ztest.c revision 1.1
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * The objective of this program is to provide a DMU/ZAP/SPA stress test
28 * that runs entirely in userland, is easy to use, and easy to extend.
29 *
30 * The overall design of the ztest program is as follows:
31 *
32 * (1) For each major functional area (e.g. adding vdevs to a pool,
33 *     creating and destroying datasets, reading and writing objects, etc)
34 *     we have a simple routine to test that functionality.  These
35 *     individual routines do not have to do anything "stressful".
36 *
37 * (2) We turn these simple functionality tests into a stress test by
38 *     running them all in parallel, with as many threads as desired,
39 *     and spread across as many datasets, objects, and vdevs as desired.
40 *
41 * (3) While all this is happening, we inject faults into the pool to
42 *     verify that self-healing data really works.
43 *
44 * (4) Every time we open a dataset, we change its checksum and compression
45 *     functions.  Thus even individual objects vary from block to block
46 *     in which checksum they use and whether they're compressed.
47 *
48 * (5) To verify that we never lose on-disk consistency after a crash,
49 *     we run the entire test in a child of the main process.
50 *     At random times, the child self-immolates with a SIGKILL.
51 *     This is the software equivalent of pulling the power cord.
52 *     The parent then runs the test again, using the existing
53 *     storage pool, as many times as desired.
54 *
55 * (6) To verify that we don't have future leaks or temporal incursions,
56 *     many of the functional tests record the transaction group number
57 *     as part of their data.  When reading old data, they verify that
58 *     the transaction group number is less than the current, open txg.
59 *     If you add a new test, please do this if applicable.
60 *
61 * When run with no arguments, ztest runs for about five minutes and
62 * produces no output if successful.  To get a little bit of information,
63 * specify -V.  To get more information, specify -VV, and so on.
64 *
65 * To turn this into an overnight stress test, use -T to specify run time.
66 *
67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68 * to increase the pool capacity, fanout, and overall stress level.
69 *
70 * The -N(okill) option will suppress kills, so each child runs to completion.
71 * This can be useful when you're trying to distinguish temporal incursions
72 * from plain old race conditions.
73 */
74
75#include <sys/zfs_context.h>
76#include <sys/spa.h>
77#include <sys/dmu.h>
78#include <sys/txg.h>
79#include <sys/zap.h>
80#include <sys/dmu_objset.h>
81#include <sys/poll.h>
82#include <sys/stat.h>
83#include <sys/time.h>
84#include <sys/wait.h>
85#include <sys/mman.h>
86#include <sys/resource.h>
87#include <sys/zio.h>
88#include <sys/zio_checksum.h>
89#include <sys/zio_compress.h>
90#include <sys/zil.h>
91#include <sys/vdev_impl.h>
92#include <sys/vdev_file.h>
93#include <sys/spa_impl.h>
94#include <sys/dsl_prop.h>
95#include <sys/refcount.h>
96#include <stdio.h>
97#include <stdio_ext.h>
98#include <stdlib.h>
99#include <unistd.h>
100#include <signal.h>
101#include <umem.h>
102#include <dlfcn.h>
103#include <ctype.h>
104#include <math.h>
105#include <sys/fs/zfs.h>
106
107static char cmdname[] = "ztest";
108static char *zopt_pool = cmdname;
109
110static uint64_t zopt_vdevs = 5;
111static uint64_t zopt_vdevtime;
112static int zopt_ashift = SPA_MINBLOCKSHIFT;
113static int zopt_mirrors = 2;
114static int zopt_raidz = 4;
115static int zopt_raidz_parity = 1;
116static size_t zopt_vdev_size = SPA_MINDEVSIZE;
117static int zopt_datasets = 7;
118static int zopt_threads = 23;
119static uint64_t zopt_passtime = 60;	/* 60 seconds */
120static uint64_t zopt_killrate = 70;	/* 70% kill rate */
121static int zopt_verbose = 0;
122static int zopt_init = 1;
123static char *zopt_dir = "/tmp";
124static uint64_t zopt_time = 300;	/* 5 minutes */
125static int zopt_maxfaults;
126
127typedef struct ztest_block_tag {
128	uint64_t	bt_objset;
129	uint64_t	bt_object;
130	uint64_t	bt_offset;
131	uint64_t	bt_txg;
132	uint64_t	bt_thread;
133	uint64_t	bt_seq;
134} ztest_block_tag_t;
135
136typedef struct ztest_args {
137	char		za_pool[MAXNAMELEN];
138	spa_t		*za_spa;
139	objset_t	*za_os;
140	zilog_t		*za_zilog;
141	thread_t	za_thread;
142	uint64_t	za_instance;
143	uint64_t	za_random;
144	uint64_t	za_diroff;
145	uint64_t	za_diroff_shared;
146	uint64_t	za_zil_seq;
147	hrtime_t	za_start;
148	hrtime_t	za_stop;
149	hrtime_t	za_kill;
150	/*
151	 * Thread-local variables can go here to aid debugging.
152	 */
153	ztest_block_tag_t za_rbt;
154	ztest_block_tag_t za_wbt;
155	dmu_object_info_t za_doi;
156	dmu_buf_t	*za_dbuf;
157} ztest_args_t;
158
159typedef void ztest_func_t(ztest_args_t *);
160
161/*
162 * Note: these aren't static because we want dladdr() to work.
163 */
164ztest_func_t ztest_dmu_read_write;
165ztest_func_t ztest_dmu_write_parallel;
166ztest_func_t ztest_dmu_object_alloc_free;
167ztest_func_t ztest_zap;
168ztest_func_t ztest_zap_parallel;
169ztest_func_t ztest_traverse;
170ztest_func_t ztest_dsl_prop_get_set;
171ztest_func_t ztest_dmu_objset_create_destroy;
172ztest_func_t ztest_dmu_snapshot_create_destroy;
173ztest_func_t ztest_spa_create_destroy;
174ztest_func_t ztest_fault_inject;
175ztest_func_t ztest_spa_rename;
176ztest_func_t ztest_vdev_attach_detach;
177ztest_func_t ztest_vdev_LUN_growth;
178ztest_func_t ztest_vdev_add_remove;
179ztest_func_t ztest_vdev_aux_add_remove;
180ztest_func_t ztest_scrub;
181
182typedef struct ztest_info {
183	ztest_func_t	*zi_func;	/* test function */
184	uint64_t	zi_iters;	/* iterations per execution */
185	uint64_t	*zi_interval;	/* execute every <interval> seconds */
186	uint64_t	zi_calls;	/* per-pass count */
187	uint64_t	zi_call_time;	/* per-pass time */
188	uint64_t	zi_call_total;	/* cumulative total */
189	uint64_t	zi_call_target;	/* target cumulative total */
190} ztest_info_t;
191
192uint64_t zopt_always = 0;		/* all the time */
193uint64_t zopt_often = 1;		/* every second */
194uint64_t zopt_sometimes = 10;		/* every 10 seconds */
195uint64_t zopt_rarely = 60;		/* every 60 seconds */
196
197ztest_info_t ztest_info[] = {
198	{ ztest_dmu_read_write,			1,	&zopt_always	},
199	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
200	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
201	{ ztest_zap,				30,	&zopt_always	},
202	{ ztest_zap_parallel,			100,	&zopt_always	},
203	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
204	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
205	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
206	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
207	{ ztest_fault_inject,			1,	&zopt_sometimes	},
208	{ ztest_spa_rename,			1,	&zopt_rarely	},
209	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
210	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
211	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
212	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
213	{ ztest_scrub,				1,	&zopt_vdevtime	},
214};
215
216#define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
217
218#define	ZTEST_SYNC_LOCKS	16
219
220/*
221 * Stuff we need to share writably between parent and child.
222 */
223typedef struct ztest_shared {
224	mutex_t		zs_vdev_lock;
225	rwlock_t	zs_name_lock;
226	uint64_t	zs_vdev_primaries;
227	uint64_t	zs_vdev_aux;
228	uint64_t	zs_enospc_count;
229	hrtime_t	zs_start_time;
230	hrtime_t	zs_stop_time;
231	uint64_t	zs_alloc;
232	uint64_t	zs_space;
233	ztest_info_t	zs_info[ZTEST_FUNCS];
234	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
235	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
236} ztest_shared_t;
237
238static char ztest_dev_template[] = "%s/%s.%llua";
239static char ztest_aux_template[] = "%s/%s.%s.%llu";
240static ztest_shared_t *ztest_shared;
241
242static int ztest_random_fd;
243static int ztest_dump_core = 1;
244
245static boolean_t ztest_exiting;
246
247extern uint64_t metaslab_gang_bang;
248
249#define	ZTEST_DIROBJ		1
250#define	ZTEST_MICROZAP_OBJ	2
251#define	ZTEST_FATZAP_OBJ	3
252
253#define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
254#define	ZTEST_DIRSIZE		256
255
256static void usage(boolean_t) __NORETURN;
257
258/*
259 * These libumem hooks provide a reasonable set of defaults for the allocator's
260 * debugging facilities.
261 */
262const char *
263_umem_debug_init()
264{
265	return ("default,verbose"); /* $UMEM_DEBUG setting */
266}
267
268const char *
269_umem_logging_init(void)
270{
271	return ("fail,contents"); /* $UMEM_LOGGING setting */
272}
273
274#define	FATAL_MSG_SZ	1024
275
276char *fatal_msg;
277
278static void
279fatal(int do_perror, char *message, ...)
