1/*	$NetBSD: refclock_wwv.c,v 1.8 2020/05/25 20:47:26 christos Exp $	*/
2
3/*
4 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
5 */
6#ifdef HAVE_CONFIG_H
7#include <config.h>
8#endif
9
10#if defined(REFCLOCK) && defined(CLOCK_WWV)
11
12#include "ntpd.h"
13#include "ntp_io.h"
14#include "ntp_refclock.h"
15#include "ntp_calendar.h"
16#include "ntp_stdlib.h"
17#include "audio.h"
18
19#include <stdio.h>
20#include <ctype.h>
21#include <math.h>
22#ifdef HAVE_SYS_IOCTL_H
23# include <sys/ioctl.h>
24#endif /* HAVE_SYS_IOCTL_H */
25
26#define ICOM 1
27
28#ifdef ICOM
29#include "icom.h"
30#endif /* ICOM */
31
32/*
33 * Audio WWV/H demodulator/decoder
34 *
35 * This driver synchronizes the computer time using data encoded in
36 * radio transmissions from NIST time/frequency stations WWV in Boulder,
37 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
38 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
39 * ordinary AM shortwave receiver can be tuned manually to one of these
40 * frequencies or, in the case of ICOM receivers, the receiver can be
41 * tuned automatically using this program as propagation conditions
42 * change throughout the weasons, both day and night.
43 *
44 * The driver requires an audio codec or sound card with sampling rate 8
45 * kHz and mu-law companding. This is the same standard as used by the
46 * telephone industry and is supported by most hardware and operating
47 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
48 * implementation, only one audio driver and codec can be supported on a
49 * single machine.
50 *
51 * The demodulation and decoding algorithms used in this driver are
52 * based on those developed for the TAPR DSP93 development board and the
53 * TI 320C25 digital signal processor described in: Mills, D.L. A
54 * precision radio clock for WWV transmissions. Electrical Engineering
55 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
56 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
57 * in this report have been modified somewhat to improve performance
58 * under weak signal conditions and to provide an automatic station
59 * identification feature.
60 *
61 * The ICOM code is normally compiled in the driver. It isn't used,
62 * unless the mode keyword on the server configuration command specifies
63 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
64 * debug level is greater than one.
65 *
66 * Fudge factors
67 *
68 * Fudge flag4 causes the debugging output described above to be
69 * recorded in the clockstats file. Fudge flag2 selects the audio input
70 * port, where 0 is the mike port (default) and 1 is the line-in port.
71 * It does not seem useful to select the compact disc player port. Fudge
72 * flag3 enables audio monitoring of the input signal. For this purpose,
73 * the monitor gain is set to a default value.
74 *
75 * CEVNT_BADTIME	invalid date or time
76 * CEVNT_PROP		propagation failure - no stations heard
77 * CEVNT_TIMEOUT	timeout (see newgame() below)
78 */
79/*
80 * General definitions. These ordinarily do not need to be changed.
81 */
82#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
83#define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
84#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
85#define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
86#define WWV_SEC		8000	/* second epoch (sample rate) (Hz) */
87#define WWV_MIN		(WWV_SEC * 60) /* minute epoch */
88#define OFFSET		128	/* companded sample offset */
89#define SIZE		256	/* decompanding table size */
90#define	MAXAMP		6000.	/* max signal level reference */
91#define	MAXCLP		100	/* max clips above reference per s */
92#define MAXSNR		40.	/* max SNR reference */
93#define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
94#define DATCYC		170	/* data filter cycles */
95#define DATSIZ		(DATCYC * MS) /* data filter size */
96#define SYNCYC		800	/* minute filter cycles */
97#define SYNSIZ		(SYNCYC * MS) /* minute filter size */
98#define TCKCYC		5	/* tick filter cycles */
99#define TCKSIZ		(TCKCYC * MS) /* tick filter size */
100#define NCHAN		5	/* number of radio channels */
101#define	AUDIO_PHI	5e-6	/* dispersion growth factor */
102#define	TBUF		128	/* max monitor line length */
103
104/*
105 * Tunable parameters. The DGAIN parameter can be changed to fit the
106 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
107 * is transmitted at about 20 percent percent modulation; the matched
108 * filter boosts it by a factor of 17 and the receiver response does
109 * what it does. The compromise value works for ICOM radios. If the
110 * radio is not tunable, the DCHAN parameter can be changed to fit the
111 * expected best propagation frequency: higher if further from the
112 * transmitter, lower if nearer. The compromise value works for the US
113 * right coast.
