1// script.cc -- handle linker scripts for gold.
2
3// Copyright (C) 2006-2020 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstdio>
26#include <cstdlib>
27#include <cstring>
28#include <fnmatch.h>
29#include <string>
30#include <vector>
31#include "filenames.h"
32
33#include "elfcpp.h"
34#include "demangle.h"
35#include "dirsearch.h"
36#include "options.h"
37#include "fileread.h"
38#include "workqueue.h"
39#include "readsyms.h"
40#include "parameters.h"
41#include "layout.h"
42#include "symtab.h"
43#include "target-select.h"
44#include "script.h"
45#include "script-c.h"
46#include "incremental.h"
47
48namespace gold
49{
50
51// A token read from a script file.  We don't implement keywords here;
52// all keywords are simply represented as a string.
53
54class Token
55{
56 public:
57  // Token classification.
58  enum Classification
59  {
60    // Token is invalid.
61    TOKEN_INVALID,
62    // Token indicates end of input.
63    TOKEN_EOF,
64    // Token is a string of characters.
65    TOKEN_STRING,
66    // Token is a quoted string of characters.
67    TOKEN_QUOTED_STRING,
68    // Token is an operator.
69    TOKEN_OPERATOR,
70    // Token is a number (an integer).
71    TOKEN_INTEGER
72  };
73
74  // We need an empty constructor so that we can put this STL objects.
75  Token()
76    : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77      opcode_(0), lineno_(0), charpos_(0)
78  { }
79
80  // A general token with no value.
81  Token(Classification classification, int lineno, int charpos)
82    : classification_(classification), value_(NULL), value_length_(0),
83      opcode_(0), lineno_(lineno), charpos_(charpos)
84  {
85    gold_assert(classification == TOKEN_INVALID
86		|| classification == TOKEN_EOF);
87  }
88
89  // A general token with a value.
90  Token(Classification classification, const char* value, size_t length,
91	int lineno, int charpos)
92    : classification_(classification), value_(value), value_length_(length),
93      opcode_(0), lineno_(lineno), charpos_(charpos)
94  {
95    gold_assert(classification != TOKEN_INVALID
96		&& classification != TOKEN_EOF);
97  }
98
99  // A token representing an operator.
100  Token(int opcode, int lineno, int charpos)
101    : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102      opcode_(opcode), lineno_(lineno), charpos_(charpos)
103  { }
104
105  // Return whether the token is invalid.
106  bool
107  is_invalid() const
108  { return this->classification_ == TOKEN_INVALID; }
109
110  // Return whether this is an EOF token.
111  bool
112  is_eof() const
113  { return this->classification_ == TOKEN_EOF; }
114
115  // Return the token classification.
116  Classification
117  classification() const
118  { return this->classification_; }
119
120  // Return the line number at which the token starts.
121  int
122  lineno() const
123  { return this->lineno_; }
124
125  // Return the character position at this the token starts.
126  int
127  charpos() const
128  { return this->charpos_; }
129
130  // Get the value of a token.
131
132  const char*
133  string_value(size_t* length) const
134  {
135    gold_assert(this->classification_ == TOKEN_STRING
136		|| this->classification_ == TOKEN_QUOTED_STRING);
137    *length = this->value_length_;
138    return this->value_;
139  }
140
141  int
142  operator_value() const
143  {
144    gold_assert(this->classification_ == TOKEN_OPERATOR);
145    return this->opcode_;
146  }
147
148  uint64_t
149  integer_value() const;
150
151 private:
152  // The token classification.
153  Classification classification_;
154  // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155  // TOKEN_INTEGER.
156  const char* value_;
157  // The length of the token value.
158  size_t value_length_;
159  // The token value, for TOKEN_OPERATOR.
160  int opcode_;
161  // The line number where this token started (one based).
162  int lineno_;
163  // The character position within the line where this token started
164  // (one based).
165  int charpos_;
166};
167
168// Return the value of a TOKEN_INTEGER.
169
170uint64_t
171Token::integer_value() const
172{
173  gold_assert(this->classification_ == TOKEN_INTEGER);
174
175  size_t len = this->value_length_;
176
177  uint64_t multiplier = 1;
178  char last = this->value_[len - 1];
179  if (last == 'm' || last == 'M')
180    {
181      multiplier = 1024 * 1024;
182      --len;
183    }
184  else if (last == 'k' || last == 'K')
185    {
186      multiplier = 1024;
187      --len;
188    }
189
190  char *end;
191  uint64_t ret = strtoull(this->value_, &end, 0);
192  gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194  return ret * multiplier;
195}
196
197// This class handles lexing a file into a sequence of tokens.
198
199class Lex
200{
201 public:
202  // We unfortunately have to support different lexing modes, because
203  // when reading different parts of a linker script we need to parse
204  // things differently.
205  enum Mode
206  {
207    // Reading an ordinary linker script.
208    LINKER_SCRIPT,
209    // Reading an expression in a linker script.
210    EXPRESSION,
211    // Reading a version script.
212    VERSION_SCRIPT,
213    // Reading a --dynamic-list file.
214    DYNAMIC_LIST
215  };
216
217  Lex(const char* input_string, size_t input_length, int parsing_token)
218    : input_string_(input_string), input_length_(input_length),
219      current_(input_string), mode_(LINKER_SCRIPT),
220      first_token_(parsing_token), token_(),
221      lineno_(1), linestart_(input_string)
222  { }
223
224  // Read a file into a string.
225  static void
226  read_file(Input_file*, std::string*);
227
228  // Return the next token.
229  const Token*
230  next_token();
231
232  // Return the current lexing mode.
233  Lex::Mode
234  mode() const
235  { return this->mode_; }
236
237  // Set the lexing mode.
238  void
239  set_mode(Mode mode)
240  { this->mode_ = mode; }
241
242 private:
243  Lex(const Lex&);
244  Lex& operator=(const Lex&);
245
246  // Make a general token with no value at the current location.
247  Token
248  make_token(Token::Classification c, const char* start) const
249  { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251  // Make a general token with a value at the current location.
252  Token
253  make_token(Token::Classification c, const char* v, size_t len,
254	     const char* start)
255    const
256  { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258  // Make an operator token at the current location.
259  Token
260  make_token(int opcode, const char* start) const
261  { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263  // Make an invalid token at the current location.
264  Token
265  make_invalid_token(const char* start)
266  { return this->make_token(Token::TOKEN_INVALID, start); }
267
268  // Make an EOF token at the current location.
269  Token
270  make_eof_token(const char* start)
271  { return this->make_token(Token::TOKEN_EOF, start); }
272
273  // Return whether C can be the first character in a name.  C2 is the
274  // next character, since we sometimes need that.
275  inline bool
276  can_start_name(char c, char c2);
277
278  // If C can appear in a name which has already started, return a
279  // pointer to a character later in the token or just past
280  // it. Otherwise, return NULL.
281  inline const char*
282  can_continue_name(const char* c);
283
284  // Return whether C, C2, C3 can start a hex number.
285  inline bool
286  can_start_hex(char c, char c2, char c3);
287
288  // If C can appear in a hex number which has already started, return
289  // a pointer to a character later in the token or just past
290  // it. Otherwise, return NULL.
291  inline const char*
292  can_continue_hex(const char* c);
293
294  // Return whether C can start a non-hex number.
295  static inline bool
296  can_start_number(char c);
297
298  // If C can appear in a decimal number which has already started,
299  // return a pointer to a character later in the token or just past
300  // it. Otherwise, return NULL.
301  inline const char*
302  can_continue_number(const char* c)
303  { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305  // If C1 C2 C3 form a valid three character operator, return the
306  // opcode.  Otherwise return 0.
307  static inline int
308  three_char_operator(char c1, char c2, char c3);
309
310  // If C1 C2 form a valid two character operator, return the opcode.
311  // Otherwise return 0.
312  static inline int
313  two_char_operator(char c1, char c2);
314
315  // If C1 is a valid one character operator, return the opcode.
316  // Otherwise return 0.
317  static inline int
318  one_char_operator(char c1);
319
320  // Read the next token.
321  Token
322  get_token(const char**);
323
324  // Skip a C style /* */ comment.  Return false if the comment did
325  // not end.
326  bool
327  skip_c_comment(const char**);
328
329  // Skip a line # comment.  Return false if there was no newline.
330  bool
331  skip_line_comment(const char**);
332
333  // Build a token CLASSIFICATION from all characters that match
334  // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
335  // MATCH.  Set *PP to the character following the token.
336  inline Token
337  gather_token(Token::Classification,
338	       const char* (Lex::*can_continue_fn)(const char*),
339	       const char* start, const char* match, const char** pp);
340
341  // Build a token from a quoted string.
342  Token
343  gather_quoted_string(const char** pp);
344
345  // The string we are tokenizing.
346  const char* input_string_;
347  // The length of the string.
348  size_t input_length_;
349  // The current offset into the string.
350  const char* current_;
351  // The current lexing mode.
352  Mode mode_;
353  // The code to use for the first token.  This is set to 0 after it
354  // is used.
355  int first_token_;
356  // The current token.
357  Token token_;
358  // The current line number.
359  int lineno_;
360  // The start of the current line in the string.
361  const char* linestart_;
362};
363
364// Read the whole file into memory.  We don't expect linker scripts to
365// be large, so we just use a std::string as a buffer.  We ignore the
366// data we've already read, so that we read aligned buffers.
367
368void
369Lex::read_file(Input_file* input_file, std::string* contents)
370{
371  off_t filesize = input_file->file().filesize();
372  contents->clear();
373  contents->reserve(filesize);
374
375  off_t off = 0;
376  unsigned char buf[BUFSIZ];
377  while (off < filesize)
378    {
379      off_t get = BUFSIZ;
380      if (get > filesize - off)
381	get = filesize - off;
382      input_file->file().read(off, get, buf);
383      contents->append(reinterpret_cast<char*>(&buf[0]), get);
384      off += get;
385    }
386}
387
388// Return whether C can be the start of a name, if the next character
389// is C2.  A name can being with a letter, underscore, period, or
390// dollar sign.  Because a name can be a file name, we also permit
391// forward slash, backslash, and tilde.  Tilde is the tricky case
392// here; GNU ld also uses it as a bitwise not operator.  It is only
393// recognized as the operator if it is not immediately followed by
394// some character which can appear in a symbol.  That is, when we
395// don't know that we are looking at an expression, "~0" is a file
396// name, and "~ 0" is an expression using bitwise not.  We are
397// compatible.
398
399inline bool
400Lex::can_start_name(char c, char c2)
401{
402  switch (c)
403    {
404    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408    case 'Y': case 'Z':
409    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413    case 'y': case 'z':
414    case '_': case '.': case '$':
415      return true;
416
417    case '/': case '\\':
418      return this->mode_ == LINKER_SCRIPT;
419
420    case '~':
421      return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423    case '*': case '[':
424      return (this->mode_ == VERSION_SCRIPT
425              || this->mode_ == DYNAMIC_LIST
426	      || (this->mode_ == LINKER_SCRIPT
427		  && can_continue_name(&c2)));
428
429    default:
430      return false;
431    }
432}
433
434// Return whether C can continue a name which has already started.
435// Subsequent characters in a name are the same as the leading
436// characters, plus digits and "=+-:[],?*".  So in general the linker
437// script language requires spaces around operators, unless we know
438// that we are parsing an expression.
439
440inline const char*
441Lex::can_continue_name(const char* c)
442{
443  switch (*c)
444    {
445    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449    case 'Y': case 'Z':
450    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454    case 'y': case 'z':
455    case '_': case '.': case '$':
456    case '0': case '1': case '2': case '3': case '4':
457    case '5': case '6': case '7': case '8': case '9':
458      return c + 1;
459
460    // TODO(csilvers): why not allow ~ in names for version-scripts?
461    case '/': case '\\': case '~':
462    case '=': case '+':
463    case ',':
464      if (this->mode_ == LINKER_SCRIPT)
465        return c + 1;
466      return NULL;
467
468    case '[': case ']': case '*': case '?': case '-':
469      if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470          || this->mode_ == DYNAMIC_LIST)
471        return c + 1;
472      return NULL;
473
474    // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
475    case '^':
476      if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477        return c + 1;
478      return NULL;
479
480    case ':':
481      if (this->mode_ == LINKER_SCRIPT)
482        return c + 1;
483      else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484               && (c[1] == ':'))
485        {
486          // A name can have '::' in it, as that's a c++ namespace
487          // separator. But a single colon is not part of a name.
488          return c + 2;
489        }
490      return NULL;
491
492    default:
493      return NULL;
494    }
495}
496
497// For a number we accept 0x followed by hex digits, or any sequence
498// of digits.  The old linker accepts leading '$' for hex, and
499// trailing HXBOD.  Those are for MRI compatibility and we don't
500// accept them.
