_64_ibt<32>::aplt_entry[aplt_entry_size] =
2410{
2411  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2412  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2413  0xff, 0x25,			// jmpq indirect
2414  0, 0, 0, 0,			// replaced with address of symbol in .got
2415  0x0f, 0x1f, 0x04, 0x00,	// nop
2416  0x90, 0x90			// nop
2417};
2418
2419template<>
2420const unsigned char
2421Output_data_plt_x86_64_ibt<64>::aplt_entry[aplt_entry_size] =
2422{
2423  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2424  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2425  0xf2, 0xff, 0x25,		// bnd jmpq indirect
2426  0, 0, 0, 0,			// replaced with address of symbol in .got
2427  0x0f, 0x1f, 0x04, 0x00,	// nop
2428  0x90,				// nop
2429};
2430
2431template<int size>
2432unsigned int
2433Output_data_plt_x86_64_ibt<size>::do_fill_plt_entry(
2434    unsigned char* pov,
2435    typename elfcpp::Elf_types<size>::Elf_Addr,
2436    typename elfcpp::Elf_types<size>::Elf_Addr,
2437    unsigned int,
2438    unsigned int plt_offset,
2439    unsigned int plt_index)
2440{
2441  // Offsets to the addresses needing relocation.
2442  const unsigned int roff1 = 5;
2443  const unsigned int roff2 = (size == 32) ? 10 : 11;
2444
2445  memcpy(pov, plt_entry, plt_entry_size);
2446  elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1, plt_index);
2447  elfcpp::Swap<32, false>::writeval(pov + roff2, -(plt_offset + roff2 + 4));
2448  return 0;
2449}
2450
2451template<int size>
2452void
2453Output_data_plt_x86_64_ibt<size>::fill_aplt_entry(
2454    unsigned char* pov,
2455    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2456    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2457    unsigned int got_offset,
2458    unsigned int plt_offset,
2459    unsigned int plt_index)
2460{
2461  // Offset to the address needing relocation.
2462  const unsigned int roff = (size == 32) ? 6 : 7;
2463
2464  // Check PC-relative offset overflow in PLT entry.
2465  uint64_t plt_got_pcrel_offset = (got_address + got_offset
2466				   - (plt_address + plt_offset + roff + 4));
2467  if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2468    gold_error(_("PC-relative offset overflow in APLT entry %d"),
2469	       plt_index + 1);
2470
2471  memcpy(pov, aplt_entry, aplt_entry_size);
2472  elfcpp::Swap_unaligned<32, false>::writeval(pov + roff, plt_got_pcrel_offset);
2473}
2474
2475// The reserved TLSDESC entry in the IBT PLT for an executable.
2476
2477template<int size>
2478const unsigned char
2479Output_data_plt_x86_64_ibt<size>::tlsdesc_plt_entry[plt_entry_size] =
2480{
2481  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2482  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2483  0xf3, 0x0f, 0x1e, 0xfa, // endbr64
2484  0xff, 0x35,		// pushq x(%rip)
2485  0, 0, 0, 0,		// replaced with address of linkmap GOT entry (at PLTGOT + 8)
2486  0xff, 0x25,		// jmpq *y(%rip)
2487  0, 0, 0, 0,		// replaced with offset of reserved TLSDESC_GOT entry
2488};
2489
2490template<int size>
2491void
2492Output_data_plt_x86_64_ibt<size>::do_fill_tlsdesc_entry(
2493    unsigned char* pov,
2494    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2495    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2496    typename elfcpp::Elf_types<size>::Elf_Addr got_base,
2497    unsigned int tlsdesc_got_offset,
2498    unsigned int plt_offset)
2499{
2500  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2501  elfcpp::Swap_unaligned<32, false>::writeval(pov + 6,
2502					      (got_address + 8
2503					       - (plt_address + plt_offset
2504						  + 10)));
2505  elfcpp::Swap_unaligned<32, false>::writeval(pov + 12,
2506					      (got_base
2507					       + tlsdesc_got_offset
2508					       - (plt_address + plt_offset
2509						  + 16)));
2510}
2511
2512// The .eh_frame unwind information for the PLT.
2513
2514template<int size>
2515const unsigned char
2516Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
2517{
2518  1,				// CIE version.
2519  'z',				// Augmentation: augmentation size included.
2520  'R',				// Augmentation: FDE encoding included.
2521  '\0',				// End of augmentation string.
2522  1,				// Code alignment factor.
2523  0x78,				// Data alignment factor.
2524  16,				// Return address column.
2525  1,				// Augmentation size.
2526  (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
2527   | elfcpp::DW_EH_PE_sdata4),
2528  elfcpp::DW_CFA_def_cfa, 7, 8,	// DW_CFA_def_cfa: r7 (rsp) ofs 8.
2529  elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
2530  elfcpp::DW_CFA_nop,		// Align to 16 bytes.
2531  elfcpp::DW_CFA_nop
2532};
2533
2534template<int size>
2535const unsigned char
2536Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2537{
2538  0, 0, 0, 0,				// Replaced with offset to .plt.
2539  0, 0, 0, 0,				// Replaced with size of .plt.
2540  0,					// Augmentation size.
2541  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
2542  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
2543  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
2544  elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
2545  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
2546  11,					// Block length.
2547  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
2548  elfcpp::DW_OP_breg16, 0,		// Push %rip.
2549  elfcpp::DW_OP_lit15,			// Push 0xf.
2550  elfcpp::DW_OP_and,			// & (%rip & 0xf).
2551  elfcpp::DW_OP_lit11,			// Push 0xb.
2552  elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 0xb)
2553  elfcpp::DW_OP_lit3,			// Push 3.
2554  elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 0xb) << 3)
2555  elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
2556  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
2557  elfcpp::DW_CFA_nop,
2558  elfcpp::DW_CFA_nop,
2559  elfcpp::DW_CFA_nop
2560};
2561
2562// The .eh_frame unwind information for the BND PLT.
2563const unsigned char
2564Output_data_plt_x86_64_bnd::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2565{
2566  0, 0, 0, 0,				// Replaced with offset to .plt.
2567  0, 0, 0, 0,				// Replaced with size of .plt.
2568  0,					// Augmentation size.
2569  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
2570  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
2571  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
2572  elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
2573  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
2574  11,					// Block length.
2575  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
2576  elfcpp::DW_OP_breg16, 0,		// Push %rip.
2577  elfcpp::DW_OP_lit15,			// Push 0xf.
2578  elfcpp::DW_OP_and,			// & (%rip & 0xf).
2579  elfcpp::DW_OP_lit5,			// Push 5.
2580  elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 5)
2581  elfcpp::DW_OP_lit3,			// Push 3.
2582  elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 5) << 3)
2583  elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=5)<<3)+%rsp+8
2584  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
2585  elfcpp::DW_CFA_nop,
2586  elfcpp::DW_CFA_nop,
2587  elfcpp::DW_CFA_nop
2588};
2589
2590// The .eh_frame unwind information for the BND PLT.
2591template<int size>
2592const unsigned char
2593Output_data_plt_x86_64_ibt<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2594{
2595  0, 0, 0, 0,				// Replaced with offset to .plt.
2596  0, 0, 0, 0,				// Replaced with size of .plt.
2597  0,					// Augmentation size.
2598  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
2599  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
2600  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
2601  elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
2602  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
2603  11,					// Block length.
2604  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
2605  elfcpp::DW_OP_breg16, 0,		// Push %rip.
2606  elfcpp::DW_OP_lit15,			// Push 0xf.
2607  elfcpp::DW_OP_and,			// & (%rip & 0xf).
2608  elfcpp::DW_OP_lit9,			// Push 9.
2609  elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 9)
2610  elfcpp::DW_OP_lit3,			// Push 3.
2611  elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 9) << 3)
2612  elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=9)<<3)+%rsp+8
2613  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
2614  elfcpp::DW_CFA_nop,
2615  elfcpp::DW_CFA_nop,
2616  elfcpp::DW_CFA_nop
2617};
2618
2619// Write out the PLT.  This uses the hand-coded instructions above,
2620// and adjusts them as needed.  This is specified by the AMD64 ABI.
2621
2622template<int size>
2623void
2624Output_data_plt_x86_64<size>::do_write(Output_file* of)
2625{
2626  const off_t offset = this->offset();
2627  const section_size_type oview_size =
2628    convert_to_section_size_type(this->data_size());
2629  unsigned char* const oview = of->get_output_view(offset, oview_size);
2630
2631  const off_t got_file_offset = this->got_plt_->offset();
2632  gold_assert(parameters->incremental_update()
2633	      || (got_file_offset + this->got_plt_->data_size()
2634		  == this->got_irelative_->offset()));
2635  const section_size_type got_size =
2636    convert_to_section_size_type(this->got_plt_->data_size()
2637				 + this->got_irelative_->data_size());
2638  unsigned char* const got_view = of->get_output_view(got_file_offset,
2639						      got_size);
2640
2641  unsigned char* pov = oview;
2642
2643  // The base address of the .plt section.
2644  typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2645  // The base address of the .got section.
2646  typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
2647  // The base address of the PLT portion of the .got section,
2648  // which is where the GOT pointer will point, and where the
2649  // three reserved GOT entries are located.
2650  typename elfcpp::Elf_types<size>::Elf_Addr got_address
2651    = this->got_plt_->address();
2652
2653  this->fill_first_plt_entry(pov, got_address, plt_address);
2654  pov += this->get_plt_entry_size();
2655
2656  // The first three entries in the GOT are reserved, and are written
2657  // by Output_data_got_plt_x86_64::do_write.
2658  unsigned char* got_pov = got_view + 24;
2659
2660  unsigned int plt_offset = this->get_plt_entry_size();
2661  unsigned int got_offset = 24;
2662  const unsigned int count = this->count_ + this->irelative_count_;
2663  for (unsigned int plt_index = 0;
2664       plt_index < count;
2665       ++plt_index,
2666	 pov += this->get_plt_entry_size(),
2667	 got_pov += 8,
2668	 plt_offset += this->get_plt_entry_size(),
2669	 got_offset += 8)
2670    {
2671      // Set and adjust the PLT entry itself.
2672      unsigned int lazy_offset = this->fill_plt_entry(pov,
2673						      got_address, plt_address,
2674						      got_offset, plt_offset,
2675						      plt_index);
2676
2677      // Set the entry in the GOT.
2678      elfcpp::Swap<64, false>::writeval(got_pov,
2679					plt_address + plt_offset + lazy_offset);
2680    }
2681
2682  if (this->has_tlsdesc_entry())
2683    {
2684      // Set and adjust the reserved TLSDESC PLT entry.
2685      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2686      this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2687			       tlsdesc_got_offset, plt_offset);
2688      pov += this->get_plt_entry_size();
2689    }
2690
2691  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2692  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2693
2694  of->write_output_view(offset, oview_size, oview);
2695  of->write_output_view(got_file_offset, got_size, got_view);
2696}
2697
2698// Write out the BND PLT.
2699
2700void
2701Output_data_plt_x86_64_bnd::do_write(Output_file* of)
2702{
2703  const off_t offset = this->offset();
2704  const section_size_type oview_size =
2705    convert_to_section_size_type(this->data_size());
2706  unsigned char* const oview = of->get_output_view(offset, oview_size);
2707
2708  Output_data_got<64, false>* got = this->got();
2709  Output_data_got_plt_x86_64* got_plt = this->got_plt();
2710  Output_data_space* got_irelative = this->got_irelative();
2711
2712  const off_t got_file_offset = got_plt->offset();
2713  gold_assert(parameters->incremental_update()
2714	      || (got_file_offset + got_plt->data_size()
2715		  == got_irelative->offset()));
2716  const section_size_type got_size =
2717    convert_to_section_size_type(got_plt->data_size()
2718				 + got_irelative->data_size());
2719  unsigned char* const got_view = of->get_output_view(got_file_offset,
2720						      got_size);
2721
2722  unsigned char* pov = oview;
2723
2724  // The base address of the .plt section.
2725  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2726  // The base address of the .got section.
2727  elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2728  // The base address of the PLT portion of the .got section,
2729  // which is where the GOT pointer will point, and where the
2730  // three reserved GOT entries are located.
2731  elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2732
2733  this->fill_first_plt_entry(pov, got_address, plt_address);
2734  pov += plt_entry_size;
2735
2736  // The first three entries in the GOT are reserved, and are written
2737  // by Output_data_got_plt_x86_64::do_write.
2738  unsigned char* got_pov = got_view + 24;
2739
2740  unsigned int plt_offset = plt_entry_size;
2741  unsigned int got_offset = 24;
2742  const unsigned int count = this->entry_count();
2743  for (unsigned int plt_index = 0;
2744       plt_index < count;
2745       ++plt_index,
2746	 pov += plt_entry_size,
2747	 got_pov += 8,
2748	 plt_offset += plt_entry_size,
2749	 got_offset += 8)
2750    {
2751      // Set and adjust the PLT entry itself.
2752      unsigned int lazy_offset = this->fill_plt_entry(pov,
2753						      got_address, plt_address,
2754						      got_offset, plt_offset,
2755						      plt_index);
2756
2757      // Set the entry in the GOT.
2758      elfcpp::Swap<64, false>::writeval(got_pov,
2759					plt_address + plt_offset + lazy_offset);
2760    }
2761
2762  if (this->has_tlsdesc_entry())
2763    {
2764      // Set and adjust the reserved TLSDESC PLT entry.
2765      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2766      this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2767			       tlsdesc_got_offset, plt_offset);
2768      pov += this->get_plt_entry_size();
2769      plt_offset += plt_entry_size;
2770    }
2771
2772  // Write the additional PLT.
2773  got_offset = 24;
2774  for (unsigned int plt_index = 0;
2775       plt_index < count;
2776       ++plt_index,
2777	 pov += aplt_entry_size,
2778	 plt_offset += aplt_entry_size,
2779	 got_offset += 8)
2780    {
2781      // Set and adjust the APLT entry.
2782      this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2783			    plt_offset, plt_index);
2784    }
2785
2786  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2787  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2788
2789  of->write_output_view(offset, oview_size, oview);
2790  of->write_output_view(got_file_offset, got_size, got_view);
2791}
2792
2793// Write out the IBT PLT.
2794
2795template<int size>
2796void
2797Output_data_plt_x86_64_ibt<size>::do_write(Output_file* of)
2798{
2799  const off_t offset = this->offset();
2800  const section_size_type oview_size =
2801    convert_to_section_size_type(this->data_size());
2802  unsigned char* const oview = of->get_output_view(offset, oview_size);
2803
2804  Output_data_got<64, false>* got = this->got();
2805  Output_data_got_plt_x86_64* got_plt = this->got_plt();
2806  Output_data_space* got_irelative = this->got_irelative();
2807
2808  const off_t got_file_offset = got_plt->offset();
2809  gold_assert(parameters->incremental_update()
2810	      || (got_file_offset + got_plt->data_size()
2811		  == got_irelative->offset()));
2812  const section_size_type got_size =
2813    convert_to_section_size_type(got_plt->data_size()
2814				 + got_irelative->data_size());
2815  unsigned char* const got_view = of->get_output_view(got_file_offset,
2816						      got_size);
2817
2818  unsigned char* pov = oview;
2819
2820  // The base address of the .plt section.
2821  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2822  // The base address of the .got section.
2823  elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2824  // The base address of the PLT portion of the .got section,
2825  // which is where the GOT pointer will point, and where the
2826  // three reserved GOT entries are located.
2827  elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2828
2829  this->fill_first_plt_entry(pov, got_address, plt_address);
2830  pov += plt_entry_size;
2831
2832  // The first three entries in the GOT are reserved, and are written
2833  // by Output_data_got_plt_x86_64::do_write.
2834  unsigned char* got_pov = got_view + 24;
2835
2836  unsigned int plt_offset = plt_entry_size;
2837  unsigned int got_offset = 24;
2838  const unsigned int count = this->entry_count();
2839  for (unsigned int plt_index = 0;
2840       plt_index < count;
2841       ++plt_index,
2842	 pov += plt_entry_size,
2843	 got_pov += 8,
2844	 plt_offset += plt_entry_size,
2845	 got_offset += 8)
2846    {
2847      // Set and adjust the PLT entry itself.
2848      unsigned int lazy_offset = this->fill_plt_entry(pov,
2849						      got_address, plt_address,
2850						      got_offset, plt_offset,
2851						      plt_index);
2852
2853      // Set the entry in the GOT.
2854      elfcpp::Swap<64, false>::writeval(got_pov,
2855					plt_address + plt_offset + lazy_offset);
2856    }
2857
2858  if (this->has_tlsdesc_entry())
2859    {
2860      // Set and adjust the reserved TLSDESC PLT entry.
2861      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2862      this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2863			       tlsdesc_got_offset, plt_offset);
2864      pov += this->get_plt_entry_size();
2865      plt_offset += plt_entry_size;
2866    }
2867
2868  // Write the additional PLT.
2869  got_offset = 24;
2870  for (unsigned int plt_index = 0;
2871       plt_index < count;
2872       ++plt_index,
2873	 pov += aplt_entry_size,
2874	 plt_offset += aplt_entry_size,
2875	 got_offset += 8)
2876    {
2877      // Set and adjust the APLT entry.
2878      this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2879			    plt_offset, plt_index);
2880    }
2881
2882  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2883  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2884
2885  of->write_output_view(offset, oview_size, oview);
2886  of->write_output_view(got_file_offset, got_size, got_view);
2887}
2888
2889// Create the PLT section.
