1/* md5.c - Functions to compute MD5 message digest of files or memory blocks
2   according to the definition of MD5 in RFC 1321 from April 1992.
3   Copyright (C) 1995, 1996, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4   NOTE: The canonical source of this file is maintained with the GNU C
5   Library.  Bugs can be reported to bug-glibc@prep.ai.mit.edu.
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by the
9   Free Software Foundation; either version 2, or (at your option) any
10   later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software Foundation,
19   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
20#include <sys/cdefs.h>
21__RCSID("$NetBSD: md5.c,v 1.2 2016/05/17 14:00:09 christos Exp $");
22
23
24/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.  */
25
26#ifdef HAVE_CONFIG_H
27# include <config.h>
28#endif
29
30#include "md5.h"
31
32#include <stddef.h>
33#include <string.h>
34
35#if USE_UNLOCKED_IO
36# include "unlocked-io.h"
37#endif
38
39#ifdef _LIBC
40# include <endian.h>
41# if __BYTE_ORDER == __BIG_ENDIAN
42#  define WORDS_BIGENDIAN 1
43# endif
44/* We need to keep the namespace clean so define the MD5 function
45   protected using leading __ .  */
46# define md5_init_ctx __md5_init_ctx
47# define md5_process_block __md5_process_block
48# define md5_process_bytes __md5_process_bytes
49# define md5_finish_ctx __md5_finish_ctx
50# define md5_read_ctx __md5_read_ctx
51# define md5_stream __md5_stream
52# define md5_buffer __md5_buffer
53#endif
54
55#ifdef WORDS_BIGENDIAN
56# define SWAP(n)							\
57    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
58#else
59# define SWAP(n) (n)
60#endif
61
62#define BLOCKSIZE 4096
63#if BLOCKSIZE % 64 != 0
64# error "invalid BLOCKSIZE"
65#endif
66
67/* This array contains the bytes used to pad the buffer to the next
68   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
69static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
70
71
72/* Initialize structure containing state of computation.
73   (RFC 1321, 3.3: Step 3)  */
74void
75md5_init_ctx (struct md5_ctx *ctx)
76{
77  ctx->A = 0x67452301;
78  ctx->B = 0xefcdab89;
79  ctx->C = 0x98badcfe;
80  ctx->D = 0x10325476;
81
82  ctx->total[0] = ctx->total[1] = 0;
83  ctx->buflen = 0;
84}
85
86/* Put result from CTX in first 16 bytes following RESBUF.  The result
87   must be in little endian byte order.
88
89   IMPORTANT: On some systems it is required that RESBUF is correctly
90   aligned for a 32 bits value.  */
91void *
92md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
93{
94  ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
95  ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
96  ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
97  ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
98
99  return resbuf;
100}
101
102/* Process the remaining bytes in the internal buffer and the usual
103   prolog according to the standard and write the result to RESBUF.
104
105   IMPORTANT: On some systems it is required that RESBUF is correctly
106   aligned for a 32 bits value.  */
107void *
108md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
109{
110  /* Take yet unprocessed bytes into account.  */
111  md5_uint32 bytes = ctx->buflen;
112  size_t pad;
113
114  /* Now count remaining bytes.  */
115  ctx->total[0] += bytes;
116  if (ctx->total[0] < bytes)
117    ++ctx->total[1];
118
119  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
120  memcpy (&ctx->buffer[bytes], fillbuf, pad);
121
122  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
123  *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
124  *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
125							(ctx->total[0] >> 29));
126
127  /* Process last bytes.  */
128  md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
129
130  return md5_read_ctx (ctx, resbuf);
131}
132
133/* Compute MD5 message digest for bytes read from STREAM.  The
134   resulting message digest number will be written into the 16 bytes
135   beginning at RESBLOCK.  */
136int
137md5_stream (FILE *stream, void *resblock)
138{
139  struct md5_ctx ctx;
140  char buffer[BLOCKSIZE + 72];
141  size_t sum;
142
143  /* Initialize the computation context.  */
144  md5_init_ctx (&ctx);
145
146  /* Iterate over full file contents.  */
147  while (1)
148    {
149      /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
150	 computation function processes the whole buffer so that with the
151	 next round of the loop another block can be read.  */
152      size_t n;
153      sum = 0;
154
155      /* Read block.  Take care for partial reads.  */
156      while (1)
157	{
158	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
159
160	  sum += n;
161
162	  if (sum == BLOCKSIZE)
163	    break;
164
165	  if (n == 0)
166	    {
167	      /* Check for the error flag IFF N == 0, so that we don't
168		 exit the loop after a partial read due to e.g., EAGAIN
169		 or EWOULDBLOCK.  */
170	      if (ferror (stream))
171		return 1;
172	      goto process_partial_block;
173	    }
174
175	  /* We've read at least one byte, so ignore errors.  But always
176	     check for EOF, since feof may be true even though N > 0.