501
502// Return whether C1 C2 C3 can start a hex number.
503
504inline bool
505Lex::can_start_hex(char c1, char c2, char c3)
506{
507  if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508    return this->can_continue_hex(&c3);
509  return false;
510}
511
512// Return whether C can appear in a hex number.
513
514inline const char*
515Lex::can_continue_hex(const char* c)
516{
517  switch (*c)
518    {
519    case '0': case '1': case '2': case '3': case '4':
520    case '5': case '6': case '7': case '8': case '9':
521    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523      return c + 1;
524
525    default:
526      return NULL;
527    }
528}
529
530// Return whether C can start a non-hex number.
531
532inline bool
533Lex::can_start_number(char c)
534{
535  switch (c)
536    {
537    case '0': case '1': case '2': case '3': case '4':
538    case '5': case '6': case '7': case '8': case '9':
539      return true;
540
541    default:
542      return false;
543    }
544}
545
546// If C1 C2 C3 form a valid three character operator, return the
547// opcode (defined in the yyscript.h file generated from yyscript.y).
548// Otherwise return 0.
549
550inline int
551Lex::three_char_operator(char c1, char c2, char c3)
552{
553  switch (c1)
554    {
555    case '<':
556      if (c2 == '<' && c3 == '=')
557	return LSHIFTEQ;
558      break;
559    case '>':
560      if (c2 == '>' && c3 == '=')
561	return RSHIFTEQ;
562      break;
563    default:
564      break;
565    }
566  return 0;
567}
568
569// If C1 C2 form a valid two character operator, return the opcode
570// (defined in the yyscript.h file generated from yyscript.y).
571// Otherwise return 0.
572
573inline int
574Lex::two_char_operator(char c1, char c2)
575{
576  switch (c1)
577    {
578    case '=':
579      if (c2 == '=')
580	return EQ;
581      break;
582    case '!':
583      if (c2 == '=')
584	return NE;
585      break;
586    case '+':
587      if (c2 == '=')
588	return PLUSEQ;
589      break;
590    case '-':
591      if (c2 == '=')
592	return MINUSEQ;
593      break;
594    case '*':
595      if (c2 == '=')
596	return MULTEQ;
597      break;
598    case '/':
599      if (c2 == '=')
600	return DIVEQ;
601      break;
602    case '|':
603      if (c2 == '=')
604	return OREQ;
605      if (c2 == '|')
606	return OROR;
607      break;
608    case '&':
609      if (c2 == '=')
610	return ANDEQ;
611      if (c2 == '&')
612	return ANDAND;
613      break;
614    case '>':
615      if (c2 == '=')
616	return GE;
617      if (c2 == '>')
618	return RSHIFT;
619      break;
620    case '<':
621      if (c2 == '=')
622	return LE;
623      if (c2 == '<')
624	return LSHIFT;
625      break;
626    default:
627      break;
628    }
629  return 0;
630}
631
632// If C1 is a valid operator, return the opcode.  Otherwise return 0.
633
634inline int
635Lex::one_char_operator(char c1)
636{
637  switch (c1)
638    {
639    case '+':
640    case '-':
641    case '*':
642    case '/':
643    case '%':
644    case '!':
645    case '&':
646    case '|':
647    case '^':
648    case '~':
649    case '<':
650    case '>':
651    case '=':
652    case '?':
653    case ',':
654    case '(':
655    case ')':
656    case '{':
657    case '}':
658    case '[':
659    case ']':
660    case ':':
661    case ';':
662      return c1;
663    default:
664      return 0;
665    }
666}
667
668// Skip a C style comment.  *PP points to just after the "/*".  Return
669// false if the comment did not end.
670
671bool
672Lex::skip_c_comment(const char** pp)
673{
674  const char* p = *pp;
675  while (p[0] != '*' || p[1] != '/')
676    {
677      if (*p == '\0')
678	{
679	  *pp = p;
680	  return false;
681	}
682
683      if (*p == '\n')
684	{
685	  ++this->lineno_;
686	  this->linestart_ = p + 1;
687	}
688      ++p;
689    }
690
691  *pp = p + 2;
692  return true;
693}
694
695// Skip a line # comment.  Return false if there was no newline.
696
697bool
698Lex::skip_line_comment(const char** pp)
699{
700  const char* p = *pp;
701  size_t skip = strcspn(p, "\n");
702  if (p[skip] == '\0')
703    {
704      *pp = p + skip;
705      return false;
706    }
707
708  p += skip + 1;
709  ++this->lineno_;
710  this->linestart_ = p;
711  *pp = p;
712
713  return true;
714}
715
716// Build a token CLASSIFICATION from all characters that match
717// CAN_CONTINUE_FN.  Update *PP.
718
719inline Token
720Lex::gather_token(Token::Classification classification,
721		  const char* (Lex::*can_continue_fn)(const char*),
722		  const char* start,
723		  const char* match,
724		  const char** pp)
725{
726  const char* new_match = NULL;
727  while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728    match = new_match;
729
730  // A special case: integers may be followed by a single M or K,
731  // case-insensitive.
732  if (classification == Token::TOKEN_INTEGER
733      && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734    ++match;
735
736  *pp = match;
737  return this->make_token(classification, start, match - start, start);
738}
739
740// Build a token from a quoted string.
741
742Token
743Lex::gather_quoted_string(const char** pp)
744{
745  const char* start = *pp;
746  const char* p = start;
747  ++p;
748  size_t skip = strcspn(p, "\"\n");
749  if (p[skip] != '"')
750    return this->make_invalid_token(start);
751  *pp = p + skip + 1;
752  return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753}
754
755// Return the next token at *PP.  Update *PP.  General guideline: we
756// require linker scripts to be simple ASCII.  No unicode linker
757// scripts.  In particular we can assume that any '\0' is the end of
758// the input.
759
760Token
761Lex::get_token(const char** pp)
762{
763  const char* p = *pp;
764
765  while (true)
766    {
767      // Skip whitespace quickly.
768      while (*p == ' ' || *p == '\t' || *p == '\r')
769	++p;
770
771      if (*p == '\n')
772	{
773	  ++p;
774	  ++this->lineno_;
775	  this->linestart_ = p;
776	  continue;
777	}
778
779      char c0 = *p;
780
781      if (c0 == '\0')
782	{
783	  *pp = p;
784	  return this->make_eof_token(p);
785	}
786
787      char c1 = p[1];
788
789      // Skip C style comments.
790      if (c0 == '/' && c1 == '*')
791	{
792	  int lineno = this->lineno_;
793	  int charpos = p - this->linestart_ + 1;
794
795	  *pp = p + 2;
796	  if (!this->skip_c_comment(pp))
797	    return Token(Token::TOKEN_INVALID, lineno, charpos);
798	  p = *pp;
799
800	  continue;
801	}
802
803      // Skip line comments.
804      if (c0 == '#')
805	{
806	  *pp = p + 1;
807	  if (!this->skip_line_comment(pp))
808	    return this->make_eof_token(p);
809	  p = *pp;
810	  continue;
811	}
812
813      // Check for a name.
814      if (this->can_start_name(c0, c1))
815	return this->gather_token(Token::TOKEN_STRING,
816				  &Lex::can_continue_name,
817				  p, p + 1, pp);
818
819      // We accept any arbitrary name in double quotes, as long as it
820      // does not cross a line boundary.
821      if (*p == '"')
822	{
823	  *pp = p;
824	  return this->gather_quoted_string(pp);
825	}
826
827      // Be careful not to lookahead past the end of the buffer.
828      char c2 = (c1 == '\0' ? '\0' : p[2]);
829
830      // Check for a number.
831
832      if (this->can_start_hex(c0, c1, c2))
833	return this->gather_token(Token::TOKEN_INTEGER,
834				  &Lex::can_continue_hex,
835				  p, p + 3, pp);
836
837      if (Lex::can_start_number(c0))
838	return this->gather_token(Token::TOKEN_INTEGER,
839				  &Lex::can_continue_number,
840				  p, p + 1, pp);
841
842      // Check for operators.
843
844      int opcode = Lex::three_char_operator(c0, c1, c2);
845      if (opcode != 0)
846	{
847	  *pp = p + 3;
848	  return this->make_token(opcode, p);
849	}
850
851      opcode = Lex::two_char_operator(c0, c1);
852      if (opcode != 0)
853	{
854	  *pp = p + 2;
855	  return this->make_token(opcode, p);
856	}
857
858      opcode = Lex::one_char_operator(c0);
859      if (opcode != 0)
860	{
861	  *pp = p + 1;
862	  return this->make_token(opcode, p);
863	}
864
865      return this->make_token(Token::TOKEN_INVALID, p);
866    }
867}
868
869// Return the next token.
870
871const Token*
872Lex::next_token()
873{
874  // The first token is special.
875  if (this->first_token_ != 0)
876    {
877      this->token_ = Token(this->first_token_, 0, 0);
878      this->first_token_ = 0;
879      return &this->token_;
880    }
881
882  this->token_ = this->get_token(&this->current_);
883
884  // Don't let an early null byte fool us into thinking that we've
885  // reached the end of the file.
886  if (this->token_.is_eof()
887      && (static_cast<size_t>(this->current_ - this->input_string_)
888	  < this->input_length_))
889    this->token_ = this->make_invalid_token(this->current_);
890
891  return &this->token_;
892}
893
894// class Symbol_assignment.
895
896// Add the symbol to the symbol table.  This makes sure the symbol is
897// there and defined.  The actual value is stored later.  We can't
898// determine the actual value at this point, because we can't
899// necessarily evaluate the expression until all ordinary symbols have
900// been finalized.
901
902// The GNU linker lets symbol assignments in the linker script
903// silently override defined symbols in object files.  We are
904// compatible.  FIXME: Should we issue a warning?
905
906void
907Symbol_assignment::add_to_table(Symbol_table* symtab)
908{
909  elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
910  this->sym_ = symtab->define_as_constant(this->name_.c_str(),
911					  NULL, // version
912					  (this->is_defsym_
913					   ? Symbol_table::DEFSYM
914					   : Symbol_table::SCRIPT),
915					  0, // value
916					  0, // size
917					  elfcpp::STT_NOTYPE,
918					  elfcpp::STB_GLOBAL,
919					  vis,
920					  0, // nonvis
921					  this->provide_,
922                                          true); // force_override
923}
924
925// Finalize a symbol value.
926
927void
928Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
929{
930  this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
931}
932
933// Finalize a symbol value which can refer to the dot symbol.
934
935void
936Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
937				     const Layout* layout,
938				     uint64_t dot_value,
939				     Output_section* dot_section)
940{
941  this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
942}
943
944// Finalize a symbol value, internal version.
945
946void
947Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
948				      const Layout* layout,
949				      bool is_dot_available,
950				      uint64_t dot_value,
951				      Output_section* dot_section)
952{
953  // If we were only supposed to provide this symbol, the sym_ field
954  // will be NULL if the symbol was not referenced.
955  if (this->sym_ == NULL)
956    {
957      gold_assert(this->provide_);
958      return;
959    }
960
961  if (parameters->target().get_size() == 32)
962    {
963#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
964      this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
965			       dot_section);
966#else
967      gold_unreachable();
968#endif
969    }
970  else if (parameters->target().get_size() == 64)
971    {
972#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
973      this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
974			       dot_section);
975#else
976      gold_unreachable();
977#endif
978    }
979  else
980    gold_unreachable();
981}
982
983template<int size>
984void
985Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
986				  bool is_dot_available, uint64_t dot_value,
987				  Output_section* dot_section)
988{
989  Output_section* section;
990  elfcpp::STT type = elfcpp::STT_NOTYPE;
991  elfcpp::STV vis = elfcpp::STV_DEFAULT;
992  unsigned char nonvis = 0;
993  uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
994						  is_dot_available,
995						  dot_value, dot_section,
996						  &section, NULL, &type,
997						  &vis, &nonvis, false, NULL);
998  Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
999  ssym->set_value(final_val);
1000  ssym->set_type(type);
1001  ssym->set_visibility(vis);
1002  ssym->set_nonvis(nonvis);
1003  if (section != NULL)
1004    ssym->set_output_section(section);
1005}
1006
1007// Set the symbol value if the expression yields an absolute value or
1008// a value relative to DOT_SECTION.