2890
2891template<int size>
2892void
2893Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
2894{
2895  if (this->plt_ == NULL)
2896    {
2897      // Create the GOT sections first.
2898      this->got_section(symtab, layout);
2899
2900      this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
2901				       this->got_irelative_);
2902
2903      // Add unwind information if requested.
2904      if (parameters->options().ld_generated_unwind_info())
2905	this->plt_->add_eh_frame(layout);
2906
2907      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2908				      (elfcpp::SHF_ALLOC
2909				       | elfcpp::SHF_EXECINSTR),
2910				      this->plt_, ORDER_PLT, false);
2911
2912      // Make the sh_info field of .rela.plt point to .plt.
2913      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2914      rela_plt_os->set_info_section(this->plt_->output_section());
2915    }
2916}
2917
2918template<>
2919Output_data_plt_x86_64<32>*
2920Target_x86_64<32>::do_make_data_plt(Layout* layout,
2921				    Output_data_got<64, false>* got,
2922				    Output_data_got_plt_x86_64* got_plt,
2923				    Output_data_space* got_irelative)
2924{
2925  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2926    return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
2927					      got_irelative);
2928  return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2929						 got_irelative);
2930}
2931
2932template<>
2933Output_data_plt_x86_64<64>*
2934Target_x86_64<64>::do_make_data_plt(Layout* layout,
2935				    Output_data_got<64, false>* got,
2936				    Output_data_got_plt_x86_64* got_plt,
2937				    Output_data_space* got_irelative)
2938{
2939  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2940    return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
2941					      got_irelative);
2942  else if (parameters->options().bndplt())
2943    return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2944					  got_irelative);
2945  else
2946    return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2947						   got_irelative);
2948}
2949
2950template<>
2951Output_data_plt_x86_64<32>*
2952Target_x86_64<32>::do_make_data_plt(Layout* layout,
2953				    Output_data_got<64, false>* got,
2954				    Output_data_got_plt_x86_64* got_plt,
2955				    Output_data_space* got_irelative,
2956				    unsigned int plt_count)
2957{
2958  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2959    return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
2960					      got_irelative, plt_count);
2961  return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2962						 got_irelative, plt_count);
2963}
2964
2965template<>
2966Output_data_plt_x86_64<64>*
2967Target_x86_64<64>::do_make_data_plt(Layout* layout,
2968				    Output_data_got<64, false>* got,
2969				    Output_data_got_plt_x86_64* got_plt,
2970				    Output_data_space* got_irelative,
2971				    unsigned int plt_count)
2972{
2973  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2974    return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
2975					      got_irelative, plt_count);
2976  else if (parameters->options().bndplt())
2977    return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2978					  got_irelative, plt_count);
2979  else
2980    return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2981						   got_irelative,
2982						   plt_count);
2983}
2984
2985// Return the section for TLSDESC relocations.
2986
2987template<int size>
2988typename Target_x86_64<size>::Reloc_section*
2989Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
2990{
2991  return this->plt_section()->rela_tlsdesc(layout);
2992}
2993
2994// Create a PLT entry for a global symbol.
2995
2996template<int size>
2997void
2998Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
2999				    Symbol* gsym)
3000{
3001  if (gsym->has_plt_offset())
3002    return;
3003
3004  if (this->plt_ == NULL)
3005    this->make_plt_section(symtab, layout);
3006
3007  this->plt_->add_entry(symtab, layout, gsym);
3008}
3009
3010// Make a PLT entry for a local STT_GNU_IFUNC symbol.
3011
3012template<int size>
3013void
3014Target_x86_64<size>::make_local_ifunc_plt_entry(
3015    Symbol_table* symtab, Layout* layout,
3016    Sized_relobj_file<size, false>* relobj,
3017    unsigned int local_sym_index)
3018{
3019  if (relobj->local_has_plt_offset(local_sym_index))
3020    return;
3021  if (this->plt_ == NULL)
3022    this->make_plt_section(symtab, layout);
3023  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
3024							      relobj,
3025							      local_sym_index);
3026  relobj->set_local_plt_offset(local_sym_index, plt_offset);
3027}
3028
3029// Return the number of entries in the PLT.
3030
3031template<int size>
3032unsigned int
3033Target_x86_64<size>::plt_entry_count() const
3034{
3035  if (this->plt_ == NULL)
3036    return 0;
3037  return this->plt_->entry_count();
3038}
3039
3040// Return the offset of the first non-reserved PLT entry.
3041
3042template<int size>
3043unsigned int
3044Target_x86_64<size>::first_plt_entry_offset() const
3045{
3046  if (this->plt_ == NULL)
3047    return 0;
3048  return this->plt_->first_plt_entry_offset();
3049}
3050
3051// Return the size of each PLT entry.
3052
3053template<int size>
3054unsigned int
3055Target_x86_64<size>::plt_entry_size() const
3056{
3057  if (this->plt_ == NULL)
3058    return 0;
3059  return this->plt_->get_plt_entry_size();
3060}
3061
3062// Create the GOT and PLT sections for an incremental update.
3063
3064template<int size>
3065Output_data_got_base*
3066Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
3067				       Layout* layout,
3068				       unsigned int got_count,
3069				       unsigned int plt_count)
3070{
3071  gold_assert(this->got_ == NULL);
3072
3073  this->got_ = new Output_data_got<64, false>(got_count * 8);
3074  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3075				  (elfcpp::SHF_ALLOC
3076				   | elfcpp::SHF_WRITE),
3077				  this->got_, ORDER_RELRO_LAST,
3078				  true);
3079
3080  // Add the three reserved entries.
3081  this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
3082  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3083				  (elfcpp::SHF_ALLOC
3084				   | elfcpp::SHF_WRITE),
3085				  this->got_plt_, ORDER_NON_RELRO_FIRST,
3086				  false);
3087
3088  // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3089  this->global_offset_table_ =
3090    symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3091				  Symbol_table::PREDEFINED,
3092				  this->got_plt_,
3093				  0, 0, elfcpp::STT_OBJECT,
3094				  elfcpp::STB_LOCAL,
3095				  elfcpp::STV_HIDDEN, 0,
3096				  false, false);
3097
3098  // If there are any TLSDESC relocations, they get GOT entries in
3099  // .got.plt after the jump slot entries.
3100  // FIXME: Get the count for TLSDESC entries.
3101  this->got_tlsdesc_ = new Output_data_got<64, false>(0);
3102  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3103				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3104				  this->got_tlsdesc_,
3105				  ORDER_NON_RELRO_FIRST, false);
3106
3107  // If there are any IRELATIVE relocations, they get GOT entries in
3108  // .got.plt after the jump slot and TLSDESC entries.
3109  this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
3110  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3111				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3112				  this->got_irelative_,
3113				  ORDER_NON_RELRO_FIRST, false);
3114
3115  // Create the PLT section.
3116  this->plt_ = this->make_data_plt(layout, this->got_,
3117				   this->got_plt_,
3118				   this->got_irelative_,
3119				   plt_count);
3120
3121  // Add unwind information if requested.
3122  if (parameters->options().ld_generated_unwind_info())
3123    this->plt_->add_eh_frame(layout);
3124
3125  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
3126				  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
3127				  this->plt_, ORDER_PLT, false);
3128
3129  // Make the sh_info field of .rela.plt point to .plt.
3130  Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
3131  rela_plt_os->set_info_section(this->plt_->output_section());
3132
3133  // Create the rela_dyn section.
3134  this->rela_dyn_section(layout);
3135
3136  return this->got_;
3137}
3138
3139// Reserve a GOT entry for a local symbol, and regenerate any
3140// necessary dynamic relocations.
3141
3142template<int size>
3143void
3144Target_x86_64<size>::reserve_local_got_entry(
3145    unsigned int got_index,
3146    Sized_relobj<size, false>* obj,
3147    unsigned int r_sym,
3148    unsigned int got_type)
3149{
3150  unsigned int got_offset = got_index * 8;
3151  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
3152
3153  this->got_->reserve_local(got_index, obj, r_sym, got_type);
3154  switch (got_type)
3155    {
3156    case GOT_TYPE_STANDARD:
3157      if (parameters->options().output_is_position_independent())
3158	rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
3159				     this->got_, got_offset, 0, false);
3160      break;
3161    case GOT_TYPE_TLS_OFFSET:
3162      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
3163			  this->got_, got_offset, 0);
3164      break;
3165    case GOT_TYPE_TLS_PAIR:
3166      this->got_->reserve_slot(got_index + 1);
3167      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
3168			  this->got_, got_offset, 0);
3169      break;
3170    case GOT_TYPE_TLS_DESC:
3171      gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
3172      // this->got_->reserve_slot(got_index + 1);
3173      // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3174      //			       this->got_, got_offset, 0);
3175      break;
3176    default:
3177      gold_unreachable();
3178    }
3179}
3180
3181// Reserve a GOT entry for a global symbol, and regenerate any
3182// necessary dynamic relocations.
3183
3184template<int size>
3185void
3186Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
3187					      Symbol* gsym,
3188					      unsigned int got_type)
3189{
3190  unsigned int got_offset = got_index * 8;
3191  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
3192
3193  this->got_->reserve_global(got_index, gsym, got_type);
3194  switch (got_type)
3195    {
3196    case GOT_TYPE_STANDARD:
3197      if (!gsym->final_value_is_known())
3198	{
3199	  if (gsym->is_from_dynobj()
3200	      || gsym->is_undefined()
3201	      || gsym->is_preemptible()
3202	      || gsym->type() == elfcpp::STT_GNU_IFUNC)
3203	    rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
3204				 this->got_, got_offset, 0);
3205	  else
3206	    rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
3207					  this->got_, got_offset, 0, false);
3208	}
3209      break;
3210    case GOT_TYPE_TLS_OFFSET:
3211      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
3212				    this->got_, got_offset, 0, false);
3213      break;
3214    case GOT_TYPE_TLS_PAIR:
3215      this->got_->reserve_slot(got_index + 1);
3216      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
3217				    this->got_, got_offset, 0, false);
3218      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
3219				    this->got_, got_offset + 8, 0, false);
3220      break;
3221    case GOT_TYPE_TLS_DESC:
3222      this->got_->reserve_slot(got_index + 1);
3223      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
3224				    this->got_, got_offset, 0, false);
3225      break;
3226    default:
3227      gold_unreachable();
3228    }
3229}
3230
3231// Register an existing PLT entry for a global symbol.
3232
3233template<int size>
3234void
3235Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
3236					       Layout* layout,
3237					       unsigned int plt_index,
3238					       Symbol* gsym)
3239{
3240  gold_assert(this->plt_ != NULL);
3241  gold_assert(!gsym->has_plt_offset());
3242
3243  this->plt_->reserve_slot(plt_index);
3244
3245  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
3246
3247  unsigned int got_offset = (plt_index + 3) * 8;
3248  this->plt_->add_relocation(symtab, layout, gsym, got_offset);
3249}
3250
3251// Force a COPY relocation for a given symbol.
3252
3253template<int size>
3254void
3255Target_x86_64<size>::emit_copy_reloc(
3256    Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
3257{
3258  this->copy_relocs_.emit_copy_reloc(symtab,
3259				     symtab->get_sized_symbol<size>(sym),
3260				     os,
3261				     offset,
3262				     this->rela_dyn_section(NULL));
3263}
3264
3265// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3266
3267template<int size>
3268void
3269Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
3270					    Layout* layout)
3271{
3272  if (this->tls_base_symbol_defined_)
3273    return;
3274
3275  Output_segment* tls_segment = layout->tls_segment();
3276  if (tls_segment != NULL)
3277    {
3278      bool is_exec = parameters->options().output_is_executable();
3279      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
3280				       Symbol_table::PREDEFINED,
3281				       tls_segment, 0, 0,
3282				       elfcpp::STT_TLS,
3283				       elfcpp::STB_LOCAL,
3284				       elfcpp::STV_HIDDEN, 0,
3285				       (is_exec
3286					? Symbol::SEGMENT_END
3287					: Symbol::SEGMENT_START),
3288				       true);
3289    }
3290  this->tls_base_symbol_defined_ = true;
3291}
3292
3293// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3294
3295template<int size>
3296void
3297Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
3298					     Layout* layout)
3299{
3300  if (this->plt_ == NULL)
3301    this->make_plt_section(symtab, layout);
3302
3303  if (!this->plt_->has_tlsdesc_entry())
3304    {
3305      // Allocate the TLSDESC_GOT entry.
3306      Output_data_got<64, false>* got = this->got_section(symtab, layout);
3307      unsigned int got_offset = got->add_constant(0);
3308
3309      // Allocate the TLSDESC_PLT entry.
3310      this->plt_->reserve_tlsdesc_entry(got_offset);
3311    }
3312}
3313
3314// Create a GOT entry for the TLS module index.
3315
3316template<int size>
3317unsigned int
3318Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3319					 Sized_relobj_file<size, false>* object)
3320{
3321  if (this->got_mod_index_offset_ == -1U)
3322    {
3323      gold_assert(symtab != NULL && layout != NULL && object != NULL);
3324      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
3325      Output_data_got<64, false>* got = this->got_section(symtab, layout);
3326      unsigned int got_offset = got->add_constant(0);
3327      rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
3328			  got_offset, 0);
3329      got->add_constant(0);
3330      this->got_mod_index_offset_ = got_offset;
3331    }
3332  return this->got_mod_index_offset_;
3333}
3334
3335// Optimize the TLS relocation type based on what we know about the
3336// symbol.  IS_FINAL is true if the final address of this symbol is
3337// known at link time.
3338
3339template<int size>
3340tls::Tls_optimization
3341Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
3342{
3343  // If we are generating a shared library, then we can't do anything
3344  // in the linker.
3345  if (parameters->options().shared())
3346    return tls::TLSOPT_NONE;
3347
3348  switch (r_type)
3349    {
3350    case elfcpp::R_X86_64_TLSGD:
3351    case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3352    case elfcpp::R_X86_64_TLSDESC_CALL:
3353      // These are General-Dynamic which permits fully general TLS
3354      // access.  Since we know that we are generating an executable,
3355      // we can convert this to Initial-Exec.  If we also know that
3356      // this is a local symbol, we can further switch to Local-Exec.
3357      if (is_final)
3358	return tls::TLSOPT_TO_LE;
3359      return tls::TLSOPT_TO_IE;
3360
3361    case elfcpp::R_X86_64_TLSLD:
3362      // This is Local-Dynamic, which refers to a local symbol in the
3363      // dynamic TLS block.  Since we know that we generating an
3364      // executable, we can switch to Local-Exec.
3365      return tls::TLSOPT_TO_LE;
3366
3367    case elfcpp::R_X86_64_DTPOFF32:
3368    case elfcpp::R_X86_64_DTPOFF64:
3369      // Another Local-Dynamic reloc.
3370      return tls::TLSOPT_TO_LE;
3371
3372    case elfcpp::R_X86_64_GOTTPOFF:
3373      // These are Initial-Exec relocs which get the thread offset
3374      // from the GOT.  If we know that we are linking against the
3375      // local symbol, we can switch to Local-Exec, which links the
3376      // thread offset into the instruction.
3377      if (is_final)
3378	return tls::TLSOPT_TO_LE;
3379      return tls::TLSOPT_NONE;
3380
3381    case elfcpp::R_X86_64_TPOFF32:
3382      // When we already have Local-Exec, there is nothing further we
3383      // can do.
3384      return tls::TLSOPT_NONE;
3385
3386    default:
3387      gold_unreachable();
3388    }
3389}
3390
3391// Get the Reference_flags for a particular relocation.
3392
3393template<int size>
3394int
3395Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
3396{
3397  switch (r_type)
3398    {
3399    case elfcpp::R_X86_64_NONE:
3400    case elfcpp::R_X86_64_GNU_VTINHERIT:
3401    case elfcpp::R_X86_64_GNU_VTENTRY:
3402    case elfcpp::R_X86_64_GOTPC32:
3403    case elfcpp::R_X86_64_GOTPC64:
3404      // No symbol reference.
3405      return 0;
3406
3407    case elfcpp::R_X86_64_64:
3408    case elfcpp::R_X86_64_32:
3409    case elfcpp::R_X86_64_32S:
3410    case elfcpp::R_X86_64_16:
3411    case elfcpp::R_X86_64_8:
3412      return Symbol::ABSOLUTE_REF;
3413
3414    case elfcpp::R_X86_64_PC64:
3415    case elfcpp::R_X86_64_PC32:
3416    case elfcpp::R_X86_64_PC32_BND:
3417    case elfcpp::R_X86_64_PC16:
3418    case elfcpp::R_X86_64_PC8:
3419    case elfcpp::R_X86_64_GOTOFF64:
3420      return Symbol::RELATIVE_REF;
3421
3422    case elfcpp::R_X86_64_PLT32:
3423    case elfcpp::R_X86_64_PLT32_BND:
3424    case elfcpp::R_X86_64_PLTOFF64:
3425      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3426
3427    case elfcpp::R_X86_64_GOT64:
3428    case elfcpp::R_X86_64_GOT32:
3429    case elfcpp::R_X86_64_GOTPCREL64:
3430    case elfcpp::R_X86_64_GOTPCREL:
3431    case elfcpp::R_X86_64_GOTPCRELX:
3432    case elfcpp::R_X86_64_REX_GOTPCRELX:
3433    case elfcpp::R_X86_64_GOTPLT64:
3434      // Absolute in GOT.