177	     Otherwise, we could end up calling fread after EOF.  */
178	  if (feof (stream))
179	    goto process_partial_block;
180	}
181
182      /* Process buffer with BLOCKSIZE bytes.  Note that
183			BLOCKSIZE % 64 == 0
184       */
185      md5_process_block (buffer, BLOCKSIZE, &ctx);
186    }
187
188 process_partial_block:;
189
190  /* Process any remaining bytes.  */
191  if (sum > 0)
192    md5_process_bytes (buffer, sum, &ctx);
193
194  /* Construct result in desired memory.  */
195  md5_finish_ctx (&ctx, resblock);
196  return 0;
197}
198
199/* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
200   result is always in little endian byte order, so that a byte-wise
201   output yields to the wanted ASCII representation of the message
202   digest.  */
203void *
204md5_buffer (const char *buffer, size_t len, void *resblock)
205{
206  struct md5_ctx ctx;
207
208  /* Initialize the computation context.  */
209  md5_init_ctx (&ctx);
210
211  /* Process whole buffer but last len % 64 bytes.  */
212  md5_process_bytes (buffer, len, &ctx);
213
214  /* Put result in desired memory area.  */
215  return md5_finish_ctx (&ctx, resblock);
216}
217
218
219void
220md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
221{
222  /* When we already have some bits in our internal buffer concatenate
223     both inputs first.  */
224  if (ctx->buflen != 0)
225    {
226      size_t left_over = ctx->buflen;
227      size_t add = 128 - left_over > len ? len : 128 - left_over;
228
229      memcpy (&ctx->buffer[left_over], buffer, add);
230      ctx->buflen += add;
231
232      if (ctx->buflen > 64)
233	{
234	  md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
235
236	  ctx->buflen &= 63;
237	  /* The regions in the following copy operation cannot overlap.  */
238	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
239		  ctx->buflen);
240	}
241
242      buffer = (const char *) buffer + add;
243      len -= add;
244    }
245
246  /* Process available complete blocks.  */
247  if (len >= 64)
248    {
249#if !_STRING_ARCH_unaligned
250# define alignof(type) offsetof (struct { char c; type x; }, x)
251# define UNALIGNED_P(p) (((size_t) p) % alignof (md5_uint32) != 0)
252      if (UNALIGNED_P (buffer))
253	while (len > 64)
254	  {
255	    md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
256	    buffer = (const char *) buffer + 64;
257	    len -= 64;
258	  }
259      else
260#endif
261	{
262	  md5_process_block (buffer, len & ~63, ctx);
263	  buffer = (const char *) buffer + (len & ~63);
264	  len &= 63;
265	}
266    }
267
268  /* Move remaining bytes in internal buffer.  */
269  if (len > 0)
270    {
271      size_t left_over = ctx->buflen;
272
273      memcpy (&ctx->buffer[left_over], buffer, len);
274      left_over += len;
275      if (left_over >= 64)
276	{
277	  md5_process_block (ctx->buffer, 64, ctx);
278	  left_over -= 64;
279	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
280	}
281      ctx->buflen = left_over;
282    }
283}
284
285
286/* These are the four functions used in the four steps of the MD5 algorithm
287   and defined in the RFC 1321.  The first function is a little bit optimized
288   (as found in Colin Plumbs public domain implementation).  */
289/* #define FF(b, c, d) ((b & c) | (~b & d)) */
290#define FF(b, c, d) (d ^ (b & (c ^ d)))
291#define FG(b, c, d) FF (d, b, c)
292#define FH(b, c, d) (b ^ c ^ d)
293#define FI(b, c, d) (c ^ (b | ~d))
294
295/* Process LEN bytes of BUFFER, accumulating context into CTX.