280{
281	va_list args;
282	int save_errno = errno;
283	char buf[FATAL_MSG_SZ];
284
285	(void) fflush(stdout);
286
287	va_start(args, message);
288	(void) sprintf(buf, "ztest: ");
289	/* LINTED */
290	(void) vsprintf(buf + strlen(buf), message, args);
291	va_end(args);
292	if (do_perror) {
293		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
294		    ": %s", strerror(save_errno));
295	}
296	(void) fprintf(stderr, "%s\n", buf);
297	fatal_msg = buf;			/* to ease debugging */
298	if (ztest_dump_core)
299		abort();
300	exit(3);
301}
302
303static int
304str2shift(const char *buf)
305{
306	const char *ends = "BKMGTPEZ";
307	int i;
308
309	if (buf[0] == '\0')
310		return (0);
311	for (i = 0; i < strlen(ends); i++) {
312		if (toupper(buf[0]) == ends[i])
313			break;
314	}
315	if (i == strlen(ends)) {
316		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
317		    buf);
318		usage(B_FALSE);
319	}
320	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
321		return (10*i);
322	}
323	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
324	usage(B_FALSE);
325	/* NOTREACHED */
326}
327
328static uint64_t
329nicenumtoull(const char *buf)
330{
331	char *end;
332	uint64_t val;
333
334	val = strtoull(buf, &end, 0);
335	if (end == buf) {
336		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
337		usage(B_FALSE);
338	} else if (end[0] == '.') {
339		double fval = strtod(buf, &end);
340		fval *= pow(2, str2shift(end));
341		if (fval > UINT64_MAX) {
342			(void) fprintf(stderr, "ztest: value too large: %s\n",
343			    buf);
344			usage(B_FALSE);
345		}
346		val = (uint64_t)fval;
347	} else {
348		int shift = str2shift(end);
349		if (shift >= 64 || (val << shift) >> shift != val) {
350			(void) fprintf(stderr, "ztest: value too large: %s\n",
351			    buf);
352			usage(B_FALSE);
353		}
354		val <<= shift;
355	}
356	return (val);
357}
358
359static void
360usage(boolean_t requested)
361{
362	char nice_vdev_size[10];
363	char nice_gang_bang[10];
364	FILE *fp = requested ? stdout : stderr;
365
366	nicenum(zopt_vdev_size, nice_vdev_size);
367	nicenum(metaslab_gang_bang, nice_gang_bang);
368
369	(void) fprintf(fp, "Usage: %s\n"
370	    "\t[-v vdevs (default: %llu)]\n"
371	    "\t[-s size_of_each_vdev (default: %s)]\n"
372	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
373	    "\t[-m mirror_copies (default: %d)]\n"
374	    "\t[-r raidz_disks (default: %d)]\n"
375	    "\t[-R raidz_parity (default: %d)]\n"
376	    "\t[-d datasets (default: %d)]\n"
377	    "\t[-t threads (default: %d)]\n"
378	    "\t[-g gang_block_threshold (default: %s)]\n"
379	    "\t[-i initialize pool i times (default: %d)]\n"
380	    "\t[-k kill percentage (default: %llu%%)]\n"
381	    "\t[-p pool_name (default: %s)]\n"
382	    "\t[-f file directory for vdev files (default: %s)]\n"
383	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
384	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
385	    "\t[-T time] total run time (default: %llu sec)\n"
386	    "\t[-P passtime] time per pass (default: %llu sec)\n"
387	    "\t[-h] (print help)\n"
388	    "",
389	    cmdname,
390	    (u_longlong_t)zopt_vdevs,			/* -v */
391	    nice_vdev_size,				/* -s */
392	    zopt_ashift,				/* -a */
393	    zopt_mirrors,				/* -m */
394	    zopt_raidz,					/* -r */
395	    zopt_raidz_parity,				/* -R */
396	    zopt_datasets,				/* -d */
397	    zopt_threads,				/* -t */
398	    nice_gang_bang,				/* -g */
399	    zopt_init,					/* -i */
400	    (u_longlong_t)zopt_killrate,		/* -k */
401	    zopt_pool,					/* -p */
402	    zopt_dir,					/* -f */
403	    (u_longlong_t)zopt_time,			/* -T */
404	    (u_longlong_t)zopt_passtime);		/* -P */
405	exit(requested ? 0 : 1);
406}
407
408static uint64_t
409ztest_random(uint64_t range)
410{
411	uint64_t r;
412
413	if (range == 0)
414		return (0);
415
416	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
417		fatal(1, "short read from /dev/urandom");
418
419	return (r % range);
420}
421
422static void
423ztest_record_enospc(char *s)
424{
425	dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>");
426	ztest_shared->zs_enospc_count++;
427}
428
429static void
430process_options(int argc, char **argv)
431{
432	int opt;
433	uint64_t value;
434
435	/* By default, test gang blocks for blocks 32K and greater */
436	metaslab_gang_bang = 32 << 10;
437
438	while ((opt = getopt(argc, argv,
439	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
440		value = 0;
441		switch (opt) {
442		case 'v':
443		case 's':
444		case 'a':
445		case 'm':
446		case 'r':
447		case 'R':
448		case 'd':
449		case 't':
450		case 'g':
451		case 'i':
452		case 'k':
453		case 'T':
454		case 'P':
455			value = nicenumtoull(optarg);
456		}
457		switch (opt) {
458		case 'v':
459			zopt_vdevs = value;
460			break;
461		case 's':
462			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
463			break;
464		case 'a':
465			zopt_ashift = value;
466			break;
467		case 'm':
468			zopt_mirrors = value;
469			break;
470		case 'r':
471			zopt_raidz = MAX(1, value);
472			break;
473		case 'R':
474			zopt_raidz_parity = MIN(MAX(value, 1), 2);
475			break;
476		case 'd':
477			zopt_datasets = MAX(1, value);
478			break;
479		case 't':
480			zopt_threads = MAX(1, value);
481			break;
482		case 'g':
483			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
484			break;
485		case 'i':
486			zopt_init = value;
487			break;
488		case 'k':
489			zopt_killrate = value;
490			break;
491		case 'p':
492			zopt_pool = strdup(optarg);
493			break;
494		case 'f':
495			zopt_dir = strdup(optarg);
496			break;
497		case 'V':
498			zopt_verbose++;
499			break;
500		case 'E':
501			zopt_init = 0;
502			break;
503		case 'T':
504			zopt_time = value;
505			break;
506		case 'P':
507			zopt_passtime = MAX(1, value);
508			break;
509		case 'h':
510			usage(B_TRUE);
511			break;
512		case '?':
513		default:
514			usage(B_FALSE);
515			break;
516		}
517	}
518
519	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
520
521	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
522	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
523}
524
525static uint64_t
526ztest_get_ashift(void)
527{
528	if (zopt_ashift == 0)
529		return (SPA_MINBLOCKSHIFT + ztest_random(3));
530	return (zopt_ashift);
531}
532
533static nvlist_t *
534make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
535{
536	char pathbuf[MAXPATHLEN];
537	uint64_t vdev;
538	nvlist_t *file;
539
540	if (ashift == 0)
541		ashift = ztest_get_ashift();
542
543	if (path == NULL) {
544		path = pathbuf;
545
546		if (aux != NULL) {
547			vdev = ztest_shared->zs_vdev_aux;
548			(void) sprintf(path, ztest_aux_template,
549			    zopt_dir, zopt_pool, aux, vdev);
550		} else {
551			vdev = ztest_shared->zs_vdev_primaries++;
552			(void) sprintf(path, ztest_dev_template,
553			    zopt_dir, zopt_pool, vdev);
554		}
555	}
556
557	if (size != 0) {
558		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
559		if (fd == -1)
560			fatal(1, "can't open %s", path);
561		if (ftruncate(fd, size) != 0)
562			fatal(1, "can't ftruncate %s", path);
563		(void) close(fd);
564	}
565
566	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
567	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
568	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
569	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
570
571	return (file);
572}
573
574static nvlist_t *
575make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
576{
577	nvlist_t *raidz, **child;
578	int c;
579
580	if (r < 2)
581		return (make_vdev_file(path, aux, size, ashift));
582	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
583
584	for (c = 0; c < r; c++)
585		child[c] = make_vdev_file(path, aux, size, ashift);
586
587	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
588	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
589	    VDEV_TYPE_RAIDZ) == 0);
590	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
591	    zopt_raidz_parity) == 0);
592	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
593	    child, r) == 0);
594
595	for (c = 0; c < r; c++)
596		nvlist_free(child[c]);
597
598	umem_free(child, r * sizeof (nvlist_t *));
599
600	return (raidz);
601}
602
603static nvlist_t *
604make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
605	int r, int m)
606{
607	nvlist_t *mirror, **child;
608	int c;
609
610	if (m < 1)
611		return (make_vdev_raidz(path, aux, size, ashift, r));
612
613	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
614
615	for (c = 0; c < m; c++)
616		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
617
618	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
619	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
620	    VDEV_TYPE_MIRROR) == 0);
621	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
622	    child, m) == 0);
623
624	for (c = 0; c < m; c++)
625		nvlist_free(child[c]);
626
627	umem_free(child, m * sizeof (nvlist_t *));
628
629	return (mirror);
630}
631
632static nvlist_t *
633make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
634	int log, int r, int m, int t)
635{
636	nvlist_t *root, **child;
637	int c;
638
639	ASSERT(t > 0);
640
641	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
642
643	for (c = 0; c < t; c++) {
644		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
645		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
646		    log) == 0);
647	}
648
649	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
650	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
651	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
652	    child, t) == 0);
653
654	for (c = 0; c < t; c++)
655		nvlist_free(child[c]);
656
657	umem_free(child, t * sizeof (nvlist_t *));
658
659	return (root);
660}
661
662static void
663ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
664{
665	int bs = SPA_MINBLOCKSHIFT +
666	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
667	int ibs = DN_MIN_INDBLKSHIFT +
668	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
669	int error;
670
671	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
672	if (error) {
673		char osname[300];
674		dmu_objset_name(os, osname);
675		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
676		    osname, object, 1 << bs, ibs, error);
677	}
678}
679
680static uint8_t
681ztest_random_checksum(void)
682{
683	uint8_t checksum;
684
685	do {
686		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
687	} while (zio_checksum_table[checksum].ci_zbt);
688
689	if (checksum == ZIO_CHECKSUM_OFF)
690		checksum = ZIO_CHECKSUM_ON;
691
692	return (checksum);
693}
694
695static uint8_t
696ztest_random_compress(void)
697{
698	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
699}
700
701typedef struct ztest_replay {
702	objset_t	*zr_os;
703	uint64_t	zr_assign;
704} ztest_replay_t;
705
706static int
707ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap)
708{
709	objset_t *os = zr->zr_os;
710	dmu_tx_t *tx;
711	int error;
712
713	if (byteswap)
714		byteswap_uint64_array(lr, sizeof (*lr));
715
716	tx = dmu_tx_create(os);
717	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
718	error = dmu_tx_assign(tx, zr->zr_assign);
719	if (error) {
720		dmu_tx_abort(tx);
721		return (error);
722	}
723
724	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
725	    DMU_OT_NONE, 0, tx);
726	ASSERT3U(error, ==, 0);
727	dmu_tx_commit(tx);
728
729	if (zopt_verbose >= 5) {
730		char osname[MAXNAMELEN];
731		dmu_objset_name(os, osname);
732		(void) printf("replay create of %s object %llu"
733		    " in txg %llu = %d\n",
734		    osname, (u_longlong_t)lr->lr_doid,
735		    (u_longlong_t)zr->zr_assign, error);
736	}
737
738	return (error);
739}
740
741static int
742ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap)
743{
744	objset_t *os = zr->zr_os;
745	dmu_tx_t *tx;
746	int error;
747
748	if (byteswap)
749		byteswap_uint64_array(lr, sizeof (*lr));
750
751	tx = dmu_tx_create(os);
752	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
753	error = dmu_tx_assign(tx, zr->zr_assign);
754	if (error) {
755		dmu_tx_abort(tx);
756		return (error);
757	}
758
759	error = dmu_object_free(os, lr->lr_doid, tx);
760	dmu_tx_commit(tx);
761
762	return (error);
763}
764
765zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
766	NULL,			/* 0 no such transaction type */
767	ztest_replay_create,	/* TX_CREATE */
768	NULL,			/* TX_MKDIR */
769	NULL,			/* TX_MKXATTR */
770	NULL,			/* TX_SYMLINK */
771	ztest_replay_remove,	/* TX_REMOVE */
772	NULL,			/* TX_RMDIR */
773	NULL,			/* TX_LINK */
774	NULL,			/* TX_RENAME */
775	NULL,			/* TX_WRITE */
776	NULL,			/* TX_TRUNCATE */
777	NULL,			/* TX_SETATTR */
778	NULL,			/* TX_ACL */
779};
780
781/*
782 * Verify that we can't destroy an active pool, create an existing pool,
783 * or create a pool with a bad vdev spec.
784 */
785void
786ztest_spa_create_destroy(ztest_args_t *za)
787{
788	int error;
789	spa_t *spa;
790	nvlist_t *nvroot;
791
792	/*
793	 * Attempt to create using a bad file.
794	 */
795	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
796	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
797	nvlist_free(nvroot);
798	if (error != ENOENT)
799		fatal(0, "spa_create(bad_file) = %d", error);
800
801	/*
802	 * Attempt to create using a bad mirror.
803	 */
804	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
805	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
806	nvlist_free(nvroot);
807	if (error != ENOENT)
808		fatal(0, "spa_create(bad_mirror) = %d", error);
809
810	/*
811	 * Attempt to create an existing pool.  It shouldn't matter
812	 * what's in the nvroot; we should fail with EEXIST.
813	 */
814	(void) rw_rdlock(&ztest_shared->zs_name_lock);
815	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
816	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
817	nvlist_free(nvroot);
818	if (error != EEXIST)
819		fatal(0, "spa_create(whatever) = %d", error);
820
821	error = spa_open(za->za_pool, &spa, FTAG);
822	if (error)
823		fatal(0, "spa_open() = %d", error);
824
825	error = spa_destroy(za->za_pool);
826	if (error != EBUSY)
827		fatal(0, "spa_destroy() = %d", error);
828
829	spa_close(spa, FTAG);
830	(void) rw_unlock(&ztest_shared->zs_name_lock);
831}
832
833static vdev_t *
834vdev_lookup_by_path(vdev_t *vd, const char *path)
835{
836	vdev_t *mvd;
837
838	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
839		return (vd);
840
841	for (int c = 0; c < vd->vdev_children; c++)
842		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
843		    NULL)
844			return (mvd);
845
846	return (NULL);
847}
848
849/*
850 * Verify that vdev_add() works as expected.
851 */
852void
853ztest_vdev_add_remove(ztest_args_t *za)
854{
855	spa_t *spa = za->za_spa;
856	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
857	nvlist_t *nvroot;
858	int error;
859
860	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
861
862	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
863
864	ztest_shared->zs_vdev_primaries =
865	    spa->spa_root_vdev->vdev_children * leaves;
866
867	spa_config_exit(spa, SCL_VDEV, FTAG);
868
869	/*
870	 * Make 1/4 of the devices be log devices.
871	 */
872	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
873	    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
874
875	error = spa_vdev_add(spa, nvroot);
876	nvlist_free(nvroot);
877
878	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
879
880	if (error == ENOSPC)
881		ztest_record_enospc("spa_vdev_add");
882	else if (error != 0)
883		fatal(0, "spa_vdev_add() = %d", error);
884}
885
886/*
887 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
888 */
889void
890ztest_vdev_aux_add_remove(ztest_args_t *za)
891{
892	spa_t *spa = za->za_spa;
893	vdev_t *rvd = spa->spa_root_vdev;
894	spa_aux_vdev_t *sav;
895	char *aux;
896	uint64_t guid = 0;
897	int error;
898
899	if (ztest_random(2) == 0) {
900		sav = &spa->spa_spares;
901		aux = ZPOOL_CONFIG_SPARES;
902	} else {
903		sav = &spa->spa_l2cache;
904		aux = ZPOOL_CONFIG_L2CACHE;
905	}
906
907	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
908
909	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
910
911	if (sav->sav_count != 0 && ztest_random(4) == 0) {
912		/*
913		 * Pick a random device to remove.
914		 */
915		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
916	} else {
917		/*
918		 * Find an unused device we can add.