1009
1010void
1011Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1012				   bool is_dot_available, uint64_t dot_value,
1013				   Output_section* dot_section)
1014{
1015  if (this->sym_ == NULL)
1016    return;
1017
1018  Output_section* val_section;
1019  bool is_valid;
1020  uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1021					    is_dot_available, dot_value,
1022					    dot_section, &val_section, NULL,
1023					    NULL, NULL, NULL, false, &is_valid);
1024  if (!is_valid || (val_section != NULL && val_section != dot_section))
1025    return;
1026
1027  if (parameters->target().get_size() == 32)
1028    {
1029#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1030      Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1031      ssym->set_value(val);
1032#else
1033      gold_unreachable();
1034#endif
1035    }
1036  else if (parameters->target().get_size() == 64)
1037    {
1038#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1039      Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1040      ssym->set_value(val);
1041#else
1042      gold_unreachable();
1043#endif
1044    }
1045  else
1046    gold_unreachable();
1047  if (val_section != NULL)
1048    this->sym_->set_output_section(val_section);
1049}
1050
1051// Print for debugging.
1052
1053void
1054Symbol_assignment::print(FILE* f) const
1055{
1056  if (this->provide_ && this->hidden_)
1057    fprintf(f, "PROVIDE_HIDDEN(");
1058  else if (this->provide_)
1059    fprintf(f, "PROVIDE(");
1060  else if (this->hidden_)
1061    gold_unreachable();
1062
1063  fprintf(f, "%s = ", this->name_.c_str());
1064  this->val_->print(f);
1065
1066  if (this->provide_ || this->hidden_)
1067    fprintf(f, ")");
1068
1069  fprintf(f, "\n");
1070}
1071
1072// Class Script_assertion.
1073
1074// Check the assertion.
1075
1076void
1077Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1078{
1079  if (!this->check_->eval(symtab, layout, true))
1080    gold_error("%s", this->message_.c_str());
1081}
1082
1083// Print for debugging.
1084
1085void
1086Script_assertion::print(FILE* f) const
1087{
1088  fprintf(f, "ASSERT(");
1089  this->check_->print(f);
1090  fprintf(f, ", \"%s\")\n", this->message_.c_str());
1091}
1092
1093// Class Script_options.
1094
1095Script_options::Script_options()
1096  : entry_(), symbol_assignments_(), symbol_definitions_(),
1097    symbol_references_(), version_script_info_(), script_sections_()
1098{
1099}
1100
1101// Returns true if NAME is on the list of symbol assignments waiting
1102// to be processed.
1103
1104bool
1105Script_options::is_pending_assignment(const char* name)
1106{
1107  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1108       p != this->symbol_assignments_.end();
1109       ++p)
1110    if ((*p)->name() == name)
1111      return true;
1112  return false;
1113}
1114
1115// Populates the set with symbols defined in defsym LHS.
1116
1117void Script_options::find_defsym_defs(Unordered_set<std::string>& defsym_set)
1118{
1119  for (Symbol_assignments::const_iterator p = this->symbol_assignments_.begin();
1120       p != this->symbol_assignments_.end();
1121       ++p)
1122    {
1123      defsym_set.insert((*p)->name());
1124    }
1125}
1126
1127void
1128Script_options::set_defsym_uses_in_real_elf(Symbol_table* symtab) const
1129{
1130  for (Symbol_assignments::const_iterator p = this->symbol_assignments_.begin();
1131       p != this->symbol_assignments_.end();
1132       ++p)
1133    {
1134      (*p)->value()->set_expr_sym_in_real_elf(symtab);
1135    }
1136}
1137
1138// Add a symbol to be defined.
1139
1140void
1141Script_options::add_symbol_assignment(const char* name, size_t length,
1142				      bool is_defsym, Expression* value,
1143				      bool provide, bool hidden)
1144{
1145  if (length != 1 || name[0] != '.')
1146    {
1147      if (this->script_sections_.in_sections_clause())
1148	{
1149	  gold_assert(!is_defsym);
1150	  this->script_sections_.add_symbol_assignment(name, length, value,
1151						       provide, hidden);
1152	}
1153      else
1154	{
1155	  Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1156						       value, provide, hidden);
1157	  this->symbol_assignments_.push_back(p);
1158	}
1159
1160      if (!provide)
1161	{
1162	  std::string n(name, length);
1163	  this->symbol_definitions_.insert(n);
1164	  this->symbol_references_.erase(n);
1165	}
1166    }
1167  else
1168    {
1169      if (provide || hidden)
1170	gold_error(_("invalid use of PROVIDE for dot symbol"));
1171
1172      // The GNU linker permits assignments to dot outside of SECTIONS
1173      // clauses and treats them as occurring inside, so we don't
1174      // check in_sections_clause here.
1175      this->script_sections_.add_dot_assignment(value);
1176    }
1177}
1178
1179// Add a reference to a symbol.
1180
1181void
1182Script_options::add_symbol_reference(const char* name, size_t length)
1183{
1184  if (length != 1 || name[0] != '.')
1185    {
1186      std::string n(name, length);
1187      if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1188	this->symbol_references_.insert(n);
1189    }
1190}
1191
1192// Add an assertion.
1193
1194void
1195Script_options::add_assertion(Expression* check, const char* message,
1196			      size_t messagelen)
1197{
1198  if (this->script_sections_.in_sections_clause())
1199    this->script_sections_.add_assertion(check, message, messagelen);
1200  else
1201    {
1202      Script_assertion* p = new Script_assertion(check, message, messagelen);
1203      this->assertions_.push_back(p);
1204    }
1205}
1206
1207// Create sections required by any linker scripts.
1208
1209void
1210Script_options::create_script_sections(Layout* layout)
1211{
1212  if (this->saw_sections_clause())
1213    this->script_sections_.create_sections(layout);
1214}
1215
1216// Add any symbols we are defining to the symbol table.
1217
1218void
1219Script_options::add_symbols_to_table(Symbol_table* symtab)
1220{
1221  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1222       p != this->symbol_assignments_.end();
1223       ++p)
1224    (*p)->add_to_table(symtab);
1225  this->script_sections_.add_symbols_to_table(symtab);
1226}
1227
1228// Finalize symbol values.  Also check assertions.
1229
1230void
1231Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1232{
1233  // We finalize the symbols defined in SECTIONS first, because they
1234  // are the ones which may have changed.  This way if symbol outside
1235  // SECTIONS are defined in terms of symbols inside SECTIONS, they
1236  // will get the right value.
1237  this->script_sections_.finalize_symbols(symtab, layout);
1238
1239  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1240       p != this->symbol_assignments_.end();
1241       ++p)
1242    (*p)->finalize(symtab, layout);
1243
1244  for (Assertions::iterator p = this->assertions_.begin();
1245       p != this->assertions_.end();
1246       ++p)
1247    (*p)->check(symtab, layout);
1248}
1249
1250// Set section addresses.  We set all the symbols which have absolute
1251// values.  Then we let the SECTIONS clause do its thing.  This
1252// returns the segment which holds the file header and segment
1253// headers, if any.
1254
1255Output_segment*
1256Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1257{
1258  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1259       p != this->symbol_assignments_.end();
1260       ++p)
1261    (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1262
1263  return this->script_sections_.set_section_addresses(symtab, layout);
1264}
1265
1266// This class holds data passed through the parser to the lexer and to
1267// the parser support functions.  This avoids global variables.  We
1268// can't use global variables because we need not be called by a
1269// singleton thread.
1270
1271class Parser_closure
1272{
1273 public:
1274  Parser_closure(const char* filename,
1275		 const Position_dependent_options& posdep_options,
1276		 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1277                 Command_line* command_line,
1278		 Script_options* script_options,
1279		 Lex* lex,
1280		 bool skip_on_incompatible_target,
1281		 Script_info* script_info)
1282    : filename_(filename), posdep_options_(posdep_options),
1283      parsing_defsym_(parsing_defsym), in_group_(in_group),
1284      is_in_sysroot_(is_in_sysroot),
1285      skip_on_incompatible_target_(skip_on_incompatible_target),
1286      found_incompatible_target_(false),
1287      command_line_(command_line), script_options_(script_options),
1288      version_script_info_(script_options->version_script_info()),
1289      lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1290      script_info_(script_info)
1291  {
1292    // We start out processing C symbols in the default lex mode.
1293    this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1294    this->lex_mode_stack_.push_back(lex->mode());
1295  }
1296
1297  // Return the file name.
1298  const char*
1299  filename() const
1300  { return this->filename_; }
1301
1302  // Return the position dependent options.  The caller may modify
1303  // this.
1304  Position_dependent_options&
1305  position_dependent_options()
1306  { return this->posdep_options_; }
1307
1308  // Whether we are parsing a --defsym.
1309  bool
1310  parsing_defsym() const
1311  { return this->parsing_defsym_; }
1312
1313  // Return whether this script is being run in a group.
1314  bool
1315  in_group() const
1316  { return this->in_group_; }
1317
1318  // Return whether this script was found using a directory in the
1319  // sysroot.
1320  bool
1321  is_in_sysroot() const
1322  { return this->is_in_sysroot_; }
1323
1324  // Whether to skip to the next file with the same name if we find an
1325  // incompatible target in an OUTPUT_FORMAT statement.
1326  bool
1327  skip_on_incompatible_target() const
1328  { return this->skip_on_incompatible_target_; }
1329
1330  // Stop skipping to the next file on an incompatible target.  This
1331  // is called when we make some unrevocable change to the data
1332  // structures.
1333  void
1334  clear_skip_on_incompatible_target()
1335  { this->skip_on_incompatible_target_ = false; }
1336
1337  // Whether we found an incompatible target in an OUTPUT_FORMAT
1338  // statement.
1339  bool
1340  found_incompatible_target() const
1341  { return this->found_incompatible_target_; }
1342
1343  // Note that we found an incompatible target.
1344  void
1345  set_found_incompatible_target()
1346  { this->found_incompatible_target_ = true; }
1347
1348  // Returns the Command_line structure passed in at constructor time.
1349  // This value may be NULL.  The caller may modify this, which modifies
1350  // the passed-in Command_line object (not a copy).
1351  Command_line*
1352  command_line()
1353  { return this->command_line_; }
1354
1355  // Return the options which may be set by a script.
1356  Script_options*
1357  script_options()
1358  { return this->script_options_; }
1359
1360  // Return the object in which version script information should be stored.
1361  Version_script_info*
1362  version_script()
1363  { return this->version_script_info_; }
1364
1365  // Return the next token, and advance.
1366  const Token*
1367  next_token()
1368  {
1369    const Token* token = this->lex_->next_token();
1370    this->lineno_ = token->lineno();
1371    this->charpos_ = token->charpos();
1372    return token;
1373  }
1374
1375  // Set a new lexer mode, pushing the current one.
1376  void
1377  push_lex_mode(Lex::Mode mode)
1378  {
1379    this->lex_mode_stack_.push_back(this->lex_->mode());
1380    this->lex_->set_mode(mode);
1381  }
1382
1383  // Pop the lexer mode.
1384  void
1385  pop_lex_mode()
1386  {
1387    gold_assert(!this->lex_mode_stack_.empty());
1388    this->lex_->set_mode(this->lex_mode_stack_.back());
1389    this->lex_mode_stack_.pop_back();
1390  }
1391
1392  // Return the current lexer mode.
1393  Lex::Mode
1394  lex_mode() const
1395  { return this->lex_mode_stack_.back(); }
1396
1397  // Return the line number of the last token.
1398  int
1399  lineno() const
1400  { return this->lineno_; }
1401
1402  // Return the character position in the line of the last token.
1403  int
1404  charpos() const
1405  { return this->charpos_; }
1406
1407  // Return the list of input files, creating it if necessary.  This
1408  // is a space leak--we never free the INPUTS_ pointer.
1409  Input_arguments*
1410  inputs()
1411  {
1412    if (this->inputs_ == NULL)
1413      this->inputs_ = new Input_arguments();
1414    return this->inputs_;
1415  }
1416
1417  // Return whether we saw any input files.
1418  bool
1419  saw_inputs() const
1420  { return this->inputs_ != NULL && !this->inputs_->empty(); }
1421
1422  // Return the current language being processed in a version script
1423  // (eg, "C++").  The empty string represents unmangled C names.
1424  Version_script_info::Language
1425  get_current_language() const
1426  { return this->language_stack_.back(); }
1427
1428  // Push a language onto the stack when entering an extern block.
1429  void
1430  push_language(Version_script_info::Language lang)
1431  { this->language_stack_.push_back(lang); }
1432
1433  // Pop a language off of the stack when exiting an extern block.
1434  void
1435  pop_language()
1436  {
1437    gold_assert(!this->language_stack_.empty());
1438    this->language_stack_.pop_back();
1439  }
1440
1441  // Return a pointer to the incremental info.
1442  Script_info*
1443  script_info()
1444  { return this->script_info_; }
1445
1446 private:
1447  // The name of the file we are reading.
1448  const char* filename_;
1449  // The position dependent options.
1450  Position_dependent_options posdep_options_;
1451  // True if we are parsing a --defsym.
1452  bool parsing_defsym_;
1453  // Whether we are currently in a --start-group/--end-group.