296   It is assumed that LEN % 64 == 0.  */
297
298void
299md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
300{
301  md5_uint32 correct_words[16];
302  const md5_uint32 *words = buffer;
303  size_t nwords = len / sizeof (md5_uint32);
304  const md5_uint32 *endp = words + nwords;
305  md5_uint32 A = ctx->A;
306  md5_uint32 B = ctx->B;
307  md5_uint32 C = ctx->C;
308  md5_uint32 D = ctx->D;
309
310  /* First increment the byte count.  RFC 1321 specifies the possible
311     length of the file up to 2^64 bits.  Here we only compute the
312     number of bytes.  Do a double word increment.  */
313  ctx->total[0] += len;
314  if (ctx->total[0] < len)
315    ++ctx->total[1];
316
317  /* Process all bytes in the buffer with 64 bytes in each round of
318     the loop.  */
319  while (words < endp)
320    {
321      md5_uint32 *cwp = correct_words;
322      md5_uint32 A_save = A;
323      md5_uint32 B_save = B;
324      md5_uint32 C_save = C;
325      md5_uint32 D_save = D;
326
327      /* First round: using the given function, the context and a constant
328	 the next context is computed.  Because the algorithms processing
329	 unit is a 32-bit word and it is determined to work on words in
330	 little endian byte order we perhaps have to change the byte order
331	 before the computation.  To reduce the work for the next steps
332	 we store the swapped words in the array CORRECT_WORDS.  */
333
334#define OP(a, b, c, d, s, T)						\
335      do								\
336        {								\
337	  a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;		\
338	  ++words;							\
339	  CYCLIC (a, s);						\
340	  a += b;							\
341        }								\
342      while (0)
343
344      /* It is unfortunate that C does not provide an operator for
345	 cyclic rotation.  Hope the C compiler is smart enough.  */
346#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
347
348      /* Before we start, one word to the strange constants.
349	 They are defined in RFC 1321 as
350
351	 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
352
353	 Here is an equivalent invocation using Perl:
354
355	 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
356       */
357
358      /* Round 1.  */
359      OP (A, B, C, D,  7, 0xd76aa478);
360      OP (D, A, B, C, 12, 0xe8c7b756);
361      OP (C, D, A, B, 17, 0x242070db);
362      OP (B, C, D, A, 22, 0xc1bdceee);
363      OP (A, B, C, D,  7, 0xf57c0faf);
364      OP (D, A, B, C, 12, 0x4787c62a);
365      OP (C, D, A, B, 17, 0xa8304613);
366      OP (B, C, D, A, 22, 0xfd469501);
367      OP (A, B, C, D,  7, 0x698098d8);
368      OP (D, A, B, C, 12, 0x8b44f7af);
369      OP (C, D, A, B, 17, 0xffff5bb1);
370      OP (B, C, D, A, 22, 0x895cd7be);
371      OP (A, B, C, D,  7, 0x6b901122);
372      OP (D, A, B, C, 12, 0xfd987193);
373      OP (C, D, A, B, 17, 0xa679438e);
374      OP (B, C, D, A, 22, 0x49b40821);
375
376      /* For the second to fourth round we have the possibly swapped words
377	 in CORRECT_WORDS.  Redefine the macro to take an additional first
378	 argument specifying the function to use.  */
379#undef OP
380#define OP(f, a, b, c, d, k, s, T)					\