919		 */
920		ztest_shared->zs_vdev_aux = 0;
921		for (;;) {
922			char path[MAXPATHLEN];
923			int c;
924			(void) sprintf(path, ztest_aux_template, zopt_dir,
925			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
926			for (c = 0; c < sav->sav_count; c++)
927				if (strcmp(sav->sav_vdevs[c]->vdev_path,
928				    path) == 0)
929					break;
930			if (c == sav->sav_count &&
931			    vdev_lookup_by_path(rvd, path) == NULL)
932				break;
933			ztest_shared->zs_vdev_aux++;
934		}
935	}
936
937	spa_config_exit(spa, SCL_VDEV, FTAG);
938
939	if (guid == 0) {
940		/*
941		 * Add a new device.
942		 */
943		nvlist_t *nvroot = make_vdev_root(NULL, aux,
944		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
945		error = spa_vdev_add(spa, nvroot);
946		if (error != 0)
947			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
948		nvlist_free(nvroot);
949	} else {
950		/*
951		 * Remove an existing device.  Sometimes, dirty its
952		 * vdev state first to make sure we handle removal
953		 * of devices that have pending state changes.
954		 */
955		if (ztest_random(2) == 0)
956			(void) vdev_online(spa, guid, B_FALSE, NULL);
957
958		error = spa_vdev_remove(spa, guid, B_FALSE);
959		if (error != 0 && error != EBUSY)
960			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
961	}
962
963	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
964}
965
966/*
967 * Verify that we can attach and detach devices.
968 */
969void
970ztest_vdev_attach_detach(ztest_args_t *za)
971{
972	spa_t *spa = za->za_spa;
973	spa_aux_vdev_t *sav = &spa->spa_spares;
974	vdev_t *rvd = spa->spa_root_vdev;
975	vdev_t *oldvd, *newvd, *pvd;
976	nvlist_t *root;
977	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
978	uint64_t leaf, top;
979	uint64_t ashift = ztest_get_ashift();
980	uint64_t oldguid;
981	size_t oldsize, newsize;
982	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
983	int replacing;
984	int oldvd_has_siblings = B_FALSE;
985	int newvd_is_spare = B_FALSE;
986	int oldvd_is_log;
987	int error, expected_error;
988
989	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
990
991	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
992
993	/*
994	 * Decide whether to do an attach or a replace.
995	 */
996	replacing = ztest_random(2);
997
998	/*
999	 * Pick a random top-level vdev.
1000	 */
1001	top = ztest_random(rvd->vdev_children);
1002
1003	/*
1004	 * Pick a random leaf within it.
1005	 */
1006	leaf = ztest_random(leaves);
1007
1008	/*
1009	 * Locate this vdev.
1010	 */
1011	oldvd = rvd->vdev_child[top];
1012	if (zopt_mirrors >= 1)
1013		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1014	if (zopt_raidz > 1)
1015		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1016
1017	/*
1018	 * If we're already doing an attach or replace, oldvd may be a
1019	 * mirror vdev -- in which case, pick a random child.
1020	 */
1021	while (oldvd->vdev_children != 0) {
1022		oldvd_has_siblings = B_TRUE;
1023		ASSERT(oldvd->vdev_children == 2);
1024		oldvd = oldvd->vdev_child[ztest_random(2)];
1025	}
1026
1027	oldguid = oldvd->vdev_guid;
1028	oldsize = vdev_get_rsize(oldvd);
1029	oldvd_is_log = oldvd->vdev_top->vdev_islog;
1030	(void) strcpy(oldpath, oldvd->vdev_path);
1031	pvd = oldvd->vdev_parent;
1032
1033	/*
1034	 * If oldvd has siblings, then half of the time, detach it.
1035	 */
1036	if (oldvd_has_siblings && ztest_random(2) == 0) {
1037		spa_config_exit(spa, SCL_VDEV, FTAG);
1038		error = spa_vdev_detach(spa, oldguid, B_FALSE);
1039		if (error != 0 && error != ENODEV && error != EBUSY)
1040			fatal(0, "detach (%s) returned %d",
1041			    oldpath, error);
1042		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1043		return;
1044	}
1045
1046	/*
1047	 * For the new vdev, choose with equal probability between the two
1048	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1049	 */
1050	if (sav->sav_count != 0 && ztest_random(3) == 0) {
1051		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1052		newvd_is_spare = B_TRUE;
1053		(void) strcpy(newpath, newvd->vdev_path);
1054	} else {
1055		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1056		    zopt_dir, zopt_pool, top * leaves + leaf);
1057		if (ztest_random(2) == 0)
1058			newpath[strlen(newpath) - 1] = 'b';
1059		newvd = vdev_lookup_by_path(rvd, newpath);
1060	}
1061
1062	if (newvd) {
1063		newsize = vdev_get_rsize(newvd);
1064	} else {
1065		/*
1066		 * Make newsize a little bigger or smaller than oldsize.
1067		 * If it's smaller, the attach should fail.
1068		 * If it's larger, and we're doing a replace,
1069		 * we should get dynamic LUN growth when we're done.
1070		 */
1071		newsize = 10 * oldsize / (9 + ztest_random(3));
1072	}
1073
1074	/*
1075	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1076	 * unless it's a replace; in that case any non-replacing parent is OK.
1077	 *
1078	 * If newvd is already part of the pool, it should fail with EBUSY.
1079	 *
1080	 * If newvd is too small, it should fail with EOVERFLOW.
1081	 */
1082	if (pvd->vdev_ops != &vdev_mirror_ops &&
1083	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1084	    pvd->vdev_ops == &vdev_replacing_ops ||
1085	    pvd->vdev_ops == &vdev_spare_ops))
1086		expected_error = ENOTSUP;
1087	else if (newvd_is_spare && (!replacing || oldvd_is_log))
1088		expected_error = ENOTSUP;
1089	else if (newvd == oldvd)
1090		expected_error = replacing ? 0 : EBUSY;
1091	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1092		expected_error = EBUSY;
1093	else if (newsize < oldsize)
1094		expected_error = EOVERFLOW;
1095	else if (ashift > oldvd->vdev_top->vdev_ashift)
1096		expected_error = EDOM;
1097	else
1098		expected_error = 0;
1099
1100	spa_config_exit(spa, SCL_VDEV, FTAG);
1101
1102	/*
1103	 * Build the nvlist describing newpath.
1104	 */
1105	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1106	    ashift, 0, 0, 0, 1);
1107
1108	error = spa_vdev_attach(spa, oldguid, root, replacing);
1109
1110	nvlist_free(root);
1111
1112	/*
1113	 * If our parent was the replacing vdev, but the replace completed,
1114	 * then instead of failing with ENOTSUP we may either succeed,
1115	 * fail with ENODEV, or fail with EOVERFLOW.
1116	 */
1117	if (expected_error == ENOTSUP &&
1118	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1119		expected_error = error;
1120
1121	/*
1122	 * If someone grew the LUN, the replacement may be too small.
1123	 */
1124	if (error == EOVERFLOW || error == EBUSY)
1125		expected_error = error;
1126
1127	/* XXX workaround 6690467 */
1128	if (error != expected_error && expected_error != EBUSY) {
1129		fatal(0, "attach (%s %llu, %s %llu, %d) "
1130		    "returned %d, expected %d",
1131		    oldpath, (longlong_t)oldsize, newpath,
1132		    (longlong_t)newsize, replacing, error, expected_error);
1133	}
1134
1135	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1136}
1137
1138/*
1139 * Verify that dynamic LUN growth works as expected.
1140 */
1141/* ARGSUSED */
1142void
1143ztest_vdev_LUN_growth(ztest_args_t *za)
1144{
1145	spa_t *spa = za->za_spa;
1146	char dev_name[MAXPATHLEN];
1147	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1148	uint64_t vdev;
1149	size_t fsize;
1150	int fd;
1151
1152	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1153
1154	/*
1155	 * Pick a random leaf vdev.
1156	 */
1157	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1158	vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves);
1159	spa_config_exit(spa, SCL_VDEV, FTAG);
1160
1161	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
1162
1163	if ((fd = open(dev_name, O_RDWR)) != -1) {
1164		/*
1165		 * Determine the size.
1166		 */
1167		fsize = lseek(fd, 0, SEEK_END);
1168
1169		/*
1170		 * If it's less than 2x the original size, grow by around 3%.
1171		 */
1172		if (fsize < 2 * zopt_vdev_size) {
1173			size_t newsize = fsize + ztest_random(fsize / 32);
1174			(void) ftruncate(fd, newsize);
1175			if (zopt_verbose >= 6) {
1176				(void) printf("%s grew from %lu to %lu bytes\n",
1177				    dev_name, (ulong_t)fsize, (ulong_t)newsize);
1178			}
1179		}
1180		(void) close(fd);
1181	}
1182
1183	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1184}
1185
1186/* ARGSUSED */
1187static void
1188ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1189{
1190	/*
1191	 * Create the directory object.
1192	 */
1193	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1194	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1195	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1196
1197	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1198	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1199
1200	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1201	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1202}
1203
1204static int
1205ztest_destroy_cb(char *name, void *arg)
1206{
1207	ztest_args_t *za = arg;
1208	objset_t *os;
1209	dmu_object_info_t *doi = &za->za_doi;
1210	int error;
1211
1212	/*
1213	 * Verify that the dataset contains a directory object.
1214	 */
1215	error = dmu_objset_open(name, DMU_OST_OTHER,
1216	    DS_MODE_USER | DS_MODE_READONLY, &os);
1217	ASSERT3U(error, ==, 0);
1218	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1219	if (error != ENOENT) {
1220		/* We could have crashed in the middle of destroying it */
1221		ASSERT3U(error, ==, 0);
1222		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1223		ASSERT3S(doi->doi_physical_blks, >=, 0);
1224	}
1225	dmu_objset_close(os);
1226
1227	/*
1228	 * Destroy the dataset.
1229	 */
1230	error = dmu_objset_destroy(name);
1231	if (error) {
1232		(void) dmu_objset_open(name, DMU_OST_OTHER,
1233		    DS_MODE_USER | DS_MODE_READONLY, &os);
1234		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error);
1235	}
1236	return (0);
1237}
1238
1239/*
1240 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1241 */
1242static uint64_t
1243ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1244{
1245	itx_t *itx;
1246	lr_create_t *lr;
1247	size_t namesize;
1248	char name[24];
1249
1250	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1251	namesize = strlen(name) + 1;
1252
1253	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1254	    ztest_random(ZIL_MAX_BLKSZ));
1255	lr = (lr_create_t *)&itx->itx_lr;
1256	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1257	lr->lr_doid = object;
1258	lr->lr_foid = 0;
1259	lr->lr_mode = mode;
1260	lr->lr_uid = 0;
1261	lr->lr_gid = 0;
1262	lr->lr_gen = dmu_tx_get_txg(tx);
1263	lr->lr_crtime[0] = time(NULL);
1264	lr->lr_crtime[1] = 0;
1265	lr->lr_rdev = 0;
1266	bcopy(name, (char *)(lr + 1), namesize);
1267
1268	return (zil_itx_assign(zilog, itx, tx));
1269}
1270
1271void
1272ztest_dmu_objset_create_destroy(ztest_args_t *za)
1273{
1274	int error;
1275	objset_t *os, *os2;
1276	char name[100];
1277	int basemode, expected_error;
1278	zilog_t *zilog;
1279	uint64_t seq;
1280	uint64_t objects;
1281	ztest_replay_t zr;
1282
1283	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1284	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1285	    (u_longlong_t)za->za_instance);
1286
1287	basemode = DS_MODE_TYPE(za->za_instance);
1288	if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER)
1289		basemode = DS_MODE_USER;
1290
1291	/*
1292	 * If this dataset exists from a previous run, process its replay log
1293	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1294	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1295	 */
1296	if (ztest_random(2) == 0 &&
1297	    dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) {
1298		zr.zr_os = os;
1299		zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL);
1300		dmu_objset_close(os);
1301	}
1302
1303	/*
1304	 * There may be an old instance of the dataset we're about to
1305	 * create lying around from a previous run.  If so, destroy it
1306	 * and all of its snapshots.
1307	 */
1308	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1309	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1310
1311	/*
1312	 * Verify that the destroyed dataset is no longer in the namespace.
1313	 */
1314	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1315	if (error != ENOENT)
1316		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1317		    name, os);
1318
1319	/*
1320	 * Verify that we can create a new dataset.
1321	 */
1322	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
1323	    ztest_create_cb, NULL);
1324	if (error) {
1325		if (error == ENOSPC) {
1326			ztest_record_enospc("dmu_objset_create");
1327			(void) rw_unlock(&ztest_shared->zs_name_lock);
1328			return;
1329		}
1330		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1331	}
1332
1333	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1334	if (error) {
1335		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1336	}
1337
1338	/*
1339	 * Open the intent log for it.
1340	 */
1341	zilog = zil_open(os, NULL);
1342
1343	/*
1344	 * Put a random number of objects in there.
