intprops.h revision 1.5
1/*	$NetBSD: intprops.h,v 1.5 2020/05/25 20:47:34 christos Exp $	*/
2
3/* intprops.h -- properties of integer types
4
5   Copyright (C) 2001-2005, 2009-2015 Free Software Foundation, Inc.
6
7   This program is free software: you can redistribute it and/or modify
8   it under the terms of the GNU Lesser General Public License as published by
9   the Free Software Foundation; either version 2.1 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU Lesser General Public License for more details.
16
17   You should have received a copy of the GNU Lesser General Public License
18   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20/* Written by Paul Eggert.  */
21
22#ifndef _GL_INTPROPS_H
23#define _GL_INTPROPS_H
24
25#include <limits.h>
26
27/* Return an integer value, converted to the same type as the integer
28   expression E after integer type promotion.  V is the unconverted value.  */
29#define _GL_INT_CONVERT(e, v) (0 * (e) + (v))
30
31/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see
32   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00406.html>.  */
33#define _GL_INT_NEGATE_CONVERT(e, v) (0 * (e) - (v))
34
35/* The extra casts in the following macros work around compiler bugs,
36   e.g., in Cray C 5.0.3.0.  */
37
38/* True if the arithmetic type T is an integer type.  bool counts as
39   an integer.  */
40#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
41
42/* True if negative values of the signed integer type T use two's
43   complement, ones' complement, or signed magnitude representation,
44   respectively.  Much GNU code assumes two's complement, but some
45   people like to be portable to all possible C hosts.  */
46#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
47#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
48#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
49
50/* True if the signed integer expression E uses two's complement.  */
51#define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)
52
53/* True if the arithmetic type T is signed.  */
54#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
55
56/* Return 1 if the integer expression E, after integer promotion, has
57   a signed type.  */
58#define _GL_INT_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)
59
60
61/* Minimum and maximum values for integer types and expressions.  These
62   macros have undefined behavior if T is signed and has padding bits.
63   If this is a problem for you, please let us know how to fix it for
64   your host.  */
65
66/* The maximum and minimum values for the integer type T.  */
67#define TYPE_MINIMUM(t)                                                 \
68  ((t) (! TYPE_SIGNED (t)                                               \
69        ? (t) 0                                                         \
70        : TYPE_SIGNED_MAGNITUDE (t)                                     \
71        ? ~ (t) 0                                                       \
72        : ~ TYPE_MAXIMUM (t)))
73#define TYPE_MAXIMUM(t)                                                 \
74  ((t) (! TYPE_SIGNED (t)                                               \
75        ? (t) -1                                                        \
76        : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
77
78/* The maximum and minimum values for the type of the expression E,
79   after integer promotion.  E should not have side effects.  */
80#define _GL_INT_MINIMUM(e)                                              \
81  (_GL_INT_SIGNED (e)                                                   \
82   ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e)         \
83   : _GL_INT_CONVERT (e, 0))
84#define _GL_INT_MAXIMUM(e)                                              \
85  (_GL_INT_SIGNED (e)                                                   \
86   ? _GL_SIGNED_INT_MAXIMUM (e)                                         \
87   : _GL_INT_NEGATE_CONVERT (e, 1))
88#define _GL_SIGNED_INT_MAXIMUM(e)                                       \
89  (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1)
90
91
92/* Return 1 if the __typeof__ keyword works.  This could be done by
93   'configure', but for now it's easier to do it by hand.  */
94#if (2 <= __GNUC__ || defined __IBM__TYPEOF__ \
95     || (0x5110 <= __SUNPRO_C && !__STDC__))
96# define _GL_HAVE___TYPEOF__ 1
97#else
98# define _GL_HAVE___TYPEOF__ 0
99#endif
100
101/* Return 1 if the integer type or expression T might be signed.  Return 0
102   if it is definitely unsigned.  This macro does not evaluate its argument,
103   and expands to an integer constant expression.  */
104#if _GL_HAVE___TYPEOF__
105# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
106#else
107# define _GL_SIGNED_TYPE_OR_EXPR(t) 1
108#endif
109
110/* Bound on length of the string representing an unsigned integer
111   value representable in B bits.  log10 (2.0) < 146/485.  The
112   smallest value of B where this bound is not tight is 2621.  */
113#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
114
115/* Bound on length of the string representing an integer type or expression T.