381      do								\
382	{								\
383	  a += f (b, c, d) + correct_words[k] + T;			\
384	  CYCLIC (a, s);						\
385	  a += b;							\
386	}								\
387      while (0)
388
389      /* Round 2.  */
390      OP (FG, A, B, C, D,  1,  5, 0xf61e2562);
391      OP (FG, D, A, B, C,  6,  9, 0xc040b340);
392      OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
393      OP (FG, B, C, D, A,  0, 20, 0xe9b6c7aa);
394      OP (FG, A, B, C, D,  5,  5, 0xd62f105d);
395      OP (FG, D, A, B, C, 10,  9, 0x02441453);
396      OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
397      OP (FG, B, C, D, A,  4, 20, 0xe7d3fbc8);
398      OP (FG, A, B, C, D,  9,  5, 0x21e1cde6);
399      OP (FG, D, A, B, C, 14,  9, 0xc33707d6);
400      OP (FG, C, D, A, B,  3, 14, 0xf4d50d87);
401      OP (FG, B, C, D, A,  8, 20, 0x455a14ed);
402      OP (FG, A, B, C, D, 13,  5, 0xa9e3e905);
403      OP (FG, D, A, B, C,  2,  9, 0xfcefa3f8);
404      OP (FG, C, D, A, B,  7, 14, 0x676f02d9);
405      OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
406
407      /* Round 3.  */
408      OP (FH, A, B, C, D,  5,  4, 0xfffa3942);
409      OP (FH, D, A, B, C,  8, 11, 0x8771f681);
410      OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
411      OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
412      OP (FH, A, B, C, D,  1,  4, 0xa4beea44);
413      OP (FH, D, A, B, C,  4, 11, 0x4bdecfa9);
414      OP (FH, C, D, A, B,  7, 16, 0xf6bb4b60);
415      OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
416      OP (FH, A, B, C, D, 13,  4, 0x289b7ec6);
417      OP (FH, D, A, B, C,  0, 11, 0xeaa127fa);
418      OP (FH, C, D, A, B,  3, 16, 0xd4ef3085);
419      OP (FH, B, C, D, A,  6, 23, 0x04881d05);
420      OP (FH, A, B, C, D,  9,  4, 0xd9d4d039);
421      OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
422      OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
423      OP (FH, B, C, D, A,  2, 23, 0xc4ac5665);
424
425      /* Round 4.  */
426      OP (FI, A, B, C, D,  0,  6, 0xf4292244);
427      OP (FI, D, A, B, C,  7, 10, 0x432aff97);
428      OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
429      OP (FI, B, C, D, A,  5, 21, 0xfc93a039);
430      OP (FI, A, B, C, D, 12,  6, 0x655b59c3);
431      OP (FI, D, A, B, C,  3, 10, 0x8f0ccc92);
432      OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
433      OP (FI, B, C, D, A,  1, 21, 0x85845dd1);
434      OP (FI, A, B, C, D,  8,  6, 0x6fa87e4f);
435      OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
436      OP (FI, C, D, A, B,  6, 15, 0xa3014314);
437      OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
438      OP (FI, A, B, C, D,  4,  6, 0xf7537e82);
439      OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
440      OP (FI, C, D, A, B,  2, 15, 0x2ad7d2bb);
441      OP (FI, B, C, D, A,  9, 21, 0xeb86d391);
442
443      /* Add the starting values of the context.  */
444      A += A_save;
445      B += B_save;
446      C += C_save;
447      D += D_save;
448    }
449
450  /* Put checksum in context given as argument.  */
451  ctx->A = A;
452  ctx->B = B;
453  ctx->C = C;
454  ctx->D = D;
455}
456