1454  bool in_group_;
1455  // Whether the script was found in a sysrooted directory.
1456  bool is_in_sysroot_;
1457  // If this is true, then if we find an OUTPUT_FORMAT with an
1458  // incompatible target, then we tell the parser to abort so that we
1459  // can search for the next file with the same name.
1460  bool skip_on_incompatible_target_;
1461  // True if we found an OUTPUT_FORMAT with an incompatible target.
1462  bool found_incompatible_target_;
1463  // May be NULL if the user chooses not to pass one in.
1464  Command_line* command_line_;
1465  // Options which may be set from any linker script.
1466  Script_options* script_options_;
1467  // Information parsed from a version script.
1468  Version_script_info* version_script_info_;
1469  // The lexer.
1470  Lex* lex_;
1471  // The line number of the last token returned by next_token.
1472  int lineno_;
1473  // The column number of the last token returned by next_token.
1474  int charpos_;
1475  // A stack of lexer modes.
1476  std::vector<Lex::Mode> lex_mode_stack_;
1477  // A stack of which extern/language block we're inside. Can be C++,
1478  // java, or empty for C.
1479  std::vector<Version_script_info::Language> language_stack_;
1480  // New input files found to add to the link.
1481  Input_arguments* inputs_;
1482  // Pointer to incremental linking info.
1483  Script_info* script_info_;
1484};
1485
1486// FILE was found as an argument on the command line.  Try to read it
1487// as a script.  Return true if the file was handled.
1488
1489bool
1490read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1491		  Dirsearch* dirsearch, int dirindex,
1492		  Input_objects* input_objects, Mapfile* mapfile,
1493		  Input_group* input_group,
1494		  const Input_argument* input_argument,
1495		  Input_file* input_file, Task_token* next_blocker,
1496		  bool* used_next_blocker)
1497{
1498  *used_next_blocker = false;
1499
1500  std::string input_string;
1501  Lex::read_file(input_file, &input_string);
1502
1503  Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1504
1505  Script_info* script_info = NULL;
1506  if (layout->incremental_inputs() != NULL)
1507    {
1508      const std::string& filename = input_file->filename();
1509      Timespec mtime = input_file->file().get_mtime();
1510      unsigned int arg_serial = input_argument->file().arg_serial();
1511      script_info = new Script_info(filename);
1512      layout->incremental_inputs()->report_script(script_info, arg_serial,
1513						  mtime);
1514    }
1515
1516  Parser_closure closure(input_file->filename().c_str(),
1517			 input_argument->file().options(),
1518			 false,
1519			 input_group != NULL,
1520			 input_file->is_in_sysroot(),
1521                         NULL,
1522			 layout->script_options(),
1523			 &lex,
1524			 input_file->will_search_for(),
1525			 script_info);
1526
1527  bool old_saw_sections_clause =
1528    layout->script_options()->saw_sections_clause();
1529
1530  if (yyparse(&closure) != 0)
1531    {
1532      if (closure.found_incompatible_target())
1533	{
1534	  Read_symbols::incompatible_warning(input_argument, input_file);
1535	  Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1536				dirsearch, dirindex, mapfile, input_argument,
1537				input_group, next_blocker);
1538	  return true;
1539	}
1540      return false;
1541    }
1542
1543  if (!old_saw_sections_clause
1544      && layout->script_options()->saw_sections_clause()
1545      && layout->have_added_input_section())
1546    gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1547	       input_file->filename().c_str());
1548
1549  if (!closure.saw_inputs())
1550    return true;
1551
1552  Task_token* this_blocker = NULL;
1553  for (Input_arguments::const_iterator p = closure.inputs()->begin();
1554       p != closure.inputs()->end();
1555       ++p)
1556    {
1557      Task_token* nb;
1558      if (p + 1 == closure.inputs()->end())
1559	nb = next_blocker;
1560      else
1561	{
1562	  nb = new Task_token(true);
1563	  nb->add_blocker();
1564	}
1565      workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1566					     layout, dirsearch, 0, mapfile, &*p,
1567					     input_group, NULL, this_blocker, nb));
1568      this_blocker = nb;
1569    }
1570
1571  *used_next_blocker = true;
1572
1573  return true;
1574}
1575
1576// Helper function for read_version_script(), read_commandline_script() and
1577// script_include_directive().  Processes the given file in the mode indicated
1578// by first_token and lex_mode.
1579
1580static bool
1581read_script_file(const char* filename, Command_line* cmdline,
1582                 Script_options* script_options,
1583                 int first_token, Lex::Mode lex_mode)
1584{
1585  Dirsearch dirsearch;
1586  std::string name = filename;
1587
1588  // If filename is a relative filename, search for it manually using "." +
1589  // cmdline->options()->library_path() -- not dirsearch.
1590  if (!IS_ABSOLUTE_PATH(filename))
1591    {
1592      const General_options::Dir_list& search_path =
1593          cmdline->options().library_path();
1594      name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1595    }
1596
1597  // The file locking code wants to record a Task, but we haven't
1598  // started the workqueue yet.  This is only for debugging purposes,
1599  // so we invent a fake value.
1600  const Task* task = reinterpret_cast<const Task*>(-1);
1601
1602  // We don't want this file to be opened in binary mode.
1603  Position_dependent_options posdep = cmdline->position_dependent_options();
1604  if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1605    posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1606  Input_file_argument input_argument(name.c_str(),
1607				     Input_file_argument::INPUT_FILE_TYPE_FILE,
1608				     "", false, posdep);
1609  Input_file input_file(&input_argument);
1610  int dummy = 0;
1611  if (!input_file.open(dirsearch, task, &dummy))
1612    return false;
1613
1614  std::string input_string;
1615  Lex::read_file(&input_file, &input_string);
1616
1617  Lex lex(input_string.c_str(), input_string.length(), first_token);
1618  lex.set_mode(lex_mode);
1619
1620  Parser_closure closure(filename,
1621			 cmdline->position_dependent_options(),
1622			 first_token == Lex::DYNAMIC_LIST,
1623			 false,
1624			 input_file.is_in_sysroot(),
1625                         cmdline,
1626			 script_options,
1627			 &lex,
1628			 false,
1629			 NULL);
1630  if (yyparse(&closure) != 0)
1631    {
1632      input_file.file().unlock(task);
1633      return false;
1634    }
1635
1636  input_file.file().unlock(task);
1637
1638  gold_assert(!closure.saw_inputs());
1639
1640  return true;
1641}
1642
1643// FILENAME was found as an argument to --script (-T).
1644// Read it as a script, and execute its contents immediately.
1645
1646bool
1647read_commandline_script(const char* filename, Command_line* cmdline)
1648{
1649  return read_script_file(filename, cmdline, &cmdline->script_options(),
1650                          PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1651}
1652
1653// FILENAME was found as an argument to --version-script.  Read it as
1654// a version script, and store its contents in
1655// cmdline->script_options()->version_script_info().
1656
1657bool
1658read_version_script(const char* filename, Command_line* cmdline)
1659{
1660  return read_script_file(filename, cmdline, &cmdline->script_options(),
1661                          PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1662}
1663
1664// FILENAME was found as an argument to --dynamic-list.  Read it as a
1665// list of symbols, and store its contents in DYNAMIC_LIST.
1666
1667bool
1668read_dynamic_list(const char* filename, Command_line* cmdline,
1669                  Script_options* dynamic_list)
1670{
1671  return read_script_file(filename, cmdline, dynamic_list,
1672                          PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1673}
1674
1675// Implement the --defsym option on the command line.  Return true if
1676// all is well.
1677
1678bool
1679Script_options::define_symbol(const char* definition)
1680{
1681  Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1682  lex.set_mode(Lex::EXPRESSION);
1683
1684  // Dummy value.
1685  Position_dependent_options posdep_options;
1686
1687  Parser_closure closure("command line", posdep_options, true,
1688			 false, false, NULL, this, &lex, false, NULL);
1689
1690  if (yyparse(&closure) != 0)
1691    return false;
1692
1693  gold_assert(!closure.saw_inputs());
1694
1695  return true;
1696}
1697
1698// Print the script to F for debugging.
1699
1700void
1701Script_options::print(FILE* f) const
1702{
1703  fprintf(f, "%s: Dumping linker script\n", program_name);
1704
1705  if (!this->entry_.empty())
1706    fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1707
1708  for (Symbol_assignments::const_iterator p =
1709	 this->symbol_assignments_.begin();
1710       p != this->symbol_assignments_.end();
1711       ++p)
1712    (*p)->print(f);
1713
1714  for (Assertions::const_iterator p = this->assertions_.begin();
1715       p != this->assertions_.end();
1716       ++p)
1717    (*p)->print(f);
1718
1719  this->script_sections_.print(f);
1720
1721  this->version_script_info_.print(f);
1722}
1723
1724// Manage mapping from keywords to the codes expected by the bison
1725// parser.  We construct one global object for each lex mode with
1726// keywords.
1727
1728class Keyword_to_parsecode
1729{
1730 public:
1731  // The structure which maps keywords to parsecodes.
1732  struct Keyword_parsecode
1733  {
1734    // Keyword.
1735    const char* keyword;
1736    // Corresponding parsecode.
1737    int parsecode;
1738  };
1739
1740  Keyword_to_parsecode(const Keyword_parsecode* keywords,
1741                       int keyword_count)
1742      : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1743  { }
1744
1745  // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1746  // keyword.
1747  int
1748  keyword_to_parsecode(const char* keyword, size_t len) const;
1749
1750 private:
1751  const Keyword_parsecode* keyword_parsecodes_;
1752  const int keyword_count_;
1753};
1754
1755// Mapping from keyword string to keyword parsecode.  This array must
1756// be kept in sorted order.  Parsecodes are looked up using bsearch.
1757// This array must correspond to the list of parsecodes in yyscript.y.
1758
1759static const Keyword_to_parsecode::Keyword_parsecode
1760script_keyword_parsecodes[] =
1761{
1762  { "ABSOLUTE", ABSOLUTE },
1763  { "ADDR", ADDR },
1764  { "ALIGN", ALIGN_K },
1765  { "ALIGNOF", ALIGNOF },
1766  { "ASSERT", ASSERT_K },
1767  { "AS_NEEDED", AS_NEEDED },
1768  { "AT", AT },
1769  { "BIND", BIND },
1770  { "BLOCK", BLOCK },
1771  { "BYTE", BYTE },
1772  { "CONSTANT", CONSTANT },
1773  { "CONSTRUCTORS", CONSTRUCTORS },
1774  { "COPY", COPY },
1775  { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1776  { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1777  { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1778  { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1779  { "DEFINED", DEFINED },
1780  { "DSECT", DSECT },
1781  { "ENTRY", ENTRY },
1782  { "EXCLUDE_FILE", EXCLUDE_FILE },
1783  { "EXTERN", EXTERN },
1784  { "FILL", FILL },
1785  { "FLOAT", FLOAT },
1786  { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1787  { "GROUP", GROUP },
1788  { "HIDDEN", HIDDEN },
1789  { "HLL", HLL },
1790  { "INCLUDE", INCLUDE },
1791  { "INFO", INFO },
1792  { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1793  { "INPUT", INPUT },
1794  { "KEEP", KEEP },
1795  { "LENGTH", LENGTH },
1796  { "LOADADDR", LOADADDR },
1797  { "LONG", LONG },
1798  { "MAP", MAP },
1799  { "MAX", MAX_K },
1800  { "MEMORY", MEMORY },
1801  { "MIN", MIN_K },
1802  { "NEXT", NEXT },
1803  { "NOCROSSREFS", NOCROSSREFS },
1804  { "NOFLOAT", NOFLOAT },
1805  { "NOLOAD", NOLOAD },
1806  { "ONLY_IF_RO", ONLY_IF_RO },
1807  { "ONLY_IF_RW", ONLY_IF_RW },
1808  { "OPTION", OPTION },
1809  { "ORIGIN", ORIGIN },
1810  { "OUTPUT", OUTPUT },
1811  { "OUTPUT_ARCH", OUTPUT_ARCH },
1812  { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1813  { "OVERLAY", OVERLAY },
1814  { "PHDRS", PHDRS },
1815  { "PROVIDE", PROVIDE },
1816  { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1817  { "QUAD", QUAD },
1818  { "SEARCH_DIR", SEARCH_DIR },
1819  { "SECTIONS", SECTIONS },
1820  { "SEGMENT_START", SEGMENT_START },
1821  { "SHORT", SHORT },
1822  { "SIZEOF", SIZEOF },
1823  { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1824  { "SORT", SORT_BY_NAME },
1825  { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1826  { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1827  { "SORT_BY_NAME", SORT_BY_NAME },
1828  { "SPECIAL", SPECIAL },
1829  { "SQUAD", SQUAD },
1830  { "STARTUP", STARTUP },
1831  { "SUBALIGN", SUBALIGN },
1832  { "SYSLIB", SYSLIB },
1833  { "TARGET", TARGET_K },
1834  { "TRUNCATE", TRUNCATE },
1835  { "VERSION", VERSIONK },
1836  { "global", GLOBAL },
1837  { "l", LENGTH },
1838  { "len", LENGTH },
1839  { "local", LOCAL },
1840  { "o", ORIGIN },
1841  { "org", ORIGIN },
1842  { "sizeof_headers", SIZEOF_HEADERS },
1843};
1844
1845static const Keyword_to_parsecode
1846script_keywords(&script_keyword_parsecodes[0],
1847                (sizeof(script_keyword_parsecodes)
1848                 / sizeof(script_keyword_parsecodes[0])));
1849
1850static const Keyword_to_parsecode::Keyword_parsecode
1851version_script_keyword_parsecodes[] =
1852{
1853  { "extern", EXTERN },
1854  { "global", GLOBAL },
1855  { "local", LOCAL },
1856};
1857
1858static const Keyword_to_parsecode
1859version_script_keywords(&version_script_keyword_parsecodes[0],
1860                        (sizeof(version_script_keyword_parsecodes)
1861                         / sizeof(version_script_keyword_parsecodes[0])));
1862
1863static const Keyword_to_parsecode::Keyword_parsecode
1864dynamic_list_keyword_parsecodes[] =
1865{
1866  { "extern", EXTERN },
1867};
1868
1869static const Keyword_to_parsecode
1870dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1871                      (sizeof(dynamic_list_keyword_parsecodes)
1872                       / sizeof(dynamic_list_keyword_parsecodes[0])));
1873
1874
1875
1876// Comparison function passed to bsearch.