3435      return Symbol::ABSOLUTE_REF;
3436
3437    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3438    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3439    case elfcpp::R_X86_64_TLSDESC_CALL:
3440    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3441    case elfcpp::R_X86_64_DTPOFF32:
3442    case elfcpp::R_X86_64_DTPOFF64:
3443    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3444    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3445      return Symbol::TLS_REF;
3446
3447    case elfcpp::R_X86_64_COPY:
3448    case elfcpp::R_X86_64_GLOB_DAT:
3449    case elfcpp::R_X86_64_JUMP_SLOT:
3450    case elfcpp::R_X86_64_RELATIVE:
3451    case elfcpp::R_X86_64_IRELATIVE:
3452    case elfcpp::R_X86_64_TPOFF64:
3453    case elfcpp::R_X86_64_DTPMOD64:
3454    case elfcpp::R_X86_64_TLSDESC:
3455    case elfcpp::R_X86_64_SIZE32:
3456    case elfcpp::R_X86_64_SIZE64:
3457    default:
3458      // Not expected.  We will give an error later.
3459      return 0;
3460    }
3461}
3462
3463// Report an unsupported relocation against a local symbol.
3464
3465template<int size>
3466void
3467Target_x86_64<size>::Scan::unsupported_reloc_local(
3468     Sized_relobj_file<size, false>* object,
3469     unsigned int r_type)
3470{
3471  gold_error(_("%s: unsupported reloc %u against local symbol"),
3472	     object->name().c_str(), r_type);
3473}
3474
3475// We are about to emit a dynamic relocation of type R_TYPE.  If the
3476// dynamic linker does not support it, issue an error.  The GNU linker
3477// only issues a non-PIC error for an allocated read-only section.
3478// Here we know the section is allocated, but we don't know that it is
3479// read-only.  But we check for all the relocation types which the
3480// glibc dynamic linker supports, so it seems appropriate to issue an
3481// error even if the section is not read-only.  If GSYM is not NULL,
3482// it is the symbol the relocation is against; if it is NULL, the
3483// relocation is against a local symbol.
3484
3485template<int size>
3486void
3487Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
3488					 Symbol* gsym)
3489{
3490  switch (r_type)
3491    {
3492      // These are the relocation types supported by glibc for x86_64
3493      // which should always work.
3494    case elfcpp::R_X86_64_RELATIVE:
3495    case elfcpp::R_X86_64_IRELATIVE:
3496    case elfcpp::R_X86_64_GLOB_DAT:
3497    case elfcpp::R_X86_64_JUMP_SLOT:
3498    case elfcpp::R_X86_64_DTPMOD64:
3499    case elfcpp::R_X86_64_DTPOFF64:
3500    case elfcpp::R_X86_64_TPOFF64:
3501    case elfcpp::R_X86_64_64:
3502    case elfcpp::R_X86_64_COPY:
3503      return;
3504
3505      // glibc supports these reloc types, but they can overflow.
3506    case elfcpp::R_X86_64_PC32:
3507    case elfcpp::R_X86_64_PC32_BND:
3508      // A PC relative reference is OK against a local symbol or if
3509      // the symbol is defined locally.
3510      if (gsym == NULL
3511	  || (!gsym->is_from_dynobj()
3512	      && !gsym->is_undefined()
3513	      && !gsym->is_preemptible()))
3514	return;
3515      // Fall through.
3516    case elfcpp::R_X86_64_32:
3517      // R_X86_64_32 is OK for x32.
3518      if (size == 32 && r_type == elfcpp::R_X86_64_32)
3519	return;
3520      if (this->issued_non_pic_error_)
3521	return;
3522      gold_assert(parameters->options().output_is_position_independent());
3523      if (gsym == NULL)
3524	object->error(_("requires dynamic R_X86_64_32 reloc which may "
3525			"overflow at runtime; recompile with -fPIC"));
3526      else
3527	{
3528	  const char *r_name;
3529	  switch (r_type)
3530	    {
3531	    case elfcpp::R_X86_64_32:
3532	      r_name = "R_X86_64_32";
3533	      break;
3534	    case elfcpp::R_X86_64_PC32:
3535	      r_name = "R_X86_64_PC32";
3536	      break;
3537	    case elfcpp::R_X86_64_PC32_BND:
3538	      r_name = "R_X86_64_PC32_BND";
3539	      break;
3540	    default:
3541	      gold_unreachable();
3542	      break;
3543	    }
3544	  object->error(_("requires dynamic %s reloc against '%s' "
3545			  "which may overflow at runtime; recompile "
3546			  "with -fPIC"),
3547			r_name, gsym->name());
3548	}
3549      this->issued_non_pic_error_ = true;
3550      return;
3551
3552    default:
3553      // This prevents us from issuing more than one error per reloc
3554      // section.  But we can still wind up issuing more than one
3555      // error per object file.
3556      if (this->issued_non_pic_error_)
3557	return;
3558      gold_assert(parameters->options().output_is_position_independent());
3559      object->error(_("requires unsupported dynamic reloc %u; "
3560		      "recompile with -fPIC"),
3561		    r_type);
3562      this->issued_non_pic_error_ = true;
3563      return;
3564
3565    case elfcpp::R_X86_64_NONE:
3566      gold_unreachable();
3567    }
3568}
3569
3570// Return whether we need to make a PLT entry for a relocation of the
3571// given type against a STT_GNU_IFUNC symbol.
3572
3573template<int size>
3574bool
3575Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
3576     Sized_relobj_file<size, false>* object,
3577     unsigned int r_type)
3578{
3579  int flags = Scan::get_reference_flags(r_type);
3580  if (flags & Symbol::TLS_REF)
3581    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
3582	       object->name().c_str(), r_type);
3583  return flags != 0;
3584}
3585
3586// Scan a relocation for a local symbol.
3587
3588template<int size>
3589inline void
3590Target_x86_64<size>::Scan::local(Symbol_table* symtab,
3591				 Layout* layout,
3592				 Target_x86_64<size>* target,
3593				 Sized_relobj_file<size, false>* object,
3594				 unsigned int data_shndx,
3595				 Output_section* output_section,
3596				 const elfcpp::Rela<size, false>& reloc,
3597				 unsigned int r_type,
3598				 const elfcpp::Sym<size, false>& lsym,
3599				 bool is_discarded)
3600{
3601  if (is_discarded)
3602    return;
3603
3604  // A local STT_GNU_IFUNC symbol may require a PLT entry.
3605  bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3606  if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3607    {
3608      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3609      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
3610    }
3611
3612  switch (r_type)
3613    {
3614    case elfcpp::R_X86_64_NONE:
3615    case elfcpp::R_X86_64_GNU_VTINHERIT:
3616    case elfcpp::R_X86_64_GNU_VTENTRY:
3617      break;
3618
3619    case elfcpp::R_X86_64_64:
3620      // If building a shared library (or a position-independent
3621      // executable), we need to create a dynamic relocation for this
3622      // location.  The relocation applied at link time will apply the
3623      // link-time value, so we flag the location with an
3624      // R_X86_64_RELATIVE relocation so the dynamic loader can
3625      // relocate it easily.
3626      if (parameters->options().output_is_position_independent())
3627	{
3628	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3629	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3630	  rela_dyn->add_local_relative(object, r_sym,
3631				       (size == 32
3632					? elfcpp::R_X86_64_RELATIVE64
3633					: elfcpp::R_X86_64_RELATIVE),
3634				       output_section, data_shndx,
3635				       reloc.get_r_offset(),
3636				       reloc.get_r_addend(), is_ifunc);
3637	}
3638      break;
3639
3640    case elfcpp::R_X86_64_32:
3641    case elfcpp::R_X86_64_32S:
3642    case elfcpp::R_X86_64_16:
3643    case elfcpp::R_X86_64_8:
3644      // If building a shared library (or a position-independent
3645      // executable), we need to create a dynamic relocation for this
3646      // location.  We can't use an R_X86_64_RELATIVE relocation
3647      // because that is always a 64-bit relocation.
3648      if (parameters->options().output_is_position_independent())
3649	{
3650	  // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
3651	  if (size == 32 && r_type == elfcpp::R_X86_64_32)
3652	    {
3653	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3654	      Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3655	      rela_dyn->add_local_relative(object, r_sym,
3656					   elfcpp::R_X86_64_RELATIVE,
3657					   output_section, data_shndx,
3658					   reloc.get_r_offset(),
3659					   reloc.get_r_addend(), is_ifunc);
3660	      break;
3661	    }
3662
3663	  this->check_non_pic(object, r_type, NULL);
3664
3665	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3666	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3667	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
3668	    rela_dyn->add_local(object, r_sym, r_type, output_section,
3669				data_shndx, reloc.get_r_offset(),
3670				reloc.get_r_addend());
3671	  else
3672	    {
3673	      gold_assert(lsym.get_st_value() == 0);
3674	      unsigned int shndx = lsym.get_st_shndx();
3675	      bool is_ordinary;
3676	      shndx = object->adjust_sym_shndx(r_sym, shndx,
3677					       &is_ordinary);
3678	      if (!is_ordinary)
3679		object->error(_("section symbol %u has bad shndx %u"),
3680			      r_sym, shndx);
3681	      else
3682		rela_dyn->add_local_section(object, shndx,
3683					    r_type, output_section,
3684					    data_shndx, reloc.get_r_offset(),
3685					    reloc.get_r_addend());
3686	    }
3687	}
3688      break;
3689
3690    case elfcpp::R_X86_64_PC64:
3691    case elfcpp::R_X86_64_PC32:
3692    case elfcpp::R_X86_64_PC32_BND:
3693    case elfcpp::R_X86_64_PC16:
3694    case elfcpp::R_X86_64_PC8:
3695      break;
3696
3697    case elfcpp::R_X86_64_PLT32:
3698    case elfcpp::R_X86_64_PLT32_BND:
3699      // Since we know this is a local symbol, we can handle this as a
3700      // PC32 reloc.
3701      break;
3702
3703    case elfcpp::R_X86_64_GOTPC32:
3704    case elfcpp::R_X86_64_GOTOFF64:
3705    case elfcpp::R_X86_64_GOTPC64:
3706    case elfcpp::R_X86_64_PLTOFF64:
3707      // We need a GOT section.
3708      target->got_section(symtab, layout);
3709      // For PLTOFF64, we'd normally want a PLT section, but since we
3710      // know this is a local symbol, no PLT is needed.
3711      break;
3712
3713    case elfcpp::R_X86_64_GOT64:
3714    case elfcpp::R_X86_64_GOT32:
3715    case elfcpp::R_X86_64_GOTPCREL64:
3716    case elfcpp::R_X86_64_GOTPCREL:
3717    case elfcpp::R_X86_64_GOTPCRELX:
3718    case elfcpp::R_X86_64_REX_GOTPCRELX:
3719    case elfcpp::R_X86_64_GOTPLT64:
3720      {
3721	// The symbol requires a GOT section.
3722	Output_data_got<64, false>* got = target->got_section(symtab, layout);
3723
3724	// If the relocation symbol isn't IFUNC,
3725	// and is local, then we will convert
3726	// mov foo@GOTPCREL(%rip), %reg
3727	// to lea foo(%rip), %reg.
3728	// in Relocate::relocate.
3729	if (!parameters->incremental()
3730	    && (r_type == elfcpp::R_X86_64_GOTPCREL
3731		|| r_type == elfcpp::R_X86_64_GOTPCRELX
3732		|| r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
3733	    && reloc.get_r_addend() == -4
3734	    && reloc.get_r_offset() >= 2
3735	    && !is_ifunc)
3736	  {
3737	    section_size_type stype;
3738	    const unsigned char* view = object->section_contents(data_shndx,
3739								 &stype, true);
3740	    if (view[reloc.get_r_offset() - 2] == 0x8b)
3741	      break;
3742	  }
3743
3744	// The symbol requires a GOT entry.
3745	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3746
3747	// For a STT_GNU_IFUNC symbol we want the PLT offset.  That
3748	// lets function pointers compare correctly with shared
3749	// libraries.  Otherwise we would need an IRELATIVE reloc.
3750	bool is_new;
3751	if (is_ifunc)
3752	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3753	else
3754	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3755	if (is_new)
3756	  {
3757	    // If we are generating a shared object, we need to add a
3758	    // dynamic relocation for this symbol's GOT entry.
3759	    if (parameters->options().output_is_position_independent())
3760	      {
3761		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3762		// R_X86_64_RELATIVE assumes a 64-bit relocation.
3763		if (r_type != elfcpp::R_X86_64_GOT32)
3764		  {
3765		    unsigned int got_offset =
3766		      object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3767		    rela_dyn->add_local_relative(object, r_sym,
3768						 elfcpp::R_X86_64_RELATIVE,
3769						 got, got_offset, 0, is_ifunc);
3770		  }
3771		else
3772		  {
3773		    this->check_non_pic(object, r_type, NULL);
3774
3775		    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3776		    rela_dyn->add_local(
3777			object, r_sym, r_type, got,
3778			object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
3779		  }
3780	      }
3781	  }
3782	// For GOTPLT64, we'd normally want a PLT section, but since
3783	// we know this is a local symbol, no PLT is needed.
3784      }
3785      break;
3786
3787    case elfcpp::R_X86_64_COPY:
3788    case elfcpp::R_X86_64_GLOB_DAT:
3789    case elfcpp::R_X86_64_JUMP_SLOT:
3790    case elfcpp::R_X86_64_RELATIVE:
3791    case elfcpp::R_X86_64_IRELATIVE:
3792      // These are outstanding tls relocs, which are unexpected when linking
3793    case elfcpp::R_X86_64_TPOFF64:
3794    case elfcpp::R_X86_64_DTPMOD64:
3795    case elfcpp::R_X86_64_TLSDESC:
3796      gold_error(_("%s: unexpected reloc %u in object file"),
3797		 object->name().c_str(), r_type);
3798      break;
3799
3800      // These are initial tls relocs, which are expected when linking
3801    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3802    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3803    case elfcpp::R_X86_64_TLSDESC_CALL:
3804    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3805    case elfcpp::R_X86_64_DTPOFF32:
3806    case elfcpp::R_X86_64_DTPOFF64:
3807    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3808    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3809      {
3810	bool output_is_shared = parameters->options().shared();
3811	const tls::Tls_optimization optimized_type
3812	    = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
3813						      r_type);
3814	switch (r_type)
3815	  {
3816	  case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3817	    if (optimized_type == tls::TLSOPT_NONE)
3818	      {
3819		// Create a pair of GOT entries for the module index and
3820		// dtv-relative offset.
3821		Output_data_got<64, false>* got
3822		    = target->got_section(symtab, layout);
3823		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3824		unsigned int shndx = lsym.get_st_shndx();
3825		bool is_ordinary;
3826		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
3827		if (!is_ordinary)
3828		  object->error(_("local symbol %u has bad shndx %u"),
3829			      r_sym, shndx);
3830		else
3831		  got->add_local_pair_with_rel(object, r_sym,
3832					       shndx,
3833					       GOT_TYPE_TLS_PAIR,
3834					       target->rela_dyn_section(layout),
3835					       elfcpp::R_X86_64_DTPMOD64);
3836	      }
3837	    else if (optimized_type != tls::TLSOPT_TO_LE)
3838	      unsupported_reloc_local(object, r_type);
3839	    break;
3840
3841	  case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3842	    target->define_tls_base_symbol(symtab, layout);
3843	    if (optimized_type == tls::TLSOPT_NONE)
3844	      {
3845		// Create reserved PLT and GOT entries for the resolver.
3846		target->reserve_tlsdesc_entries(symtab, layout);
3847
3848		// Generate a double GOT entry with an
3849		// R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
3850		// is resolved lazily, so the GOT entry needs to be in
3851		// an area in .got.plt, not .got.  Call got_section to
3852		// make sure the section has been created.
3853		target->got_section(symtab, layout);
3854		Output_data_got<64, false>* got = target->got_tlsdesc_section();
3855		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3856		if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
3857		  {
3858		    unsigned int got_offset = got->add_constant(0);
3859		    got->add_constant(0);
3860		    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
3861						 got_offset);
3862		    Reloc_section* rt = target->rela_tlsdesc_section(layout);
3863		    // We store the arguments we need in a vector, and
3864		    // use the index into the vector as the parameter
3865		    // to pass to the target specific routines.
3866		    uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
3867		    void* arg = reinterpret_cast<void*>(intarg);
3868		    rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3869					    got, got_offset, 0);
3870		  }
3871	      }
3872	    else if (optimized_type != tls::TLSOPT_TO_LE)
3873	      unsupported_reloc_local(object, r_type);
3874	    break;
3875
3876	  case elfcpp::R_X86_64_TLSDESC_CALL:
3877	    break;
3878
3879	  case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3880	    if (optimized_type == tls::TLSOPT_NONE)
3881	      {
3882		// Create a GOT entry for the module index.
3883		target->got_mod_index_entry(symtab, layout, object);
3884	      }
3885	    else if (optimized_type != tls::TLSOPT_TO_LE)
3886	      unsupported_reloc_local(object, r_type);
3887	    break;
3888
3889	  case elfcpp::R_X86_64_DTPOFF32:
3890	  case elfcpp::R_X86_64_DTPOFF64:
3891	    break;
3892
3893	  case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3894	    layout->set_has_static_tls();
3895	    if (optimized_type == tls::TLSOPT_NONE)
3896	      {
3897		// Create a GOT entry for the tp-relative offset.
