1236769Sobrien/*
2236769Sobrien * CDDL HEADER START
3236769Sobrien *
4236769Sobrien * The contents of this file are subject to the terms of the
5236769Sobrien * Common Development and Distribution License (the "License").
6236769Sobrien * You may not use this file except in compliance with the License.
7236769Sobrien *
8236769Sobrien * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9236769Sobrien * or http://www.opensolaris.org/os/licensing.
10236769Sobrien * See the License for the specific language governing permissions
11236769Sobrien * and limitations under the License.
12236769Sobrien *
13236769Sobrien * When distributing Covered Code, include this CDDL HEADER in each
14236769Sobrien * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15236769Sobrien * If applicable, add the following below this CDDL HEADER, with the
16236769Sobrien * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28 */
29
30#include <sys/dsl_pool.h>
31#include <sys/dsl_dataset.h>
32#include <sys/dsl_prop.h>
33#include <sys/dsl_dir.h>
34#include <sys/dsl_synctask.h>
35#include <sys/dsl_scan.h>
36#include <sys/dnode.h>
37#include <sys/dmu_tx.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/zap.h>
41#include <sys/zio.h>
42#include <sys/zfs_context.h>
43#include <sys/fs/zfs.h>
44#include <sys/zfs_znode.h>
45#include <sys/spa_impl.h>
46#include <sys/dsl_deadlist.h>
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
49#include <sys/zil_impl.h>
50#include <sys/dsl_userhold.h>
51
52#if defined(__FreeBSD__) && defined(_KERNEL)
53#include <sys/types.h>
54#include <sys/sysctl.h>
55#endif
56
57/*
58 * ZFS Write Throttle
59 * ------------------
60 *
61 * ZFS must limit the rate of incoming writes to the rate at which it is able
62 * to sync data modifications to the backend storage. Throttling by too much
63 * creates an artificial limit; throttling by too little can only be sustained
64 * for short periods and would lead to highly lumpy performance. On a per-pool
65 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
66 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
67 * of dirty data decreases. When the amount of dirty data exceeds a
68 * predetermined threshold further modifications are blocked until the amount
69 * of dirty data decreases (as data is synced out).
70 *
71 * The limit on dirty data is tunable, and should be adjusted according to
72 * both the IO capacity and available memory of the system. The larger the
73 * window, the more ZFS is able to aggregate and amortize metadata (and data)
74 * changes. However, memory is a limited resource, and allowing for more dirty
75 * data comes at the cost of keeping other useful data in memory (for example
76 * ZFS data cached by the ARC).
77 *
78 * Implementation
79 *
80 * As buffers are modified dsl_pool_willuse_space() increments both the per-
81 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
82 * dirty space used; dsl_pool_dirty_space() decrements those values as data
83 * is synced out from dsl_pool_sync(). While only the poolwide value is
84 * relevant, the per-txg value is useful for debugging. The tunable
85 * zfs_dirty_data_max determines the dirty space limit. Once that value is
86 * exceeded, new writes are halted until space frees up.
87 *
88 * The zfs_dirty_data_sync tunable dictates the threshold at which we
89 * ensure that there is a txg syncing (see the comment in txg.c for a full
90 * description of transaction group stages).
91 *
92 * The IO scheduler uses both the dirty space limit and current amount of
93 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
94 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
95 *
96 * The delay is also calculated based on the amount of dirty data.  See the
97 * comment above dmu_tx_delay() for details.
98 */
99
100/*
101 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
102 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
103 */
104uint64_t zfs_dirty_data_max;
105uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
106int zfs_dirty_data_max_percent = 10;
107
108/*
109 * If there is at least this much dirty data, push out a txg.
110 */
111uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
112
113/*
114 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
115 * and delay each transaction.
116 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
117 */
118int zfs_delay_min_dirty_percent = 60;
119
120/*
121 * This controls how quickly the delay approaches infinity.
122 * Larger values cause it to delay more for a given amount of dirty data.
123 * Therefore larger values will cause there to be less dirty data for a
124 * given throughput.
