1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent.  Note that these names are used mainly for
31 * convenience and to represent the direction of the merge.  They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent.  For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established.  For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent.  If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72 * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured.  Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet.  As such, we can't establish the links from these new nodes into the
79 * parent graph.  We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent.  Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created.  As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly.  We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established.  As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph.  We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114#if HAVE_NBTOOL_CONFIG_H
115# include "nbtool_config.h"
116#endif
117
118#include <stdio.h>
119#include <strings.h>
120#include <assert.h>
121#include <pthread.h>
122
123#include "ctf_headers.h"
124#include "ctftools.h"
125#include "list.h"
126#include "alist.h"
127#include "memory.h"
128#include "traverse.h"
129
130typedef struct equiv_data equiv_data_t;
131typedef struct merge_cb_data merge_cb_data_t;
132
133/*
134 * There are two traversals in this file, for equivalency and for tdesc_t
135 * re-creation, that do not fit into the tdtraverse() framework.  We have our
136 * own traversal mechanism and ops vector here for those two cases.
137 */
138typedef struct tdesc_ops {
139	const char *name;
140	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
141	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
142} tdesc_ops_t;
143extern tdesc_ops_t tdesc_ops[];
144
145/*
146 * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
147 * processed during various phases of the merge algorithm.
148 */
149struct merge_cb_data {
150	tdata_t *md_parent;
151	tdata_t *md_tgt;
152	alist_t *md_ta;		/* Type Association */
153	alist_t *md_fdida;	/* Forward -> Definition ID Association */
154	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
155	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
156	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
157	int md_flags;
158}; /* merge_cb_data_t */
159
160/*
161 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
162 * Normal merges, however, assume that the child tdata_t is already self-unique,
163 * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
164 * the merge algorithm will self-uniquify by avoiding the insertion of
165 * duplicates in the md_tdtdba list.
166 */
167#define	MCD_F_SELFUNIQUIFY	0x1
168
169/*
170 * When we merge the CTF data for the modules, we don't want it to contain any
171 * data that can be found in the reference module (usually genunix).  If this
172 * flag is set, we're doing a merge between the fully merged tdata_t for this
173 * module and the tdata_t for the reference module, with the data unique to this
174 * module ending up in a third tdata_t.  It is this third tdata_t that will end
175 * up in the .SUNW_ctf section for the module.
176 */
177#define	MCD_F_REFMERGE	0x2
178
179/*
180 * Mapping of child type IDs to parent type IDs
181 */
182
183static void
184add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
185{
186	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
187
188	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
189	assert(srcid != 0 && tgtid != 0);
190
191	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
192}
193
194static tid_t
195get_mapping(alist_t *ta, int srcid)
196{
197	void *ltgtid;
198
199	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
200		return ((uintptr_t)ltgtid);
201	else
202		return (0);
203}
204
205/*
206 * Determining equivalence of tdesc_t subgraphs
207 */
208
209struct equiv_data {
210	alist_t *ed_ta;
211	tdesc_t *ed_node;
212	tdesc_t *ed_tgt;
213
214	int ed_clear_mark;
215	int ed_cur_mark;
216	int ed_selfuniquify;
217}; /* equiv_data_t */
218
219static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
220
221/*ARGSUSED2*/
222static int
223equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
224{
225	intr_t *si = stdp->t_intr;
226	intr_t *ti = ttdp->t_intr;
227
228	if (si->intr_type != ti->intr_type ||
229	    si->intr_signed != ti->intr_signed ||
230	    si->intr_offset != ti->intr_offset ||
231	    si->intr_nbits != ti->intr_nbits)
232		return (0);
233
234	if (si->intr_type == INTR_INT &&
235	    si->intr_iformat != ti->intr_iformat)
236		return (0);
237	else if (si->intr_type == INTR_REAL &&
238	    si->intr_fformat != ti->intr_fformat)