3898		Output_data_got<64, false>* got
3899		    = target->got_section(symtab, layout);
3900		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3901		got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
3902					target->rela_dyn_section(layout),
3903					elfcpp::R_X86_64_TPOFF64);
3904	      }
3905	    else if (optimized_type != tls::TLSOPT_TO_LE)
3906	      unsupported_reloc_local(object, r_type);
3907	    break;
3908
3909	  case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3910	    layout->set_has_static_tls();
3911	    if (output_is_shared)
3912	      unsupported_reloc_local(object, r_type);
3913	    break;
3914
3915	  default:
3916	    gold_unreachable();
3917	  }
3918      }
3919      break;
3920
3921    case elfcpp::R_X86_64_SIZE32:
3922    case elfcpp::R_X86_64_SIZE64:
3923    default:
3924      gold_error(_("%s: unsupported reloc %u against local symbol"),
3925		 object->name().c_str(), r_type);
3926      break;
3927    }
3928}
3929
3930
3931// Report an unsupported relocation against a global symbol.
3932
3933template<int size>
3934void
3935Target_x86_64<size>::Scan::unsupported_reloc_global(
3936    Sized_relobj_file<size, false>* object,
3937    unsigned int r_type,
3938    Symbol* gsym)
3939{
3940  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3941	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
3942}
3943
3944// Returns true if this relocation type could be that of a function pointer.
3945template<int size>
3946inline bool
3947Target_x86_64<size>::Scan::possible_function_pointer_reloc(
3948    Sized_relobj_file<size, false>* src_obj,
3949    unsigned int src_indx,
3950    unsigned int r_offset,
3951    unsigned int r_type)
3952{
3953  switch (r_type)
3954    {
3955    case elfcpp::R_X86_64_64:
3956    case elfcpp::R_X86_64_32:
3957    case elfcpp::R_X86_64_32S:
3958    case elfcpp::R_X86_64_16:
3959    case elfcpp::R_X86_64_8:
3960    case elfcpp::R_X86_64_GOT64:
3961    case elfcpp::R_X86_64_GOT32:
3962    case elfcpp::R_X86_64_GOTPCREL64:
3963    case elfcpp::R_X86_64_GOTPCREL:
3964    case elfcpp::R_X86_64_GOTPCRELX:
3965    case elfcpp::R_X86_64_REX_GOTPCRELX:
3966    case elfcpp::R_X86_64_GOTPLT64:
3967      {
3968	return true;
3969      }
3970    case elfcpp::R_X86_64_PC32:
3971      {
3972        // This relocation may be used both for function calls and
3973        // for taking address of a function. We distinguish between
3974        // them by checking the opcodes.
3975        uint64_t sh_flags = src_obj->section_flags(src_indx);
3976        bool is_executable = (sh_flags & elfcpp::SHF_EXECINSTR) != 0;
3977        if (is_executable)
3978          {
3979            section_size_type stype;
3980            const unsigned char* view = src_obj->section_contents(src_indx,
3981                                                                  &stype,
3982                                                                  true);
3983
3984            // call
3985            if (r_offset >= 1
3986                && view[r_offset - 1] == 0xe8)
3987              return false;
3988
3989            // jmp
3990            if (r_offset >= 1
3991                && view[r_offset - 1] == 0xe9)
3992              return false;
3993
3994            // jo/jno/jb/jnb/je/jne/jna/ja/js/jns/jp/jnp/jl/jge/jle/jg
3995            if (r_offset >= 2
3996                && view[r_offset - 2] == 0x0f
3997                && view[r_offset - 1] >= 0x80
3998                && view[r_offset - 1] <= 0x8f)
3999              return false;
4000          }
4001
4002        // Be conservative and treat all others as function pointers.
4003        return true;
4004      }
4005    }
4006  return false;
4007}
4008
4009// For safe ICF, scan a relocation for a local symbol to check if it
4010// corresponds to a function pointer being taken.  In that case mark
4011// the function whose pointer was taken as not foldable.
4012
4013template<int size>
4014inline bool
4015Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
4016  Symbol_table* ,
4017  Layout* ,
4018  Target_x86_64<size>* ,
4019  Sized_relobj_file<size, false>* src_obj,
4020  unsigned int src_indx,
4021  Output_section* ,
4022  const elfcpp::Rela<size, false>& reloc,
4023  unsigned int r_type,
4024  const elfcpp::Sym<size, false>&)
4025{
4026  return possible_function_pointer_reloc(src_obj, src_indx,
4027                                         reloc.get_r_offset(), r_type);
4028}
4029
4030// For safe ICF, scan a relocation for a global symbol to check if it
4031// corresponds to a function pointer being taken.  In that case mark
4032// the function whose pointer was taken as not foldable.
4033
4034template<int size>
4035inline bool
4036Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
4037  Symbol_table*,
4038  Layout* ,
4039  Target_x86_64<size>* ,
4040  Sized_relobj_file<size, false>* src_obj,
4041  unsigned int src_indx,
4042  Output_section* ,
4043  const elfcpp::Rela<size, false>& reloc,
4044  unsigned int r_type,
4045  Symbol*)
4046{
4047  return possible_function_pointer_reloc(src_obj, src_indx,
4048                                         reloc.get_r_offset(), r_type);
4049}
4050
4051// Scan a relocation for a global symbol.
4052
4053template<int size>
4054inline void
4055Target_x86_64<size>::Scan::global(Symbol_table* symtab,
4056			    Layout* layout,
4057			    Target_x86_64<size>* target,
4058			    Sized_relobj_file<size, false>* object,
4059			    unsigned int data_shndx,
4060			    Output_section* output_section,
4061			    const elfcpp::Rela<size, false>& reloc,
4062			    unsigned int r_type,
4063			    Symbol* gsym)
4064{
4065  // A STT_GNU_IFUNC symbol may require a PLT entry.
4066  if (gsym->type() == elfcpp::STT_GNU_IFUNC
4067      && this->reloc_needs_plt_for_ifunc(object, r_type))
4068    target->make_plt_entry(symtab, layout, gsym);
4069
4070  switch (r_type)
4071    {
4072    case elfcpp::R_X86_64_NONE:
4073    case elfcpp::R_X86_64_GNU_VTINHERIT:
4074    case elfcpp::R_X86_64_GNU_VTENTRY:
4075      break;
4076
4077    case elfcpp::R_X86_64_64:
4078    case elfcpp::R_X86_64_32:
4079    case elfcpp::R_X86_64_32S:
4080    case elfcpp::R_X86_64_16:
4081    case elfcpp::R_X86_64_8:
4082      {
4083	// Make a PLT entry if necessary.
4084	if (gsym->needs_plt_entry())
4085	  {
4086	    target->make_plt_entry(symtab, layout, gsym);
4087	    // Since this is not a PC-relative relocation, we may be
4088	    // taking the address of a function. In that case we need to
4089	    // set the entry in the dynamic symbol table to the address of
4090	    // the PLT entry.
4091	    if (gsym->is_from_dynobj() && !parameters->options().shared())
4092	      gsym->set_needs_dynsym_value();
4093	  }
4094	// Make a dynamic relocation if necessary.
4095	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
4096	  {
4097	    if (!parameters->options().output_is_position_independent()
4098		&& gsym->may_need_copy_reloc())
4099	      {
4100		target->copy_reloc(symtab, layout, object,
4101				   data_shndx, output_section, gsym, reloc);
4102	      }
4103	    else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
4104		      || (size == 32 && r_type == elfcpp::R_X86_64_32))
4105		     && gsym->type() == elfcpp::STT_GNU_IFUNC
4106		     && gsym->can_use_relative_reloc(false)
4107		     && !gsym->is_from_dynobj()
4108		     && !gsym->is_undefined()
4109		     && !gsym->is_preemptible())
4110	      {
4111		// Use an IRELATIVE reloc for a locally defined
4112		// STT_GNU_IFUNC symbol.  This makes a function
4113		// address in a PIE executable match the address in a
4114		// shared library that it links against.
4115		Reloc_section* rela_dyn =
4116		  target->rela_irelative_section(layout);
4117		unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
4118		rela_dyn->add_symbolless_global_addend(gsym, r_type,
4119						       output_section, object,
4120						       data_shndx,
4121						       reloc.get_r_offset(),
4122						       reloc.get_r_addend());
4123	      }
4124	    else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
4125		      || (size == 32 && r_type == elfcpp::R_X86_64_32))
4126		     && gsym->can_use_relative_reloc(false))
4127	      {
4128		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4129		rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
4130					      output_section, object,
4131					      data_shndx,
4132					      reloc.get_r_offset(),
4133					      reloc.get_r_addend(), false);
4134	      }
4135	    else
4136	      {
4137		this->check_non_pic(object, r_type, gsym);
4138		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4139		rela_dyn->add_global(gsym, r_type, output_section, object,
4140				     data_shndx, reloc.get_r_offset(),
4141				     reloc.get_r_addend());
4142	      }
4143	  }
4144      }
4145      break;
4146
4147    case elfcpp::R_X86_64_PC64:
4148    case elfcpp::R_X86_64_PC32:
4149    case elfcpp::R_X86_64_PC32_BND:
4150    case elfcpp::R_X86_64_PC16:
4151    case elfcpp::R_X86_64_PC8:
4152      {
4153	// Make a PLT entry if necessary.
4154	if (gsym->needs_plt_entry())
4155	  target->make_plt_entry(symtab, layout, gsym);
4156	// Make a dynamic relocation if necessary.
4157	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
4158	  {
4159	    if (parameters->options().output_is_executable()
4160		&& gsym->may_need_copy_reloc())
4161	      {
4162		target->copy_reloc(symtab, layout, object,
4163				   data_shndx, output_section, gsym, reloc);
4164	      }
4165	    else
4166	      {
4167		this->check_non_pic(object, r_type, gsym);
4168		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4169		rela_dyn->add_global(gsym, r_type, output_section, object,
4170				     data_shndx, reloc.get_r_offset(),
4171				     reloc.get_r_addend());
4172	      }
4173	  }
4174      }
4175      break;
4176
4177    case elfcpp::R_X86_64_GOT64:
4178    case elfcpp::R_X86_64_GOT32:
4179    case elfcpp::R_X86_64_GOTPCREL64:
4180    case elfcpp::R_X86_64_GOTPCREL:
4181    case elfcpp::R_X86_64_GOTPCRELX:
4182    case elfcpp::R_X86_64_REX_GOTPCRELX:
4183    case elfcpp::R_X86_64_GOTPLT64:
4184      {
4185	// The symbol requires a GOT entry.
4186	Output_data_got<64, false>* got = target->got_section(symtab, layout);
4187
4188	// If we convert this from
4189	// mov foo@GOTPCREL(%rip), %reg
4190	// to lea foo(%rip), %reg.
4191	// OR
4192	// if we convert
4193	// (callq|jmpq) *foo@GOTPCRELX(%rip) to
4194	// (callq|jmpq) foo
4195	// in Relocate::relocate, then there is nothing to do here.
4196	// We cannot make these optimizations in incremental linking mode,
4197	// because we look at the opcode to decide whether or not to make
4198	// change, and during an incremental update, the change may have
4199	// already been applied.
4200
4201        Lazy_view<size> view(object, data_shndx);
4202        size_t r_offset = reloc.get_r_offset();
4203        if (!parameters->incremental()
4204	    && reloc.get_r_addend() == -4
4205	    && r_offset >= 2
4206            && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4207                                                           r_offset, &view))
4208          break;
4209
4210	if (!parameters->incremental()
4211	    && r_offset >= 2
4212	    && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
4213								r_offset,
4214								&view))
4215          break;
4216
4217	if (gsym->final_value_is_known())
4218	  {
4219	    // For a STT_GNU_IFUNC symbol we want the PLT address.
4220	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4221	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
4222	    else
4223	      got->add_global(gsym, GOT_TYPE_STANDARD);
4224	  }
4225	else
4226	  {
4227	    // If this symbol is not fully resolved, we need to add a
4228	    // dynamic relocation for it.
4229	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4230
4231	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
4232	    //
4233	    // 1) The symbol may be defined in some other module.
4234	    //
4235	    // 2) We are building a shared library and this is a
4236	    // protected symbol; using GLOB_DAT means that the dynamic
4237	    // linker can use the address of the PLT in the main
4238	    // executable when appropriate so that function address
4239	    // comparisons work.
4240	    //
4241	    // 3) This is a STT_GNU_IFUNC symbol in position dependent
4242	    // code, again so that function address comparisons work.
4243	    if (gsym->is_from_dynobj()
4244		|| gsym->is_undefined()
4245		|| gsym->is_preemptible()
4246		|| (gsym->visibility() == elfcpp::STV_PROTECTED
4247		    && parameters->options().shared())
4248		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
4249		    && parameters->options().output_is_position_independent()))
4250	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
4251				       elfcpp::R_X86_64_GLOB_DAT);
4252	    else
4253	      {
4254		// For a STT_GNU_IFUNC symbol we want to write the PLT
4255		// offset into the GOT, so that function pointer
4256		// comparisons work correctly.
4257		bool is_new;
4258		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
4259		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
4260		else
4261		  {
4262		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
4263		    // Tell the dynamic linker to use the PLT address
4264		    // when resolving relocations.
4265		    if (gsym->is_from_dynobj()
4266			&& !parameters->options().shared())
4267		      gsym->set_needs_dynsym_value();
4268		  }
4269		if (is_new)
4270		  {
4271		    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
4272		    rela_dyn->add_global_relative(gsym,
4273						  elfcpp::R_X86_64_RELATIVE,
4274						  got, got_off, 0, false);
4275		  }
4276	      }
4277	  }
4278      }
4279      break;
4280
4281    case elfcpp::R_X86_64_PLT32:
4282    case elfcpp::R_X86_64_PLT32_BND:
4283      // If the symbol is fully resolved, this is just a PC32 reloc.
4284      // Otherwise we need a PLT entry.
4285      if (gsym->final_value_is_known())
4286	break;
4287      // If building a shared library, we can also skip the PLT entry
4288      // if the symbol is defined in the output file and is protected
4289      // or hidden.
4290      if (gsym->is_defined()
4291	  && !gsym->is_from_dynobj()
4292	  && !gsym->is_preemptible())
4293	break;
4294      target->make_plt_entry(symtab, layout, gsym);
4295      break;
4296
4297    case elfcpp::R_X86_64_GOTPC32:
4298    case elfcpp::R_X86_64_GOTOFF64:
4299    case elfcpp::R_X86_64_GOTPC64:
4300    case elfcpp::R_X86_64_PLTOFF64:
4301      // We need a GOT section.
4302      target->got_section(symtab, layout);
4303      // For PLTOFF64, we also need a PLT entry (but only if the
4304      // symbol is not fully resolved).
4305      if (r_type == elfcpp::R_X86_64_PLTOFF64
4306	  && !gsym->final_value_is_known())
4307	target->make_plt_entry(symtab, layout, gsym);
4308      break;
4309
4310    case elfcpp::R_X86_64_COPY:
4311    case elfcpp::R_X86_64_GLOB_DAT:
4312    case elfcpp::R_X86_64_JUMP_SLOT:
4313    case elfcpp::R_X86_64_RELATIVE:
4314    case elfcpp::R_X86_64_IRELATIVE:
4315      // These are outstanding tls relocs, which are unexpected when linking
4316    case elfcpp::R_X86_64_TPOFF64:
4317    case elfcpp::R_X86_64_DTPMOD64:
4318    case elfcpp::R_X86_64_TLSDESC:
4319      gold_error(_("%s: unexpected reloc %u in object file"),
4320		 object->name().c_str(), r_type);
4321      break;
4322
4323      // These are initial tls relocs, which are expected for global()
4324    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4325    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4326    case elfcpp::R_X86_64_TLSDESC_CALL:
4327    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4328    case elfcpp::R_X86_64_DTPOFF32:
4329    case elfcpp::R_X86_64_DTPOFF64:
4330    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4331    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4332      {
4333	// For the Initial-Exec model, we can treat undef symbols as final
4334	// when building an executable.
4335	const bool is_final = (gsym->final_value_is_known() ||
4336			       (r_type == elfcpp::R_X86_64_GOTTPOFF &&
4337			        gsym->is_undefined() &&
4338				parameters->options().output_is_executable()));
4339	const tls::Tls_optimization optimized_type
4340	    = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
4341	switch (r_type)
4342	  {
4343	  case elfcpp::R_X86_64_TLSGD:       // General-dynamic
4344	    if (optimized_type == tls::TLSOPT_NONE)
4345	      {
4346		// Create a pair of GOT entries for the module index and
4347		// dtv-relative offset.
4348		Output_data_got<64, false>* got
4349		    = target->got_section(symtab, layout);
4350		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
4351					      target->rela_dyn_section(layout),
4352					      elfcpp::R_X86_64_DTPMOD64,
4353					      elfcpp::R_X86_64_DTPOFF64);
4354	      }
4355	    else if (optimized_type == tls::TLSOPT_TO_IE)
4356	      {
4357		// Create a GOT entry for the tp-relative offset.