125 *
126 * For the smoothest delay, this value should be about 1 billion divided
127 * by the maximum number of operations per second.  This will smoothly
128 * handle between 10x and 1/10th this number.
129 *
130 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
131 * multiply in dmu_tx_delay().
132 */
133uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
134
135
136#if defined(__FreeBSD__) && defined(_KERNEL)
137
138extern int zfs_vdev_async_write_active_max_dirty_percent;
139
140SYSCTL_DECL(_vfs_zfs);
141
142SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
143    &zfs_dirty_data_max, 0,
144    "The maximum amount of dirty data in bytes after which new writes are "
145    "halted until space becomes available");
146
147SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
148    &zfs_dirty_data_max_max, 0,
149    "The absolute cap on dirty_data_max when auto calculating");
150
151static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
152SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
153    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
154    sysctl_zfs_dirty_data_max_percent, "I",
155    "The percent of physical memory used to auto calculate dirty_data_max");
156
157SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
158    &zfs_dirty_data_sync, 0,
159    "Force a txg if the number of dirty buffer bytes exceed this value");
160
161static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
162/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
163SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
164    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
165    sysctl_zfs_delay_min_dirty_percent, "I",
166    "The limit of outstanding dirty data before transations are delayed");
167
168static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
169/* No zfs_delay_scale tunable due to limit requirements */
170SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
171    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
172    sysctl_zfs_delay_scale, "QU",
173    "Controls how quickly the delay approaches infinity");
174
175static int
176sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
177{
178	int val, err;
179
180	val = zfs_dirty_data_max_percent;
181	err = sysctl_handle_int(oidp, &val, 0, req);
182	if (err != 0 || req->newptr == NULL)
183		return (err);
184
185	if (val < 0 || val > 100)
186		return (EINVAL);
187
188	zfs_dirty_data_max_percent = val;
189
190	return (0);
191}
192
193static int
194sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
195{
196	int val, err;
197
198	val = zfs_delay_min_dirty_percent;
199	err = sysctl_handle_int(oidp, &val, 0, req);
200	if (err != 0 || req->newptr == NULL)
201		return (err);
202
203	if (val < zfs_vdev_async_write_active_max_dirty_percent)
204		return (EINVAL);
205
206	zfs_delay_min_dirty_percent = val;
207
208	return (0);
209}
210
211static int
212sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
213{
214	uint64_t val;
215	int err;
216
217	val = zfs_delay_scale;
218	err = sysctl_handle_64(oidp, &val, 0, req);
219	if (err != 0 || req->newptr == NULL)
220		return (err);
221
222	if (val > UINT64_MAX / zfs_dirty_data_max)
223		return (EINVAL);
224
225	zfs_delay_scale = val;
226
227	return (0);
228}
229#endif
230
231hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
232hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
233
234int
235dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
236{
237	uint64_t obj;
238	int err;
239
240	err = zap_lookup(dp->dp_meta_objset,
241	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
242	    name, sizeof (obj), 1, &obj);
243	if (err)
244		return (err);
245
246	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
247}
248
249static dsl_pool_t *
250dsl_pool_open_impl(spa_t *spa, uint64_t txg)
251{
252	dsl_pool_t *dp;
253	blkptr_t *bp = spa_get_rootblkptr(spa);
254
255	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
256	dp->dp_spa = spa;
257	dp->dp_meta_rootbp = *bp;
258	rrw_init(&dp->dp_config_rwlock, B_TRUE);
259	txg_init(dp, txg);
260
261	txg_list_create(&dp->dp_dirty_datasets,
262	    offsetof(dsl_dataset_t, ds_dirty_link));
263	txg_list_create(&dp->dp_dirty_zilogs,
264	    offsetof(zilog_t, zl_dirty_link));
265	txg_list_create(&dp->dp_dirty_dirs,
266	    offsetof(dsl_dir_t, dd_dirty_link));
267	txg_list_create(&dp->dp_sync_tasks,