1877
1878extern "C"
1879{
1880
1881struct Ktt_key
1882{
1883  const char* str;
1884  size_t len;
1885};
1886
1887static int
1888ktt_compare(const void* keyv, const void* kttv)
1889{
1890  const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1891  const Keyword_to_parsecode::Keyword_parsecode* ktt =
1892    static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1893  int i = strncmp(key->str, ktt->keyword, key->len);
1894  if (i != 0)
1895    return i;
1896  if (ktt->keyword[key->len] != '\0')
1897    return -1;
1898  return 0;
1899}
1900
1901} // End extern "C".
1902
1903int
1904Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1905                                           size_t len) const
1906{
1907  Ktt_key key;
1908  key.str = keyword;
1909  key.len = len;
1910  void* kttv = bsearch(&key,
1911                       this->keyword_parsecodes_,
1912                       this->keyword_count_,
1913                       sizeof(this->keyword_parsecodes_[0]),
1914                       ktt_compare);
1915  if (kttv == NULL)
1916    return 0;
1917  Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1918  return ktt->parsecode;
1919}
1920
1921// The following structs are used within the VersionInfo class as well
1922// as in the bison helper functions.  They store the information
1923// parsed from the version script.
1924
1925// A single version expression.
1926// For example, pattern="std::map*" and language="C++".
1927struct Version_expression
1928{
1929  Version_expression(const std::string& a_pattern,
1930		     Version_script_info::Language a_language,
1931                     bool a_exact_match)
1932    : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1933      was_matched_by_symbol(false)
1934  { }
1935
1936  std::string pattern;
1937  Version_script_info::Language language;
1938  // If false, we use glob() to match pattern.  If true, we use strcmp().
1939  bool exact_match;
1940  // True if --no-undefined-version is in effect and we found this
1941  // version in get_symbol_version.  We use mutable because this
1942  // struct is generally not modifiable after it has been created.
1943  mutable bool was_matched_by_symbol;
1944};
1945
1946// A list of expressions.
1947struct Version_expression_list
1948{
1949  std::vector<struct Version_expression> expressions;
1950};
1951
1952// A list of which versions upon which another version depends.
1953// Strings should be from the Stringpool.
1954struct Version_dependency_list
1955{
1956  std::vector<std::string> dependencies;
1957};
1958
1959// The total definition of a version.  It includes the tag for the
1960// version, its global and local expressions, and any dependencies.
1961struct Version_tree
1962{
1963  Version_tree()
1964      : tag(), global(NULL), local(NULL), dependencies(NULL)
1965  { }
1966
1967  std::string tag;
1968  const struct Version_expression_list* global;
1969  const struct Version_expression_list* local;
1970  const struct Version_dependency_list* dependencies;
1971};
1972
1973// Helper class that calls cplus_demangle when needed and takes care of freeing
1974// the result.
1975
1976class Lazy_demangler
1977{
1978 public:
1979  Lazy_demangler(const char* symbol, int options)
1980    : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1981  { }
1982
1983  ~Lazy_demangler()
1984  { free(this->demangled_); }
1985
1986  // Return the demangled name. The actual demangling happens on the first call,
1987  // and the result is later cached.
1988  inline char*
1989  get();
1990
1991 private:
1992  // The symbol to demangle.
1993  const char* symbol_;
1994  // Option flags to pass to cplus_demagle.
1995  const int options_;
1996  // The cached demangled value, or NULL if demangling didn't happen yet or
1997  // failed.
1998  char* demangled_;
1999  // Whether we already called cplus_demangle
2000  bool did_demangle_;
2001};
2002
2003// Return the demangled name. The actual demangling happens on the first call,
2004// and the result is later cached. Returns NULL if the symbol cannot be
2005// demangled.
2006
2007inline char*
2008Lazy_demangler::get()
2009{
2010  if (!this->did_demangle_)
2011    {
2012      this->demangled_ = cplus_demangle(this->symbol_, this->options_);
2013      this->did_demangle_ = true;
2014    }
2015  return this->demangled_;
2016}
2017
2018// Class Version_script_info.
2019
2020Version_script_info::Version_script_info()
2021  : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
2022    default_version_(NULL), default_is_global_(false), is_finalized_(false)
2023{
2024  for (int i = 0; i < LANGUAGE_COUNT; ++i)
2025    this->exact_[i] = NULL;
2026}
2027
2028Version_script_info::~Version_script_info()
2029{
2030}
2031
2032// Forget all the known version script information.
2033
2034void
2035Version_script_info::clear()
2036{
2037  for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2038    delete this->dependency_lists_[k];
2039  this->dependency_lists_.clear();
2040  for (size_t k = 0; k < this->version_trees_.size(); ++k)
2041    delete this->version_trees_[k];
2042  this->version_trees_.clear();
2043  for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2044    delete this->expression_lists_[k];
2045  this->expression_lists_.clear();
2046}
2047
2048// Finalize the version script information.
2049
2050void
2051Version_script_info::finalize()
2052{
2053  if (!this->is_finalized_)
2054    {
2055      this->build_lookup_tables();
2056      this->is_finalized_ = true;
2057    }
2058}
2059
2060// Return all the versions.
2061
2062std::vector<std::string>
2063Version_script_info::get_versions() const
2064{
2065  std::vector<std::string> ret;
2066  for (size_t j = 0; j < this->version_trees_.size(); ++j)
2067    if (!this->version_trees_[j]->tag.empty())
2068      ret.push_back(this->version_trees_[j]->tag);
2069  return ret;
2070}
2071
2072// Return the dependencies of VERSION.
2073
2074std::vector<std::string>
2075Version_script_info::get_dependencies(const char* version) const
2076{
2077  std::vector<std::string> ret;
2078  for (size_t j = 0; j < this->version_trees_.size(); ++j)
2079    if (this->version_trees_[j]->tag == version)
2080      {
2081        const struct Version_dependency_list* deps =
2082          this->version_trees_[j]->dependencies;
2083        if (deps != NULL)
2084          for (size_t k = 0; k < deps->dependencies.size(); ++k)
2085            ret.push_back(deps->dependencies[k]);
2086        return ret;
2087      }
2088  return ret;
2089}
2090
2091// A version script essentially maps a symbol name to a version tag
2092// and an indication of whether symbol is global or local within that
2093// version tag.  Each symbol maps to at most one version tag.
2094// Unfortunately, in practice, version scripts are ambiguous, and list
2095// symbols multiple times.  Thus, we have to document the matching
2096// process.
2097
2098// This is a description of what the GNU linker does as of 2010-01-11.
2099// It walks through the version tags in the order in which they appear
2100// in the version script.  For each tag, it first walks through the
2101// global patterns for that tag, then the local patterns.  When
2102// looking at a single pattern, it first applies any language specific
2103// demangling as specified for the pattern, and then matches the
2104// resulting symbol name to the pattern.  If it finds an exact match
2105// for a literal pattern (a pattern enclosed in quotes or with no
2106// wildcard characters), then that is the match that it uses.  If
2107// finds a match with a wildcard pattern, then it saves it and
2108// continues searching.  Wildcard patterns that are exactly "*" are
2109// saved separately.
2110
2111// If no exact match with a literal pattern is ever found, then if a
2112// wildcard match with a global pattern was found it is used,
2113// otherwise if a wildcard match with a local pattern was found it is
2114// used.
2115
2116// This is the result:
2117//   * If there is an exact match, then we use the first tag in the
2118//     version script where it matches.
2119//     + If the exact match in that tag is global, it is used.
2120//     + Otherwise the exact match in that tag is local, and is used.
2121//   * Otherwise, if there is any match with a global wildcard pattern:
2122//     + If there is any match with a wildcard pattern which is not
2123//       "*", then we use the tag in which the *last* such pattern
2124//       appears.
2125//     + Otherwise, we matched "*".  If there is no match with a local
2126//       wildcard pattern which is not "*", then we use the *last*
2127//       match with a global "*".  Otherwise, continue.
2128//   * Otherwise, if there is any match with a local wildcard pattern:
2129//     + If there is any match with a wildcard pattern which is not
2130//       "*", then we use the tag in which the *last* such pattern
2131//       appears.
2132//     + Otherwise, we matched "*", and we use the tag in which the
2133//       *last* such match occurred.
2134
2135// There is an additional wrinkle.  When the GNU linker finds a symbol
2136// with a version defined in an object file due to a .symver
2137// directive, it looks up that symbol name in that version tag.  If it
2138// finds it, it matches the symbol name against the patterns for that
2139// version.  If there is no match with a global pattern, but there is
2140// a match with a local pattern, then the GNU linker marks the symbol
2141// as local.
2142
2143// We want gold to be generally compatible, but we also want gold to
2144// be fast.  These are the rules that gold implements:
2145//   * If there is an exact match for the mangled name, we use it.
2146//     + If there is more than one exact match, we give a warning, and
2147//       we use the first tag in the script which matches.
2148//     + If a symbol has an exact match as both global and local for
2149//       the same version tag, we give an error.
2150//   * Otherwise, we look for an extern C++ or an extern Java exact
2151//     match.  If we find an exact match, we use it.
2152//     + If there is more than one exact match, we give a warning, and
2153//       we use the first tag in the script which matches.
2154//     + If a symbol has an exact match as both global and local for
2155//       the same version tag, we give an error.
2156//   * Otherwise, we look through the wildcard patterns, ignoring "*"
2157//     patterns.  We look through the version tags in reverse order.
2158//     For each version tag, we look through the global patterns and
2159//     then the local patterns.  We use the first match we find (i.e.,
2160//     the last matching version tag in the file).
2161//   * Otherwise, we use the "*" pattern if there is one.  We give an
2162//     error if there are multiple "*" patterns.
2163
2164// At least for now, gold does not look up the version tag for a
2165// symbol version found in an object file to see if it should be
2166// forced local.  There are other ways to force a symbol to be local,
2167// and I don't understand why this one is useful.
2168
2169// Build a set of fast lookup tables for a version script.
2170
2171void
2172Version_script_info::build_lookup_tables()
2173{
2174  size_t size = this->version_trees_.size();
2175  for (size_t j = 0; j < size; ++j)
2176    {
2177      const Version_tree* v = this->version_trees_[j];
2178      this->build_expression_list_lookup(v->local, v, false);
2179      this->build_expression_list_lookup(v->global, v, true);
2180    }
2181}
2182
2183// If a pattern has backlashes but no unquoted wildcard characters,
2184// then we apply backslash unquoting and look for an exact match.
2185// Otherwise we treat it as a wildcard pattern.  This function returns
2186// true for a wildcard pattern.  Otherwise, it does backslash
2187// unquoting on *PATTERN and returns false.  If this returns true,
2188// *PATTERN may have been partially unquoted.