4358		Output_data_got<64, false>* got
4359		    = target->got_section(symtab, layout);
4360		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4361					 target->rela_dyn_section(layout),
4362					 elfcpp::R_X86_64_TPOFF64);
4363	      }
4364	    else if (optimized_type != tls::TLSOPT_TO_LE)
4365	      unsupported_reloc_global(object, r_type, gsym);
4366	    break;
4367
4368	  case elfcpp::R_X86_64_GOTPC32_TLSDESC:
4369	    target->define_tls_base_symbol(symtab, layout);
4370	    if (optimized_type == tls::TLSOPT_NONE)
4371	      {
4372		// Create reserved PLT and GOT entries for the resolver.
4373		target->reserve_tlsdesc_entries(symtab, layout);
4374
4375		// Create a double GOT entry with an R_X86_64_TLSDESC
4376		// reloc.  The R_X86_64_TLSDESC reloc is resolved
4377		// lazily, so the GOT entry needs to be in an area in
4378		// .got.plt, not .got.  Call got_section to make sure
4379		// the section has been created.
4380		target->got_section(symtab, layout);
4381		Output_data_got<64, false>* got = target->got_tlsdesc_section();
4382		Reloc_section* rt = target->rela_tlsdesc_section(layout);
4383		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
4384					      elfcpp::R_X86_64_TLSDESC, 0);
4385	      }
4386	    else if (optimized_type == tls::TLSOPT_TO_IE)
4387	      {
4388		// Create a GOT entry for the tp-relative offset.
4389		Output_data_got<64, false>* got
4390		    = target->got_section(symtab, layout);
4391		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4392					 target->rela_dyn_section(layout),
4393					 elfcpp::R_X86_64_TPOFF64);
4394	      }
4395	    else if (optimized_type != tls::TLSOPT_TO_LE)
4396	      unsupported_reloc_global(object, r_type, gsym);
4397	    break;
4398
4399	  case elfcpp::R_X86_64_TLSDESC_CALL:
4400	    break;
4401
4402	  case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
4403	    if (optimized_type == tls::TLSOPT_NONE)
4404	      {
4405		// Create a GOT entry for the module index.
4406		target->got_mod_index_entry(symtab, layout, object);
4407	      }
4408	    else if (optimized_type != tls::TLSOPT_TO_LE)
4409	      unsupported_reloc_global(object, r_type, gsym);
4410	    break;
4411
4412	  case elfcpp::R_X86_64_DTPOFF32:
4413	  case elfcpp::R_X86_64_DTPOFF64:
4414	    break;
4415
4416	  case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
4417	    layout->set_has_static_tls();
4418	    if (optimized_type == tls::TLSOPT_NONE)
4419	      {
4420		// Create a GOT entry for the tp-relative offset.
4421		Output_data_got<64, false>* got
4422		    = target->got_section(symtab, layout);
4423		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4424					 target->rela_dyn_section(layout),
4425					 elfcpp::R_X86_64_TPOFF64);
4426	      }
4427	    else if (optimized_type != tls::TLSOPT_TO_LE)
4428	      unsupported_reloc_global(object, r_type, gsym);
4429	    break;
4430
4431	  case elfcpp::R_X86_64_TPOFF32:     // Local-exec
4432	    layout->set_has_static_tls();
4433	    if (parameters->options().shared())
4434	      unsupported_reloc_global(object, r_type, gsym);
4435	    break;
4436
4437	  default:
4438	    gold_unreachable();
4439	  }
4440      }
4441      break;
4442
4443    case elfcpp::R_X86_64_SIZE32:
4444    case elfcpp::R_X86_64_SIZE64:
4445    default:
4446      gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4447		 object->name().c_str(), r_type,
4448		 gsym->demangled_name().c_str());
4449      break;
4450    }
4451}
4452
4453template<int size>
4454void
4455Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
4456				       Layout* layout,
4457				       Sized_relobj_file<size, false>* object,
4458				       unsigned int data_shndx,
4459				       unsigned int sh_type,
4460				       const unsigned char* prelocs,
4461				       size_t reloc_count,
4462				       Output_section* output_section,
4463				       bool needs_special_offset_handling,
4464				       size_t local_symbol_count,
4465				       const unsigned char* plocal_symbols)
4466{
4467  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4468      Classify_reloc;
4469
4470  if (sh_type == elfcpp::SHT_REL)
4471    {
4472      return;
4473    }
4474
4475   gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
4476			   Classify_reloc>(
4477    symtab,
4478    layout,
4479    this,
4480    object,
4481    data_shndx,
4482    prelocs,
4483    reloc_count,
4484    output_section,
4485    needs_special_offset_handling,
4486    local_symbol_count,
4487    plocal_symbols);
4488
4489}
4490// Scan relocations for a section.
4491
4492template<int size>
4493void
4494Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
4495				 Layout* layout,
4496				 Sized_relobj_file<size, false>* object,
4497				 unsigned int data_shndx,
4498				 unsigned int sh_type,
4499				 const unsigned char* prelocs,
4500				 size_t reloc_count,
4501				 Output_section* output_section,
4502				 bool needs_special_offset_handling,
4503				 size_t local_symbol_count,
4504				 const unsigned char* plocal_symbols)
4505{
4506  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4507      Classify_reloc;
4508
4509  if (sh_type == elfcpp::SHT_REL)
4510    {
4511      gold_error(_("%s: unsupported REL reloc section"),
4512		 object->name().c_str());
4513      return;
4514    }
4515
4516  gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
4517    symtab,
4518    layout,
4519    this,
4520    object,
4521    data_shndx,
4522    prelocs,
4523    reloc_count,
4524    output_section,
4525    needs_special_offset_handling,
4526    local_symbol_count,
4527    plocal_symbols);
4528}
4529
4530// Finalize the sections.
4531
4532template<int size>
4533void
4534Target_x86_64<size>::do_finalize_sections(
4535    Layout* layout,
4536    const Input_objects*,
4537    Symbol_table* symtab)
4538{
4539  const Reloc_section* rel_plt = (this->plt_ == NULL
4540				  ? NULL
4541				  : this->plt_->rela_plt());
4542  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4543				  this->rela_dyn_, true, false);
4544
4545  // Fill in some more dynamic tags.
4546  Output_data_dynamic* const odyn = layout->dynamic_data();
4547  if (odyn != NULL)
4548    {
4549      if (this->plt_ != NULL
4550	  && this->plt_->output_section() != NULL
4551	  && this->plt_->has_tlsdesc_entry())
4552	{
4553	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
4554	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
4555	  this->got_->finalize_data_size();
4556	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
4557					this->plt_, plt_offset);
4558	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
4559					this->got_, got_offset);
4560	}
4561    }
4562
4563  // Emit any relocs we saved in an attempt to avoid generating COPY
4564  // relocs.
4565  if (this->copy_relocs_.any_saved_relocs())
4566    this->copy_relocs_.emit(this->rela_dyn_section(layout));
4567
4568  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4569  // the .got.plt section.
4570  Symbol* sym = this->global_offset_table_;
4571  if (sym != NULL)
4572    {
4573      uint64_t data_size = this->got_plt_->current_data_size();
4574      symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4575    }
4576
4577  if (parameters->doing_static_link()
4578      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4579    {
4580      // If linking statically, make sure that the __rela_iplt symbols
4581      // were defined if necessary, even if we didn't create a PLT.
4582      static const Define_symbol_in_segment syms[] =
4583	{
4584	  {
4585	    "__rela_iplt_start",	// name
4586	    elfcpp::PT_LOAD,		// segment_type
4587	    elfcpp::PF_W,		// segment_flags_set
4588	    elfcpp::PF(0),		// segment_flags_clear
4589	    0,				// value
4590	    0,				// size
4591	    elfcpp::STT_NOTYPE,		// type
4592	    elfcpp::STB_GLOBAL,		// binding
4593	    elfcpp::STV_HIDDEN,		// visibility
4594	    0,				// nonvis
4595	    Symbol::SEGMENT_START,	// offset_from_base
4596	    true			// only_if_ref
4597	  },
4598	  {
4599	    "__rela_iplt_end",		// name
4600	    elfcpp::PT_LOAD,		// segment_type
4601	    elfcpp::PF_W,		// segment_flags_set
4602	    elfcpp::PF(0),		// segment_flags_clear
4603	    0,				// value
4604	    0,				// size
4605	    elfcpp::STT_NOTYPE,		// type
4606	    elfcpp::STB_GLOBAL,		// binding
4607	    elfcpp::STV_HIDDEN,		// visibility
4608	    0,				// nonvis
4609	    Symbol::SEGMENT_START,	// offset_from_base
4610	    true			// only_if_ref
4611	  }
4612	};
4613
4614      symtab->define_symbols(layout, 2, syms,
4615			     layout->script_options()->saw_sections_clause());
4616    }
4617}
4618
4619// For x32, we need to handle PC-relative relocations using full 64-bit
4620// arithmetic, so that we can detect relocation overflows properly.
4621// This class overrides the pcrela32_check methods from the defaults in
4622// Relocate_functions in reloc.h.
4623
4624template<int size>
4625class X86_64_relocate_functions : public Relocate_functions<size, false>
4626{
4627 public:
4628  typedef Relocate_functions<size, false> Base;
4629
4630  // Do a simple PC relative relocation with the addend in the
4631  // relocation.
4632  static inline typename Base::Reloc_status
4633  pcrela32_check(unsigned char* view,
4634		 typename elfcpp::Elf_types<64>::Elf_Addr value,
4635		 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4636		 typename elfcpp::Elf_types<64>::Elf_Addr address)
4637  {
4638    typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4639    Valtype* wv = reinterpret_cast<Valtype*>(view);
4640    value = value + addend - address;
4641    elfcpp::Swap<32, false>::writeval(wv, value);
4642    return (Bits<32>::has_overflow(value)
4643	    ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4644  }
4645
4646  // Do a simple PC relative relocation with a Symbol_value with the
4647  // addend in the relocation.
4648  static inline typename Base::Reloc_status
4649  pcrela32_check(unsigned char* view,
4650		 const Sized_relobj_file<size, false>* object,
4651		 const Symbol_value<size>* psymval,
4652		 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4653		 typename elfcpp::Elf_types<64>::Elf_Addr address)
4654  {
4655    typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4656    Valtype* wv = reinterpret_cast<Valtype*>(view);
4657    typename elfcpp::Elf_types<64>::Elf_Addr value;
4658    if (addend >= 0)
4659      value = psymval->value(object, addend);
4660    else
4661      {
4662	// For negative addends, get the symbol value without
4663	// the addend, then add the addend using 64-bit arithmetic.
4664	value = psymval->value(object, 0);
4665	value += addend;
4666      }
4667    value -= address;
4668    elfcpp::Swap<32, false>::writeval(wv, value);
4669    return (Bits<32>::has_overflow(value)
4670	    ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4671  }
4672};
4673
4674// Perform a relocation.
4675
4676template<int size>
4677inline bool
4678Target_x86_64<size>::Relocate::relocate(
4679    const Relocate_info<size, false>* relinfo,
4680    unsigned int,
4681    Target_x86_64<size>* target,
4682    Output_section*,
4683    size_t relnum,
4684    const unsigned char* preloc,
4685    const Sized_symbol<size>* gsym,
4686    const Symbol_value<size>* psymval,
4687    unsigned char* view,
4688    typename elfcpp::Elf_types<size>::Elf_Addr address,
4689    section_size_type view_size)
4690{
4691  typedef X86_64_relocate_functions<size> Reloc_funcs;
4692  const elfcpp::Rela<size, false> rela(preloc);
4693  unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
4694
4695  if (this->skip_call_tls_get_addr_)
4696    {
4697      if ((r_type != elfcpp::R_X86_64_PLT32
4698	   && r_type != elfcpp::R_X86_64_GOTPCREL
4699	   && r_type != elfcpp::R_X86_64_GOTPCRELX
4700	   && r_type != elfcpp::R_X86_64_PLT32_BND
4701	   && r_type != elfcpp::R_X86_64_PC32_BND
4702	   && r_type != elfcpp::R_X86_64_PC32)
4703	  || gsym == NULL
4704	  || strcmp(gsym->name(), "__tls_get_addr") != 0)
4705	{
4706	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4707				 _("missing expected TLS relocation"));
4708	  this->skip_call_tls_get_addr_ = false;
4709	}
4710      else
4711	{
4712	  this->skip_call_tls_get_addr_ = false;
4713	  return false;
4714	}
4715    }
4716
4717  if (view == NULL)
4718    return true;
4719
4720  const Sized_relobj_file<size, false>* object = relinfo->object;
4721
4722  // Pick the value to use for symbols defined in the PLT.
4723  Symbol_value<size> symval;
4724  if (gsym != NULL
4725      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4726    {
4727      symval.set_output_value(target->plt_address_for_global(gsym));
4728      psymval = &symval;
4729    }
4730  else if (gsym == NULL && psymval->is_ifunc_symbol())
4731    {
4732      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4733      if (object->local_has_plt_offset(r_sym))
4734	{
4735	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
4736	  psymval = &symval;
4737	}
4738    }
4739
4740  const elfcpp::Elf_Xword addend = rela.get_r_addend();
4741
4742  // Get the GOT offset if needed.
4743  // The GOT pointer points to the end of the GOT section.
4744  // We need to subtract the size of the GOT section to get
4745  // the actual offset to use in the relocation.
4746  bool have_got_offset = false;
4747  // Since the actual offset is always negative, we use signed int to
4748  // support 64-bit GOT relocations.
4749  int got_offset = 0;
4750  switch (r_type)
4751    {
4752    case elfcpp::R_X86_64_GOT32:
4753    case elfcpp::R_X86_64_GOT64:
4754    case elfcpp::R_X86_64_GOTPLT64:
4755    case elfcpp::R_X86_64_GOTPCREL64:
4756      if (gsym != NULL)
4757	{
4758	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4759	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
4760	}
4761      else
4762	{
4763	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4764	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4765	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4766			- target->got_size());
4767	}
4768      have_got_offset = true;
4769      break;
4770
4771    default:
4772      break;
4773    }
4774
4775  typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
4776
4777  switch (r_type)
4778    {
4779    case elfcpp::R_X86_64_NONE:
4780    case elfcpp::R_X86_64_GNU_VTINHERIT:
4781    case elfcpp::R_X86_64_GNU_VTENTRY:
4782      break;
4783
4784    case elfcpp::R_X86_64_64:
4785      Reloc_funcs::rela64(view, object, psymval, addend);
4786      break;
4787
4788    case elfcpp::R_X86_64_PC64:
4789      Reloc_funcs::pcrela64(view, object, psymval, addend,
4790					      address);
4791      break;
4792
4793    case elfcpp::R_X86_64_32:
4794      rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4795					  Reloc_funcs::CHECK_UNSIGNED);
4796      break;
4797
4798    case elfcpp::R_X86_64_32S:
4799      rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4800					  Reloc_funcs::CHECK_SIGNED);
4801      break;
4802
4803    case elfcpp::R_X86_64_PC32:
4804    case elfcpp::R_X86_64_PC32_BND:
4805      rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4806					    address);
4807      break;
4808
4809    case elfcpp::R_X86_64_16:
4810      Reloc_funcs::rela16(view, object, psymval, addend);
4811      break;
4812
4813    case elfcpp::R_X86_64_PC16:
4814      Reloc_funcs::pcrela16(view, object, psymval, addend, address);
4815      break;
4816
4817    case elfcpp::R_X86_64_8:
4818      Reloc_funcs::rela8(view, object, psymval, addend);
4819      break;
4820
4821    case elfcpp::R_X86_64_PC8:
4822      Reloc_funcs::pcrela8(view, object, psymval, addend, address);
4823      break;
4824
4825    case elfcpp::R_X86_64_PLT32:
4826    case elfcpp::R_X86_64_PLT32_BND:
4827      gold_assert(gsym == NULL
4828		  || gsym->has_plt_offset()
4829		  || gsym->final_value_is_known()
4830		  || (gsym->is_defined()
4831		      && !gsym->is_from_dynobj()
4832		      && !gsym->is_preemptible()));
4833      // Note: while this code looks the same as for R_X86_64_PC32, it
4834      // behaves differently because psymval was set to point to
4835      // the PLT entry, rather than the symbol, in Scan::global().
4836      rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4837					    address);
4838      break;
4839
4840    case elfcpp::R_X86_64_PLTOFF64:
4841      {
4842	gold_assert(gsym);
4843	gold_assert(gsym->has_plt_offset()
4844		    || gsym->final_value_is_known());
4845	typename elfcpp::Elf_types<size>::Elf_Addr got_address;
4846	// This is the address of GLOBAL_OFFSET_TABLE.
4847	got_address = target->got_plt_section()->address();
4848	Reloc_funcs::rela64(view, object, psymval, addend - got_address);
4849      }
4850      break;
4851
4852    case elfcpp::R_X86_64_GOT32:
4853      gold_assert(have_got_offset);
4854      Reloc_funcs::rela32(view, got_offset, addend);
4855      break;
4856
4857    case elfcpp::R_X86_64_GOTPC32:
4858      {
4859	gold_assert(gsym);
4860	typename elfcpp::Elf_types<size>::Elf_Addr value;
4861	value = target->got_plt_section()->address();
4862	Reloc_funcs::pcrela32_check(view, value, addend, address);
4863      }
4864      break;
4865
4866    case elfcpp::R_X86_64_GOT64:
4867    case elfcpp::R_X86_64_GOTPLT64:
4868      // R_X86_64_GOTPLT64 is obsolete and treated the same as
4869      // GOT64.