268	    offsetof(dsl_sync_task_t, dst_node));
269
270	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
271	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
272
273	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
274	    1, 4, 0);
275
276	return (dp);
277}
278
279int
280dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
281{
282	int err;
283	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
284
285	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
286	    &dp->dp_meta_objset);
287	if (err != 0)
288		dsl_pool_close(dp);
289	else
290		*dpp = dp;
291
292	return (err);
293}
294
295int
296dsl_pool_open(dsl_pool_t *dp)
297{
298	int err;
299	dsl_dir_t *dd;
300	dsl_dataset_t *ds;
301	uint64_t obj;
302
303	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
304	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
306	    &dp->dp_root_dir_obj);
307	if (err)
308		goto out;
309
310	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
311	    NULL, dp, &dp->dp_root_dir);
312	if (err)
313		goto out;
314
315	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
316	if (err)
317		goto out;
318
319	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
320		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
321		if (err)
322			goto out;
323		err = dsl_dataset_hold_obj(dp,
324		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
325		if (err == 0) {
326			err = dsl_dataset_hold_obj(dp,
327			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
328			    &dp->dp_origin_snap);
329			dsl_dataset_rele(ds, FTAG);
330		}
331		dsl_dir_rele(dd, dp);
332		if (err)
333			goto out;
334	}
335
336	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
337		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
338		    &dp->dp_free_dir);
339		if (err)
340			goto out;
341
342		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
343		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
344		if (err)
345			goto out;
346		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
347		    dp->dp_meta_objset, obj));
348	}
349
350	/*
351	 * Note: errors ignored, because the leak dir will not exist if we
352	 * have not encountered a leak yet.
353	 */
354	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
355	    &dp->dp_leak_dir);
356
357	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
358		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
359		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
360		    &dp->dp_bptree_obj);
361		if (err != 0)
362			goto out;
363	}
364
365	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
366		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
367		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
368		    &dp->dp_empty_bpobj);
369		if (err != 0)
370			goto out;
371	}
372
373	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
374	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
375	    &dp->dp_tmp_userrefs_obj);
376	if (err == ENOENT)
377		err = 0;
378	if (err)
379		goto out;
380
381	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
382
383out:
384	rrw_exit(&dp->dp_config_rwlock, FTAG);
385	return (err);
386}
387
388void
389dsl_pool_close(dsl_pool_t *dp)
390{
391	/*
392	 * Drop our references from dsl_pool_open().
393	 *
394	 * Since we held the origin_snap from "syncing" context (which
395	 * includes pool-opening context), it actually only got a "ref"
396	 * and not a hold, so just drop that here.
397	 */
398	if (dp->dp_origin_snap)
399		dsl_dataset_rele(dp->dp_origin_snap, dp);
400	if (dp->dp_mos_dir)
401		dsl_dir_rele(dp->dp_mos_dir, dp);
402	if (dp->dp_free_dir)
403		dsl_dir_rele(dp->dp_free_dir, dp);
404	if (dp->dp_leak_dir)
405		dsl_dir_rele(dp->dp_leak_dir, dp);
406	if (dp->dp_root_dir)
407		dsl_dir_rele(dp->dp_root_dir, dp);
408
409	bpobj_close(&dp->dp_free_bpobj);
410
411	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
412	if (dp->dp_meta_objset)
413		dmu_objset_evict(dp->dp_meta_objset);
414
415	txg_list_destroy(&dp->dp_dirty_datasets);
416	txg_list_destroy(&dp->dp_dirty_zilogs);
417	txg_list_destroy(&dp->dp_sync_tasks);
418	txg_list_destroy(&dp->dp_dirty_dirs);
419
420	/*
421	 * We can't set retry to TRUE since we're explicitly specifying
422	 * a spa to flush. This is good enough; any missed buffers for
423	 * this spa won't cause trouble, and they'll eventually fall
424	 * out of the ARC just like any other unused buffer.