239		return (0);
240
241	return (1);
242}
243
244static int
245equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
246{
247	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
248}
249
250static int
251equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
252{
253	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
254	int i;
255
256	if (fn1->fn_nargs != fn2->fn_nargs ||
257	    fn1->fn_vargs != fn2->fn_vargs)
258		return (0);
259
260	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
261		return (0);
262
263	for (i = 0; i < (int) fn1->fn_nargs; i++) {
264		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
265			return (0);
266	}
267
268	return (1);
269}
270
271static int
272equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
273{
274	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
275
276	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
277	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
278		return (0);
279
280	if (ar1->ad_nelems != ar2->ad_nelems)
281		return (0);
282
283	return (1);
284}
285
286static int
287equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
288{
289	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
290
291	while (ml1 && ml2) {
292		if (ml1->ml_offset != ml2->ml_offset ||
293		    strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
294		    ml1->ml_size != ml2->ml_size ||
295		    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
296			return (0);
297
298		ml1 = ml1->ml_next;
299		ml2 = ml2->ml_next;
300	}
301
302	if (ml1 || ml2)
303		return (0);
304
305	return (1);
306}
307
308/*ARGSUSED2*/
309static int
310equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
311{
312	elist_t *el1 = stdp->t_emem;
313	elist_t *el2 = ttdp->t_emem;
314
315	while (el1 && el2) {
316		if (el1->el_number != el2->el_number ||
317		    strcmp(el1->el_name, el2->el_name) != 0)
318			return (0);
319
320		el1 = el1->el_next;
321		el2 = el2->el_next;
322	}
323
324	if (el1 || el2)
325		return (0);
326
327	return (1);
328}
329
330/*ARGSUSED*/
331static int
332equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
333{
334	/* foul, evil, and very bad - this is a "shouldn't happen" */
335	assert(1 == 0);
336
337	return (0);
338}
339
340static int
341fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
342{
343	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
344
345	return (defn->t_type == STRUCT || defn->t_type == UNION ||
346	    defn->t_type == ENUM);
347}
348
349static int
350equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
351{
352	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
353	int mapping;
354
355	if (ctdp->t_emark > ed->ed_clear_mark &&
356	    mtdp->t_emark > ed->ed_clear_mark)
357		return (ctdp->t_emark == mtdp->t_emark);
358
359	/*
360	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
361	 * checking on a subgraph that has already been checked.  If a mapping
362	 * has already been established for a given child node, we can simply
363	 * compare the mapping for the child node with the ID of the parent
364	 * node.  If we are in self-uniquify mode, then we're comparing two
365	 * subgraphs within the child graph, and thus need to ignore any
366	 * type mappings that have been created, as they are only valid into the
367	 * parent.
368	 */
369	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
370	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
371		return (1);
372
373	if (!streq(ctdp->t_name, mtdp->t_name))
374		return (0);
375
376	if (ctdp->t_type != mtdp->t_type) {
377		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
378			return (fwd_equiv(ctdp, mtdp));
379		else
380			return (0);
381	}
382
383	ctdp->t_emark = ed->ed_cur_mark;
384	mtdp->t_emark = ed->ed_cur_mark;
385	ed->ed_cur_mark++;
386
387	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
388		return (equiv(ctdp, mtdp, ed));
389
390	return (1);
391}
392
393/*
394 * We perform an equivalency check on two subgraphs by traversing through them
395 * in lockstep.  If a given node is equivalent in both the parent and the child,
396 * we mark it in both subgraphs, using the t_emark field, with a monotonically
397 * increasing number.  If, in the course of the traversal, we reach a node that
398 * we have visited and numbered during this equivalency check, we have a cycle.
399 * If the previously-visited nodes don't have the same emark, then the edges
400 * that brought us to these nodes are not equivalent, and so the check ends.
401 * If the emarks are the same, the edges are equivalent.  We then backtrack and
402 * continue the traversal.  If we have exhausted all edges in the subgraph, and
403 * have not found any inequivalent nodes, then the subgraphs are equivalent.