4870      gold_assert(have_got_offset);
4871      Reloc_funcs::rela64(view, got_offset, addend);
4872      break;
4873
4874    case elfcpp::R_X86_64_GOTPC64:
4875      {
4876	gold_assert(gsym);
4877	typename elfcpp::Elf_types<size>::Elf_Addr value;
4878	value = target->got_plt_section()->address();
4879	Reloc_funcs::pcrela64(view, value, addend, address);
4880      }
4881      break;
4882
4883    case elfcpp::R_X86_64_GOTOFF64:
4884      {
4885	typename elfcpp::Elf_types<size>::Elf_Addr reladdr;
4886	reladdr = target->got_plt_section()->address();
4887	Reloc_funcs::pcrela64(view, object, psymval, addend, reladdr);
4888      }
4889      break;
4890
4891    case elfcpp::R_X86_64_GOTPCREL:
4892    case elfcpp::R_X86_64_GOTPCRELX:
4893    case elfcpp::R_X86_64_REX_GOTPCRELX:
4894      {
4895      bool converted_p = false;
4896
4897      if (rela.get_r_addend() == -4)
4898	{
4899	  // Convert
4900	  // mov foo@GOTPCREL(%rip), %reg
4901	  // to lea foo(%rip), %reg.
4902	  // if possible.
4903	  if (!parameters->incremental()
4904	      && ((gsym == NULL
4905		   && rela.get_r_offset() >= 2
4906		   && view[-2] == 0x8b
4907		   && !psymval->is_ifunc_symbol())
4908		  || (gsym != NULL
4909		      && rela.get_r_offset() >= 2
4910		      && Target_x86_64<size>::can_convert_mov_to_lea(gsym,
4911								     r_type,
4912								     0,
4913								     &view))))
4914	    {
4915	      view[-2] = 0x8d;
4916	      Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4917	      converted_p = true;
4918	    }
4919	  // Convert
4920	  // callq *foo@GOTPCRELX(%rip) to
4921	  // addr32 callq foo
4922	  // and jmpq *foo@GOTPCRELX(%rip) to
4923	  // jmpq foo
4924	  // nop
4925	  else if (!parameters->incremental()
4926		   && gsym != NULL
4927		   && rela.get_r_offset() >= 2
4928		   && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
4929								       r_type,
4930								       0,
4931								       &view))
4932	    {
4933	      if (view[-1] == 0x15)
4934		{
4935		  // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
4936		  // Opcode of addr32 is 0x67 and opcode of direct callq
4937		  // is 0xe8.
4938		  view[-2] = 0x67;
4939		  view[-1] = 0xe8;
4940		  // Convert GOTPCRELX to 32-bit pc relative reloc.
4941		  Reloc_funcs::pcrela32(view, object, psymval, addend,
4942					address);
4943		  converted_p = true;
4944		}
4945	      else
4946		{
4947		  // Convert jmpq *foo@GOTPCRELX(%rip) to
4948		  // jmpq foo
4949		  // nop
4950		  // The opcode of direct jmpq is 0xe9.
4951		  view[-2] = 0xe9;
4952		  // The opcode of nop is 0x90.
4953		  view[3] = 0x90;
4954		  // Convert GOTPCRELX to 32-bit pc relative reloc.  jmpq
4955		  // is rip relative and since the instruction following
4956		  // the jmpq is now the nop, offset the address by 1
4957		  // byte.  The start of the relocation also moves ahead
4958		  // by 1 byte.
4959		  Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
4960					address - 1);
4961		  converted_p = true;
4962		}
4963	    }
4964	}
4965
4966      if (!converted_p)
4967	{
4968	  if (gsym != NULL)
4969	    {
4970	      gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4971	      got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
4972			    - target->got_size());
4973	    }
4974	  else
4975	    {
4976	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4977	      gold_assert(object->local_has_got_offset(r_sym,
4978						       GOT_TYPE_STANDARD));
4979	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4980			    - target->got_size());
4981	    }
4982	  typename elfcpp::Elf_types<size>::Elf_Addr value;
4983	  value = target->got_plt_section()->address() + got_offset;
4984	  Reloc_funcs::pcrela32_check(view, value, addend, address);
4985	}
4986      }
4987      break;
4988
4989    case elfcpp::R_X86_64_GOTPCREL64:
4990      {
4991	gold_assert(have_got_offset);
4992	typename elfcpp::Elf_types<size>::Elf_Addr value;
4993	value = target->got_plt_section()->address() + got_offset;
4994	Reloc_funcs::pcrela64(view, value, addend, address);
4995      }
4996      break;
4997
4998    case elfcpp::R_X86_64_COPY:
4999    case elfcpp::R_X86_64_GLOB_DAT:
5000    case elfcpp::R_X86_64_JUMP_SLOT:
5001    case elfcpp::R_X86_64_RELATIVE:
5002    case elfcpp::R_X86_64_IRELATIVE:
5003      // These are outstanding tls relocs, which are unexpected when linking
5004    case elfcpp::R_X86_64_TPOFF64:
5005    case elfcpp::R_X86_64_DTPMOD64:
5006    case elfcpp::R_X86_64_TLSDESC:
5007      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5008			     _("unexpected reloc %u in object file"),
5009			     r_type);
5010      break;
5011
5012      // These are initial tls relocs, which are expected when linking
5013    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
5014    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
5015    case elfcpp::R_X86_64_TLSDESC_CALL:
5016    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
5017    case elfcpp::R_X86_64_DTPOFF32:
5018    case elfcpp::R_X86_64_DTPOFF64:
5019    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
5020    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
5021      this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
5022			 view, address, view_size);
5023      break;
5024
5025    case elfcpp::R_X86_64_SIZE32:
5026    case elfcpp::R_X86_64_SIZE64:
5027    default:
5028      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5029			     _("unsupported reloc %u"),
5030			     r_type);
5031      break;
5032    }
5033
5034  if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
5035    {
5036      if (gsym == NULL)
5037        {
5038	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5039	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5040				 _("relocation overflow: "
5041				   "reference to local symbol %u in %s"),
5042				 r_sym, object->name().c_str());
5043        }
5044      else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
5045        {
5046	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5047				 _("relocation overflow: "
5048				   "reference to '%s' defined in %s"),
5049				 gsym->name(),
5050				 gsym->object()->name().c_str());
5051        }
5052      else
5053        {
5054	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5055				 _("relocation overflow: reference to '%s'"),
5056				 gsym->name());
5057        }
5058    }
5059
5060  return true;
5061}
5062
5063// Perform a TLS relocation.
5064
5065template<int size>
5066inline void
5067Target_x86_64<size>::Relocate::relocate_tls(
5068    const Relocate_info<size, false>* relinfo,
5069    Target_x86_64<size>* target,
5070    size_t relnum,
5071    const elfcpp::Rela<size, false>& rela,
5072    unsigned int r_type,
5073    const Sized_symbol<size>* gsym,
5074    const Symbol_value<size>* psymval,
5075    unsigned char* view,
5076    typename elfcpp::Elf_types<size>::Elf_Addr address,
5077    section_size_type view_size)
5078{
5079  Output_segment* tls_segment = relinfo->layout->tls_segment();
5080
5081  const Sized_relobj_file<size, false>* object = relinfo->object;
5082  const elfcpp::Elf_Xword addend = rela.get_r_addend();
5083  elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
5084  bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
5085
5086  typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
5087
5088  const bool is_final = (gsym == NULL
5089			 ? !parameters->options().shared()
5090			 : gsym->final_value_is_known());
5091  tls::Tls_optimization optimized_type
5092      = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
5093  switch (r_type)
5094    {
5095    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
5096      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5097	{
5098	  // If this code sequence is used in a non-executable section,
5099	  // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
5100	  // on the assumption that it's being used by itself in a debug
5101	  // section.  Therefore, in the unlikely event that the code
5102	  // sequence appears in a non-executable section, we simply
5103	  // leave it unoptimized.
5104	  optimized_type = tls::TLSOPT_NONE;
5105	}
5106      if (optimized_type == tls::TLSOPT_TO_LE)
5107	{
5108	  if (tls_segment == NULL)
5109	    {
5110	      gold_assert(parameters->errors()->error_count() > 0
5111			  || issue_undefined_symbol_error(gsym));
5112	      return;
5113	    }
5114	  this->tls_gd_to_le(relinfo, relnum, tls_segment,
5115			     rela, r_type, value, view,
5116			     view_size);
5117	  break;
5118	}
5119      else
5120	{
5121	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
5122				   ? GOT_TYPE_TLS_OFFSET
5123				   : GOT_TYPE_TLS_PAIR);
5124	  unsigned int got_offset;
5125	  if (gsym != NULL)
5126	    {
5127	      gold_assert(gsym->has_got_offset(got_type));
5128	      got_offset = gsym->got_offset(got_type) - target->got_size();
5129	    }
5130	  else
5131	    {
5132	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5133	      gold_assert(object->local_has_got_offset(r_sym, got_type));
5134	      got_offset = (object->local_got_offset(r_sym, got_type)
5135			    - target->got_size());
5136	    }
5137	  if (optimized_type == tls::TLSOPT_TO_IE)
5138	    {
5139	      value = target->got_plt_section()->address() + got_offset;
5140	      this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
5141				 value, view, address, view_size);
5142	      break;
5143	    }
5144	  else if (optimized_type == tls::TLSOPT_NONE)
5145	    {
5146	      // Relocate the field with the offset of the pair of GOT
5147	      // entries.
5148	      value = target->got_plt_section()->address() + got_offset;
5149	      Relocate_functions<size, false>::pcrela32(view, value, addend,
5150							address);
5151	      break;
5152	    }
5153	}
5154      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5155			     _("unsupported reloc %u"), r_type);
5156      break;
5157
5158    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
5159    case elfcpp::R_X86_64_TLSDESC_CALL:
5160      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5161	{
5162	  // See above comment for R_X86_64_TLSGD.
5163	  optimized_type = tls::TLSOPT_NONE;
5164	}
5165      if (optimized_type == tls::TLSOPT_TO_LE)
5166	{
5167	  if (tls_segment == NULL)
5168	    {
5169	      gold_assert(parameters->errors()->error_count() > 0
5170			  || issue_undefined_symbol_error(gsym));
5171	      return;
5172	    }
5173	  this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
5174				  rela, r_type, value, view,
5175				  view_size);
5176	  break;
5177	}
5178      else
5179	{
5180	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
5181				   ? GOT_TYPE_TLS_OFFSET
5182				   : GOT_TYPE_TLS_DESC);
5183	  unsigned int got_offset = 0;
5184	  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
5185	      && optimized_type == tls::TLSOPT_NONE)
5186	    {
5187	      // We created GOT entries in the .got.tlsdesc portion of
5188	      // the .got.plt section, but the offset stored in the
5189	      // symbol is the offset within .got.tlsdesc.
5190	      got_offset = (target->got_size()
5191			    + target->got_plt_section()->data_size());
5192	    }
5193	  if (gsym != NULL)
5194	    {
5195	      gold_assert(gsym->has_got_offset(got_type));
5196	      got_offset += gsym->got_offset(got_type) - target->got_size();
5197	    }
5198	  else
5199	    {
5200	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5201	      gold_assert(object->local_has_got_offset(r_sym, got_type));
5202	      got_offset += (object->local_got_offset(r_sym, got_type)
5203			     - target->got_size());
5204	    }
5205	  if (optimized_type == tls::TLSOPT_TO_IE)
5206	    {
5207	      value = target->got_plt_section()->address() + got_offset;
5208	      this->tls_desc_gd_to_ie(relinfo, relnum,
5209				      rela, r_type, value, view, address,
5210				      view_size);
5211	      break;
5212	    }
5213	  else if (optimized_type == tls::TLSOPT_NONE)
5214	    {
5215	      if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5216		{
5217		  // Relocate the field with the offset of the pair of GOT
5218		  // entries.
5219		  value = target->got_plt_section()->address() + got_offset;
5220		  Relocate_functions<size, false>::pcrela32(view, value, addend,
5221							    address);
5222		}
5223	      break;
5224	    }
5225	}
5226      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5227			     _("unsupported reloc %u"), r_type);
5228      break;
5229
5230    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
5231      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5232	{
5233	  // See above comment for R_X86_64_TLSGD.
5234	  optimized_type = tls::TLSOPT_NONE;
5235	}
5236      if (optimized_type == tls::TLSOPT_TO_LE)
5237	{
5238	  if (tls_segment == NULL)
5239	    {
5240	      gold_assert(parameters->errors()->error_count() > 0
5241			  || issue_undefined_symbol_error(gsym));
5242	      return;
5243	    }
5244	  this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
5245			     value, view, view_size);
5246	  break;
5247	}
5248      else if (optimized_type == tls::TLSOPT_NONE)
5249	{
5250	  // Relocate the field with the offset of the GOT entry for
5251	  // the module index.
5252	  unsigned int got_offset;
5253	  got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
5254			- target->got_size());
5255	  value = target->got_plt_section()->address() + got_offset;
5256	  Relocate_functions<size, false>::pcrela32(view, value, addend,
5257						    address);
5258	  break;
5259	}
5260      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5261			     _("unsupported reloc %u"), r_type);
5262      break;
5263
5264    case elfcpp::R_X86_64_DTPOFF32:
5265      // This relocation type is used in debugging information.
5266      // In that case we need to not optimize the value.  If the
5267      // section is not executable, then we assume we should not
5268      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
5269      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
5270      // R_X86_64_TLSLD.
5271      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
5272	{
5273	  if (tls_segment == NULL)
5274	    {
5275	      gold_assert(parameters->errors()->error_count() > 0
5276			  || issue_undefined_symbol_error(gsym));
5277	      return;
5278	    }
5279	  value -= tls_segment->memsz();
5280	}
5281      Relocate_functions<size, false>::rela32(view, value, addend);
5282      break;
5283
5284    case elfcpp::R_X86_64_DTPOFF64:
5285      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
5286      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
5287	{
5288	  if (tls_segment == NULL)
5289	    {
5290	      gold_assert(parameters->errors()->error_count() > 0
5291			  || issue_undefined_symbol_error(gsym));
5292	      return;
5293	    }
5294	  value -= tls_segment->memsz();
5295	}
5296      Relocate_functions<size, false>::rela64(view, value, addend);
5297      break;
5298
5299    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
5300      if (gsym != NULL
5301	  && gsym->is_undefined()
5302	  && parameters->options().output_is_executable())
5303	{
5304	  Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
5305						      NULL, rela,
5306						      r_type, value, view,
5307						      view_size);
5308	  break;
5309	}
5310      else if (optimized_type == tls::TLSOPT_TO_LE)
5311	{
5312	  if (tls_segment == NULL)
5313	    {
5314	      gold_assert(parameters->errors()->error_count() > 0
5315			  || issue_undefined_symbol_error(gsym));
5316	      return;
5317	    }
5318	  Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
5319						      tls_segment, rela,
5320						      r_type, value, view,
5321						      view_size);
5322	  break;
5323	}
5324      else if (optimized_type == tls::TLSOPT_NONE)
5325	{
5326	  // Relocate the field with the offset of the GOT entry for
5327	  // the tp-relative offset of the symbol.
5328	  unsigned int got_offset;
5329	  if (gsym != NULL)
5330	    {
5331	      gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
5332	      got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
5333			    - target->got_size());
5334	    }
5335	  else
5336	    {
5337	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5338	      gold_assert(object->local_has_got_offset(r_sym,
5339						       GOT_TYPE_TLS_OFFSET));
5340	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
5341			    - target->got_size());
5342	    }
5343	  value = target->got_plt_section()->address() + got_offset;
5344	  Relocate_functions<size, false>::pcrela32(view, value, addend,
5345						    address);
5346	  break;
5347	}
5348      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5349			     _("unsupported reloc type %u"),
5350			     r_type);
5351      break;
5352
5353    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
5354      if (tls_segment == NULL)
5355	{
5356	  gold_assert(parameters->errors()->error_count() > 0
5357		      || issue_undefined_symbol_error(gsym));
5358	  return;
5359	}
5360      value -= tls_segment->memsz();
5361      Relocate_functions<size, false>::rela32(view, value, addend);
5362      break;
5363    }
5364}
5365
5366// Do a relocation in which we convert a TLS General-Dynamic to an
5367// Initial-Exec.
5368
5369template<int size>
5370inline void
5371Target_x86_64<size>::Relocate::tls_gd_to_ie(
5372    const Relocate_info<size, false>* relinfo,
5373    size_t relnum,
5374    const elfcpp::Rela<size, false>& rela,
5375    unsigned int,
5376    typename elfcpp::Elf_types<size>::Elf_Addr value,
5377    unsigned char* view,
5378    typename elfcpp::Elf_types<size>::Elf_Addr address,
5379    section_size_type view_size)
5380{
5381  // For SIZE == 64:
5382  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5383  //	.word 0x6666; rex64; call __tls_get_addr@PLT
5384  //	==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
5385  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5386  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5387  //	==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
5388  // For SIZE == 32:
5389  //	leaq foo@tlsgd(%rip),%rdi;
5390  //	.word 0x6666; rex64; call __tls_get_addr@PLT
5391  //	==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
5392  //	leaq foo@tlsgd(%rip),%rdi;
5393  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5394  //	==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
5395
5396  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
5397  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5398		 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
5399		  || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
5400
5401  if (size == 64)
5402    {
5403      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5404		       -4);
5405      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5406		     (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
5407      memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
5408	     16);
5409    }
5410  else
5411    {
5412      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5413		       -3);
5414      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5415		     (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
5416      memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
5417	     15);
5418    }
5419
5420  const elfcpp::Elf_Xword addend = rela.get_r_addend();
5421  Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
5422					    address);
5423
5424  // The next reloc should be a PLT32 reloc against __tls_get_addr.