425	 */
426	arc_flush(dp->dp_spa, FALSE);
427
428	txg_fini(dp);
429	dsl_scan_fini(dp);
430	dmu_buf_user_evict_wait();
431
432	rrw_destroy(&dp->dp_config_rwlock);
433	mutex_destroy(&dp->dp_lock);
434	cv_destroy(&dp->dp_spaceavail_cv);
435	taskq_destroy(dp->dp_vnrele_taskq);
436	if (dp->dp_blkstats)
437		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
438	kmem_free(dp, sizeof (dsl_pool_t));
439}
440
441dsl_pool_t *
442dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
443{
444	int err;
445	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
446	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
447	objset_t *os;
448	dsl_dataset_t *ds;
449	uint64_t obj;
450
451	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
452
453	/* create and open the MOS (meta-objset) */
454	dp->dp_meta_objset = dmu_objset_create_impl(spa,
455	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
456
457	/* create the pool directory */
458	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
459	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
460	ASSERT0(err);
461
462	/* Initialize scan structures */
463	VERIFY0(dsl_scan_init(dp, txg));
464
465	/* create and open the root dir */
466	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
467	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
468	    NULL, dp, &dp->dp_root_dir));
469
470	/* create and open the meta-objset dir */
471	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
472	VERIFY0(dsl_pool_open_special_dir(dp,
473	    MOS_DIR_NAME, &dp->dp_mos_dir));
474
475	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
476		/* create and open the free dir */
477		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
478		    FREE_DIR_NAME, tx);
479		VERIFY0(dsl_pool_open_special_dir(dp,
480		    FREE_DIR_NAME, &dp->dp_free_dir));
481
482		/* create and open the free_bplist */
483		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
484		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
485		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
486		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
487		    dp->dp_meta_objset, obj));
488	}
489
490	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
491		dsl_pool_create_origin(dp, tx);
492
493	/* create the root dataset */
494	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
495
496	/* create the root objset */
497	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
498	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
499	os = dmu_objset_create_impl(dp->dp_spa, ds,
500	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
501	rrw_exit(&ds->ds_bp_rwlock, FTAG);
502#ifdef _KERNEL
503	zfs_create_fs(os, kcred, zplprops, tx);
504#endif
505	dsl_dataset_rele(ds, FTAG);
506
507	dmu_tx_commit(tx);
508
509	rrw_exit(&dp->dp_config_rwlock, FTAG);
510
511	return (dp);
512}
513
514/*
515 * Account for the meta-objset space in its placeholder dsl_dir.
516 */
517void
518dsl_pool_mos_diduse_space(dsl_pool_t *dp,
519    int64_t used, int64_t comp, int64_t uncomp)
520{
521	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
522	mutex_enter(&dp->dp_lock);
523	dp->dp_mos_used_delta += used;
524	dp->dp_mos_compressed_delta += comp;
525	dp->dp_mos_uncompressed_delta += uncomp;
526	mutex_exit(&dp->dp_lock);
527}
528
529static void
530dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
531{
532	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
533	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
534	VERIFY0(zio_wait(zio));
535	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
536	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
537}
538
539static void
540dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
541{
542	ASSERT(MUTEX_HELD(&dp->dp_lock));
543
544	if (delta < 0)
545		ASSERT3U(-delta, <=, dp->dp_dirty_total);
546
547	dp->dp_dirty_total += delta;
548
549	/*
550	 * Note: we signal even when increasing dp_dirty_total.
551	 * This ensures forward progress -- each thread wakes the next waiter.
552	 */
553	if (dp->dp_dirty_total <= zfs_dirty_data_max)
554		cv_signal(&dp->dp_spaceavail_cv);
555}
556
557void
558dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
559{
560	zio_t *zio;
561	dmu_tx_t *tx;
562	dsl_dir_t *dd;
563	dsl_dataset_t *ds;
564	objset_t *mos = dp->dp_meta_objset;
565	list_t synced_datasets;
566
567	list_create(&synced_datasets, sizeof (dsl_dataset_t),
568	    offsetof(dsl_dataset_t, ds_synced_link));
569
570	tx = dmu_tx_create_assigned(dp, txg);
571
572	/*
573	 * Write out all dirty blocks of dirty datasets.
574	 */
575	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
576	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
577		/*
578		 * We must not sync any non-MOS datasets twice, because
579		 * we may have taken a snapshot of them.  However, we
580		 * may sync newly-created datasets on pass 2.