114 */
115#define DCHAN		3	/* default radio channel (15 Mhz) */
116#define DGAIN		5.	/* subcarrier gain */
117
118/*
119 * General purpose status bits (status)
120 *
121 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
122 * on signal loss. SSYNC is set when the second sync pulse has been
123 * acquired and cleared by signal loss. MSYNC is set when the minute
124 * sync pulse has been acquired. DSYNC is set when the units digit has
125 * has reached the threshold and INSYNC is set when all nine digits have
126 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
127 * only by timeout, upon which the driver starts over from scratch.
128 *
129 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
130 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
131 * LEPSEC is set during the last minute of the leap day. At the end of
132 * this minute the driver inserts second 60 in the seconds state machine
133 * and the minute sync slips a second.
134 */
135#define MSYNC		0x0001	/* minute epoch sync */
136#define SSYNC		0x0002	/* second epoch sync */
137#define DSYNC		0x0004	/* minute units sync */
138#define INSYNC		0x0008	/* clock synchronized */
139#define FGATE		0x0010	/* frequency gate */
140#define DGATE		0x0020	/* data pulse amplitude error */
141#define BGATE		0x0040	/* data pulse width error */
142#define	METRIC		0x0080	/* one or more stations heard */
143#define LEPSEC		0x1000	/* leap minute */
144
145/*
146 * Station scoreboard bits
147 *
148 * These are used to establish the signal quality for each of the five
149 * frequencies and two stations.
150 */
151#define SELV		0x0100	/* WWV station select */
152#define SELH		0x0200	/* WWVH station select */
153
154/*
155 * Alarm status bits (alarm)
156 *
157 * These bits indicate various alarm conditions, which are decoded to
158 * form the quality character included in the timecode.
159 */
160#define CMPERR		0x1	/* digit or misc bit compare error */
161#define LOWERR		0x2	/* low bit or digit amplitude or SNR */
162#define NINERR		0x4	/* less than nine digits in minute */
163#define SYNERR		0x8	/* not tracking second sync */
164
165/*
166 * Watchcat timeouts (watch)
167 *
168 * If these timeouts expire, the status bits are mashed to zero and the
169 * driver starts from scratch. Suitably more refined procedures may be
170 * developed in future. All these are in minutes.
171 */
172#define ACQSN		6	/* station acquisition timeout */
173#define DATA		15	/* unit minutes timeout */
174#define SYNCH		40	/* station sync timeout */
175#define PANIC		(2 * 1440) /* panic timeout */
176
177/*
178 * Thresholds. These establish the minimum signal level, minimum SNR and
179 * maximum jitter thresholds which establish the error and false alarm
180 * rates of the driver. The values defined here may be on the
181 * adventurous side in the interest of the highest sensitivity.
182 */
183#define MTHR		13.	/* minute sync gate (percent) */
184#define TTHR		50.	/* minute sync threshold (percent) */
185#define AWND		20	/* minute sync jitter threshold (ms) */
186#define ATHR		2500.	/* QRZ minute sync threshold */
187#define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
188#define QTHR		2500.	/* QSY minute sync threshold */
189#define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
190#define STHR		2500.	/* second sync threshold */
191#define	SSNR		15.	/* second sync SNR threshold (dB) */
192#define SCMP		10 	/* second sync compare threshold */
193#define DTHR		1000.	/* bit threshold */
194#define DSNR		10.	/* bit SNR threshold (dB) */
195#define AMIN		3	/* min bit count */
196#define AMAX		6	/* max bit count */
197#define BTHR		1000.	/* digit threshold */
198#define BSNR		3.	/* digit likelihood threshold (dB) */
199#define BCMP		3	/* digit compare threshold */
200#define	MAXERR		40	/* maximum error alarm */
201
202/*
203 * Tone frequency definitions. The increments are for 4.5-deg sine
204 * table.
205 */
206#define MS		(WWV_SEC / 1000) /* samples per millisecond */
207#define IN100		((100 * 80) / WWV_SEC) /* 100 Hz increment */
208#define IN1000		((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
209#define IN1200		((1200 * 80) / WWV_SEC) /* 1200 Hz increment */
210
211/*
212 * Acquisition and tracking time constants
213 */
214#define MINAVG		8	/* min averaging time */
215#define MAXAVG		1024	/* max averaging time */
216#define FCONST		3	/* frequency time constant */
217#define TCONST		16	/* data bit/digit time constant */
218
219/*
220 * Miscellaneous status bits (misc)
221 *
222 * These bits correspond to designated bits in the WWV/H timecode. The
223 * bit probabilities are exponentially averaged over several minutes and
224 * processed by a integrator and threshold.