1345	 */
1346	objects = ztest_random(20);
1347	seq = 0;
1348	while (objects-- != 0) {
1349		uint64_t object;
1350		dmu_tx_t *tx = dmu_tx_create(os);
1351		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1352		error = dmu_tx_assign(tx, TXG_WAIT);
1353		if (error) {
1354			dmu_tx_abort(tx);
1355		} else {
1356			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1357			    DMU_OT_NONE, 0, tx);
1358			ztest_set_random_blocksize(os, object, tx);
1359			seq = ztest_log_create(zilog, tx, object,
1360			    DMU_OT_UINT64_OTHER);
1361			dmu_write(os, object, 0, sizeof (name), name, tx);
1362			dmu_tx_commit(tx);
1363		}
1364		if (ztest_random(5) == 0) {
1365			zil_commit(zilog, seq, object);
1366		}
1367		if (ztest_random(100) == 0) {
1368			error = zil_suspend(zilog);
1369			if (error == 0) {
1370				zil_resume(zilog);
1371			}
1372		}
1373	}
1374
1375	/*
1376	 * Verify that we cannot create an existing dataset.
1377	 */
1378	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL);
1379	if (error != EEXIST)
1380		fatal(0, "created existing dataset, error = %d", error);
1381
1382	/*
1383	 * Verify that multiple dataset holds are allowed, but only when
1384	 * the new access mode is compatible with the base mode.
1385	 */
1386	if (basemode == DS_MODE_OWNER) {
1387		error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER,
1388		    &os2);
1389		if (error)
1390			fatal(0, "dmu_objset_open('%s') = %d", name, error);
1391		else
1392			dmu_objset_close(os2);
1393	}
1394	error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2);
1395	expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0;
1396	if (error != expected_error)
1397		fatal(0, "dmu_objset_open('%s') = %d, expected %d",
1398		    name, error, expected_error);
1399	if (error == 0)
1400		dmu_objset_close(os2);
1401
1402	zil_close(zilog);
1403	dmu_objset_close(os);
1404
1405	error = dmu_objset_destroy(name);
1406	if (error)
1407		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1408
1409	(void) rw_unlock(&ztest_shared->zs_name_lock);
1410}
1411
1412/*
1413 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1414 */
1415void
1416ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1417{
1418	int error;
1419	objset_t *os = za->za_os;
1420	char snapname[100];
1421	char osname[MAXNAMELEN];
1422
1423	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1424	dmu_objset_name(os, osname);
1425	(void) snprintf(snapname, 100, "%s@%llu", osname,
1426	    (u_longlong_t)za->za_instance);
1427
1428	error = dmu_objset_destroy(snapname);
1429	if (error != 0 && error != ENOENT)
1430		fatal(0, "dmu_objset_destroy() = %d", error);
1431	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE);
1432	if (error == ENOSPC)
1433		ztest_record_enospc("dmu_take_snapshot");
1434	else if (error != 0 && error != EEXIST)
1435		fatal(0, "dmu_take_snapshot() = %d", error);
1436	(void) rw_unlock(&ztest_shared->zs_name_lock);
1437}
1438
1439/*
1440 * Verify that dmu_object_{alloc,free} work as expected.
1441 */
1442void
1443ztest_dmu_object_alloc_free(ztest_args_t *za)
1444{
1445	objset_t *os = za->za_os;
1446	dmu_buf_t *db;
1447	dmu_tx_t *tx;
1448	uint64_t batchobj, object, batchsize, endoff, temp;
1449	int b, c, error, bonuslen;
1450	dmu_object_info_t *doi = &za->za_doi;
1451	char osname[MAXNAMELEN];
1452
1453	dmu_objset_name(os, osname);
1454
1455	endoff = -8ULL;
1456	batchsize = 2;
1457
1458	/*
1459	 * Create a batch object if necessary, and record it in the directory.
1460	 */
1461	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1462	    sizeof (uint64_t), &batchobj));
1463	if (batchobj == 0) {
1464		tx = dmu_tx_create(os);
1465		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1466		    sizeof (uint64_t));
1467		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1468		error = dmu_tx_assign(tx, TXG_WAIT);
1469		if (error) {
1470			ztest_record_enospc("create a batch object");
1471			dmu_tx_abort(tx);
1472			return;
1473		}
1474		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1475		    DMU_OT_NONE, 0, tx);
1476		ztest_set_random_blocksize(os, batchobj, tx);
1477		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1478		    sizeof (uint64_t), &batchobj, tx);
1479		dmu_tx_commit(tx);
1480	}
1481
1482	/*
1483	 * Destroy the previous batch of objects.
1484	 */
1485	for (b = 0; b < batchsize; b++) {
1486		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1487		    sizeof (uint64_t), &object));
1488		if (object == 0)
1489			continue;
1490		/*
1491		 * Read and validate contents.
1492		 * We expect the nth byte of the bonus buffer to be n.
1493		 */
1494		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1495		za->za_dbuf = db;
1496
1497		dmu_object_info_from_db(db, doi);
1498		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1499		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1500		ASSERT3S(doi->doi_physical_blks, >=, 0);
1501
1502		bonuslen = doi->doi_bonus_size;
1503
1504		for (c = 0; c < bonuslen; c++) {
1505			if (((uint8_t *)db->db_data)[c] !=
1506			    (uint8_t)(c + bonuslen)) {
1507				fatal(0,
1508				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1509				    osname, object, c,
1510				    ((uint8_t *)db->db_data)[c],
1511				    (uint8_t)(c + bonuslen));
1512			}
1513		}
1514
1515		dmu_buf_rele(db, FTAG);
1516		za->za_dbuf = NULL;
1517
1518		/*
1519		 * We expect the word at endoff to be our object number.
1520		 */
1521		VERIFY(0 == dmu_read(os, object, endoff,
1522		    sizeof (uint64_t), &temp));
1523
1524		if (temp != object) {
1525			fatal(0, "bad data in %s, got %llu, expected %llu",
1526			    osname, temp, object);
1527		}
1528
1529		/*
1530		 * Destroy old object and clear batch entry.
1531		 */
1532		tx = dmu_tx_create(os);
1533		dmu_tx_hold_write(tx, batchobj,
1534		    b * sizeof (uint64_t), sizeof (uint64_t));
1535		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1536		error = dmu_tx_assign(tx, TXG_WAIT);
1537		if (error) {
1538			ztest_record_enospc("free object");
1539			dmu_tx_abort(tx);
1540			return;
1541		}
1542		error = dmu_object_free(os, object, tx);
1543		if (error) {
1544			fatal(0, "dmu_object_free('%s', %llu) = %d",
1545			    osname, object, error);
1546		}
1547		object = 0;
1548
1549		dmu_object_set_checksum(os, batchobj,
1550		    ztest_random_checksum(), tx);
1551		dmu_object_set_compress(os, batchobj,
1552		    ztest_random_compress(), tx);
1553
1554		dmu_write(os, batchobj, b * sizeof (uint64_t),
1555		    sizeof (uint64_t), &object, tx);
1556
1557		dmu_tx_commit(tx);
1558	}
1559
1560	/*
1561	 * Before creating the new batch of objects, generate a bunch of churn.
1562	 */
1563	for (b = ztest_random(100); b > 0; b--) {
1564		tx = dmu_tx_create(os);
1565		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1566		error = dmu_tx_assign(tx, TXG_WAIT);
1567		if (error) {
1568			ztest_record_enospc("churn objects");
1569			dmu_tx_abort(tx);
1570			return;
1571		}
1572		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1573		    DMU_OT_NONE, 0, tx);
1574		ztest_set_random_blocksize(os, object, tx);
1575		error = dmu_object_free(os, object, tx);
1576		if (error) {
1577			fatal(0, "dmu_object_free('%s', %llu) = %d",
1578			    osname, object, error);
1579		}
1580		dmu_tx_commit(tx);
1581	}
1582
1583	/*
1584	 * Create a new batch of objects with randomly chosen
1585	 * blocksizes and record them in the batch directory.
1586	 */
1587	for (b = 0; b < batchsize; b++) {
1588		uint32_t va_blksize;
1589		u_longlong_t va_nblocks;
1590
1591		tx = dmu_tx_create(os);
1592		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1593		    sizeof (uint64_t));
1594		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1595		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1596		    sizeof (uint64_t));
1597		error = dmu_tx_assign(tx, TXG_WAIT);
1598		if (error) {
1599			ztest_record_enospc("create batchobj");
1600			dmu_tx_abort(tx);
1601			return;
1602		}
1603		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1604
1605		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1606		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1607
1608		ztest_set_random_blocksize(os, object, tx);
1609
1610		dmu_object_set_checksum(os, object,
1611		    ztest_random_checksum(), tx);
1612		dmu_object_set_compress(os, object,
1613		    ztest_random_compress(), tx);
1614
1615		dmu_write(os, batchobj, b * sizeof (uint64_t),
1616		    sizeof (uint64_t), &object, tx);
1617
1618		/*
1619		 * Write to both the bonus buffer and the regular data.
1620		 */
1621		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1622		za->za_dbuf = db;
1623		ASSERT3U(bonuslen, <=, db->db_size);
1624
1625		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1626		ASSERT3S(va_nblocks, >=, 0);
1627
1628		dmu_buf_will_dirty(db, tx);
1629
1630		/*
1631		 * See comments above regarding the contents of
1632		 * the bonus buffer and the word at endoff.
1633		 */
1634		for (c = 0; c < bonuslen; c++)
1635			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1636
1637		dmu_buf_rele(db, FTAG);
1638		za->za_dbuf = NULL;
1639
1640		/*
1641		 * Write to a large offset to increase indirection.
1642		 */
1643		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1644
1645		dmu_tx_commit(tx);
1646	}
1647}
1648
1649/*
1650 * Verify that dmu_{read,write} work as expected.
1651 */
1652typedef struct bufwad {
1653	uint64_t	bw_index;
1654	uint64_t	bw_txg;
1655	uint64_t	bw_data;
1656} bufwad_t;
1657
1658typedef struct dmu_read_write_dir {
1659	uint64_t	dd_packobj;
1660	uint64_t	dd_bigobj;
1661	uint64_t	dd_chunk;
1662} dmu_read_write_dir_t;
1663
1664void
1665ztest_dmu_read_write(ztest_args_t *za)
1666{
1667	objset_t *os = za->za_os;
1668	dmu_read_write_dir_t dd;
1669	dmu_tx_t *tx;
1670	int i, freeit, error;
1671	uint64_t n, s, txg;
1672	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
1673	uint64_t packoff, packsize, bigoff, bigsize;
1674	uint64_t regions = 997;
1675	uint64_t stride = 123456789ULL;
1676	uint64_t width = 40;
1677	int free_percent = 5;
1678
1679	/*
1680	 * This test uses two objects, packobj and bigobj, that are always
1681	 * updated together (i.e. in the same tx) so that their contents are
1682	 * in sync and can be compared.  Their contents relate to each other
1683	 * in a simple way: packobj is a dense array of 'bufwad' structures,
1684	 * while bigobj is a sparse array of the same bufwads.  Specifically,
1685	 * for any index n, there are three bufwads that should be identical:
1686	 *
1687	 *	packobj, at offset n * sizeof (bufwad_t)
1688	 *	bigobj, at the head of the nth chunk
1689	 *	bigobj, at the tail of the nth chunk
1690	 *
1691	 * The chunk size is arbitrary. It doesn't have to be a power of two,
1692	 * and it doesn't have any relation to the object blocksize.
1693	 * The only requirement is that it can hold at least two bufwads.
1694	 *
1695	 * Normally, we write the bufwad to each of these locations.
1696	 * However, free_percent of the time we instead write zeroes to
1697	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
1698	 * bigobj to packobj, we can verify that the DMU is correctly
1699	 * tracking which parts of an object are allocated and free,
1700	 * and that the contents of the allocated blocks are correct.
1701	 */
1702
1703	/*
1704	 * Read the directory info.  If it's the first time, set things up.
1705	 */
1706	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1707	    sizeof (dd), &dd));
1708	if (dd.dd_chunk == 0) {
1709		ASSERT(dd.dd_packobj == 0);
1710		ASSERT(dd.dd_bigobj == 0);
1711		tx = dmu_tx_create(os);
1712		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
1713		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1714		error = dmu_tx_assign(tx, TXG_WAIT);
1715		if (error) {
1716			ztest_record_enospc("create r/w directory");
1717			dmu_tx_abort(tx);
1718			return;
1719		}
1720
1721		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1722		    DMU_OT_NONE, 0, tx);
1723		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1724		    DMU_OT_NONE, 0, tx);
1725		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
1726
1727		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
1728		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
1729
1730		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
1731		    tx);
1732		dmu_tx_commit(tx);
1733	}
1734
1735	/*
1736	 * Prefetch a random chunk of the big object.
1737	 * Our aim here is to get some async reads in flight
1738	 * for blocks that we may free below; the DMU should
1739	 * handle this race correctly.
1740	 */
1741	n = ztest_random(regions) * stride + ztest_random(width);
1742	s = 1 + ztest_random(2 * width - 1);
1743	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
1744
1745	/*
1746	 * Pick a random index and compute the offsets into packobj and bigobj.
1747	 */
1748	n = ztest_random(regions) * stride + ztest_random(width);
1749	s = 1 + ztest_random(width - 1);
1750
1751	packoff = n * sizeof (bufwad_t);
1752	packsize = s * sizeof (bufwad_t);
1753
1754	bigoff = n * dd.dd_chunk;
1755	bigsize = s * dd.dd_chunk;
1756
1757	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
1758	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
1759
1760	/*
1761	 * free_percent of the time, free a range of bigobj rather than
1762	 * overwriting it.