404 */
405static int
406equiv_cb(void *bucket, void *arg)
407{
408	equiv_data_t *ed = arg;
409	tdesc_t *mtdp = bucket;
410	tdesc_t *ctdp = ed->ed_node;
411
412	ed->ed_clear_mark = ed->ed_cur_mark + 1;
413	ed->ed_cur_mark = ed->ed_clear_mark + 1;
414
415	if (equiv_node(ctdp, mtdp, ed)) {
416		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
417		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
418		ed->ed_tgt = mtdp;
419		/* matched.  stop looking */
420		return (-1);
421	}
422
423	return (0);
424}
425
426/*ARGSUSED1*/
427static int
428map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
429{
430	merge_cb_data_t *mcd = private;
431
432	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
433		return (0);
434
435	return (1);
436}
437
438/*ARGSUSED1*/
439static int
440map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
441{
442	merge_cb_data_t *mcd = private;
443	equiv_data_t ed;
444
445	ed.ed_ta = mcd->md_ta;
446	ed.ed_clear_mark = mcd->md_parent->td_curemark;
447	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
448	ed.ed_node = ctdp;
449	ed.ed_selfuniquify = 0;
450
451	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
452
453	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
454	    equiv_cb, &ed) < 0) {
455		/* We found an equivalent node */
456		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
457			int id = mcd->md_tgt->td_nextid++;
458
459			debug(3, "Creating new defn type %d <%x>\n", id, id);
460			add_mapping(mcd->md_ta, ctdp->t_id, id);
461			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
462			    (void *)(ulong_t)id);
463			hash_add(mcd->md_tdtba, ctdp);
464		} else
465			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
466
467	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
468	    equiv_cb, &ed) < 0) {
469		/*
470		 * We didn't find an equivalent node by looking through the
471		 * layout hash, but we somehow found it by performing an
472		 * exhaustive search through the entire graph.  This usually
473		 * means that the "name" hash function is broken.
474		 */
475		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
476		    tdesc_name(ctdp), ed.ed_tgt->t_id);
477	} else {
478		int id = mcd->md_tgt->td_nextid++;
479
480		debug(3, "Creating new type %d <%x>\n", id, id);
481		add_mapping(mcd->md_ta, ctdp->t_id, id);
482		hash_add(mcd->md_tdtba, ctdp);
483	}
484
485	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
486
487	return (1);
488}
489
490/*ARGSUSED1*/
491static int
492map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
493{
494	merge_cb_data_t *mcd = private;
495	equiv_data_t ed;
496
497	ed.ed_ta = mcd->md_ta;
498	ed.ed_clear_mark = mcd->md_parent->td_curemark;
499	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
500	ed.ed_node = ctdp;
501	ed.ed_selfuniquify = 1;
502	ed.ed_tgt = NULL;
503
504	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
505		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
506		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
507		add_mapping(mcd->md_ta, ctdp->t_id,
508		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
509	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
510	    equiv_cb, &ed) < 0) {
511		/*
512		 * We didn't find an equivalent node using the quick way (going
513		 * through the hash normally), but we did find it by iterating
514		 * through the entire hash.  This usually means that the hash
515		 * function is broken.
516		 */
517		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
518		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
519		    ed.ed_tgt->t_id);
520	} else {