2189
2190bool
2191Version_script_info::unquote(std::string* pattern) const
2192{
2193  bool saw_backslash = false;
2194  size_t len = pattern->length();
2195  size_t j = 0;
2196  for (size_t i = 0; i < len; ++i)
2197    {
2198      if (saw_backslash)
2199	saw_backslash = false;
2200      else
2201	{
2202	  switch ((*pattern)[i])
2203	    {
2204	    case '?': case '[': case '*':
2205	      return true;
2206	    case '\\':
2207	      saw_backslash = true;
2208	      continue;
2209	    default:
2210	      break;
2211	    }
2212	}
2213
2214      if (i != j)
2215	(*pattern)[j] = (*pattern)[i];
2216      ++j;
2217    }
2218  return false;
2219}
2220
2221// Add an exact match for MATCH to *PE.  The result of the match is
2222// V/IS_GLOBAL.
2223
2224void
2225Version_script_info::add_exact_match(const std::string& match,
2226				     const Version_tree* v, bool is_global,
2227				     const Version_expression* ve,
2228				     Exact* pe)
2229{
2230  std::pair<Exact::iterator, bool> ins =
2231    pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2232  if (ins.second)
2233    {
2234      // This is the first time we have seen this match.
2235      return;
2236    }
2237
2238  Version_tree_match& vtm(ins.first->second);
2239  if (vtm.real->tag != v->tag)
2240    {
2241      // This is an ambiguous match.  We still return the
2242      // first version that we found in the script, but we
2243      // record the new version to issue a warning if we
2244      // wind up looking up this symbol.
2245      if (vtm.ambiguous == NULL)
2246	vtm.ambiguous = v;
2247    }
2248  else if (is_global != vtm.is_global)
2249    {
2250      // We have a match for both the global and local entries for a
2251      // version tag.  That's got to be wrong.
2252      gold_error(_("'%s' appears as both a global and a local symbol "
2253		   "for version '%s' in script"),
2254		 match.c_str(), v->tag.c_str());
2255    }
2256}
2257
2258// Build fast lookup information for EXPLIST and store it in LOOKUP.
2259// All matches go to V, and IS_GLOBAL is true if they are global
2260// matches.
2261
2262void
2263Version_script_info::build_expression_list_lookup(
2264    const Version_expression_list* explist,
2265    const Version_tree* v,
2266    bool is_global)
2267{
2268  if (explist == NULL)
2269    return;
2270  size_t size = explist->expressions.size();
2271  for (size_t i = 0; i < size; ++i)
2272    {
2273      const Version_expression& exp(explist->expressions[i]);
2274
2275      if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2276	{
2277	  if (this->default_version_ != NULL
2278	      && this->default_version_->tag != v->tag)
2279	    gold_warning(_("wildcard match appears in both version '%s' "
2280			   "and '%s' in script"),
2281			 this->default_version_->tag.c_str(), v->tag.c_str());
2282	  else if (this->default_version_ != NULL
2283		   && this->default_is_global_ != is_global)
2284	    gold_error(_("wildcard match appears as both global and local "
2285			 "in version '%s' in script"),
2286		       v->tag.c_str());
2287	  this->default_version_ = v;
2288	  this->default_is_global_ = is_global;
2289	  continue;
2290	}
2291
2292      std::string pattern = exp.pattern;
2293      if (!exp.exact_match)
2294	{
2295	  if (this->unquote(&pattern))
2296	    {
2297	      this->globs_.push_back(Glob(&exp, v, is_global));
2298	      continue;
2299	    }
2300	}
2301
2302      if (this->exact_[exp.language] == NULL)
2303	this->exact_[exp.language] = new Exact();
2304      this->add_exact_match(pattern, v, is_global, &exp,
2305			    this->exact_[exp.language]);
2306    }
2307}
2308
2309// Return the name to match given a name, a language code, and two
2310// lazy demanglers.
2311
2312const char*
2313Version_script_info::get_name_to_match(const char* name,
2314				       int language,
2315				       Lazy_demangler* cpp_demangler,
2316				       Lazy_demangler* java_demangler) const
2317{
2318  switch (language)
2319    {
2320    case LANGUAGE_C:
2321      return name;
2322    case LANGUAGE_CXX:
2323      return cpp_demangler->get();
2324    case LANGUAGE_JAVA:
2325      return java_demangler->get();
2326    default:
2327      gold_unreachable();
2328    }
2329}
2330
2331// Look up SYMBOL_NAME in the list of versions.  Return true if the
2332// symbol is found, false if not.  If the symbol is found, then if
2333// PVERSION is not NULL, set *PVERSION to the version tag, and if
2334// P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2335// symbol is global or not.
2336
2337bool
2338Version_script_info::get_symbol_version(const char* symbol_name,
2339					std::string* pversion,
2340					bool* p_is_global) const
2341{
2342  Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2343  Lazy_demangler java_demangled_name(symbol_name,
2344				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2345
2346  gold_assert(this->is_finalized_);
2347  for (int i = 0; i < LANGUAGE_COUNT; ++i)
2348    {
2349      Exact* exact = this->exact_[i];
2350      if (exact == NULL)
2351	continue;
2352
2353      const char* name_to_match = this->get_name_to_match(symbol_name, i,
2354							  &cpp_demangled_name,
2355							  &java_demangled_name);
2356      if (name_to_match == NULL)
2357	{
2358	  // If the name can not be demangled, the GNU linker goes
2359	  // ahead and tries to match it anyhow.  That does not
2360	  // make sense to me and I have not implemented it.
2361	  continue;
2362	}
2363
2364      Exact::const_iterator pe = exact->find(name_to_match);
2365      if (pe != exact->end())
2366	{
2367	  const Version_tree_match& vtm(pe->second);
2368	  if (vtm.ambiguous != NULL)
2369	    gold_warning(_("using '%s' as version for '%s' which is also "
2370			   "named in version '%s' in script"),
2371			 vtm.real->tag.c_str(), name_to_match,
2372			 vtm.ambiguous->tag.c_str());
2373
2374	  if (pversion != NULL)
2375	    *pversion = vtm.real->tag;
2376	  if (p_is_global != NULL)
2377	    *p_is_global = vtm.is_global;
2378
2379	  // If we are using --no-undefined-version, and this is a
2380	  // global symbol, we have to record that we have found this
2381	  // symbol, so that we don't warn about it.  We have to do
2382	  // this now, because otherwise we have no way to get from a
2383	  // non-C language back to the demangled name that we
2384	  // matched.
2385	  if (p_is_global != NULL && vtm.is_global)
2386	    vtm.expression->was_matched_by_symbol = true;
2387
2388	  return true;
2389	}
2390    }
2391
2392  // Look through the glob patterns in reverse order.
2393
2394  for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2395       p != this->globs_.rend();
2396       ++p)
2397    {
2398      int language = p->expression->language;
2399      const char* name_to_match = this->get_name_to_match(symbol_name,
2400							  language,
2401							  &cpp_demangled_name,
2402							  &java_demangled_name);
2403      if (name_to_match == NULL)
2404	continue;
2405
2406      if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2407		  FNM_NOESCAPE) == 0)
2408	{
2409	  if (pversion != NULL)
2410	    *pversion = p->version->tag;
2411	  if (p_is_global != NULL)
2412	    *p_is_global = p->is_global;
2413	  return true;
2414	}
2415    }
2416
2417  // Finally, there may be a wildcard.
2418  if (this->default_version_ != NULL)
2419    {
2420      if (pversion != NULL)
2421	*pversion = this->default_version_->tag;
2422      if (p_is_global != NULL)
2423	*p_is_global = this->default_is_global_;
2424      return true;
2425    }
2426
2427  return false;
2428}
2429
2430// Give an error if any exact symbol names (not wildcards) appear in a
2431// version script, but there is no such symbol.
2432
2433void
2434Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2435{
2436  for (size_t i = 0; i < this->version_trees_.size(); ++i)
2437    {
2438      const Version_tree* vt = this->version_trees_[i];
2439      if (vt->global == NULL)
2440	continue;
2441      for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2442	{
2443	  const Version_expression& expression(vt->global->expressions[j]);
2444
2445	  // Ignore cases where we used the version because we saw a
2446	  // symbol that we looked up.  Note that
2447	  // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2448	  // not a definition.  That's OK as in that case we most
2449	  // likely gave an undefined symbol error anyhow.
2450	  if (expression.was_matched_by_symbol)
2451	    continue;
2452
2453	  // Just ignore names which are in languages other than C.
2454	  // We have no way to look them up in the symbol table.
2455	  if (expression.language != LANGUAGE_C)
2456	    continue;
2457
2458	  // Remove backslash quoting, and ignore wildcard patterns.
2459	  std::string pattern = expression.pattern;
2460	  if (!expression.exact_match)
2461	    {
2462	      if (this->unquote(&pattern))
2463		continue;
2464	    }
2465
2466	  if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2467	    gold_error(_("version script assignment of %s to symbol %s "
2468			 "failed: symbol not defined"),
2469		       vt->tag.c_str(), pattern.c_str());
2470	}
2471    }
2472}
2473
2474struct Version_dependency_list*
2475Version_script_info::allocate_dependency_list()
2476{
2477  dependency_lists_.push_back(new Version_dependency_list);
2478  return dependency_lists_.back();
2479}
2480
2481struct Version_expression_list*
2482Version_script_info::allocate_expression_list()
2483{
2484  expression_lists_.push_back(new Version_expression_list);
2485  return expression_lists_.back();
2486}
2487
2488struct Version_tree*
2489Version_script_info::allocate_version_tree()
2490{
2491  version_trees_.push_back(new Version_tree);
2492  return version_trees_.back();
2493}
2494
2495// Print for debugging.
2496
2497void
2498Version_script_info::print(FILE* f) const
2499{
2500  if (this->empty())
2501    return;
2502
2503  fprintf(f, "VERSION {");
2504
2505  for (size_t i = 0; i < this->version_trees_.size(); ++i)
2506    {
2507      const Version_tree* vt = this->version_trees_[i];
2508
2509      if (vt->tag.empty())
2510	fprintf(f, "  {\n");
2511      else
2512	fprintf(f, "  %s {\n", vt->tag.c_str());
2513
2514      if (vt->global != NULL)
2515	{
2516	  fprintf(f, "    global :\n");
2517	  this->print_expression_list(f, vt->global);
2518	}
2519
2520      if (vt->local != NULL)
2521	{
2522	  fprintf(f, "    local :\n");
2523	  this->print_expression_list(f, vt->local);
2524	}
2525
2526      fprintf(f, "  }");
2527      if (vt->dependencies != NULL)
2528	{
2529	  const Version_dependency_list* deps = vt->dependencies;
2530	  for (size_t j = 0; j < deps->dependencies.size(); ++j)
2531	    {
2532	      if (j < deps->dependencies.size() - 1)
2533		fprintf(f, "\n");
2534	      fprintf(f, "    %s", deps->dependencies[j].c_str());
2535	    }
2536	}
2537      fprintf(f, ";\n");
2538    }
2539
2540  fprintf(f, "}\n");
2541}
2542
2543void
2544Version_script_info::print_expression_list(
2545    FILE* f,
2546    const Version_expression_list* vel) const
2547{
2548  Version_script_info::Language current_language = LANGUAGE_C;
2549  for (size_t i = 0; i < vel->expressions.size(); ++i)
2550    {
2551      const Version_expression& ve(vel->expressions[i]);
2552
2553      if (ve.language != current_language)
2554	{
2555	  if (current_language != LANGUAGE_C)
2556	    fprintf(f, "      }\n");
2557	  switch (ve.language)
2558	    {
2559	    case LANGUAGE_C:
2560	      break;
2561	    case LANGUAGE_CXX:
2562	      fprintf(f, "      extern \"C++\" {\n");
2563	      break;
2564	    case LANGUAGE_JAVA:
2565	      fprintf(f, "      extern \"Java\" {\n");
2566	      break;
2567	    default:
2568	      gold_unreachable();
2569	    }
2570	  current_language = ve.language;
2571	}
2572
2573      fprintf(f, "      ");
2574      if (current_language != LANGUAGE_C)
2575	fprintf(f, "  ");
2576
2577      if (ve.exact_match)
2578	fprintf(f, "\"");
2579      fprintf(f, "%s", ve.pattern.c_str());
2580      if (ve.exact_match)
2581	fprintf(f, "\"");
2582
2583      fprintf(f, "\n");
2584    }
2585
2586  if (current_language != LANGUAGE_C)
2587    fprintf(f, "      }\n");
2588}
2589
2590} // End namespace gold.
2591
2592// The remaining functions are extern "C", so it's clearer to not put
2593// them in namespace gold.
2594
2595using namespace gold;
2596
2597// This function is called by the bison parser to return the next
2598// token.
2599
2600extern "C" int
2601yylex(YYSTYPE* lvalp, void* closurev)
2602{
2603  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2604  const Token* token = closure->next_token();
2605  switch (token->classification())
2606    {
2607    default:
2608      gold_unreachable();
2609
2610    case Token::TOKEN_INVALID:
2611      yyerror(closurev, "invalid character");
2612      return 0;
2613
2614    case Token::TOKEN_EOF:
2615      return 0;
2616
2617    case Token::TOKEN_STRING:
2618      {
2619	// This is either a keyword or a STRING.