1763	 */
1764	freeit = (ztest_random(100) < free_percent);
1765
1766	/*
1767	 * Read the current contents of our objects.
1768	 */
1769	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf);
1770	ASSERT3U(error, ==, 0);
1771	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf);
1772	ASSERT3U(error, ==, 0);
1773
1774	/*
1775	 * Get a tx for the mods to both packobj and bigobj.
1776	 */
1777	tx = dmu_tx_create(os);
1778
1779	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
1780
1781	if (freeit)
1782		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
1783	else
1784		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
1785
1786	error = dmu_tx_assign(tx, TXG_WAIT);
1787
1788	if (error) {
1789		ztest_record_enospc("dmu r/w range");
1790		dmu_tx_abort(tx);
1791		umem_free(packbuf, packsize);
1792		umem_free(bigbuf, bigsize);
1793		return;
1794	}
1795
1796	txg = dmu_tx_get_txg(tx);
1797
1798	/*
1799	 * For each index from n to n + s, verify that the existing bufwad
1800	 * in packobj matches the bufwads at the head and tail of the
1801	 * corresponding chunk in bigobj.  Then update all three bufwads
1802	 * with the new values we want to write out.
1803	 */
1804	for (i = 0; i < s; i++) {
1805		/* LINTED */
1806		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
1807		/* LINTED */
1808		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
1809		/* LINTED */
1810		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
1811
1812		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
1813		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
1814
1815		if (pack->bw_txg > txg)
1816			fatal(0, "future leak: got %llx, open txg is %llx",
1817			    pack->bw_txg, txg);
1818
1819		if (pack->bw_data != 0 && pack->bw_index != n + i)
1820			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
1821			    pack->bw_index, n, i);
1822
1823		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
1824			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
1825
1826		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
1827			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
1828
1829		if (freeit) {
1830			bzero(pack, sizeof (bufwad_t));
1831		} else {
1832			pack->bw_index = n + i;
1833			pack->bw_txg = txg;
1834			pack->bw_data = 1 + ztest_random(-2ULL);
1835		}
1836		*bigH = *pack;
1837		*bigT = *pack;
1838	}
1839
1840	/*
1841	 * We've verified all the old bufwads, and made new ones.
1842	 * Now write them out.
1843	 */
1844	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
1845
1846	if (freeit) {
1847		if (zopt_verbose >= 6) {
1848			(void) printf("freeing offset %llx size %llx"
1849			    " txg %llx\n",
1850			    (u_longlong_t)bigoff,
1851			    (u_longlong_t)bigsize,
1852			    (u_longlong_t)txg);
1853		}
1854		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
1855		    bigsize, tx));
1856	} else {
1857		if (zopt_verbose >= 6) {
1858			(void) printf("writing offset %llx size %llx"
1859			    " txg %llx\n",
1860			    (u_longlong_t)bigoff,
1861			    (u_longlong_t)bigsize,
1862			    (u_longlong_t)txg);
1863		}
1864		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
1865	}
1866
1867	dmu_tx_commit(tx);
1868
1869	/*
1870	 * Sanity check the stuff we just wrote.
1871	 */
1872	{
1873		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
1874		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
1875
1876		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
1877		    packsize, packcheck));
1878		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
1879		    bigsize, bigcheck));
1880
1881		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
1882		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
1883
1884		umem_free(packcheck, packsize);
1885		umem_free(bigcheck, bigsize);
1886	}
1887
1888	umem_free(packbuf, packsize);
1889	umem_free(bigbuf, bigsize);
1890}
1891
1892void
1893ztest_dmu_check_future_leak(ztest_args_t *za)
1894{
1895	objset_t *os = za->za_os;
1896	dmu_buf_t *db;
1897	ztest_block_tag_t *bt;
1898	dmu_object_info_t *doi = &za->za_doi;
1899
1900	/*
1901	 * Make sure that, if there is a write record in the bonus buffer
1902	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
1903	 * last synced txg of the pool.
1904	 */
1905	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
1906	za->za_dbuf = db;
1907	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
1908	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
1909	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
1910	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
1911	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
1912	if (bt->bt_objset != 0) {
1913		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1914		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
1915		ASSERT3U(bt->bt_offset, ==, -1ULL);
1916		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
1917	}
1918	dmu_buf_rele(db, FTAG);
1919	za->za_dbuf = NULL;
1920}
1921
1922void
1923ztest_dmu_write_parallel(ztest_args_t *za)
1924{
1925	objset_t *os = za->za_os;
1926	ztest_block_tag_t *rbt = &za->za_rbt;
1927	ztest_block_tag_t *wbt = &za->za_wbt;
1928	const size_t btsize = sizeof (ztest_block_tag_t);
1929	dmu_buf_t *db;
1930	int b, error;
1931	int bs = ZTEST_DIROBJ_BLOCKSIZE;
1932	int do_free = 0;
1933	uint64_t off, txg, txg_how;
1934	mutex_t *lp;
1935	char osname[MAXNAMELEN];
1936	char iobuf[SPA_MAXBLOCKSIZE];
1937	blkptr_t blk = { 0 };
1938	uint64_t blkoff;
1939	zbookmark_t zb;
1940	dmu_tx_t *tx = dmu_tx_create(os);
1941
1942	dmu_objset_name(os, osname);
1943
1944	/*
1945	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
1946	 * to verify that having multiple threads writing to the same object
1947	 * in parallel doesn't cause any trouble.
1948	 */
1949	if (ztest_random(4) == 0) {
1950		/*
1951		 * Do the bonus buffer instead of a regular block.
1952		 * We need a lock to serialize resize vs. others,
1953		 * so we hash on the objset ID.
1954		 */
1955		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
1956		off = -1ULL;
1957		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
1958	} else {
1959		b = ztest_random(ZTEST_SYNC_LOCKS);
1960		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
1961		if (ztest_random(4) == 0) {
1962			do_free = 1;
1963			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
1964		} else {
1965			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
1966		}
1967	}
1968
1969	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
1970	error = dmu_tx_assign(tx, txg_how);
1971	if (error) {
1972		if (error == ERESTART) {
1973			ASSERT(txg_how == TXG_NOWAIT);
1974			dmu_tx_wait(tx);
1975		} else {
1976			ztest_record_enospc("dmu write parallel");
1977		}
1978		dmu_tx_abort(tx);
1979		return;
1980	}
1981	txg = dmu_tx_get_txg(tx);
1982
1983	lp = &ztest_shared->zs_sync_lock[b];
1984	(void) mutex_lock(lp);
1985
1986	wbt->bt_objset = dmu_objset_id(os);
1987	wbt->bt_object = ZTEST_DIROBJ;
1988	wbt->bt_offset = off;
1989	wbt->bt_txg = txg;
1990	wbt->bt_thread = za->za_instance;
1991	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
1992
1993	/*
1994	 * Occasionally, write an all-zero block to test the behavior
1995	 * of blocks that compress into holes.
1996	 */
1997	if (off != -1ULL && ztest_random(8) == 0)
1998		bzero(wbt, btsize);
1999
2000	if (off == -1ULL) {
2001		dmu_object_info_t *doi = &za->za_doi;
2002		char *dboff;
2003
2004		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2005		za->za_dbuf = db;
2006		dmu_object_info_from_db(db, doi);
2007		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2008		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2009		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2010		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2011		bcopy(dboff, rbt, btsize);
2012		if (rbt->bt_objset != 0) {
2013			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2014			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2015			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2016			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2017		}
2018		if (ztest_random(10) == 0) {
2019			int newsize = (ztest_random(db->db_size /
2020			    btsize) + 1) * btsize;
2021
2022			ASSERT3U(newsize, >=, btsize);
2023			ASSERT3U(newsize, <=, db->db_size);
2024			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2025			dboff = (char *)db->db_data + newsize - btsize;
2026		}
2027		dmu_buf_will_dirty(db, tx);
2028		bcopy(wbt, dboff, btsize);
2029		dmu_buf_rele(db, FTAG);
2030		za->za_dbuf = NULL;
2031	} else if (do_free) {
2032		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2033	} else {
2034		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2035	}
2036
2037	(void) mutex_unlock(lp);
2038
2039	if (ztest_random(1000) == 0)
2040		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2041
2042	dmu_tx_commit(tx);
2043
2044	if (ztest_random(10000) == 0)
2045		txg_wait_synced(dmu_objset_pool(os), txg);
2046
2047	if (off == -1ULL || do_free)
2048		return;
2049
2050	if (ztest_random(2) != 0)
2051		return;
2052
2053	/*
2054	 * dmu_sync() the block we just wrote.
2055	 */
2056	(void) mutex_lock(lp);
2057
2058	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2059	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2060	za->za_dbuf = db;
2061	if (error) {
2062		dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n",
2063		    osname, ZTEST_DIROBJ, blkoff, error);
2064		(void) mutex_unlock(lp);
2065		return;
2066	}
2067	blkoff = off - blkoff;
2068	error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2069	dmu_buf_rele(db, FTAG);
2070	za->za_dbuf = NULL;
2071
2072	(void) mutex_unlock(lp);
2073
2074	if (error) {
2075		dprintf("dmu_sync(%s, %d, %llx) = %d\n",
2076		    osname, ZTEST_DIROBJ, off, error);
2077		return;
2078	}
2079
2080	if (blk.blk_birth == 0)		/* concurrent free */
2081		return;
2082
2083	txg_suspend(dmu_objset_pool(os));
2084
2085	ASSERT(blk.blk_fill == 1);
2086	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2087	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2088	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2089
2090	/*
2091	 * Read the block that dmu_sync() returned to make sure its contents
2092	 * match what we wrote.  We do this while still txg_suspend()ed
2093	 * to ensure that the block can't be reused before we read it.
2094	 */
2095	zb.zb_objset = dmu_objset_id(os);
2096	zb.zb_object = ZTEST_DIROBJ;
2097	zb.zb_level = 0;
2098	zb.zb_blkid = off / bs;
2099	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2100	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2101	ASSERT3U(error, ==, 0);
2102
2103	txg_resume(dmu_objset_pool(os));
2104
2105	bcopy(&iobuf[blkoff], rbt, btsize);
2106
2107	if (rbt->bt_objset == 0)		/* concurrent free */
2108		return;
2109
2110	if (wbt->bt_objset == 0)		/* all-zero overwrite */
2111		return;
2112
2113	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2114	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2115	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2116
2117	/*
2118	 * The semantic of dmu_sync() is that we always push the most recent
2119	 * version of the data, so in the face of concurrent updates we may
2120	 * see a newer version of the block.  That's OK.
2121	 */
2122	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2123	if (rbt->bt_thread == wbt->bt_thread)
2124		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2125	else
2126		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2127}
2128
2129/*
2130 * Verify that zap_{create,destroy,add,remove,update} work as expected.
2131 */
2132#define	ZTEST_ZAP_MIN_INTS	1
2133#define	ZTEST_ZAP_MAX_INTS	4
2134#define	ZTEST_ZAP_MAX_PROPS	1000
2135
2136void
2137ztest_zap(ztest_args_t *za)
2138{
2139	objset_t *os = za->za_os;
2140	uint64_t object;
2141	uint64_t txg, last_txg;
2142	uint64_t value[ZTEST_ZAP_MAX_INTS];
2143	uint64_t zl_ints, zl_intsize, prop;
2144	int i, ints;
2145	dmu_tx_t *tx;
2146	char propname[100], txgname[100];
2147	int error;
2148	char osname[MAXNAMELEN];
2149	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2150
2151	dmu_objset_name(os, osname);
2152
2153	/*
2154	 * Create a new object if necessary, and record it in the directory.
2155	 */
2156	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2157	    sizeof (uint64_t), &object));
2158
2159	if (object == 0) {
2160		tx = dmu_tx_create(os);
2161		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2162		    sizeof (uint64_t));
2163		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2164		error = dmu_tx_assign(tx, TXG_WAIT);
2165		if (error) {
2166			ztest_record_enospc("create zap test obj");
2167			dmu_tx_abort(tx);
2168			return;
2169		}
2170		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2171		if (error) {
2172			fatal(0, "zap_create('%s', %llu) = %d",
2173			    osname, object, error);
2174		}
2175		ASSERT(object != 0);
2176		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2177		    sizeof (uint64_t), &object, tx);
2178		/*
2179		 * Generate a known hash collision, and verify that
2180		 * we can lookup and remove both entries.
2181		 */
2182		for (i = 0; i < 2; i++) {
2183			value[i] = i;
2184			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2185			    1, &value[i], tx);
2186			ASSERT3U(error, ==, 0);
2187		}
2188		for (i = 0; i < 2; i++) {
2189			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2190			    1, &value[i], tx);
2191			ASSERT3U(error, ==, EEXIST);
2192			error = zap_length(os, object, hc[i],
2193			    &zl_intsize, &zl_ints);
2194			ASSERT3U(error, ==, 0);
2195			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2196			ASSERT3U(zl_ints, ==, 1);
2197		}
2198		for (i = 0; i < 2; i++) {
2199			error = zap_remove(os, object, hc[i], tx);
2200			ASSERT3U(error, ==, 0);
2201		}
2202
2203		dmu_tx_commit(tx);
2204	}
2205
2206	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2207
2208	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2209	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2210	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2211	bzero(value, sizeof (value));
2212	last_txg = 0;
2213
2214	/*
2215	 * If these zap entries already exist, validate their contents.