521		int id = mcd->md_tgt->td_nextid++;
522
523		debug(3, "Creating new type %d <%x>\n", id, id);
524		add_mapping(mcd->md_ta, ctdp->t_id, id);
525		hash_add(mcd->md_tdtba, ctdp);
526	}
527
528	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
529
530	return (1);
531}
532
533static tdtrav_cb_f map_pre[] = {
534	NULL,
535	map_td_tree_pre,	/* intrinsic */
536	map_td_tree_pre,	/* pointer */
537	map_td_tree_pre,	/* reference */
538	map_td_tree_pre,	/* array */
539	map_td_tree_pre,	/* function */
540	map_td_tree_pre,	/* struct */
541	map_td_tree_pre,	/* union */
542	map_td_tree_pre,	/* class */
543	map_td_tree_pre,	/* enum */
544	map_td_tree_pre,	/* forward */
545	map_td_tree_pre,	/* typedef */
546	tdtrav_assert,		/* typedef_unres */
547	map_td_tree_pre,	/* volatile */
548	map_td_tree_pre,	/* const */
549	map_td_tree_pre		/* restrict */
550};
551
552static tdtrav_cb_f map_post[] = {
553	NULL,
554	map_td_tree_post,	/* intrinsic */
555	map_td_tree_post,	/* pointer */
556	map_td_tree_post,	/* reference */
557	map_td_tree_post,	/* array */
558	map_td_tree_post,	/* function */
559	map_td_tree_post,	/* struct */
560	map_td_tree_post,	/* union */
561	map_td_tree_post,	/* class */
562	map_td_tree_post,	/* enum */
563	map_td_tree_post,	/* forward */
564	map_td_tree_post,	/* typedef */
565	tdtrav_assert,		/* typedef_unres */
566	map_td_tree_post,	/* volatile */
567	map_td_tree_post,	/* const */
568	map_td_tree_post	/* restrict */
569};
570
571static tdtrav_cb_f map_self_post[] = {
572	NULL,
573	map_td_tree_self_post,	/* intrinsic */
574	map_td_tree_self_post,	/* pointer */
575	map_td_tree_self_post,	/* reference */
576	map_td_tree_self_post,	/* array */
577	map_td_tree_self_post,	/* function */
578	map_td_tree_self_post,	/* struct */
579	map_td_tree_self_post,	/* union */
580	map_td_tree_self_post,	/* class */
581	map_td_tree_self_post,	/* enum */
582	map_td_tree_self_post,	/* forward */
583	map_td_tree_self_post,	/* typedef */
584	tdtrav_assert,		/* typedef_unres */
585	map_td_tree_self_post,	/* volatile */
586	map_td_tree_self_post,	/* const */
587	map_td_tree_self_post	/* restrict */
588};
589
590/*
591 * Determining equivalence of iidesc_t nodes
592 */
593
594typedef struct iifind_data {
595	iidesc_t *iif_template;
596	alist_t *iif_ta;
597	int iif_newidx;
598	int iif_refmerge;
599} iifind_data_t;
600
601/*
602 * Check to see if this iidesc_t (node) - the current one on the list we're
603 * iterating through - matches the target one (iif->iif_template).  Return -1
604 * if it matches, to stop the iteration.
605 */
606static int
607iidesc_match(void *data, void *arg)
608{
609	iidesc_t *node = data;
610	iifind_data_t *iif = arg;
611	int i;
612
613	if (node->ii_type != iif->iif_template->ii_type ||
614	    !streq(node->ii_name, iif->iif_template->ii_name) ||
615	    node->ii_dtype->t_id != iif->iif_newidx)
616		return (0);
617
618	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
619	    !streq(node->ii_owner, iif->iif_template->ii_owner))
620		return (0);
621
622	if (node->ii_nargs != iif->iif_template->ii_nargs)
623		return (0);
624
625	for (i = 0; i < node->ii_nargs; i++) {
626		if (get_mapping(iif->iif_ta,
627		    iif->iif_template->ii_args[i]->t_id) !=
628		    node->ii_args[i]->t_id)
629			return (0);
630	}
631
632	if (iif->iif_refmerge) {
633		switch (iif->iif_template->ii_type) {
634		case II_GFUN:
635		case II_SFUN:
636		case II_GVAR:
637		case II_SVAR:
638			debug(3, "suppressing duping of %d %s from %s\n",
639			    iif->iif_template->ii_type,
640			    iif->iif_template->ii_name,
641			    (iif->iif_template->ii_owner ?