581		 */
582		ASSERT(!list_link_active(&ds->ds_synced_link));
583		list_insert_tail(&synced_datasets, ds);
584		dsl_dataset_sync(ds, zio, tx);
585	}
586	VERIFY0(zio_wait(zio));
587
588	/*
589	 * We have written all of the accounted dirty data, so our
590	 * dp_space_towrite should now be zero.  However, some seldom-used
591	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
592	 * rounding error in dbuf_write_physdone).
593	 * Shore up the accounting of any dirtied space now.
594	 */
595	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
596
597	/*
598	 * Update the long range free counter after
599	 * we're done syncing user data
600	 */
601	mutex_enter(&dp->dp_lock);
602	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
603	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
604	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
605	mutex_exit(&dp->dp_lock);
606
607	/*
608	 * After the data blocks have been written (ensured by the zio_wait()
609	 * above), update the user/group space accounting.
610	 */
611	for (ds = list_head(&synced_datasets); ds != NULL;
612	    ds = list_next(&synced_datasets, ds)) {
613		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
614	}
615
616	/*
617	 * Sync the datasets again to push out the changes due to
618	 * userspace updates.  This must be done before we process the
619	 * sync tasks, so that any snapshots will have the correct
620	 * user accounting information (and we won't get confused
621	 * about which blocks are part of the snapshot).
622	 */
623	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
624	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
625		ASSERT(list_link_active(&ds->ds_synced_link));
626		dmu_buf_rele(ds->ds_dbuf, ds);
627		dsl_dataset_sync(ds, zio, tx);
628	}
629	VERIFY0(zio_wait(zio));
630
631	/*
632	 * Now that the datasets have been completely synced, we can
633	 * clean up our in-memory structures accumulated while syncing:
634	 *
635	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
636	 *  - release hold from dsl_dataset_dirty()
637	 */
638	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
639		dsl_dataset_sync_done(ds, tx);
640	}
641	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
642		dsl_dir_sync(dd, tx);
643	}
644
645	/*
646	 * The MOS's space is accounted for in the pool/$MOS
647	 * (dp_mos_dir).  We can't modify the mos while we're syncing
648	 * it, so we remember the deltas and apply them here.
649	 */
650	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
651	    dp->dp_mos_uncompressed_delta != 0) {
652		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
653		    dp->dp_mos_used_delta,
654		    dp->dp_mos_compressed_delta,
655		    dp->dp_mos_uncompressed_delta, tx);
656		dp->dp_mos_used_delta = 0;
657		dp->dp_mos_compressed_delta = 0;
658		dp->dp_mos_uncompressed_delta = 0;
659	}
660
661	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
662	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
663		dsl_pool_sync_mos(dp, tx);
664	}
665
666	/*
667	 * If we modify a dataset in the same txg that we want to destroy it,
668	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
669	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
670	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
671	 * and clearing the hold on it) before we process the sync_tasks.
672	 * The MOS data dirtied by the sync_tasks will be synced on the next
673	 * pass.
674	 */
675	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
676		dsl_sync_task_t *dst;
677		/*
678		 * No more sync tasks should have been added while we
679		 * were syncing.
680		 */
681		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
682		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
683			dsl_sync_task_sync(dst, tx);
684	}
685
686	dmu_tx_commit(tx);
687
688	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
689}
690
691void
692dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
693{
694	zilog_t *zilog;
695
696	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
697		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
698		/*
699		 * We don't remove the zilog from the dp_dirty_zilogs
700		 * list until after we've cleaned it. This ensures that
701		 * callers of zilog_is_dirty() receive an accurate
702		 * answer when they are racing with the spa sync thread.
703		 */
704		zil_clean(zilog, txg);
705		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
706		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
707		dmu_buf_rele(ds->ds_dbuf, zilog);
708	}
709	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
710}
711
712/*
713 * TRUE if the current thread is the tx_sync_thread or if we
714 * are being called from SPA context during pool initialization.