2216	 */
2217	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2218	if (error == 0) {
2219		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2220		ASSERT3U(zl_ints, ==, 1);
2221
2222		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2223		    zl_ints, &last_txg) == 0);
2224
2225		VERIFY(zap_length(os, object, propname, &zl_intsize,
2226		    &zl_ints) == 0);
2227
2228		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2229		ASSERT3U(zl_ints, ==, ints);
2230
2231		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2232		    zl_ints, value) == 0);
2233
2234		for (i = 0; i < ints; i++) {
2235			ASSERT3U(value[i], ==, last_txg + object + i);
2236		}
2237	} else {
2238		ASSERT3U(error, ==, ENOENT);
2239	}
2240
2241	/*
2242	 * Atomically update two entries in our zap object.
2243	 * The first is named txg_%llu, and contains the txg
2244	 * in which the property was last updated.  The second
2245	 * is named prop_%llu, and the nth element of its value
2246	 * should be txg + object + n.
2247	 */
2248	tx = dmu_tx_create(os);
2249	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2250	error = dmu_tx_assign(tx, TXG_WAIT);
2251	if (error) {
2252		ztest_record_enospc("create zap entry");
2253		dmu_tx_abort(tx);
2254		return;
2255	}
2256	txg = dmu_tx_get_txg(tx);
2257
2258	if (last_txg > txg)
2259		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2260
2261	for (i = 0; i < ints; i++)
2262		value[i] = txg + object + i;
2263
2264	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2265	if (error)
2266		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2267		    osname, object, txgname, error);
2268
2269	error = zap_update(os, object, propname, sizeof (uint64_t),
2270	    ints, value, tx);
2271	if (error)
2272		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2273		    osname, object, propname, error);
2274
2275	dmu_tx_commit(tx);
2276
2277	/*
2278	 * Remove a random pair of entries.
2279	 */
2280	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2281	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2282	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2283
2284	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2285
2286	if (error == ENOENT)
2287		return;
2288
2289	ASSERT3U(error, ==, 0);
2290
2291	tx = dmu_tx_create(os);
2292	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2293	error = dmu_tx_assign(tx, TXG_WAIT);
2294	if (error) {
2295		ztest_record_enospc("remove zap entry");
2296		dmu_tx_abort(tx);
2297		return;
2298	}
2299	error = zap_remove(os, object, txgname, tx);
2300	if (error)
2301		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2302		    osname, object, txgname, error);
2303
2304	error = zap_remove(os, object, propname, tx);
2305	if (error)
2306		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2307		    osname, object, propname, error);
2308
2309	dmu_tx_commit(tx);
2310
2311	/*
2312	 * Once in a while, destroy the object.
2313	 */
2314	if (ztest_random(1000) != 0)
2315		return;
2316
2317	tx = dmu_tx_create(os);
2318	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2319	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2320	error = dmu_tx_assign(tx, TXG_WAIT);
2321	if (error) {
2322		ztest_record_enospc("destroy zap object");
2323		dmu_tx_abort(tx);
2324		return;
2325	}
2326	error = zap_destroy(os, object, tx);
2327	if (error)
2328		fatal(0, "zap_destroy('%s', %llu) = %d",
2329		    osname, object, error);
2330	object = 0;
2331	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
2332	    &object, tx);
2333	dmu_tx_commit(tx);
2334}
2335
2336void
2337ztest_zap_parallel(ztest_args_t *za)
2338{
2339	objset_t *os = za->za_os;
2340	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
2341	dmu_tx_t *tx;
2342	int i, namelen, error;
2343	char name[20], string_value[20];
2344	void *data;
2345
2346	/*
2347	 * Generate a random name of the form 'xxx.....' where each
2348	 * x is a random printable character and the dots are dots.
2349	 * There are 94 such characters, and the name length goes from
2350	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
2351	 */
2352	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
2353
2354	for (i = 0; i < 3; i++)
2355		name[i] = '!' + ztest_random('~' - '!' + 1);
2356	for (; i < namelen - 1; i++)
2357		name[i] = '.';
2358	name[i] = '\0';
2359
2360	if (ztest_random(2) == 0)
2361		object = ZTEST_MICROZAP_OBJ;
2362	else
2363		object = ZTEST_FATZAP_OBJ;
2364
2365	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
2366		wsize = sizeof (txg);
2367		wc = 1;
2368		data = &txg;
2369	} else {
2370		wsize = 1;
2371		wc = namelen;
2372		data = string_value;
2373	}
2374
2375	count = -1ULL;
2376	VERIFY(zap_count(os, object, &count) == 0);
2377	ASSERT(count != -1ULL);
2378
2379	/*
2380	 * Select an operation: length, lookup, add, update, remove.
2381	 */
2382	i = ztest_random(5);
2383
2384	if (i >= 2) {
2385		tx = dmu_tx_create(os);
2386		dmu_tx_hold_zap(tx, object, TRUE, NULL);
2387		error = dmu_tx_assign(tx, TXG_WAIT);
2388		if (error) {
2389			ztest_record_enospc("zap parallel");
2390			dmu_tx_abort(tx);
2391			return;
2392		}
2393		txg = dmu_tx_get_txg(tx);
2394		bcopy(name, string_value, namelen);
2395	} else {
2396		tx = NULL;
2397		txg = 0;
2398		bzero(string_value, namelen);
2399	}
2400
2401	switch (i) {
2402
2403	case 0:
2404		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
2405		if (error == 0) {
2406			ASSERT3U(wsize, ==, zl_wsize);
2407			ASSERT3U(wc, ==, zl_wc);
2408		} else {
2409			ASSERT3U(error, ==, ENOENT);
2410		}
2411		break;
2412
2413	case 1:
2414		error = zap_lookup(os, object, name, wsize, wc, data);
2415		if (error == 0) {
2416			if (data == string_value &&
2417			    bcmp(name, data, namelen) != 0)
2418				fatal(0, "name '%s' != val '%s' len %d",
2419				    name, data, namelen);
2420		} else {
2421			ASSERT3U(error, ==, ENOENT);
2422		}
2423		break;
2424
2425	case 2:
2426		error = zap_add(os, object, name, wsize, wc, data, tx);
2427		ASSERT(error == 0 || error == EEXIST);
2428		break;
2429
2430	case 3:
2431		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
2432		break;
2433
2434	case 4:
2435		error = zap_remove(os, object, name, tx);
2436		ASSERT(error == 0 || error == ENOENT);
2437		break;
2438	}
2439
2440	if (tx != NULL)
2441		dmu_tx_commit(tx);
2442}
2443
2444void
2445ztest_dsl_prop_get_set(ztest_args_t *za)
2446{
2447	objset_t *os = za->za_os;
2448	int i, inherit;
2449	uint64_t value;
2450	const char *prop, *valname;
2451	char setpoint[MAXPATHLEN];
2452	char osname[MAXNAMELEN];
2453	int error;
2454
2455	(void) rw_rdlock(&ztest_shared->zs_name_lock);
2456
2457	dmu_objset_name(os, osname);
2458
2459	for (i = 0; i < 2; i++) {
2460		if (i == 0) {
2461			prop = "checksum";
2462			value = ztest_random_checksum();
2463			inherit = (value == ZIO_CHECKSUM_INHERIT);
2464		} else {
2465			prop = "compression";
2466			value = ztest_random_compress();
2467			inherit = (value == ZIO_COMPRESS_INHERIT);
2468		}
2469
2470		error = dsl_prop_set(osname, prop, sizeof (value),
2471		    !inherit, &value);
2472
2473		if (error == ENOSPC) {
2474			ztest_record_enospc("dsl_prop_set");
2475			break;
2476		}
2477
2478		ASSERT3U(error, ==, 0);
2479
2480		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
2481		    1, &value, setpoint), ==, 0);
2482
2483		if (i == 0)
2484			valname = zio_checksum_table[value].ci_name;
2485		else
2486			valname = zio_compress_table[value].ci_name;
2487
2488		if (zopt_verbose >= 6) {
2489			(void) printf("%s %s = %s for '%s'\n",
2490			    osname, prop, valname, setpoint);
2491		}
2492	}
2493
2494	(void) rw_unlock(&ztest_shared->zs_name_lock);
2495}
2496
2497/*
2498 * Inject random faults into the on-disk data.
2499 */
2500void
2501ztest_fault_inject(ztest_args_t *za)
2502{
2503	int fd;
2504	uint64_t offset;
2505	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
2506	uint64_t bad = 0x1990c0ffeedecade;
2507	uint64_t top, leaf;
2508	char path0[MAXPATHLEN];
2509	char pathrand[MAXPATHLEN];
2510	size_t fsize;
2511	spa_t *spa = za->za_spa;
2512	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
2513	int iters = 1000;
2514	int maxfaults = zopt_maxfaults;
2515	vdev_t *vd0 = NULL;
2516	uint64_t guid0 = 0;
2517
2518	ASSERT(leaves >= 1);
2519
2520	/*
2521	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
2522	 */
2523	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
2524
2525	if (ztest_random(2) == 0) {
2526		/*
2527		 * Inject errors on a normal data device.
2528		 */
2529		top = ztest_random(spa->spa_root_vdev->vdev_children);
2530		leaf = ztest_random(leaves);
2531
2532		/*
2533		 * Generate paths to the first leaf in this top-level vdev,
2534		 * and to the random leaf we selected.  We'll induce transient
2535		 * write failures and random online/offline activity on leaf 0,
2536		 * and we'll write random garbage to the randomly chosen leaf.
2537		 */
2538		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
2539		    zopt_dir, zopt_pool, top * leaves + 0);
2540		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
2541		    zopt_dir, zopt_pool, top * leaves + leaf);
2542
2543		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
2544		if (vd0 != NULL && maxfaults != 1) {
2545			/*
2546			 * Make vd0 explicitly claim to be unreadable,
2547			 * or unwriteable, or reach behind its back
2548			 * and close the underlying fd.  We can do this if
2549			 * maxfaults == 0 because we'll fail and reexecute,
2550			 * and we can do it if maxfaults >= 2 because we'll
2551			 * have enough redundancy.  If maxfaults == 1, the
2552			 * combination of this with injection of random data
2553			 * corruption below exceeds the pool's fault tolerance.
2554			 */
2555			vdev_file_t *vf = vd0->vdev_tsd;
2556
2557			if (vf != NULL && ztest_random(3) == 0) {
2558				(void) close(vf->vf_vnode->v_fd);
2559				vf->vf_vnode->v_fd = -1;
2560			} else if (ztest_random(2) == 0) {
2561				vd0->vdev_cant_read = B_TRUE;
2562			} else {
2563				vd0->vdev_cant_write = B_TRUE;
2564			}
2565			guid0 = vd0->vdev_guid;
2566		}
2567	} else {
2568		/*
2569		 * Inject errors on an l2cache device.
2570		 */
2571		spa_aux_vdev_t *sav = &spa->spa_l2cache;
2572
2573		if (sav->sav_count == 0) {
2574			spa_config_exit(spa, SCL_STATE, FTAG);
2575			return;
2576		}
2577		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
2578		guid0 = vd0->vdev_guid;
2579		(void) strcpy(path0, vd0->vdev_path);
2580		(void) strcpy(pathrand, vd0->vdev_path);
2581
2582		leaf = 0;
2583		leaves = 1;
2584		maxfaults = INT_MAX;	/* no limit on cache devices */
2585	}
2586
2587	dprintf("damaging %s and %s\n", path0, pathrand);
2588
2589	spa_config_exit(spa, SCL_STATE, FTAG);
2590
2591	if (maxfaults == 0)
2592		return;
2593
2594	/*
2595	 * If we can tolerate two or more faults, randomly online/offline vd0.
2596	 */
2597	if (maxfaults >= 2 && guid0 != 0) {
2598		if (ztest_random(10) < 6)
2599			(void) vdev_offline(spa, guid0, B_TRUE);
2600		else
2601			(void) vdev_online(spa, guid0, B_FALSE, NULL);
2602	}
2603
2604	/*
2605	 * We have at least single-fault tolerance, so inject data corruption.
2606	 */
2607	fd = open(pathrand, O_RDWR);
2608
2609	if (fd == -1)	/* we hit a gap in the device namespace */
2610		return;
2611
2612	fsize = lseek(fd, 0, SEEK_END);
2613
2614	while (--iters != 0) {
2615		offset = ztest_random(fsize / (leaves << bshift)) *
2616		    (leaves << bshift) + (leaf << bshift) +
2617		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
2618
2619		if (offset >= fsize)
2620			continue;
2621
2622		if (zopt_verbose >= 6)
2623			(void) printf("injecting bad word into %s,"
2624			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
2625
2626		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
2627			fatal(1, "can't inject bad word at 0x%llx in %s",
2628			    offset, pathrand);
2629	}
2630
2631	(void) close(fd);
2632}
2633
2634/*
2635 * Scrub the pool.