5425  // We can skip it.
5426  this->skip_call_tls_get_addr_ = true;
5427}
5428
5429// Do a relocation in which we convert a TLS General-Dynamic to a
5430// Local-Exec.
5431
5432template<int size>
5433inline void
5434Target_x86_64<size>::Relocate::tls_gd_to_le(
5435    const Relocate_info<size, false>* relinfo,
5436    size_t relnum,
5437    Output_segment* tls_segment,
5438    const elfcpp::Rela<size, false>& rela,
5439    unsigned int,
5440    typename elfcpp::Elf_types<size>::Elf_Addr value,
5441    unsigned char* view,
5442    section_size_type view_size)
5443{
5444  // For SIZE == 64:
5445  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5446  //	.word 0x6666; rex64; call __tls_get_addr@PLT
5447  //	==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
5448  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5449  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5450  //	==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
5451  // For SIZE == 32:
5452  //	leaq foo@tlsgd(%rip),%rdi;
5453  //	.word 0x6666; rex64; call __tls_get_addr@PLT
5454  //	==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
5455  //	leaq foo@tlsgd(%rip),%rdi;
5456  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5457  //	==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
5458
5459  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
5460  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5461		 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
5462		  || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
5463
5464  if (size == 64)
5465    {
5466      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5467		       -4);
5468      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5469		     (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
5470      memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
5471	     16);
5472    }
5473  else
5474    {
5475      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5476		       -3);
5477      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5478		     (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
5479
5480      memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
5481	     15);
5482    }
5483
5484  value -= tls_segment->memsz();
5485  Relocate_functions<size, false>::rela32(view + 8, value, 0);
5486
5487  // The next reloc should be a PLT32 reloc against __tls_get_addr.
5488  // We can skip it.
5489  this->skip_call_tls_get_addr_ = true;
5490}
5491
5492// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
5493
5494template<int size>
5495inline void
5496Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
5497    const Relocate_info<size, false>* relinfo,
5498    size_t relnum,
5499    const elfcpp::Rela<size, false>& rela,
5500    unsigned int r_type,
5501    typename elfcpp::Elf_types<size>::Elf_Addr value,
5502    unsigned char* view,
5503    typename elfcpp::Elf_types<size>::Elf_Addr address,
5504    section_size_type view_size)
5505{
5506  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5507    {
5508      // LP64: leaq foo@tlsdesc(%rip), %rax
5509      //       ==> movq foo@gottpoff(%rip), %rax
5510      // X32:  rex leal foo@tlsdesc(%rip), %eax
5511      //       ==> rex movl foo@gottpoff(%rip), %eax
5512      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5513      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5514      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5515		     (((view[-3] & 0xfb) == 0x48
5516		       || (size == 32 && (view[-3] & 0xfb) == 0x40))
5517		      && view[-2] == 0x8d
5518		      && (view[-1] & 0xc7) == 0x05));
5519      view[-2] = 0x8b;
5520      const elfcpp::Elf_Xword addend = rela.get_r_addend();
5521      Relocate_functions<size, false>::pcrela32(view, value, addend, address);
5522    }
5523  else
5524    {
5525      // LP64: call *foo@tlscall(%rax)
5526      //       ==> xchg %ax, %ax
5527      // X32:  call *foo@tlscall(%eax)
5528      //       ==> nopl (%rax)
5529      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
5530      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
5531      int prefix = 0;
5532      if (size == 32 && view[0] == 0x67)
5533	{
5534	  tls::check_range(relinfo, relnum, rela.get_r_offset(),
5535			   view_size, 3);
5536	  prefix = 1;
5537	}
5538      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5539		     view[prefix] == 0xff && view[prefix + 1] == 0x10);
5540      if (prefix)
5541	{
5542	  view[0] = 0x0f;
5543	  view[1] = 0x1f;
5544	  view[2] = 0x00;
5545	}
5546      else
5547	{
5548	  view[0] = 0x66;
5549	  view[1] = 0x90;
5550	}
5551    }
5552}
5553
5554// Do a TLSDESC-style General-Dynamic to Local-Exec transition.
5555
5556template<int size>
5557inline void
5558Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
5559    const Relocate_info<size, false>* relinfo,
5560    size_t relnum,
5561    Output_segment* tls_segment,
5562    const elfcpp::Rela<size, false>& rela,
5563    unsigned int r_type,
5564    typename elfcpp::Elf_types<size>::Elf_Addr value,
5565    unsigned char* view,
5566    section_size_type view_size)
5567{
5568  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5569    {
5570      // LP64: leaq foo@tlsdesc(%rip), %rax
5571      //       ==> movq foo@tpoff, %rax
5572      // X32:  rex leal foo@tlsdesc(%rip), %eax
5573      //       ==> rex movl foo@tpoff, %eax
5574      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5575      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5576      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5577		     (((view[-3] & 0xfb) == 0x48
5578		       || (size == 32 && (view[-3] & 0xfb) == 0x40))
5579		      && view[-2] == 0x8d
5580		      && (view[-1] & 0xc7) == 0x05));
5581      view[-3] = (view[-3] & 0x48) | ((view[-3] >> 2) & 1);
5582      view[-2] = 0xc7;
5583      view[-1] = 0xc0 | ((view[-1] >> 3) & 7);
5584      value -= tls_segment->memsz();
5585      Relocate_functions<size, false>::rela32(view, value, 0);
5586    }
5587  else
5588    {
5589      // LP64: call *foo@tlscall(%rax)
5590      //       ==> xchg %ax, %ax
5591      // X32:  call *foo@tlscall(%eax)
5592      //       ==> nopl (%rax)
5593      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
5594      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
5595      int prefix = 0;
5596      if (size == 32 && view[0] == 0x67)
5597	{
5598	  tls::check_range(relinfo, relnum, rela.get_r_offset(),
5599			   view_size, 3);
5600	  prefix = 1;
5601	}
5602      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5603		     view[prefix] == 0xff && view[prefix + 1] == 0x10);
5604      if (prefix)
5605	{
5606	  view[0] = 0x0f;
5607	  view[1] = 0x1f;
5608	  view[2] = 0x00;
5609	}
5610      else
5611	{
5612	  view[0] = 0x66;
5613	  view[1] = 0x90;
5614	}
5615    }
5616}
5617
5618template<int size>
5619inline void
5620Target_x86_64<size>::Relocate::tls_ld_to_le(
5621    const Relocate_info<size, false>* relinfo,
5622    size_t relnum,
5623    Output_segment*,
5624    const elfcpp::Rela<size, false>& rela,
5625    unsigned int,
5626    typename elfcpp::Elf_types<size>::Elf_Addr,
5627    unsigned char* view,
5628    section_size_type view_size)
5629{
5630  // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
5631  // For SIZE == 64:
5632  // ... leq foo@dtpoff(%rax),%reg
5633  // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
5634  // For SIZE == 32:
5635  // ... leq foo@dtpoff(%rax),%reg
5636  // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
5637  // leaq foo@tlsld(%rip),%rdi; call *__tls_get_addr@GOTPCREL(%rip)
5638  // For SIZE == 64:
5639  // ... leq foo@dtpoff(%rax),%reg
5640  // ==> .word 0x6666; .byte 0x6666; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
5641  // For SIZE == 32:
5642  // ... leq foo@dtpoff(%rax),%reg
5643  // ==> nopw 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
5644
5645  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5646  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
5647
5648  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5649		 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
5650
5651  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5652		 view[4] == 0xe8 || view[4] == 0xff);
5653
5654  if (view[4] == 0xe8)
5655    {
5656      if (size == 64)
5657	memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
5658      else
5659	memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
5660    }
5661  else
5662    {
5663      if (size == 64)
5664	memcpy(view - 3, "\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0",
5665	       13);
5666      else
5667	memcpy(view - 3, "\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0",
5668	       13);
5669    }
5670
5671  // The next reloc should be a PLT32 reloc against __tls_get_addr.
5672  // We can skip it.
5673  this->skip_call_tls_get_addr_ = true;
5674}
5675
5676// Do a relocation in which we convert a TLS Initial-Exec to a
5677// Local-Exec.
5678
5679template<int size>
5680inline void
5681Target_x86_64<size>::Relocate::tls_ie_to_le(
5682    const Relocate_info<size, false>* relinfo,
5683    size_t relnum,
5684    Output_segment* tls_segment,
5685    const elfcpp::Rela<size, false>& rela,
5686    unsigned int,
5687    typename elfcpp::Elf_types<size>::Elf_Addr value,
5688    unsigned char* view,
5689    section_size_type view_size)
5690{
5691  // We need to examine the opcodes to figure out which instruction we
5692  // are looking at.
5693
5694  // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
5695  // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
5696
5697  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5698  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5699
5700  unsigned char op1 = view[-3];
5701  unsigned char op2 = view[-2];
5702  unsigned char op3 = view[-1];
5703  unsigned char reg = op3 >> 3;
5704
5705  if (op2 == 0x8b)
5706    {
5707      // movq
5708      if (op1 == 0x4c)
5709	view[-3] = 0x49;
5710      else if (size == 32 && op1 == 0x44)
5711	view[-3] = 0x41;
5712      view[-2] = 0xc7;
5713      view[-1] = 0xc0 | reg;
5714    }
5715  else if (reg == 4)
5716    {
5717      // Special handling for %rsp.
5718      if (op1 == 0x4c)
5719	view[-3] = 0x49;
5720      else if (size == 32 && op1 == 0x44)
5721	view[-3] = 0x41;
5722      view[-2] = 0x81;
5723      view[-1] = 0xc0 | reg;
5724    }
5725  else
5726    {
5727      // addq
5728      if (op1 == 0x4c)
5729	view[-3] = 0x4d;
5730      else if (size == 32 && op1 == 0x44)
5731	view[-3] = 0x45;
5732      view[-2] = 0x8d;
5733      view[-1] = 0x80 | reg | (reg << 3);
5734    }
5735
5736  if (tls_segment != NULL)
5737    value -= tls_segment->memsz();
5738  Relocate_functions<size, false>::rela32(view, value, 0);
5739}
5740
5741// Relocate section data.
5742
5743template<int size>
5744void
5745Target_x86_64<size>::relocate_section(
5746    const Relocate_info<size, false>* relinfo,
5747    unsigned int sh_type,
5748    const unsigned char* prelocs,
5749    size_t reloc_count,
5750    Output_section* output_section,
5751    bool needs_special_offset_handling,
5752    unsigned char* view,
5753    typename elfcpp::Elf_types<size>::Elf_Addr address,
5754    section_size_type view_size,
5755    const Reloc_symbol_changes* reloc_symbol_changes)
5756{
5757  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5758      Classify_reloc;
5759
5760  gold_assert(sh_type == elfcpp::SHT_RELA);
5761
5762  gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
5763			 gold::Default_comdat_behavior, Classify_reloc>(
5764    relinfo,
5765    this,
5766    prelocs,
5767    reloc_count,
5768    output_section,
5769    needs_special_offset_handling,
5770    view,
5771    address,
5772    view_size,
5773    reloc_symbol_changes);
5774}
5775
5776// Apply an incremental relocation.  Incremental relocations always refer
5777// to global symbols.
5778
5779template<int size>
5780void
5781Target_x86_64<size>::apply_relocation(
5782    const Relocate_info<size, false>* relinfo,
5783    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
5784    unsigned int r_type,
5785    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
5786    const Symbol* gsym,
5787    unsigned char* view,
5788    typename elfcpp::Elf_types<size>::Elf_Addr address,
5789    section_size_type view_size)
5790{
5791  gold::apply_relocation<size, false, Target_x86_64<size>,
5792			 typename Target_x86_64<size>::Relocate>(
5793    relinfo,
5794    this,
5795    r_offset,
5796    r_type,
5797    r_addend,
5798    gsym,
5799    view,
5800    address,
5801    view_size);
5802}
5803
5804// Scan the relocs during a relocatable link.
5805
5806template<int size>
5807void
5808Target_x86_64<size>::scan_relocatable_relocs(
5809    Symbol_table* symtab,
5810    Layout* layout,
5811    Sized_relobj_file<size, false>* object,
5812    unsigned int data_shndx,
5813    unsigned int sh_type,
5814    const unsigned char* prelocs,
5815    size_t reloc_count,
5816    Output_section* output_section,
5817    bool needs_special_offset_handling,
5818    size_t local_symbol_count,
5819    const unsigned char* plocal_symbols,
5820    Relocatable_relocs* rr)
5821{
5822  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5823      Classify_reloc;
5824  typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
5825      Scan_relocatable_relocs;
5826
5827  gold_assert(sh_type == elfcpp::SHT_RELA);
5828
5829  gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
5830    symtab,
5831    layout,
5832    object,
5833    data_shndx,
5834    prelocs,
5835    reloc_count,
5836    output_section,
5837    needs_special_offset_handling,
5838    local_symbol_count,
5839    plocal_symbols,
5840    rr);
5841}
5842
5843// Scan the relocs for --emit-relocs.
5844
5845template<int size>
5846void
5847Target_x86_64<size>::emit_relocs_scan(
5848    Symbol_table* symtab,
5849    Layout* layout,
5850    Sized_relobj_file<size, false>* object,
5851    unsigned int data_shndx,
5852    unsigned int sh_type,
5853    const unsigned char* prelocs,
5854    size_t reloc_count,
5855    Output_section* output_section,
5856    bool needs_special_offset_handling,
5857    size_t local_symbol_count,
5858    const unsigned char* plocal_syms,
5859    Relocatable_relocs* rr)
5860{
5861  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5862      Classify_reloc;
5863  typedef gold::Default_emit_relocs_strategy<Classify_reloc>
5864      Emit_relocs_strategy;
5865
5866  gold_assert(sh_type == elfcpp::SHT_RELA);
5867
5868  gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
5869    symtab,
5870    layout,
5871    object,
5872    data_shndx,
5873    prelocs,
5874    reloc_count,
5875    output_section,
5876    needs_special_offset_handling,
5877    local_symbol_count,
5878    plocal_syms,
5879    rr);
5880}
5881
5882// Relocate a section during a relocatable link.
5883
5884template<int size>
5885void
5886Target_x86_64<size>::relocate_relocs(
5887    const Relocate_info<size, false>* relinfo,
5888    unsigned int sh_type,
5889    const unsigned char* prelocs,
5890    size_t reloc_count,
5891    Output_section* output_section,
5892    typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5893    unsigned char* view,
5894    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
5895    section_size_type view_size,
5896    unsigned char* reloc_view,
5897    section_size_type reloc_view_size)
5898{
5899  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5900      Classify_reloc;
5901
5902  gold_assert(sh_type == elfcpp::SHT_RELA);
5903
5904  gold::relocate_relocs<size, false, Classify_reloc>(
5905    relinfo,
5906    prelocs,
5907    reloc_count,
5908    output_section,
5909    offset_in_output_section,
5910    view,
5911    view_address,
5912    view_size,
5913    reloc_view,
5914    reloc_view_size);
5915}
5916
5917// Return the value to use for a dynamic which requires special
5918// treatment.  This is how we support equality comparisons of function
5919// pointers across shared library boundaries, as described in the
5920// processor specific ABI supplement.
5921
5922template<int size>
5923uint64_t
5924Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
5925{
5926  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5927  return this->plt_address_for_global(gsym);
5928}
5929
5930// Return a string used to fill a code section with nops to take up
5931// the specified length.
5932
5933template<int size>
5934std::string
5935Target_x86_64<size>::do_code_fill(section_size_type length) const
5936{
5937  if (length >= 16)
5938    {
5939      // Build a jmpq instruction to skip over the bytes.
5940      unsigned char jmp[5];
5941      jmp[0] = 0xe9;
5942      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
5943      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
5944	      + std::string(length - 5, static_cast<char>(0x90)));
5945    }
5946
5947  // Nop sequences of various lengths.
5948  const char nop1[1] = { '\x90' };                 // nop
5949  const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
5950  const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
5951  const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
5952			 '\x00'};
5953  const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
5954			 '\x00', '\x00' };
5955  const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
5956			 '\x44', '\x00', '\x00' };
5957  const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
5958			 '\x00', '\x00', '\x00',
5959			 '\x00' };
5960  const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
5961			 '\x00', '\x00', '\x00',
5962			 '\x00', '\x00' };
5963  const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
5964			 '\x84', '\x00', '\x00',
5965			 '\x00', '\x00', '\x00' };
5966  const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5967			   '\x1f', '\x84', '\x00',
5968			   '\x00', '\x00', '\x00',
5969			   '\x00' };
5970  const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
5971			   '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5972			   '\x00', '\x00', '\x00',
5973			   '\x00', '\x00' };
5974  const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
5975			   '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5976			   '\x84', '\x00', '\x00',
5977			   '\x00', '\x00', '\x00' };
5978  const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
5979			   '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5980			   '\x1f', '\x84', '\x00',
5981			   '\x00', '\x00', '\x00',
5982			   '\x00' };
5983  const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
5984			   '\x66', '\x66', '\x2e', // data16
5985			   '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5986			   '\x00', '\x00', '\x00',
5987			   '\x00', '\x00' };
5988  const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
5989			   '\x66', '\x66', '\x66', // data16; data16
5990			   '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5991			   '\x84', '\x00', '\x00',
5992			   '\x00', '\x00', '\x00' };
5993
5994  const char* nops[16] = {
5995    NULL,
5996    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
5997    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
5998  };
5999
6000  return std::string(nops[length], length);
6001}
6002
6003// Return the addend to use for a target specific relocation.  The
6004// only target specific relocation is R_X86_64_TLSDESC for a local
6005// symbol.  We want to set the addend is the offset of the local
6006// symbol in the TLS segment.