715 */
716int
717dsl_pool_sync_context(dsl_pool_t *dp)
718{
719	return (curthread == dp->dp_tx.tx_sync_thread ||
720	    spa_is_initializing(dp->dp_spa));
721}
722
723uint64_t
724dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
725{
726	uint64_t space, resv;
727
728	/*
729	 * If we're trying to assess whether it's OK to do a free,
730	 * cut the reservation in half to allow forward progress
731	 * (e.g. make it possible to rm(1) files from a full pool).
732	 */
733	space = spa_get_dspace(dp->dp_spa);
734	resv = spa_get_slop_space(dp->dp_spa);
735	if (netfree)
736		resv >>= 1;
737
738	return (space - resv);
739}
740
741boolean_t
742dsl_pool_need_dirty_delay(dsl_pool_t *dp)
743{
744	uint64_t delay_min_bytes =
745	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
746	boolean_t rv;
747
748	mutex_enter(&dp->dp_lock);
749	if (dp->dp_dirty_total > zfs_dirty_data_sync)
750		txg_kick(dp);
751	rv = (dp->dp_dirty_total > delay_min_bytes);
752	mutex_exit(&dp->dp_lock);
753	return (rv);
754}
755
756void
757dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
758{
759	if (space > 0) {
760		mutex_enter(&dp->dp_lock);
761		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
762		dsl_pool_dirty_delta(dp, space);
763		mutex_exit(&dp->dp_lock);
764	}
765}
766
767void
768dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
769{
770	ASSERT3S(space, >=, 0);
771	if (space == 0)
772		return;
773	mutex_enter(&dp->dp_lock);
774	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
775		/* XXX writing something we didn't dirty? */
776		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
777	}
778	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
779	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
780	ASSERT3U(dp->dp_dirty_total, >=, space);
781	dsl_pool_dirty_delta(dp, -space);
782	mutex_exit(&dp->dp_lock);
783}
784
785/* ARGSUSED */
786static int
787upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
788{
789	dmu_tx_t *tx = arg;
790	dsl_dataset_t *ds, *prev = NULL;
791	int err;
792
793	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
794	if (err)
795		return (err);
796
797	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
798		err = dsl_dataset_hold_obj(dp,
799		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
800		if (err) {
801			dsl_dataset_rele(ds, FTAG);
802			return (err);
803		}
804
805		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
806			break;
807		dsl_dataset_rele(ds, FTAG);
808		ds = prev;
809		prev = NULL;
810	}
811
812	if (prev == NULL) {
813		prev = dp->dp_origin_snap;
814
815		/*
816		 * The $ORIGIN can't have any data, or the accounting
817		 * will be wrong.
818		 */
819		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
820		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
821		rrw_exit(&ds->ds_bp_rwlock, FTAG);
822
823		/* The origin doesn't get attached to itself */
824		if (ds->ds_object == prev->ds_object) {
825			dsl_dataset_rele(ds, FTAG);
826			return (0);
827		}
828
829		dmu_buf_will_dirty(ds->ds_dbuf, tx);
830		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
831		dsl_dataset_phys(ds)->ds_prev_snap_txg =
832		    dsl_dataset_phys(prev)->ds_creation_txg;
833
834		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
835		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
836
837		dmu_buf_will_dirty(prev->ds_dbuf, tx);
838		dsl_dataset_phys(prev)->ds_num_children++;
839
840		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
841			ASSERT(ds->ds_prev == NULL);
842			VERIFY0(dsl_dataset_hold_obj(dp,
843			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
844			    ds, &ds->ds_prev));
845		}
846	}
847
848	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
849	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
850
851	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
852		dmu_buf_will_dirty(prev->ds_dbuf, tx);
853		dsl_dataset_phys(prev)->ds_next_clones_obj =
854		    zap_create(dp->dp_meta_objset,
855		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
856	}
857	VERIFY0(zap_add_int(dp->dp_meta_objset,
858	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
859
860	dsl_dataset_rele(ds, FTAG);
861	if (prev != dp->dp_origin_snap)
862		dsl_dataset_rele(prev, FTAG);
863	return (0);
864}
865
866void
867dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
868{
869	ASSERT(dmu_tx_is_syncing(tx));
870	ASSERT(dp->dp_origin_snap != NULL);
871
872	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
873	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