2636 */
2637void
2638ztest_scrub(ztest_args_t *za)
2639{
2640	spa_t *spa = za->za_spa;
2641
2642	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2643	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
2644	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2645}
2646
2647/*
2648 * Rename the pool to a different name and then rename it back.
2649 */
2650void
2651ztest_spa_rename(ztest_args_t *za)
2652{
2653	char *oldname, *newname;
2654	int error;
2655	spa_t *spa;
2656
2657	(void) rw_wrlock(&ztest_shared->zs_name_lock);
2658
2659	oldname = za->za_pool;
2660	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
2661	(void) strcpy(newname, oldname);
2662	(void) strcat(newname, "_tmp");
2663
2664	/*
2665	 * Do the rename
2666	 */
2667	error = spa_rename(oldname, newname);
2668	if (error)
2669		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
2670		    newname, error);
2671
2672	/*
2673	 * Try to open it under the old name, which shouldn't exist
2674	 */
2675	error = spa_open(oldname, &spa, FTAG);
2676	if (error != ENOENT)
2677		fatal(0, "spa_open('%s') = %d", oldname, error);
2678
2679	/*
2680	 * Open it under the new name and make sure it's still the same spa_t.
2681	 */
2682	error = spa_open(newname, &spa, FTAG);
2683	if (error != 0)
2684		fatal(0, "spa_open('%s') = %d", newname, error);
2685
2686	ASSERT(spa == za->za_spa);
2687	spa_close(spa, FTAG);
2688
2689	/*
2690	 * Rename it back to the original
2691	 */
2692	error = spa_rename(newname, oldname);
2693	if (error)
2694		fatal(0, "spa_rename('%s', '%s') = %d", newname,
2695		    oldname, error);
2696
2697	/*
2698	 * Make sure it can still be opened
2699	 */
2700	error = spa_open(oldname, &spa, FTAG);
2701	if (error != 0)
2702		fatal(0, "spa_open('%s') = %d", oldname, error);
2703
2704	ASSERT(spa == za->za_spa);
2705	spa_close(spa, FTAG);
2706
2707	umem_free(newname, strlen(newname) + 1);
2708
2709	(void) rw_unlock(&ztest_shared->zs_name_lock);
2710}
2711
2712
2713/*
2714 * Completely obliterate one disk.
2715 */
2716static void
2717ztest_obliterate_one_disk(uint64_t vdev)
2718{
2719	int fd;
2720	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
2721	size_t fsize;
2722
2723	if (zopt_maxfaults < 2)
2724		return;
2725
2726	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2727	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
2728
2729	fd = open(dev_name, O_RDWR);
2730
2731	if (fd == -1)
2732		fatal(1, "can't open %s", dev_name);
2733
2734	/*
2735	 * Determine the size.
2736	 */
2737	fsize = lseek(fd, 0, SEEK_END);
2738
2739	(void) close(fd);
2740
2741	/*
2742	 * Rename the old device to dev_name.old (useful for debugging).
2743	 */
2744	VERIFY(rename(dev_name, copy_name) == 0);
2745
2746	/*
2747	 * Create a new one.
2748	 */
2749	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
2750	VERIFY(ftruncate(fd, fsize) == 0);
2751	(void) close(fd);
2752}
2753
2754static void
2755ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
2756{
2757	char dev_name[MAXPATHLEN];
2758	nvlist_t *root;
2759	int error;
2760	uint64_t guid;
2761	vdev_t *vd;
2762
2763	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2764
2765	/*
2766	 * Build the nvlist describing dev_name.
2767	 */
2768	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
2769
2770	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2771	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
2772		guid = 0;
2773	else
2774		guid = vd->vdev_guid;
2775	spa_config_exit(spa, SCL_VDEV, FTAG);
2776	error = spa_vdev_attach(spa, guid, root, B_TRUE);
2777	if (error != 0 &&
2778	    error != EBUSY &&
2779	    error != ENOTSUP &&
2780	    error != ENODEV &&
2781	    error != EDOM)
2782		fatal(0, "spa_vdev_attach(in-place) = %d", error);
2783
2784	nvlist_free(root);
2785}
2786
2787static void
2788ztest_verify_blocks(char *pool)
2789{
2790	int status;
2791	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
2792	char zbuf[1024];
2793	char *bin;
2794	char *ztest;
2795	char *isa;
2796	int isalen;
2797	FILE *fp;
2798
2799	(void) realpath(getexecname(), zdb);
2800
2801	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
2802	bin = strstr(zdb, "/usr/bin/");
2803	ztest = strstr(bin, "/ztest");
2804	isa = bin + 8;
2805	isalen = ztest - isa;
2806	isa = strdup(isa);
2807	/* LINTED */
2808	(void) sprintf(bin,
2809	    "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache %s",
2810	    isalen,
2811	    isa,
2812	    zopt_verbose >= 3 ? "s" : "",
2813	    zopt_verbose >= 4 ? "v" : "",
2814	    pool);
2815	free(isa);
2816
2817	if (zopt_verbose >= 5)
2818		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
2819
2820	fp = popen(zdb, "r");
2821
2822	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
2823		if (zopt_verbose >= 3)
2824			(void) printf("%s", zbuf);
2825
2826	status = pclose(fp);
2827
2828	if (status == 0)
2829		return;
2830
2831	ztest_dump_core = 0;
2832	if (WIFEXITED(status))
2833		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
2834	else
2835		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
2836}
2837
2838static void
2839ztest_walk_pool_directory(char *header)
2840{
2841	spa_t *spa = NULL;
2842
2843	if (zopt_verbose >= 6)
2844		(void) printf("%s\n", header);
2845
2846	mutex_enter(&spa_namespace_lock);
2847	while ((spa = spa_next(spa)) != NULL)
2848		if (zopt_verbose >= 6)
2849			(void) printf("\t%s\n", spa_name(spa));
2850	mutex_exit(&spa_namespace_lock);
2851}
2852
2853static void
2854ztest_spa_import_export(char *oldname, char *newname)
2855{
2856	nvlist_t *config;
2857	uint64_t pool_guid;
2858	spa_t *spa;
2859	int error;
2860
2861	if (zopt_verbose >= 4) {
2862		(void) printf("import/export: old = %s, new = %s\n",
2863		    oldname, newname);
2864	}
2865
2866	/*
2867	 * Clean up from previous runs.
2868	 */
2869	(void) spa_destroy(newname);
2870
2871	/*
2872	 * Get the pool's configuration and guid.
2873	 */
2874	error = spa_open(oldname, &spa, FTAG);
2875	if (error)
2876		fatal(0, "spa_open('%s') = %d", oldname, error);
2877
2878	pool_guid = spa_guid(spa);
2879	spa_close(spa, FTAG);
2880
2881	ztest_walk_pool_directory("pools before export");
2882
2883	/*
2884	 * Export it.
2885	 */
2886	error = spa_export(oldname, &config, B_FALSE);
2887	if (error)
2888		fatal(0, "spa_export('%s') = %d", oldname, error);
2889
2890	ztest_walk_pool_directory("pools after export");
2891
2892	/*
2893	 * Import it under the new name.
2894	 */
2895	error = spa_import(newname, config, NULL);
2896	if (error)
2897		fatal(0, "spa_import('%s') = %d", newname, error);
2898
2899	ztest_walk_pool_directory("pools after import");
2900
2901	/*
2902	 * Try to import it again -- should fail with EEXIST.
2903	 */
2904	error = spa_import(newname, config, NULL);
2905	if (error != EEXIST)
2906		fatal(0, "spa_import('%s') twice", newname);
2907
2908	/*
2909	 * Try to import it under a different name -- should fail with EEXIST.
2910	 */
2911	error = spa_import(oldname, config, NULL);
2912	if (error != EEXIST)
2913		fatal(0, "spa_import('%s') under multiple names", newname);
2914
2915	/*
2916	 * Verify that the pool is no longer visible under the old name.
2917	 */
2918	error = spa_open(oldname, &spa, FTAG);
2919	if (error != ENOENT)
2920		fatal(0, "spa_open('%s') = %d", newname, error);
2921
2922	/*
2923	 * Verify that we can open and close the pool using the new name.
2924	 */
2925	error = spa_open(newname, &spa, FTAG);
2926	if (error)
2927		fatal(0, "spa_open('%s') = %d", newname, error);
2928	ASSERT(pool_guid == spa_guid(spa));
2929	spa_close(spa, FTAG);
2930
2931	nvlist_free(config);
2932}
2933
2934static void *
2935ztest_resume(void *arg)
2936{
2937	spa_t *spa = arg;
2938
2939	while (!ztest_exiting) {
2940		(void) poll(NULL, 0, 1000);
2941
2942		if (!spa_suspended(spa))
2943			continue;
2944
2945		spa_vdev_state_enter(spa);
2946		vdev_clear(spa, NULL);
2947		(void) spa_vdev_state_exit(spa, NULL, 0);
2948
2949		zio_resume(spa);
2950	}
2951	return (NULL);
2952}
2953
2954static void *
2955ztest_thread(void *arg)
2956{
2957	ztest_args_t *za = arg;
2958	ztest_shared_t *zs = ztest_shared;
2959	hrtime_t now, functime;
2960	ztest_info_t *zi;
2961	int f, i;
2962
2963	while ((now = gethrtime()) < za->za_stop) {
2964		/*
2965		 * See if it's time to force a crash.
2966		 */
2967		if (now > za->za_kill) {
2968			zs->zs_alloc = spa_get_alloc(za->za_spa);
2969			zs->zs_space = spa_get_space(za->za_spa);
2970			(void) kill(getpid(), SIGKILL);
2971		}
2972
2973		/*
2974		 * Pick a random function.
2975		 */
2976		f = ztest_random(ZTEST_FUNCS);
2977		zi = &zs->zs_info[f];
2978
2979		/*
2980		 * Decide whether to call it, based on the requested frequency.
2981		 */
2982		if (zi->zi_call_target == 0 ||
2983		    (double)zi->zi_call_total / zi->zi_call_target >
2984		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
2985			continue;
2986
2987		atomic_add_64(&zi->zi_calls, 1);
2988		atomic_add_64(&zi->zi_call_total, 1);
2989
2990		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
2991		    ZTEST_DIRSIZE;
2992		za->za_diroff_shared = (1ULL << 63);
2993
2994		for (i = 0; i < zi->zi_iters; i++)
2995			zi->zi_func(za);
2996
2997		functime = gethrtime() - now;
2998
2999		atomic_add_64(&zi->zi_call_time, functime);
3000
3001		if (zopt_verbose >= 4) {
3002			Dl_info dli;
3003			(void) dladdr((void *)zi->zi_func, &dli);
3004			(void) printf("%6.2f sec in %s\n",
3005			    (double)functime / NANOSEC, dli.dli_sname);
3006		}
3007
3008		/*
3009		 * If we're getting ENOSPC with some regularity, stop.
3010		 */
3011		if (zs->zs_enospc_count > 10)
3012			break;
3013	}
3014
3015	return (NULL);
3016}
3017
3018/*
3019 * Kick off threads to run tests on all datasets in parallel.
3020 */
3021static void
3022ztest_run(char *pool)
3023{
3024	int t, d, error;
3025	ztest_shared_t *zs = ztest_shared;
3026	ztest_args_t *za;
3027	spa_t *spa;
3028	char name[100];
3029	thread_t resume_tid;
3030
3031	ztest_exiting = B_FALSE;
3032
3033	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
3034	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
3035
3036	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
3037		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
3038
3039	/*
3040	 * Destroy one disk before we even start.
3041	 * It's mirrored, so everything should work just fine.
3042	 * This makes us exercise fault handling very early in spa_load().
3043	 */
3044	ztest_obliterate_one_disk(0);
3045
3046	/*
3047	 * Verify that the sum of the sizes of all blocks in the pool
3048	 * equals the SPA's allocated space total.
3049	 */
3050	ztest_verify_blocks(pool);
3051
3052	/*
3053	 * Kick off a replacement of the disk we just obliterated.
3054	 */
3055	kernel_init(FREAD | FWRITE);
3056	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3057	ztest_replace_one_disk(spa, 0);
3058	if (zopt_verbose >= 5)
3059		show_pool_stats(spa);
3060	spa_close(spa, FTAG);
3061	kernel_fini();
3062
3063	kernel_init(FREAD | FWRITE);
3064
3065	/*
3066	 * Verify that we can export the pool and reimport it under a
3067	 * different name.
3068	 */
3069	if (ztest_random(2) == 0) {
3070		(void) snprintf(name, 100, "%s_import", pool);
3071		ztest_spa_import_export(pool, name);
3072		ztest_spa_import_export(name, pool);
3073	}
3074
3075	/*
3076	 * Verify that we can loop over all pools.