642			    iif->iif_template->ii_owner : "NULL"));
643			return (0);
644		case II_NOT:
645		case II_PSYM:
646		case II_SOU:
647		case II_TYPE:
648			break;
649		}
650	}
651
652	return (-1);
653}
654
655static int
656merge_type_cb(void *data, void *arg)
657{
658	iidesc_t *sii = data;
659	merge_cb_data_t *mcd = arg;
660	iifind_data_t iif;
661	tdtrav_cb_f *post;
662
663	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
664
665	/* Map the tdesc nodes */
666	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
667	    mcd);
668
669	/* Map the iidesc nodes */
670	iif.iif_template = sii;
671	iif.iif_ta = mcd->md_ta;
672	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
673	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
674
675	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
676	    &iif) == 1)
677		/* successfully mapped */
678		return (1);
679
680	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
681	    sii->ii_type);
682
683	list_add(mcd->md_iitba, sii);
684
685	return (0);
686}
687
688static int
689remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
690    merge_cb_data_t *mcd)
691{
692	tdesc_t *tgt = NULL;
693	tdesc_t template;
694	int oldid = oldtgt->t_id;
695
696	if (oldid == selftid) {
697		*tgtp = newself;
698		return (1);
699	}
700
701	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
702		aborterr("failed to get mapping for tid %d (%s) <%x>\n", oldid,
703		    oldtgt->t_name, oldid);
704
705	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
706	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
707	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
708	    (void *)&tgt))) {
709		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
710		    template.t_id, oldid, oldid);
711		*tgtp = oldtgt;
712		list_add(mcd->md_tdtbr, tgtp);
713		return (0);
714	}
715
716	*tgtp = tgt;
717	return (1);
718}
719
720static tdesc_t *
721conjure_template(tdesc_t *old, int newselfid)
722{
723	tdesc_t *new = xcalloc(sizeof (tdesc_t));
724
725	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
726	new->t_type = old->t_type;
727	new->t_size = old->t_size;
728	new->t_id = newselfid;
729	new->t_flags = old->t_flags;
730
731	return (new);
732}
733
734/*ARGSUSED2*/
735static tdesc_t *
736conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
737{
738	tdesc_t *new = conjure_template(old, newselfid);
739
740	new->t_intr = xmalloc(sizeof (intr_t));
741	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
742
743	return (new);
744}
745
746static tdesc_t *
747conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
748{
749	tdesc_t *new = conjure_template(old, newselfid);
750
751	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
752
753	return (new);
754}
755
756static tdesc_t *
757conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
758{
759	tdesc_t *new = conjure_template(old, newselfid);
760	fndef_t *nfn = xmalloc(sizeof (fndef_t));
761	fndef_t *ofn = old->t_fndef;
762	int i;
763
764	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
765
766	nfn->fn_nargs = ofn->fn_nargs;
767	nfn->fn_vargs = ofn->fn_vargs;
768
769	if (nfn->fn_nargs > 0)
770		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
771
772	for (i = 0; i < (int) ofn->fn_nargs; i++) {
773		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
774		    new, mcd);
775	}
776
777	new->t_fndef = nfn;
778
779	return (new);
780}
781
782static tdesc_t *
783conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
784{
785	tdesc_t *new = conjure_template(old, newselfid);
786	ardef_t *nar = xmalloc(sizeof (ardef_t));
787	ardef_t *oar = old->t_ardef;
788
789	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
790	    mcd);
791	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
792	    mcd);
793
794	nar->ad_nelems = oar->ad_nelems;
795
796	new->t_ardef = nar;
797
798	return (new);
799}
800
801static tdesc_t *
802conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
803{
804	tdesc_t *new = conjure_template(old, newselfid);
805	mlist_t *omem, **nmemp;
806
807	for (omem = old->t_members, nmemp = &new->t_members;
808	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
809		*nmemp = xmalloc(sizeof (mlist_t));
810		(*nmemp)->ml_offset = omem->ml_offset;
811		(*nmemp)->ml_size = omem->ml_size;
812		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
813		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