874}
875
876/* ARGSUSED */
877static int
878upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
879{
880	dmu_tx_t *tx = arg;
881	objset_t *mos = dp->dp_meta_objset;
882
883	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
884		dsl_dataset_t *origin;
885
886		VERIFY0(dsl_dataset_hold_obj(dp,
887		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
888
889		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
890			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
891			dsl_dir_phys(origin->ds_dir)->dd_clones =
892			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
893			    0, tx);
894		}
895
896		VERIFY0(zap_add_int(dp->dp_meta_objset,
897		    dsl_dir_phys(origin->ds_dir)->dd_clones,
898		    ds->ds_object, tx));
899
900		dsl_dataset_rele(origin, FTAG);
901	}
902	return (0);
903}
904
905void
906dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
907{
908	ASSERT(dmu_tx_is_syncing(tx));
909	uint64_t obj;
910
911	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
912	VERIFY0(dsl_pool_open_special_dir(dp,
913	    FREE_DIR_NAME, &dp->dp_free_dir));
914
915	/*
916	 * We can't use bpobj_alloc(), because spa_version() still
917	 * returns the old version, and we need a new-version bpobj with
918	 * subobj support.  So call dmu_object_alloc() directly.
919	 */
920	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
921	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
922	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
923	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
924	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
925
926	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
927	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
928}
929
930void
931dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
932{
933	uint64_t dsobj;
934	dsl_dataset_t *ds;
935
936	ASSERT(dmu_tx_is_syncing(tx));
937	ASSERT(dp->dp_origin_snap == NULL);
938	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
939
940	/* create the origin dir, ds, & snap-ds */
941	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
942	    NULL, 0, kcred, tx);
943	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
944	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
945	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
946	    dp, &dp->dp_origin_snap));
947	dsl_dataset_rele(ds, FTAG);
948}
949
950taskq_t *
951dsl_pool_vnrele_taskq(dsl_pool_t *dp)
952{
953	return (dp->dp_vnrele_taskq);
954}
955
956/*
957 * Walk through the pool-wide zap object of temporary snapshot user holds
958 * and release them.
959 */
960void
961dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
962{
963	zap_attribute_t za;
964	zap_cursor_t zc;
965	objset_t *mos = dp->dp_meta_objset;
966	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
967	nvlist_t *holds;
968
969	if (zapobj == 0)
970		return;
971	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
972
973	holds = fnvlist_alloc();
974
975	for (zap_cursor_init(&zc, mos, zapobj);
976	    zap_cursor_retrieve(&zc, &za) == 0;
977	    zap_cursor_advance(&zc)) {
978		char *htag;
979		nvlist_t *tags;
980
981		htag = strchr(za.za_name, '-');
982		*htag = '\0';
983		++htag;
984		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
985			tags = fnvlist_alloc();
986			fnvlist_add_boolean(tags, htag);
987			fnvlist_add_nvlist(holds, za.za_name, tags);
988			fnvlist_free(tags);
989		} else {
990			fnvlist_add_boolean(tags, htag);
991		}
992	}
993	dsl_dataset_user_release_tmp(dp, holds);
994	fnvlist_free(holds);
995	zap_cursor_fini(&zc);
996}
997
998/*
999 * Create the pool-wide zap object for storing temporary snapshot holds.
1000 */
1001void
1002dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1003{
1004	objset_t *mos = dp->dp_meta_objset;
1005
1006	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1007	ASSERT(dmu_tx_is_syncing(tx));
1008
1009	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1010	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1011}
1012
1013static int
1014dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1015    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1016{
1017	objset_t *mos = dp->dp_meta_objset;
1018	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1019	char *name;
1020	int error;
1021
1022	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1023	ASSERT(dmu_tx_is_syncing(tx));
1024
1025	/*
1026	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1027	 * zap object for temporary holds might not exist yet.