116   Subtract 1 for the sign bit if T is signed, and then add 1 more for
117   a minus sign if needed.
118
119   Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
120   signed, this macro may overestimate the true bound by one byte when
121   applied to unsigned types of size 2, 4, 16, ... bytes.  */
122#define INT_STRLEN_BOUND(t)                                     \
123  (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT                 \
124                          - _GL_SIGNED_TYPE_OR_EXPR (t))        \
125   + _GL_SIGNED_TYPE_OR_EXPR (t))
126
127/* Bound on buffer size needed to represent an integer type or expression T,
128   including the terminating null.  */
129#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
130
131
132/* Range overflow checks.
133
134   The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
135   operators might not yield numerically correct answers due to
136   arithmetic overflow.  They do not rely on undefined or
137   implementation-defined behavior.  Their implementations are simple
138   and straightforward, but they are a bit harder to use than the
139   INT_<op>_OVERFLOW macros described below.
140
141   Example usage:
142
143     long int i = ...;
144     long int j = ...;
145     if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
146       printf ("multiply would overflow");
147     else
148       printf ("product is %ld", i * j);
149
150   Restrictions on *_RANGE_OVERFLOW macros:
151
152   These macros do not check for all possible numerical problems or
153   undefined or unspecified behavior: they do not check for division
154   by zero, for bad shift counts, or for shifting negative numbers.
155
156   These macros may evaluate their arguments zero or multiple times,
157   so the arguments should not have side effects.  The arithmetic
158   arguments (including the MIN and MAX arguments) must be of the same
159   integer type after the usual arithmetic conversions, and the type
160   must have minimum value MIN and maximum MAX.  Unsigned types should
161   use a zero MIN of the proper type.
162
163   These macros are tuned for constant MIN and MAX.  For commutative
164   operations such as A + B, they are also tuned for constant B.  */
165
166/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
167   See above for restrictions.  */
168#define INT_ADD_RANGE_OVERFLOW(a, b, min, max)          \
169  ((b) < 0                                              \
170   ? (a) < (min) - (b)                                  \
171   : (max) - (b) < (a))
172
173/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
174   See above for restrictions.  */
175#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max)     \
176  ((b) < 0                                              \
177   ? (max) + (b) < (a)                                  \
178   : (a) < (min) + (b))
179
180/* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
181   See above for restrictions.  */
182#define INT_NEGATE_RANGE_OVERFLOW(a, min, max)          \
183  ((min) < 0                                            \
184   ? (a) < - (max)                                      \
185   : 0 < (a))
186
187/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
188   See above for restrictions.  Avoid && and || as they tickle
189   bugs in Sun C 5.11 2010/08/13 and other compilers; see
190   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00401.html>.  */
191#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max)     \
192  ((b) < 0                                              \
193   ? ((a) < 0                                           \
194      ? (a) < (max) / (b)                               \
195      : (b) == -1                                       \
196      ? 0                                               \
197      : (min) / (b) < (a))                              \
198   : (b) == 0                                           \
199   ? 0                                                  \
200   : ((a) < 0                                           \
201      ? (a) < (min) / (b)                               \
202      : (max) / (b) < (a)))
203
204/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
205   See above for restrictions.  Do not check for division by zero.  */
206#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max)       \
207  ((min) < 0 && (b) == -1 && (a) < - (max))