3077	 */
3078	mutex_enter(&spa_namespace_lock);
3079	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
3080		if (zopt_verbose > 3) {
3081			(void) printf("spa_next: found %s\n", spa_name(spa));
3082		}
3083	}
3084	mutex_exit(&spa_namespace_lock);
3085
3086	/*
3087	 * Open our pool.
3088	 */
3089	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3090
3091	/*
3092	 * Create a thread to periodically resume suspended I/O.
3093	 */
3094	VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND,
3095	    &resume_tid) == 0);
3096
3097	/*
3098	 * Verify that we can safely inquire about about any object,
3099	 * whether it's allocated or not.  To make it interesting,
3100	 * we probe a 5-wide window around each power of two.
3101	 * This hits all edge cases, including zero and the max.
3102	 */
3103	for (t = 0; t < 64; t++) {
3104		for (d = -5; d <= 5; d++) {
3105			error = dmu_object_info(spa->spa_meta_objset,
3106			    (1ULL << t) + d, NULL);
3107			ASSERT(error == 0 || error == ENOENT ||
3108			    error == EINVAL);
3109		}
3110	}
3111
3112	/*
3113	 * Now kick off all the tests that run in parallel.
3114	 */
3115	zs->zs_enospc_count = 0;
3116
3117	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
3118
3119	if (zopt_verbose >= 4)
3120		(void) printf("starting main threads...\n");
3121
3122	za[0].za_start = gethrtime();
3123	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
3124	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
3125	za[0].za_kill = za[0].za_stop;
3126	if (ztest_random(100) < zopt_killrate)
3127		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
3128
3129	for (t = 0; t < zopt_threads; t++) {
3130		d = t % zopt_datasets;
3131
3132		(void) strcpy(za[t].za_pool, pool);
3133		za[t].za_os = za[d].za_os;
3134		za[t].za_spa = spa;
3135		za[t].za_zilog = za[d].za_zilog;
3136		za[t].za_instance = t;
3137		za[t].za_random = ztest_random(-1ULL);
3138		za[t].za_start = za[0].za_start;
3139		za[t].za_stop = za[0].za_stop;
3140		za[t].za_kill = za[0].za_kill;
3141
3142		if (t < zopt_datasets) {
3143			ztest_replay_t zr;
3144			int test_future = FALSE;
3145			(void) rw_rdlock(&ztest_shared->zs_name_lock);
3146			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3147			error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
3148			    ztest_create_cb, NULL);
3149			if (error == EEXIST) {
3150				test_future = TRUE;
3151			} else if (error == ENOSPC) {
3152				zs->zs_enospc_count++;
3153				(void) rw_unlock(&ztest_shared->zs_name_lock);
3154				break;
3155			} else if (error != 0) {
3156				fatal(0, "dmu_objset_create(%s) = %d",
3157				    name, error);
3158			}
3159			error = dmu_objset_open(name, DMU_OST_OTHER,
3160			    DS_MODE_USER, &za[d].za_os);
3161			if (error)
3162				fatal(0, "dmu_objset_open('%s') = %d",
3163				    name, error);
3164			(void) rw_unlock(&ztest_shared->zs_name_lock);
3165			if (test_future)
3166				ztest_dmu_check_future_leak(&za[t]);
3167			zr.zr_os = za[d].za_os;
3168			zil_replay(zr.zr_os, &zr, &zr.zr_assign,
3169			    ztest_replay_vector, NULL);
3170			za[d].za_zilog = zil_open(za[d].za_os, NULL);
3171		}
3172
3173		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
3174		    &za[t].za_thread) == 0);
3175	}
3176
3177	while (--t >= 0) {
3178		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
3179		if (t < zopt_datasets) {
3180			zil_close(za[t].za_zilog);
3181			dmu_objset_close(za[t].za_os);
3182		}
3183	}
3184
3185	if (zopt_verbose >= 3)
3186		show_pool_stats(spa);
3187
3188	txg_wait_synced(spa_get_dsl(spa), 0);
3189
3190	zs->zs_alloc = spa_get_alloc(spa);
3191	zs->zs_space = spa_get_space(spa);
3192
3193	/*
3194	 * If we had out-of-space errors, destroy a random objset.
3195	 */
3196	if (zs->zs_enospc_count != 0) {
3197		(void) rw_rdlock(&ztest_shared->zs_name_lock);
3198		d = (int)ztest_random(zopt_datasets);
3199		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3200		if (zopt_verbose >= 3)
3201			(void) printf("Destroying %s to free up space\n", name);
3202		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
3203		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
3204		(void) rw_unlock(&ztest_shared->zs_name_lock);
3205	}
3206
3207	txg_wait_synced(spa_get_dsl(spa), 0);
3208
3209	umem_free(za, zopt_threads * sizeof (ztest_args_t));
3210
3211	/* Kill the resume thread */
3212	ztest_exiting = B_TRUE;
3213	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
3214
3215	/*
3216	 * Right before closing the pool, kick off a bunch of async I/O;
3217	 * spa_close() should wait for it to complete.
3218	 */
3219	for (t = 1; t < 50; t++)
3220		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
3221
3222	spa_close(spa, FTAG);
3223
3224	kernel_fini();
3225}
3226
3227void
3228print_time(hrtime_t t, char *timebuf)
3229{
3230	hrtime_t s = t / NANOSEC;
3231	hrtime_t m = s / 60;
3232	hrtime_t h = m / 60;
3233	hrtime_t d = h / 24;
3234
3235	s -= m * 60;
3236	m -= h * 60;
3237	h -= d * 24;
3238
3239	timebuf[0] = '\0';
3240
3241	if (d)
3242		(void) sprintf(timebuf,
3243		    "%llud%02lluh%02llum%02llus", d, h, m, s);
3244	else if (h)
3245		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
3246	else if (m)
3247		(void) sprintf(timebuf, "%llum%02llus", m, s);
3248	else
3249		(void) sprintf(timebuf, "%llus", s);
3250}
3251
3252/*
3253 * Create a storage pool with the given name and initial vdev size.
3254 * Then create the specified number of datasets in the pool.
3255 */
3256static void
3257ztest_init(char *pool)
3258{
3259	spa_t *spa;
3260	int error;
3261	nvlist_t *nvroot;
3262
3263	kernel_init(FREAD | FWRITE);
3264
3265	/*
3266	 * Create the storage pool.
3267	 */
3268	(void) spa_destroy(pool);
3269	ztest_shared->zs_vdev_primaries = 0;
3270	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
3271	    0, zopt_raidz, zopt_mirrors, 1);
3272	error = spa_create(pool, nvroot, NULL, NULL, NULL);
3273	nvlist_free(nvroot);
3274
3275	if (error)
3276		fatal(0, "spa_create() = %d", error);
3277	error = spa_open(pool, &spa, FTAG);
3278	if (error)
3279		fatal(0, "spa_open() = %d", error);
3280
3281	if (zopt_verbose >= 3)
3282		show_pool_stats(spa);
3283
3284	spa_close(spa, FTAG);
3285
3286	kernel_fini();
3287}
3288
3289int
3290main(int argc, char **argv)
3291{
3292	int kills = 0;
3293	int iters = 0;
3294	int i, f;
3295	ztest_shared_t *zs;
3296	ztest_info_t *zi;
3297	char timebuf[100];
3298	char numbuf[6];
3299
3300	(void) setvbuf(stdout, NULL, _IOLBF, 0);
3301
3302	/* Override location of zpool.cache */
3303	spa_config_path = "/tmp/zpool.cache";
3304
3305	ztest_random_fd = open("/dev/urandom", O_RDONLY);
3306
3307	process_options(argc, argv);
3308
3309	argc -= optind;
3310	argv += optind;
3311
3312	dprintf_setup(&argc, argv);
3313
3314	/*
3315	 * Blow away any existing copy of zpool.cache
3316	 */
3317	if (zopt_init != 0)
3318		(void) remove("/tmp/zpool.cache");
3319
3320	zs = ztest_shared = (void *)mmap(0,
3321	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
3322	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
3323
3324	if (zopt_verbose >= 1) {
3325		(void) printf("%llu vdevs, %d datasets, %d threads,"
3326		    " %llu seconds...\n",
3327		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
3328		    (u_longlong_t)zopt_time);
3329	}
3330
3331	/*
3332	 * Create and initialize our storage pool.
3333	 */
3334	for (i = 1; i <= zopt_init; i++) {
3335		bzero(zs, sizeof (ztest_shared_t));
3336		if (zopt_verbose >= 3 && zopt_init != 1)
3337			(void) printf("ztest_init(), pass %d\n", i);
3338		ztest_init(zopt_pool);
3339	}
3340
3341	/*
3342	 * Initialize the call targets for each function.
3343	 */
3344	for (f = 0; f < ZTEST_FUNCS; f++) {
3345		zi = &zs->zs_info[f];
3346
3347		*zi = ztest_info[f];
3348
3349		if (*zi->zi_interval == 0)
3350			zi->zi_call_target = UINT64_MAX;
3351		else
3352			zi->zi_call_target = zopt_time / *zi->zi_interval;
3353	}
3354
3355	zs->zs_start_time = gethrtime();
3356	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
3357
3358	/*
3359	 * Run the tests in a loop.  These tests include fault injection
3360	 * to verify that self-healing data works, and forced crashes
3361	 * to verify that we never lose on-disk consistency.
3362	 */
3363	while (gethrtime() < zs->zs_stop_time) {
3364		int status;
3365		pid_t pid;
3366		char *tmp;
3367
3368		/*
3369		 * Initialize the workload counters for each function.
3370		 */
3371		for (f = 0; f < ZTEST_FUNCS; f++) {
3372			zi = &zs->zs_info[f];
3373			zi->zi_calls = 0;
3374			zi->zi_call_time = 0;
3375		}
3376
3377		pid = fork();
3378
3379		if (pid == -1)
3380			fatal(1, "fork failed");
3381
3382		if (pid == 0) {	/* child */
3383			struct rlimit rl = { 1024, 1024 };
3384			(void) setrlimit(RLIMIT_NOFILE, &rl);
3385			(void) enable_extended_FILE_stdio(-1, -1);
3386			ztest_run(zopt_pool);
3387			exit(0);
3388		}
3389
3390		while (waitpid(pid, &status, 0) != pid)
3391			continue;
3392
3393		if (WIFEXITED(status)) {
3394			if (WEXITSTATUS(status) != 0) {
3395				(void) fprintf(stderr,
3396				    "child exited with code %d\n",
3397				    WEXITSTATUS(status));
3398				exit(2);
3399			}
3400		} else if (WIFSIGNALED(status)) {
3401			if (WTERMSIG(status) != SIGKILL) {
3402				(void) fprintf(stderr,
3403				    "child died with signal %d\n",
3404				    WTERMSIG(status));
3405				exit(3);
3406			}
3407			kills++;
3408		} else {
3409			(void) fprintf(stderr, "something strange happened "
3410			    "to child\n");
3411			exit(4);
3412		}
3413
3414		iters++;
3415
3416		if (zopt_verbose >= 1) {
3417			hrtime_t now = gethrtime();
3418
3419			now = MIN(now, zs->zs_stop_time);
3420			print_time(zs->zs_stop_time - now, timebuf);
3421			nicenum(zs->zs_space, numbuf);
3422
3423			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
3424			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
3425			    iters,
3426			    WIFEXITED(status) ? "Complete" : "SIGKILL",
3427			    (u_longlong_t)zs->zs_enospc_count,
3428			    100.0 * zs->zs_alloc / zs->zs_space,
3429			    numbuf,
3430			    100.0 * (now - zs->zs_start_time) /
3431			    (zopt_time * NANOSEC), timebuf);
3432		}
3433
3434		if (zopt_verbose >= 2) {
3435			(void) printf("\nWorkload summary:\n\n");
3436			(void) printf("%7s %9s   %s\n",
3437			    "Calls", "Time", "Function");
3438			(void) printf("%7s %9s   %s\n",
3439			    "-----", "----", "--------");
3440			for (f = 0; f < ZTEST_FUNCS; f++) {
3441				Dl_info dli;
3442
3443				zi = &zs->zs_info[f];
3444				print_time(zi->zi_call_time, timebuf);
3445				(void) dladdr((void *)zi->zi_func, &dli);
3446				(void) printf("%7llu %9s   %s\n",
3447				    (u_longlong_t)zi->zi_calls, timebuf,
3448				    dli.dli_sname);
3449			}
3450			(void) printf("\n");
3451		}
3452
3453		/*
3454		 * It's possible that we killed a child during a rename test, in
3455		 * which case we'll have a 'ztest_tmp' pool lying around instead
3456		 * of 'ztest'.  Do a blind rename in case this happened.
3457		 */
3458		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
3459		(void) strcpy(tmp, zopt_pool);
3460		(void) strcat(tmp, "_tmp");
3461		kernel_init(FREAD | FWRITE);
3462		(void) spa_rename(tmp, zopt_pool);
3463		kernel_fini();
3464		umem_free(tmp, strlen(tmp) + 1);
3465	}
3466
3467	ztest_verify_blocks(zopt_pool);
3468
3469	if (zopt_verbose >= 1) {
3470		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
3471		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
3472	}
3473
3474	return (0);
3475}
3476