1028	 */
1029	if (zapobj == 0) {
1030		if (holding) {
1031			dsl_pool_user_hold_create_obj(dp, tx);
1032			zapobj = dp->dp_tmp_userrefs_obj;
1033		} else {
1034			return (SET_ERROR(ENOENT));
1035		}
1036	}
1037
1038	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1039	if (holding)
1040		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1041	else
1042		error = zap_remove(mos, zapobj, name, tx);
1043	strfree(name);
1044
1045	return (error);
1046}
1047
1048/*
1049 * Add a temporary hold for the given dataset object and tag.
1050 */
1051int
1052dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1053    uint64_t now, dmu_tx_t *tx)
1054{
1055	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1056}
1057
1058/*
1059 * Release a temporary hold for the given dataset object and tag.
1060 */
1061int
1062dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1063    dmu_tx_t *tx)
1064{
1065	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1066	    tx, B_FALSE));
1067}
1068
1069/*
1070 * DSL Pool Configuration Lock
1071 *
1072 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1073 * creation / destruction / rename / property setting).  It must be held for
1074 * read to hold a dataset or dsl_dir.  I.e. you must call
1075 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1076 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1077 * must be held continuously until all datasets and dsl_dirs are released.
1078 *
1079 * The only exception to this rule is that if a "long hold" is placed on
1080 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1081 * is still held.  The long hold will prevent the dataset from being
1082 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1083 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1084 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1085 *
1086 * Legitimate long-holders (including owners) should be long-running, cancelable
1087 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1088 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1089 * "zfs send", and "zfs diff".  There are several other long-holders whose
1090 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1091 *
1092 * The usual formula for long-holding would be:
1093 * dsl_pool_hold()
1094 * dsl_dataset_hold()
1095 * ... perform checks ...
1096 * dsl_dataset_long_hold()
1097 * dsl_pool_rele()
1098 * ... perform long-running task ...
1099 * dsl_dataset_long_rele()
1100 * dsl_dataset_rele()
1101 *
1102 * Note that when the long hold is released, the dataset is still held but
1103 * the pool is not held.  The dataset may change arbitrarily during this time
1104 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1105 * dataset except release it.
1106 *
1107 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1108 * or modifying operations.
1109 *
1110 * Modifying operations should generally use dsl_sync_task().  The synctask
1111 * infrastructure enforces proper locking strategy with respect to the
1112 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1113 *
1114 * Read-only operations will manually hold the pool, then the dataset, obtain
1115 * information from the dataset, then release the pool and dataset.
1116 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1117 * hold/rele.
1118 */
1119
1120int
1121dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1122{
1123	spa_t *spa;
1124	int error;
1125
1126	error = spa_open(name, &spa, tag);
1127	if (error == 0) {
1128		*dp = spa_get_dsl(spa);
1129		dsl_pool_config_enter(*dp, tag);
1130	}
1131	return (error);
1132}
1133
1134void
1135dsl_pool_rele(dsl_pool_t *dp, void *tag)
1136{
1137	dsl_pool_config_exit(dp, tag);
1138	spa_close(dp->dp_spa, tag);
1139}
1140
1141void
1142dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1143{
1144	/*
1145	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1146	 *
1147	 * The rrwlock can (with the track_all flag) track all reading threads,
1148	 * which is very useful for debugging which code path failed to release
1149	 * the lock, and for verifying that the *current* thread does hold
1150	 * the lock.
1151	 *
1152	 * (Unlike a rwlock, which knows that N threads hold it for
1153	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1154	 * if any thread holds it for read, even if this thread doesn't).
1155	 */
1156	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1157	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1158}
1159
1160void
1161dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1162{
1163	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1164	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1165}
1166
1167void
1168dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1169{
1170	rrw_exit(&dp->dp_config_rwlock, tag);
1171}
1172
1173boolean_t
1174dsl_pool_config_held(dsl_pool_t *dp)
1175{
1176	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1177}
1178
1179boolean_t
1180dsl_pool_config_held_writer(dsl_pool_t *dp)
1181{
1182	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1183}
1184