6007
6008template<int size>
6009uint64_t
6010Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
6011				     uint64_t) const
6012{
6013  gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
6014  uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
6015  gold_assert(intarg < this->tlsdesc_reloc_info_.size());
6016  const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
6017  const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
6018  gold_assert(psymval->is_tls_symbol());
6019  // The value of a TLS symbol is the offset in the TLS segment.
6020  return psymval->value(ti.object, 0);
6021}
6022
6023// Return the value to use for the base of a DW_EH_PE_datarel offset
6024// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
6025// assembler can not write out the difference between two labels in
6026// different sections, so instead of using a pc-relative value they
6027// use an offset from the GOT.
6028
6029template<int size>
6030uint64_t
6031Target_x86_64<size>::do_ehframe_datarel_base() const
6032{
6033  gold_assert(this->global_offset_table_ != NULL);
6034  Symbol* sym = this->global_offset_table_;
6035  Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
6036  return ssym->value();
6037}
6038
6039// FNOFFSET in section SHNDX in OBJECT is the start of a function
6040// compiled with -fsplit-stack.  The function calls non-split-stack
6041// code.  We have to change the function so that it always ensures
6042// that it has enough stack space to run some random function.
6043
6044static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
6045static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
6046static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
6047
6048static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
6049static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
6050static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
6051
6052template<int size>
6053void
6054Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
6055					section_offset_type fnoffset,
6056					section_size_type fnsize,
6057					const unsigned char*,
6058					size_t,
6059					unsigned char* view,
6060					section_size_type view_size,
6061					std::string* from,
6062					std::string* to) const
6063{
6064  const char* const cmp_insn = reinterpret_cast<const char*>
6065      (size == 32 ? cmp_insn_32 : cmp_insn_64);
6066  const char* const lea_r10_insn = reinterpret_cast<const char*>
6067      (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
6068  const char* const lea_r11_insn = reinterpret_cast<const char*>
6069      (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
6070
6071  const size_t cmp_insn_len =
6072      (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
6073  const size_t lea_r10_insn_len =
6074      (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
6075  const size_t lea_r11_insn_len =
6076      (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
6077  const size_t nop_len = (size == 32 ? 7 : 8);
6078
6079  // The function starts with a comparison of the stack pointer and a
6080  // field in the TCB.  This is followed by a jump.
6081
6082  // cmp %fs:NN,%rsp
6083  if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
6084      && fnsize > nop_len + 1)
6085    {
6086      // We will call __morestack if the carry flag is set after this
6087      // comparison.  We turn the comparison into an stc instruction
6088      // and some nops.
6089      view[fnoffset] = '\xf9';
6090      this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
6091    }
6092  // lea NN(%rsp),%r10
6093  // lea NN(%rsp),%r11
6094  else if ((this->match_view(view, view_size, fnoffset,
6095			     lea_r10_insn, lea_r10_insn_len)
6096	    || this->match_view(view, view_size, fnoffset,
6097				lea_r11_insn, lea_r11_insn_len))
6098	   && fnsize > 8)
6099    {
6100      // This is loading an offset from the stack pointer for a
6101      // comparison.  The offset is negative, so we decrease the
6102      // offset by the amount of space we need for the stack.  This
6103      // means we will avoid calling __morestack if there happens to
6104      // be plenty of space on the stack already.
6105      unsigned char* pval = view + fnoffset + 4;
6106      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
6107      val -= parameters->options().split_stack_adjust_size();
6108      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
6109    }
6110  else
6111    {
6112      if (!object->has_no_split_stack())
6113	object->error(_("failed to match split-stack sequence at "
6114			"section %u offset %0zx"),
6115		      shndx, static_cast<size_t>(fnoffset));
6116      return;
6117    }
6118
6119  // We have to change the function so that it calls
6120  // __morestack_non_split instead of __morestack.  The former will
6121  // allocate additional stack space.
6122  *from = "__morestack";
6123  *to = "__morestack_non_split";
6124}
6125
6126// The selector for x86_64 object files.  Note this is never instantiated
6127// directly.  It's only used in Target_selector_x86_64_nacl, below.
6128
6129template<int size>
6130class Target_selector_x86_64 : public Target_selector_freebsd
6131{
6132public:
6133  Target_selector_x86_64()
6134    : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
6135			      (size == 64
6136			       ? "elf64-x86-64" : "elf32-x86-64"),
6137			      (size == 64
6138			       ? "elf64-x86-64-freebsd"
6139			       : "elf32-x86-64-freebsd"),
6140			      (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
6141  { }
6142
6143  Target*
6144  do_instantiate_target()
6145  { return new Target_x86_64<size>(); }
6146
6147};
6148
6149// NaCl variant.  It uses different PLT contents.
6150
6151template<int size>
6152class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
6153{
6154 public:
6155  Output_data_plt_x86_64_nacl(Layout* layout,
6156			      Output_data_got<64, false>* got,
6157			      Output_data_got_plt_x86_64* got_plt,
6158			      Output_data_space* got_irelative)
6159    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
6160				   got, got_plt, got_irelative)
6161  { }
6162
6163  Output_data_plt_x86_64_nacl(Layout* layout,
6164			      Output_data_got<64, false>* got,
6165			      Output_data_got_plt_x86_64* got_plt,
6166			      Output_data_space* got_irelative,
6167			      unsigned int plt_count)
6168    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
6169				   got, got_plt, got_irelative,
6170				   plt_count)
6171  { }
6172
6173 protected:
6174  virtual unsigned int
6175  do_get_plt_entry_size() const
6176  { return plt_entry_size; }
6177
6178  virtual void
6179  do_add_eh_frame(Layout* layout)
6180  {
6181    layout->add_eh_frame_for_plt(this,
6182				 this->plt_eh_frame_cie,
6183				 this->plt_eh_frame_cie_size,
6184				 plt_eh_frame_fde,
6185				 plt_eh_frame_fde_size);
6186  }
6187
6188  virtual void
6189  do_fill_first_plt_entry(unsigned char* pov,
6190			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
6191			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
6192
6193  virtual unsigned int
6194  do_fill_plt_entry(unsigned char* pov,
6195		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6196		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6197		    unsigned int got_offset,
6198		    unsigned int plt_offset,
6199		    unsigned int plt_index);
6200
6201  virtual void
6202  do_fill_tlsdesc_entry(unsigned char* pov,
6203			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6204			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6205			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
6206			unsigned int tlsdesc_got_offset,
6207			unsigned int plt_offset);
6208
6209 private:
6210  // The size of an entry in the PLT.
6211  static const int plt_entry_size = 64;
6212
6213  // The first entry in the PLT.
6214  static const unsigned char first_plt_entry[plt_entry_size];
6215
6216  // Other entries in the PLT for an executable.
6217  static const unsigned char plt_entry[plt_entry_size];
6218
6219  // The reserved TLSDESC entry in the PLT for an executable.
6220  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
6221
6222  // The .eh_frame unwind information for the PLT.
6223  static const int plt_eh_frame_fde_size = 32;
6224  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
6225};
6226
6227template<int size>
6228class Target_x86_64_nacl : public Target_x86_64<size>
6229{
6230 public:
6231  Target_x86_64_nacl()
6232    : Target_x86_64<size>(&x86_64_nacl_info)
6233  { }
6234
6235  virtual Output_data_plt_x86_64<size>*
6236  do_make_data_plt(Layout* layout,
6237		   Output_data_got<64, false>* got,
6238		   Output_data_got_plt_x86_64* got_plt,
6239		   Output_data_space* got_irelative)
6240  {
6241    return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
6242						 got_irelative);
6243  }
6244
6245  virtual Output_data_plt_x86_64<size>*
6246  do_make_data_plt(Layout* layout,
6247		   Output_data_got<64, false>* got,
6248		   Output_data_got_plt_x86_64* got_plt,
6249		   Output_data_space* got_irelative,
6250		   unsigned int plt_count)
6251  {
6252    return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
6253						 got_irelative,
6254						 plt_count);
6255  }
6256
6257  virtual std::string
6258  do_code_fill(section_size_type length) const;
6259
6260 private:
6261  static const Target::Target_info x86_64_nacl_info;
6262};
6263
6264template<>
6265const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
6266{
6267  64,			// size
6268  false,		// is_big_endian
6269  elfcpp::EM_X86_64,	// machine_code
6270  false,		// has_make_symbol
6271  false,		// has_resolve
6272  true,			// has_code_fill
6273  true,			// is_default_stack_executable
6274  true,			// can_icf_inline_merge_sections
6275  '\0',			// wrap_char
6276  "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
6277  0x20000,		// default_text_segment_address
6278  0x10000,		// abi_pagesize (overridable by -z max-page-size)
6279  0x10000,		// common_pagesize (overridable by -z common-page-size)
6280  true,                 // isolate_execinstr
6281  0x10000000,           // rosegment_gap
6282  elfcpp::SHN_UNDEF,	// small_common_shndx
6283  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
6284  0,			// small_common_section_flags
6285  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
6286  NULL,			// attributes_section
6287  NULL,			// attributes_vendor
6288  "_start",		// entry_symbol_name
6289  32,			// hash_entry_size
6290  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
6291};
6292
6293template<>
6294const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
6295{
6296  32,			// size
6297  false,		// is_big_endian
6298  elfcpp::EM_X86_64,	// machine_code
6299  false,		// has_make_symbol
6300  false,		// has_resolve
6301  true,			// has_code_fill
6302  true,			// is_default_stack_executable
6303  true,			// can_icf_inline_merge_sections
6304  '\0',			// wrap_char
6305  "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
6306  0x20000,		// default_text_segment_address
6307  0x10000,		// abi_pagesize (overridable by -z max-page-size)
6308  0x10000,		// common_pagesize (overridable by -z common-page-size)
6309  true,                 // isolate_execinstr
6310  0x10000000,           // rosegment_gap
6311  elfcpp::SHN_UNDEF,	// small_common_shndx
6312  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
6313  0,			// small_common_section_flags
6314  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
6315  NULL,			// attributes_section
6316  NULL,			// attributes_vendor
6317  "_start",		// entry_symbol_name
6318  32,			// hash_entry_size
6319  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
6320};
6321
6322#define	NACLMASK	0xe0            // 32-byte alignment mask.
6323
6324// The first entry in the PLT.
6325
6326template<int size>
6327const unsigned char
6328Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
6329{
6330  0xff, 0x35,                         // pushq contents of memory address
6331  0, 0, 0, 0,                         // replaced with address of .got + 8
6332  0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
6333  0, 0, 0, 0,                         // replaced with address of .got + 16
6334  0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
6335  0x4d, 0x01, 0xfb,                   // add %r15, %r11
6336  0x41, 0xff, 0xe3,                   // jmpq *%r11
6337
6338  // 9-byte nop sequence to pad out to the next 32-byte boundary.
6339  0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
6340
6341  // 32 bytes of nop to pad out to the standard size
6342  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6343  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6344  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6345  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6346  0x66,                                  // excess data32 prefix
6347  0x90                                   // nop
6348};
6349
6350template<int size>
6351void
6352Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
6353    unsigned char* pov,
6354    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6355    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
6356{
6357  memcpy(pov, first_plt_entry, plt_entry_size);
6358  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
6359					      (got_address + 8
6360					       - (plt_address + 2 + 4)));
6361  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
6362					      (got_address + 16
6363					       - (plt_address + 9 + 4)));
6364}
6365
6366// Subsequent entries in the PLT.
6367
6368template<int size>
6369const unsigned char
6370Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
6371{
6372  0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
6373  0, 0, 0, 0,                    // replaced with address of symbol in .got
6374  0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
6375  0x4d, 0x01, 0xfb,              // add %r15, %r11
6376  0x41, 0xff, 0xe3,              // jmpq *%r11
6377
6378  // 15-byte nop sequence to pad out to the next 32-byte boundary.
6379  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6380  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6381
6382  // Lazy GOT entries point here (32-byte aligned).
6383  0x68,                       // pushq immediate
6384  0, 0, 0, 0,                 // replaced with index into relocation table
6385  0xe9,                       // jmp relative
6386  0, 0, 0, 0,                 // replaced with offset to start of .plt0
6387
6388  // 22 bytes of nop to pad out to the standard size.
6389  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6390  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6391  0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
6392};
6393
6394template<int size>
6395unsigned int
6396Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
6397    unsigned char* pov,
6398    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6399    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6400    unsigned int got_offset,
6401    unsigned int plt_offset,
6402    unsigned int plt_index)
6403{
6404  memcpy(pov, plt_entry, plt_entry_size);
6405  elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
6406					      (got_address + got_offset
6407					       - (plt_address + plt_offset
6408						  + 3 + 4)));
6409
6410  elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
6411  elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
6412					      - (plt_offset + 38 + 4));
6413
6414  return 32;
6415}
6416
6417// The reserved TLSDESC entry in the PLT.
6418
6419template<int size>
6420const unsigned char
6421Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
6422{
6423  0xff, 0x35,			// pushq x(%rip)
6424  0, 0, 0, 0,	// replaced with address of linkmap GOT entry (at PLTGOT + 8)
6425  0x4c, 0x8b, 0x1d,		// mov y(%rip),%r11
6426  0, 0, 0, 0,	// replaced with offset of reserved TLSDESC_GOT entry
6427  0x41, 0x83, 0xe3, NACLMASK,	// and $-32, %r11d
6428  0x4d, 0x01, 0xfb,             // add %r15, %r11
6429  0x41, 0xff, 0xe3,             // jmpq *%r11
6430
6431  // 41 bytes of nop to pad out to the standard size.
6432  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6433  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6434  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6435  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6436  0x66, 0x66,                            // excess data32 prefixes
6437  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6438};
6439
6440template<int size>
6441void
6442Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
6443    unsigned char* pov,
6444    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6445    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6446    typename elfcpp::Elf_types<size>::Elf_Addr got_base,
6447    unsigned int tlsdesc_got_offset,
6448    unsigned int plt_offset)
6449{
6450  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
6451  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
6452					      (got_address + 8
6453					       - (plt_address + plt_offset
6454						  + 2 + 4)));
6455  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
6456					      (got_base
6457					       + tlsdesc_got_offset
6458					       - (plt_address + plt_offset
6459						  + 9 + 4)));
6460}
6461
6462// The .eh_frame unwind information for the PLT.
6463
6464template<int size>
6465const unsigned char
6466Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
6467{
6468  0, 0, 0, 0,				// Replaced with offset to .plt.
6469  0, 0, 0, 0,				// Replaced with size of .plt.
6470  0,					// Augmentation size.
6471  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
6472  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
6473  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
6474  elfcpp::DW_CFA_advance_loc + 58,	// Advance 58 to __PLT__ + 64.
6475  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
6476  13,					// Block length.
6477  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
6478  elfcpp::DW_OP_breg16, 0,		// Push %rip.
6479  elfcpp::DW_OP_const1u, 63,		// Push 0x3f.
6480  elfcpp::DW_OP_and,			// & (%rip & 0x3f).
6481  elfcpp::DW_OP_const1u, 37,            // Push 0x25.
6482  elfcpp::DW_OP_ge,			// >= ((%rip & 0x3f) >= 0x25)
6483  elfcpp::DW_OP_lit3,			// Push 3.
6484  elfcpp::DW_OP_shl,			// << (((%rip & 0x3f) >= 0x25) << 3)
6485  elfcpp::DW_OP_plus,			// + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
6486  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
6487  elfcpp::DW_CFA_nop
6488};
6489
6490// Return a string used to fill a code section with nops.
6491// For NaCl, long NOPs are only valid if they do not cross
6492// bundle alignment boundaries, so keep it simple with one-byte NOPs.
6493template<int size>
6494std::string
6495Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
6496{
6497  return std::string(length, static_cast<char>(0x90));
6498}
6499
6500// The selector for x86_64-nacl object files.
6501
6502template<int size>
6503class Target_selector_x86_64_nacl
6504  : public Target_selector_nacl<Target_selector_x86_64<size>,
6505				Target_x86_64_nacl<size> >
6506{
6507 public:
6508  Target_selector_x86_64_nacl()
6509    : Target_selector_nacl<Target_selector_x86_64<size>,
6510			   Target_x86_64_nacl<size> >("x86-64",
6511						      size == 64
6512						      ? "elf64-x86-64-nacl"
6513						      : "elf32-x86-64-nacl",
6514						      size == 64
6515						      ? "elf_x86_64_nacl"
6516						      : "elf32_x86_64_nacl")
6517  { }
6518};
6519
6520Target_selector_x86_64_nacl<64> target_selector_x86_64;
6521Target_selector_x86_64_nacl<32> target_selector_x32;
6522
6523} // End anonymous namespace.
6524