2620	size_t len;
2621	const char* str = token->string_value(&len);
2622	int parsecode = 0;
2623        switch (closure->lex_mode())
2624          {
2625          case Lex::LINKER_SCRIPT:
2626            parsecode = script_keywords.keyword_to_parsecode(str, len);
2627            break;
2628          case Lex::VERSION_SCRIPT:
2629            parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2630            break;
2631          case Lex::DYNAMIC_LIST:
2632            parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2633            break;
2634          default:
2635            break;
2636          }
2637	if (parsecode != 0)
2638	  return parsecode;
2639	lvalp->string.value = str;
2640	lvalp->string.length = len;
2641	return STRING;
2642      }
2643
2644    case Token::TOKEN_QUOTED_STRING:
2645      lvalp->string.value = token->string_value(&lvalp->string.length);
2646      return QUOTED_STRING;
2647
2648    case Token::TOKEN_OPERATOR:
2649      return token->operator_value();
2650
2651    case Token::TOKEN_INTEGER:
2652      lvalp->integer = token->integer_value();
2653      return INTEGER;
2654    }
2655}
2656
2657// This function is called by the bison parser to report an error.
2658
2659extern "C" void
2660yyerror(void* closurev, const char* message)
2661{
2662  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2663  gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2664	     closure->charpos(), message);
2665}
2666
2667// Called by the bison parser to add an external symbol to the link.
2668
2669extern "C" void
2670script_add_extern(void* closurev, const char* name, size_t length)
2671{
2672  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2673  closure->script_options()->add_symbol_reference(name, length);
2674}
2675
2676// Called by the bison parser to add a file to the link.
2677
2678extern "C" void
2679script_add_file(void* closurev, const char* name, size_t length)
2680{
2681  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2682
2683  // If this is an absolute path, and we found the script in the
2684  // sysroot, then we want to prepend the sysroot to the file name.
2685  // For example, this is how we handle a cross link to the x86_64
2686  // libc.so, which refers to /lib/libc.so.6.
2687  std::string name_string(name, length);
2688  const char* extra_search_path = ".";
2689  std::string script_directory;
2690  if (IS_ABSOLUTE_PATH(name_string.c_str()))
2691    {
2692      if (closure->is_in_sysroot())
2693	{
2694	  const std::string& sysroot(parameters->options().sysroot());
2695	  gold_assert(!sysroot.empty());
2696	  name_string = sysroot + name_string;
2697	}
2698    }
2699  else
2700    {
2701      // In addition to checking the normal library search path, we
2702      // also want to check in the script-directory.
2703      const char* slash = strrchr(closure->filename(), '/');
2704      if (slash != NULL)
2705	{
2706	  script_directory.assign(closure->filename(),
2707				  slash - closure->filename() + 1);
2708	  extra_search_path = script_directory.c_str();
2709	}
2710    }
2711
2712  Input_file_argument file(name_string.c_str(),
2713			   Input_file_argument::INPUT_FILE_TYPE_FILE,
2714			   extra_search_path, false,
2715			   closure->position_dependent_options());
2716  Input_argument& arg = closure->inputs()->add_file(file);
2717  arg.set_script_info(closure->script_info());
2718}
2719
2720// Called by the bison parser to add a library to the link.
2721
2722extern "C" void
2723script_add_library(void* closurev, const char* name, size_t length)
2724{
2725  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2726  std::string name_string(name, length);
2727
2728  if (name_string[0] != 'l')
2729    gold_error(_("library name must be prefixed with -l"));
2730
2731  Input_file_argument file(name_string.c_str() + 1,
2732			   Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2733			   "", false,
2734			   closure->position_dependent_options());
2735  Input_argument& arg = closure->inputs()->add_file(file);
2736  arg.set_script_info(closure->script_info());
2737}
2738
2739// Called by the bison parser to start a group.  If we are already in
2740// a group, that means that this script was invoked within a
2741// --start-group --end-group sequence on the command line, or that
2742// this script was found in a GROUP of another script.  In that case,
2743// we simply continue the existing group, rather than starting a new
2744// one.  It is possible to construct a case in which this will do
2745// something other than what would happen if we did a recursive group,
2746// but it's hard to imagine why the different behaviour would be
2747// useful for a real program.  Avoiding recursive groups is simpler
2748// and more efficient.
2749
2750extern "C" void
2751script_start_group(void* closurev)
2752{
2753  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2754  if (!closure->in_group())
2755    closure->inputs()->start_group();
2756}
2757
2758// Called by the bison parser at the end of a group.
2759
2760extern "C" void
2761script_end_group(void* closurev)
2762{
2763  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2764  if (!closure->in_group())
2765    closure->inputs()->end_group();
2766}
2767
2768// Called by the bison parser to start an AS_NEEDED list.
2769
2770extern "C" void
2771script_start_as_needed(void* closurev)
2772{
2773  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2774  closure->position_dependent_options().set_as_needed(true);
2775}
2776
2777// Called by the bison parser at the end of an AS_NEEDED list.
2778
2779extern "C" void
2780script_end_as_needed(void* closurev)
2781{
2782  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2783  closure->position_dependent_options().set_as_needed(false);
2784}
2785
2786// Called by the bison parser to set the entry symbol.
2787
2788extern "C" void
2789script_set_entry(void* closurev, const char* entry, size_t length)
2790{
2791  // We'll parse this exactly the same as --entry=ENTRY on the commandline
2792  // TODO(csilvers): FIXME -- call set_entry directly.
2793  std::string arg("--entry=");
2794  arg.append(entry, length);
2795  script_parse_option(closurev, arg.c_str(), arg.size());
2796}
2797
2798// Called by the bison parser to set whether to define common symbols.
2799
2800extern "C" void
2801script_set_common_allocation(void* closurev, int set)
2802{
2803  const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2804  script_parse_option(closurev, arg, strlen(arg));
2805}
2806
2807// Called by the bison parser to refer to a symbol.
2808
2809extern "C" Expression*
2810script_symbol(void* closurev, const char* name, size_t length)
2811{
2812  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2813  if (length != 1 || name[0] != '.')
2814    closure->script_options()->add_symbol_reference(name, length);
2815  return script_exp_string(name, length);
2816}
2817
2818// Called by the bison parser to define a symbol.
2819
2820extern "C" void
2821script_set_symbol(void* closurev, const char* name, size_t length,
2822		  Expression* value, int providei, int hiddeni)
2823{
2824  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2825  const bool provide = providei != 0;
2826  const bool hidden = hiddeni != 0;
2827  closure->script_options()->add_symbol_assignment(name, length,
2828						   closure->parsing_defsym(),
2829						   value, provide, hidden);
2830  closure->clear_skip_on_incompatible_target();
2831}
2832
2833// Called by the bison parser to add an assertion.
2834
2835extern "C" void
2836script_add_assertion(void* closurev, Expression* check, const char* message,
2837		     size_t messagelen)
2838{
2839  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2840  closure->script_options()->add_assertion(check, message, messagelen);
2841  closure->clear_skip_on_incompatible_target();
2842}
2843
2844// Called by the bison parser to parse an OPTION.
2845
2846extern "C" void
2847script_parse_option(void* closurev, const char* option, size_t length)
2848{
2849  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2850  // We treat the option as a single command-line option, even if
2851  // it has internal whitespace.
2852  if (closure->command_line() == NULL)
2853    {
2854      // There are some options that we could handle here--e.g.,
2855      // -lLIBRARY.  Should we bother?
2856      gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2857		     " for scripts specified via -T/--script"),
2858		   closure->filename(), closure->lineno(), closure->charpos());
2859    }
2860  else
2861    {
2862      bool past_a_double_dash_option = false;
2863      const char* mutable_option = strndup(option, length);
2864      gold_assert(mutable_option != NULL);
2865      closure->command_line()->process_one_option(1, &mutable_option, 0,
2866                                                  &past_a_double_dash_option);
2867      // The General_options class will quite possibly store a pointer
2868      // into mutable_option, so we can't free it.  In cases the class
2869      // does not store such a pointer, this is a memory leak.  Alas. :(
2870    }
2871  closure->clear_skip_on_incompatible_target();
2872}
2873
2874// Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2875// takes either one or three arguments.  In the three argument case,
2876// the format depends on the endianness option, which we don't
2877// currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2878// wrong format, then we want to search for a new file.  Returning 0
2879// here will cause the parser to immediately abort.
2880
2881extern "C" int
2882script_check_output_format(void* closurev,
2883			   const char* default_name, size_t default_length,
2884			   const char*, size_t, const char*, size_t)
2885{
2886  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2887  std::string name(default_name, default_length);
2888  Target* target = select_target_by_bfd_name(name.c_str());
2889  if (target == NULL || !parameters->is_compatible_target(target))
2890    {
2891      if (closure->skip_on_incompatible_target())
2892	{
2893	  closure->set_found_incompatible_target();
2894	  return 0;
2895	}
2896      // FIXME: Should we warn about the unknown target?
2897    }
2898  return 1;
2899}
2900
2901// Called by the bison parser to handle TARGET.
2902
2903extern "C" void
2904script_set_target(void* closurev, const char* target, size_t len)
2905{
2906  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2907  std::string s(target, len);
2908  General_options::Object_format format_enum;
2909  format_enum = General_options::string_to_object_format(s.c_str());
2910  closure->position_dependent_options().set_format_enum(format_enum);
2911}
2912
2913// Called by the bison parser to handle SEARCH_DIR.  This is handled
2914// exactly like a -L option.
2915
2916extern "C" void
2917script_add_search_dir(void* closurev, const char* option, size_t length)
2918{
2919  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2920  if (closure->command_line() == NULL)
2921    gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2922		   " for scripts specified via -T/--script"),
2923		 closure->filename(), closure->lineno(), closure->charpos());
2924  else if (!closure->command_line()->options().nostdlib())
2925    {
2926      std::string s = "-L" + std::string(option, length);
2927      script_parse_option(closurev, s.c_str(), s.size());
2928    }
2929}
2930
2931/* Called by the bison parser to push the lexer into expression
2932   mode.  */
2933
2934extern "C" void
2935script_push_lex_into_expression_mode(void* closurev)
2936{
2937  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2938  closure->push_lex_mode(Lex::EXPRESSION);
2939}
2940
2941/* Called by the bison parser to push the lexer into version
2942   mode.  */
2943
2944extern "C" void
2945script_push_lex_into_version_mode(void* closurev)
2946{
2947  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2948  if (closure->version_script()->is_finalized())
2949    gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2950	       closure->filename(), closure->lineno(), closure->charpos());
2951  closure->push_lex_mode(Lex::VERSION_SCRIPT);
2952}
2953
2954/* Called by the bison parser to pop the lexer mode.  */
2955
2956extern "C" void
2957script_pop_lex_mode(void* closurev)
2958{
2959  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2960  closure->pop_lex_mode();
2961}
2962
2963// Register an entire version node. For example:
2964//
2965// GLIBC_2.1 {
2966//   global: foo;
2967// } GLIBC_2.0;
2968//
2969// - tag is "GLIBC_2.1"
2970// - tree contains the information "global: foo"
2971// - deps contains "GLIBC_2.0"
2972
2973extern "C" void
2974script_register_vers_node(void*,
2975			  const char* tag,
2976			  int taglen,
2977			  struct Version_tree* tree,
2978			  struct Version_dependency_list* deps)
2979{
2980  gold_assert(tree != NULL);
2981  tree->dependencies = deps;
2982  if (tag != NULL)
2983    tree->tag = std::string(tag, taglen);
2984}
2985
2986// Add a dependencies to the list of existing dependencies, if any,
2987// and return the expanded list.
2988
2989extern "C" struct Version_dependency_list*
2990script_add_vers_depend(void* closurev,
2991		       struct Version_dependency_list* all_deps,
2992		       const char* depend_to_add, int deplen)
2993{
2994  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2995  if (all_deps == NULL)
2996    all_deps = closure->version_script()->allocate_dependency_list();
2997  all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2998  return all_deps;
2999}
3000
3001// Add a pattern expression to an existing list of expressions, if any.
3002
3003extern "C" struct Version_expression_list*
3004script_new_vers_pattern(void* closurev,
3005			struct Version_expression_list* expressions,
3006			const char* pattern, int patlen, int exact_match)
3007{
3008  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3009  if (expressions == NULL)
3010    expressions = closure->version_script()->allocate_expression_list();
3011  expressions->expressions.push_back(
3012      Version_expression(std::string(pattern, patlen),
3013                         closure->get_current_language(),
3014                         static_cast<bool>(exact_match)));
3015  return expressions;
3016}
3017
3018// Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
3019
3020extern "C" struct Version_expression_list*
3021script_merge_expressions(struct Version_expression_list* a,
3022                         struct Version_expression_list* b)
3023{
3024  a->expressions.insert(a->expressions.end(),
3025                        b->expressions.begin(), b->expressions.end());
3026  // We could delete b and remove it from expressions_lists_, but
3027  // that's a lot of work.  This works just as well.