814		    old->t_id, new, mcd);
815	}
816	*nmemp = NULL;
817
818	return (new);
819}
820
821/*ARGSUSED2*/
822static tdesc_t *
823conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
824{
825	tdesc_t *new = conjure_template(old, newselfid);
826	elist_t *oel, **nelp;
827
828	for (oel = old->t_emem, nelp = &new->t_emem;
829	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
830		*nelp = xmalloc(sizeof (elist_t));
831		(*nelp)->el_name = xstrdup(oel->el_name);
832		(*nelp)->el_number = oel->el_number;
833	}
834	*nelp = NULL;
835
836	return (new);
837}
838
839/*ARGSUSED2*/
840static tdesc_t *
841conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
842{
843	tdesc_t *new = conjure_template(old, newselfid);
844
845	list_add(&mcd->md_tgt->td_fwdlist, new);
846
847	return (new);
848}
849
850/*ARGSUSED*/
851static tdesc_t *
852conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
853{
854	assert(1 == 0);
855	return (NULL);
856}
857
858static iidesc_t *
859conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
860{
861	iidesc_t *new = iidesc_dup(old);
862	int i;
863
864	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
865	for (i = 0; i < new->ii_nargs; i++) {
866		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
867		    mcd);
868	}
869
870	return (new);
871}
872
873static int
874fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
875{
876	alist_t *map = private;
877	void *defn;
878
879	if (!alist_find(map, (void *)fwd, (void **)&defn))
880		return (0);
881
882	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
883
884	*fwdp = defn;
885
886	return (1);
887}
888
889static tdtrav_cb_f fwd_redir_cbs[] = {
890	NULL,
891	NULL,			/* intrinsic */
892	NULL,			/* pointer */
893	NULL,			/* reference */
894	NULL,			/* array */
895	NULL,			/* function */
896	NULL,			/* struct */
897	NULL,			/* union */
898	NULL,			/* class */
899	NULL,			/* enum */
900	fwd_redir,		/* forward */
901	NULL,			/* typedef */
902	tdtrav_assert,		/* typedef_unres */
903	NULL,			/* volatile */
904	NULL,			/* const */
905	NULL			/* restrict */
906};
907
908typedef struct redir_mstr_data {
909	tdata_t *rmd_tgt;
910	alist_t *rmd_map;
911} redir_mstr_data_t;
912
913static int
914redir_mstr_fwd_cb(void *name, void *value, void *arg)
915{
916	tdesc_t *fwd = name;
917	int defnid = (uintptr_t)value;
918	redir_mstr_data_t *rmd = arg;
919	tdesc_t template;
920	tdesc_t *defn;
921
922	template.t_id = defnid;
923
924	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
925	    (void *)&defn)) {
926		aborterr("Couldn't unforward %d (%s)\n", defnid,
927		    tdesc_name(defn));
928	}
929
930	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
931
932	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
933
934	return (1);
935}
936
937static void
938redir_mstr_fwds(merge_cb_data_t *mcd)
939{
940	redir_mstr_data_t rmd;
941	alist_t *map = alist_new(NULL, NULL);
942
943	rmd.rmd_tgt = mcd->md_tgt;
944	rmd.rmd_map = map;
945
946	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
947		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
948		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
949	}
950
951	alist_free(map);
952}
953
954static int
955add_iitba_cb(void *data, void *private)
956{
957	merge_cb_data_t *mcd = private;
958	iidesc_t *tba = data;
959	iidesc_t *new;
960	iifind_data_t iif;
961	int newidx;
962
963	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
964	assert(newidx != -1);
965
966	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
967
968	iif.iif_template = tba;
969	iif.iif_ta = mcd->md_ta;
970	iif.iif_newidx = newidx;
971	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
972
973	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
974	    &iif) == 1) {
975		debug(3, "iidesc_t %s already exists\n",
976		    (tba->ii_name ? tba->ii_name : "(anon)"));
977		return (1);
978	}
979
980	new = conjure_iidesc(tba, mcd);
981	hash_add(mcd->md_tgt->td_iihash, new);
982
983	return (1);
984}
985
986static int
987add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
988{
989	tdesc_t *newtdp;
990	tdesc_t template;
991
992	template.t_id = newid;
993	assert(hash_find(mcd->md_parent->td_idhash,
994	    (void *)&template, NULL) == 0);
995
996	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
997	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
998	    oldtdp->t_id, newid, newid);
999
1000	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