208
209/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
210   See above for restrictions.  Do not check for division by zero.
211   Mathematically, % should never overflow, but on x86-like hosts
212   INT_MIN % -1 traps, and the C standard permits this, so treat this
213   as an overflow too.  */
214#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max)    \
215  INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
216
217/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
218   See above for restrictions.  Here, MIN and MAX are for A only, and B need
219   not be of the same type as the other arguments.  The C standard says that
220   behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
221   A is negative then A << B has undefined behavior and A >> B has
222   implementation-defined behavior, but do not check these other
223   restrictions.  */
224#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max)   \
225  ((a) < 0                                              \
226   ? (a) < (min) >> (b)                                 \
227   : (max) >> (b) < (a))
228
229
230/* The _GL*_OVERFLOW macros have the same restrictions as the
231   *_RANGE_OVERFLOW macros, except that they do not assume that operands
232   (e.g., A and B) have the same type as MIN and MAX.  Instead, they assume
233   that the result (e.g., A + B) has that type.  */
234#define _GL_ADD_OVERFLOW(a, b, min, max)                                \
235  ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max)                  \
236   : (a) < 0 ? (b) <= (a) + (b)                                         \
237   : (b) < 0 ? (a) <= (a) + (b)                                         \
238   : (a) + (b) < (b))
239#define _GL_SUBTRACT_OVERFLOW(a, b, min, max)                           \
240  ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max)             \
241   : (a) < 0 ? 1                                                        \
242   : (b) < 0 ? (a) - (b) <= (a)                                         \
243   : (a) < (b))
244#define _GL_MULTIPLY_OVERFLOW(a, b, min, max)                           \
245  (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a))))       \
246   || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
247#define _GL_DIVIDE_OVERFLOW(a, b, min, max)                             \
248  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
249   : (a) < 0 ? (b) <= (a) + (b) - 1                                     \
250   : (b) < 0 && (a) + (b) <= (a))
251#define _GL_REMAINDER_OVERFLOW(a, b, min, max)                          \
252  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
253   : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b)                     \
254   : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
255
256/* Return a nonzero value if A is a mathematical multiple of B, where
257   A is unsigned, B is negative, and MAX is the maximum value of A's
258   type.  A's type must be the same as (A % B)'s type.  Normally (A %
259   -B == 0) suffices, but things get tricky if -B would overflow.  */
260#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max)                            \
261  (((b) < -_GL_SIGNED_INT_MAXIMUM (b)                                   \
262    ? (_GL_SIGNED_INT_MAXIMUM (b) == (max)                              \
263       ? (a)                                                            \
264       : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1))   \
265    : (a) % - (b))                                                      \
266   == 0)
267
268
269/* Integer overflow checks.
270
271   The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
272   might not yield numerically correct answers due to arithmetic overflow.
273   They work correctly on all known practical hosts, and do not rely
274   on undefined behavior due to signed arithmetic overflow.
275
276   Example usage:
277
278     long int i = ...;
279     long int j = ...;
280     if (INT_MULTIPLY_OVERFLOW (i, j))
281       printf ("multiply would overflow");
282     else
283       printf ("product is %ld", i * j);
284
285   These macros do not check for all possible numerical problems or
286   undefined or unspecified behavior: they do not check for division
287   by zero, for bad shift counts, or for shifting negative numbers.
288
289   These macros may evaluate their arguments zero or multiple times, so the
290   arguments should not have side effects.
291
292   These macros are tuned for their last argument being a constant.
293
294   Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
295   A % B, and A << B would overflow, respectively.  */
296
297#define INT_ADD_OVERFLOW(a, b) \
298  _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
299#define INT_SUBTRACT_OVERFLOW(a, b) \
300  _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
301#define INT_NEGATE_OVERFLOW(a) \
302  INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
303#define INT_MULTIPLY_OVERFLOW(a, b) \
304  _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
305#define INT_DIVIDE_OVERFLOW(a, b) \
306  _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
307#define INT_REMAINDER_OVERFLOW(a, b) \
308  _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
309#define INT_LEFT_SHIFT_OVERFLOW(a, b) \
310  INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
311                                 _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
312
313/* Return 1 if the expression A <op> B would overflow,
314   where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
315   assuming MIN and MAX are the minimum and maximum for the result type.
316   Arguments should be free of side effects.  */
317#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow)        \
318  op_result_overflow (a, b,                                     \
319                      _GL_INT_MINIMUM (0 * (b) + (a)),          \
320                      _GL_INT_MAXIMUM (0 * (b) + (a)))
321
322#endif /* _GL_INTPROPS_H */
323