3028  b->expressions.clear();
3029  return a;
3030}
3031
3032// Combine the global and local expressions into a a Version_tree.
3033
3034extern "C" struct Version_tree*
3035script_new_vers_node(void* closurev,
3036		     struct Version_expression_list* global,
3037		     struct Version_expression_list* local)
3038{
3039  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3040  Version_tree* tree = closure->version_script()->allocate_version_tree();
3041  tree->global = global;
3042  tree->local = local;
3043  return tree;
3044}
3045
3046// Handle a transition in language, such as at the
3047// start or end of 'extern "C++"'
3048
3049extern "C" void
3050version_script_push_lang(void* closurev, const char* lang, int langlen)
3051{
3052  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3053  std::string language(lang, langlen);
3054  Version_script_info::Language code;
3055  if (language.empty() || language == "C")
3056    code = Version_script_info::LANGUAGE_C;
3057  else if (language == "C++")
3058    code = Version_script_info::LANGUAGE_CXX;
3059  else if (language == "Java")
3060    code = Version_script_info::LANGUAGE_JAVA;
3061  else
3062    {
3063      char* buf = new char[langlen + 100];
3064      snprintf(buf, langlen + 100,
3065	       _("unrecognized version script language '%s'"),
3066	       language.c_str());
3067      yyerror(closurev, buf);
3068      delete[] buf;
3069      code = Version_script_info::LANGUAGE_C;
3070    }
3071  closure->push_language(code);
3072}
3073
3074extern "C" void
3075version_script_pop_lang(void* closurev)
3076{
3077  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3078  closure->pop_language();
3079}
3080
3081// Called by the bison parser to start a SECTIONS clause.
3082
3083extern "C" void
3084script_start_sections(void* closurev)
3085{
3086  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3087  closure->script_options()->script_sections()->start_sections();
3088  closure->clear_skip_on_incompatible_target();
3089}
3090
3091// Called by the bison parser to finish a SECTIONS clause.
3092
3093extern "C" void
3094script_finish_sections(void* closurev)
3095{
3096  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3097  closure->script_options()->script_sections()->finish_sections();
3098}
3099
3100// Start processing entries for an output section.
3101
3102extern "C" void
3103script_start_output_section(void* closurev, const char* name, size_t namelen,
3104			    const struct Parser_output_section_header* header)
3105{
3106  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3107  closure->script_options()->script_sections()->start_output_section(name,
3108								     namelen,
3109								     header);
3110}
3111
3112// Finish processing entries for an output section.
3113
3114extern "C" void
3115script_finish_output_section(void* closurev,
3116			     const struct Parser_output_section_trailer* trail)
3117{
3118  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3119  closure->script_options()->script_sections()->finish_output_section(trail);
3120}
3121
3122// Add a data item (e.g., "WORD (0)") to the current output section.
3123
3124extern "C" void
3125script_add_data(void* closurev, int data_token, Expression* val)
3126{
3127  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3128  int size;
3129  bool is_signed = true;
3130  switch (data_token)
3131    {
3132    case QUAD:
3133      size = 8;
3134      is_signed = false;
3135      break;
3136    case SQUAD:
3137      size = 8;
3138      break;
3139    case LONG:
3140      size = 4;
3141      break;
3142    case SHORT:
3143      size = 2;
3144      break;
3145    case BYTE:
3146      size = 1;
3147      break;
3148    default:
3149      gold_unreachable();
3150    }
3151  closure->script_options()->script_sections()->add_data(size, is_signed, val);
3152}
3153
3154// Add a clause setting the fill value to the current output section.
3155
3156extern "C" void
3157script_add_fill(void* closurev, Expression* val)
3158{
3159  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3160  closure->script_options()->script_sections()->add_fill(val);
3161}
3162
3163// Add a new input section specification to the current output
3164// section.
3165
3166extern "C" void
3167script_add_input_section(void* closurev,
3168			 const struct Input_section_spec* spec,
3169			 int keepi)
3170{
3171  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3172  bool keep = keepi != 0;
3173  closure->script_options()->script_sections()->add_input_section(spec, keep);
3174}
3175
3176// When we see DATA_SEGMENT_ALIGN we record that following output
3177// sections may be relro.
3178
3179extern "C" void
3180script_data_segment_align(void* closurev)
3181{
3182  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3183  if (!closure->script_options()->saw_sections_clause())
3184    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3185	       closure->filename(), closure->lineno(), closure->charpos());
3186  else
3187    closure->script_options()->script_sections()->data_segment_align();
3188}
3189
3190// When we see DATA_SEGMENT_RELRO_END we know that all output sections
3191// since DATA_SEGMENT_ALIGN should be relro.
3192
3193extern "C" void
3194script_data_segment_relro_end(void* closurev)
3195{
3196  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3197  if (!closure->script_options()->saw_sections_clause())
3198    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3199	       closure->filename(), closure->lineno(), closure->charpos());
3200  else
3201    closure->script_options()->script_sections()->data_segment_relro_end();
3202}
3203
3204// Create a new list of string/sort pairs.
3205
3206extern "C" String_sort_list_ptr
3207script_new_string_sort_list(const struct Wildcard_section* string_sort)
3208{
3209  return new String_sort_list(1, *string_sort);
3210}
3211
3212// Add an entry to a list of string/sort pairs.  The way the parser
3213// works permits us to simply modify the first parameter, rather than
3214// copy the vector.
3215
3216extern "C" String_sort_list_ptr
3217script_string_sort_list_add(String_sort_list_ptr pv,
3218			    const struct Wildcard_section* string_sort)
3219{
3220  if (pv == NULL)
3221    return script_new_string_sort_list(string_sort);
3222  else
3223    {
3224      pv->push_back(*string_sort);
3225      return pv;
3226    }
3227}
3228
3229// Create a new list of strings.
3230
3231extern "C" String_list_ptr
3232script_new_string_list(const char* str, size_t len)
3233{
3234  return new String_list(1, std::string(str, len));
3235}
3236
3237// Add an element to a list of strings.  The way the parser works
3238// permits us to simply modify the first parameter, rather than copy
3239// the vector.
3240
3241extern "C" String_list_ptr
3242script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3243{
3244  if (pv == NULL)
3245    return script_new_string_list(str, len);
3246  else
3247    {
3248      pv->push_back(std::string(str, len));
3249      return pv;
3250    }
3251}
3252
3253// Concatenate two string lists.  Either or both may be NULL.  The way
3254// the parser works permits us to modify the parameters, rather than
3255// copy the vector.
3256
3257extern "C" String_list_ptr
3258script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3259{
3260  if (pv1 == NULL)
3261    return pv2;
3262  if (pv2 == NULL)
3263    return pv1;
3264  pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3265  return pv1;
3266}
3267
3268// Add a new program header.
3269
3270extern "C" void
3271script_add_phdr(void* closurev, const char* name, size_t namelen,
3272		unsigned int type, const Phdr_info* info)
3273{
3274  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3275  bool includes_filehdr = info->includes_filehdr != 0;
3276  bool includes_phdrs = info->includes_phdrs != 0;
3277  bool is_flags_valid = info->is_flags_valid != 0;
3278  Script_sections* ss = closure->script_options()->script_sections();
3279  ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3280	       is_flags_valid, info->flags, info->load_address);
3281  closure->clear_skip_on_incompatible_target();
3282}
3283
3284// Convert a program header string to a type.
3285
3286#define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3287
3288static struct
3289{
3290  const char* name;
3291  size_t namelen;
3292  unsigned int val;
3293} phdr_type_names[] =
3294{
3295  PHDR_TYPE(PT_NULL),
3296  PHDR_TYPE(PT_LOAD),
3297  PHDR_TYPE(PT_DYNAMIC),
3298  PHDR_TYPE(PT_INTERP),
3299  PHDR_TYPE(PT_NOTE),
3300  PHDR_TYPE(PT_SHLIB),
3301  PHDR_TYPE(PT_PHDR),
3302  PHDR_TYPE(PT_TLS),
3303  PHDR_TYPE(PT_GNU_EH_FRAME),
3304  PHDR_TYPE(PT_GNU_STACK),
3305  PHDR_TYPE(PT_GNU_RELRO)
3306};
3307
3308extern "C" unsigned int
3309script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3310{
3311  for (unsigned int i = 0;
3312       i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3313       ++i)
3314    if (namelen == phdr_type_names[i].namelen
3315	&& strncmp(name, phdr_type_names[i].name, namelen) == 0)
3316      return phdr_type_names[i].val;
3317  yyerror(closurev, _("unknown PHDR type (try integer)"));
3318  return elfcpp::PT_NULL;
3319}
3320
3321extern "C" void
3322script_saw_segment_start_expression(void* closurev)
3323{
3324  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3325  Script_sections* ss = closure->script_options()->script_sections();
3326  ss->set_saw_segment_start_expression(true);
3327}
3328
3329extern "C" void
3330script_set_section_region(void* closurev, const char* name, size_t namelen,
3331			  int set_vma)
3332{
3333  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3334  if (!closure->script_options()->saw_sections_clause())
3335    {
3336      gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3337		   "SECTIONS clause"),
3338		 closure->filename(), closure->lineno(), closure->charpos(),
3339		 static_cast<int>(namelen), name);
3340      return;
3341    }
3342
3343  Script_sections* ss = closure->script_options()->script_sections();
3344  Memory_region* mr = ss->find_memory_region(name, namelen);
3345  if (mr == NULL)
3346    {
3347      gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3348		 closure->filename(), closure->lineno(), closure->charpos(),
3349		 static_cast<int>(namelen), name);
3350      return;
3351    }
3352
3353  ss->set_memory_region(mr, set_vma);
3354}
3355
3356extern "C" void
3357script_add_memory(void* closurev, const char* name, size_t namelen,
3358		  unsigned int attrs, Expression* origin, Expression* length)
3359{
3360  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3361  Script_sections* ss = closure->script_options()->script_sections();
3362  ss->add_memory_region(name, namelen, attrs, origin, length);
3363}
3364
3365extern "C" unsigned int
3366script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3367			 int invert)
3368{
3369  int attributes = 0;
3370
3371  while (attrlen--)
3372    switch (*attrs++)
3373      {
3374      case 'R':
3375      case 'r':
3376	attributes |= MEM_READABLE; break;
3377      case 'W':
3378      case 'w':
3379	attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3380      case 'X':
3381      case 'x':
3382	attributes |= MEM_EXECUTABLE; break;
3383      case 'A':
3384      case 'a':
3385	attributes |= MEM_ALLOCATABLE; break;
3386      case 'I':
3387      case 'i':
3388      case 'L':
3389      case 'l':
3390	attributes |= MEM_INITIALIZED; break;
3391      default:
3392	yyerror(closurev, _("unknown MEMORY attribute"));
3393      }
3394
3395  if (invert)
3396    attributes = (~ attributes) & MEM_ATTR_MASK;
3397
3398  return attributes;
3399}
3400
3401extern "C" void
3402script_include_directive(int first_token, void* closurev,
3403			 const char* filename, size_t length)
3404{
3405  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3406  std::string name(filename, length);
3407  Command_line* cmdline = closure->command_line();
3408  read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3409                   first_token, Lex::LINKER_SCRIPT);
3410}
3411
3412// Functions for memory regions.
3413
3414extern "C" Expression*
3415script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3416{
3417  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3418  Script_sections* ss = closure->script_options()->script_sections();
3419  Expression* origin = ss->find_memory_region_origin(name, namelen);
3420
3421  if (origin == NULL)
3422    {
3423      gold_error(_("undefined memory region '%s' referenced "
3424		   "in ORIGIN expression"),
3425		 name);
3426      // Create a dummy expression to prevent crashes later on.
3427      origin = script_exp_integer(0);
3428    }
3429
3430  return origin;
3431}
3432
3433extern "C" Expression*
3434script_exp_function_length(void* closurev, const char* name, size_t namelen)
3435{
3436  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3437  Script_sections* ss = closure->script_options()->script_sections();
3438  Expression* length = ss->find_memory_region_length(name, namelen);
3439
3440  if (length == NULL)
3441    {
3442      gold_error(_("undefined memory region '%s' referenced "
3443		   "in LENGTH expression"),
3444		 name);
3445      // Create a dummy expression to prevent crashes later on.
3446      length = script_exp_integer(0);
3447    }
3448
3449  return length;
3450}
3451