1001	    mcd)) == NULL)
1002		/* couldn't map everything */
1003		return (0);
1004
1005	debug(3, "succeeded\n");
1006
1007	hash_add(mcd->md_tgt->td_idhash, newtdp);
1008	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1009
1010	return (1);
1011}
1012
1013static int
1014add_tdtba_cb(void *data, void *arg)
1015{
1016	tdesc_t *tdp = data;
1017	merge_cb_data_t *mcd = arg;
1018	int newid;
1019	int rc;
1020
1021	newid = get_mapping(mcd->md_ta, tdp->t_id);
1022	assert(newid != -1);
1023
1024	if ((rc = add_tdesc(tdp, newid, mcd)))
1025		hash_remove(mcd->md_tdtba, (void *)tdp);
1026
1027	return (rc);
1028}
1029
1030static int
1031add_tdtbr_cb(void *data, void *arg)
1032{
1033	tdesc_t **tdpp = data;
1034	merge_cb_data_t *mcd = arg;
1035
1036	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1037
1038	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1039		return (0);
1040
1041	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1042	return (1);
1043}
1044
1045static void
1046merge_types(hash_t *src, merge_cb_data_t *mcd)
1047{
1048	list_t *iitba = NULL;
1049	list_t *tdtbr = NULL;
1050	int iirc, tdrc;
1051
1052	mcd->md_iitba = &iitba;
1053	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1054	    tdesc_layoutcmp);
1055	mcd->md_tdtbr = &tdtbr;
1056
1057	(void) hash_iter(src, merge_type_cb, mcd);
1058
1059	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1060	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1061
1062	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1063	debug(3, "add_iitba_cb added %d items\n", iirc);
1064
1065	assert(list_count(*mcd->md_iitba) == 0 &&
1066	    hash_count(mcd->md_tdtba) == 0);
1067
1068	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1069	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1070
1071	if (list_count(*mcd->md_tdtbr) != 0)
1072		aborterr("Couldn't remap all nodes\n");
1073
1074	/*
1075	 * We now have an alist of master forwards and the ids of the new master
1076	 * definitions for those forwards in mcd->md_fdida.  By this point,
1077	 * we're guaranteed that all of the master definitions referenced in
1078	 * fdida have been added to the master tree.  We now traverse through
1079	 * the master tree, redirecting all edges inbound to forwards that have
1080	 * definitions to those definitions.
1081	 */
1082	if (mcd->md_parent == mcd->md_tgt) {
1083		redir_mstr_fwds(mcd);
1084	}
1085}
1086
1087void
1088merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1089{
1090	merge_cb_data_t mcd;
1091
1092	cur->td_ref++;
1093	mstr->td_ref++;
1094	if (tgt)
1095		tgt->td_ref++;
1096
1097	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1098	    (tgt == NULL || tgt->td_ref == 1));
1099
1100	mcd.md_parent = mstr;
1101	mcd.md_tgt = (tgt ? tgt : mstr);
1102	mcd.md_ta = alist_new(NULL, NULL);
1103	mcd.md_fdida = alist_new(NULL, NULL);
1104	mcd.md_flags = 0;
1105
1106	if (selfuniquify)
1107		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1108	if (tgt)
1109		mcd.md_flags |= MCD_F_REFMERGE;
1110
1111	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1112	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1113
1114	merge_types(cur->td_iihash, &mcd);
1115
1116	if (debug_level >= 3) {
1117		debug(3, "Type association stats\n");
1118		alist_stats(mcd.md_ta, 0);
1119		debug(3, "Layout hash stats\n");
1120		hash_stats(mcd.md_tgt->td_layouthash, 1);
1121	}
1122
1123	alist_free(mcd.md_fdida);
1124	alist_free(mcd.md_ta);
1125
1126	cur->td_ref--;
1127	mstr->td_ref--;
1128	if (tgt)
1129		tgt->td_ref--;
1130}
1131
1132tdesc_ops_t tdesc_ops[] = {
1133	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1134	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1135	{ "pointer", 		equiv_plain,		conjure_plain },
1136	{ "reference", 		equiv_plain,		conjure_plain },
1137	{ "array", 		equiv_array,		conjure_array },
1138	{ "function", 		equiv_function,		conjure_function },
1139	{ "struct",		equiv_su,		conjure_su },
1140	{ "union",		equiv_su,		conjure_su },
1141	{ "class",		equiv_su,		conjure_su },
1142	{ "enum",		equiv_enum,		conjure_enum },
1143	{ "forward",		NULL,			conjure_forward },
1144	{ "typedef",		equiv_plain,		conjure_plain },
1145	{ "typedef_unres",	equiv_assert,		conjure_assert },
1146	{ "volatile",		equiv_plain,		conjure_plain },
1147	{ "const", 		equiv_plain,		conjure_plain },
1148	{ "restrict",		equiv_plain,		conjure_plain }
1149};
1150