225 */
226#define DUT1		0x01	/* 56 DUT .1 */
227#define DUT2		0x02	/* 57 DUT .2 */
228#define DUT4		0x04	/* 58 DUT .4 */
229#define DUTS		0x08	/* 50 DUT sign */
230#define DST1		0x10	/* 55 DST1 leap warning */
231#define DST2		0x20	/* 2 DST2 DST1 delayed one day */
232#define SECWAR		0x40	/* 3 leap second warning */
233
234/*
235 * The on-time synchronization point is the positive-going zero crossing
236 * of the first cycle of the 5-ms second pulse. The IIR baseband filter
237 * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
238 * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
239 * causes was determined by calibrating to a PPS signal from a GPS
240 * receiver. The additional propagation delay specific to each receiver
241 * location can be  programmed in the fudge time1 and time2 values for
242 * WWV and WWVH, respectively.
243 *
244 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
245 * generally within .02 ms short-term with .02 ms jitter. The long-term
246 * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
247 * The processor load due to the driver is 5.8 percent.
248 */
249#define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
250
251/*
252 * Table of sine values at 4.5-degree increments. This is used by the
253 * synchronous matched filter demodulators.
254 */
255double sintab[] = {
256 0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
257 3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
258 5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
259 8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
260 9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
261 1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
262 9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
263 8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
264 5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
265 3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
266-0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
267-3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
268-5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
269-8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
270-9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
271-1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
272-9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
273-8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
274-5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
275-3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
276 0.000000e+00};						    /* 80 */
277
278/*
279 * Decoder operations at the end of each second are driven by a state
280 * machine. The transition matrix consists of a dispatch table indexed
281 * by second number. Each entry in the table contains a case switch
282 * number and argument.
283 */
284struct progx {
285	int sw;			/* case switch number */
286	int arg;		/* argument */
287};
288
289/*
290 * Case switch numbers
291 */
292#define IDLE		0	/* no operation */
293#define COEF		1	/* BCD bit */
294#define COEF1		2	/* BCD bit for minute unit */
295#define COEF2		3	/* BCD bit not used */
296#define DECIM9		4	/* BCD digit 0-9 */
297#define DECIM6		5	/* BCD digit 0-6 */
298#define DECIM3		6	/* BCD digit 0-3 */
299#define DECIM2		7	/* BCD digit 0-2 */
300#define MSCBIT		8	/* miscellaneous bit */
301#define MSC20		9	/* miscellaneous bit */
302#define MSC21		10	/* QSY probe channel */
303#define MIN1		11	/* latch time */
304#define MIN2		12	/* leap second */
305#define SYNC2		13	/* latch minute sync pulse */
306#define SYNC3		14	/* latch data pulse */
307
308/*
309 * Offsets in decoding matrix
310 */
311#define MN		0	/* minute digits (2) */
312#define HR		2	/* hour digits (2) */
313#define DA		4	/* day digits (3) */
314#define YR		7	/* year digits (2) */
315
316struct progx progx[] = {
317	{SYNC2,	0},		/* 0 latch minute sync pulse */
318	{SYNC3,	0},		/* 1 latch data pulse */
319	{MSCBIT, DST2},		/* 2 dst2 */
320	{MSCBIT, SECWAR},	/* 3 lw */
321	{COEF,	0},		/* 4 1 year units */
322	{COEF,	1},		/* 5 2 */
323	{COEF,	2},		/* 6 4 */
324	{COEF,	3},		/* 7 8 */
325	{DECIM9, YR},		/* 8 */
326	{IDLE,	0},		/* 9 p1 */
327	{COEF1,	0},		/* 10 1 minute units */
328	{COEF1,	1},		/* 11 2 */
329	{COEF1,	2},		/* 12 4 */
330	{COEF1,	3},		/* 13 8 */
331	{DECIM9, MN},		/* 14 */
332	{COEF,	0},		/* 15 10 minute tens */
333	{COEF,	1},		/* 16 20 */
334	{COEF,	2},		/* 17 40 */
335	{COEF2,	3},		/* 18 80 (not used) */
336	{DECIM6, MN + 1},	/* 19 p2 */
337	{COEF,	0},		/* 20 1 hour units */
338	{COEF,	1},		/* 21 2 */
339	{COEF,	2},		/* 22 4 */
340	{COEF,	3},		/* 23 8 */
341	{DECIM9, HR},		/* 24 */
342	{COEF,	0},		/* 25 10 hour tens */
343	{COEF,	1},		/* 26 20 */
344	{COEF2,	2},		/* 27 40 (not used) */
345	{COEF2,	3},		/* 28 80 (not used) */
346	{DECIM2, HR + 1},	/* 29 p3 */
347	{COEF,	0},		/* 30 1 day units */
348	{COEF,	1},		/* 31 2 */
349	{COEF,	2},		/* 32 4 */
350	{COEF,	3},		/* 33 8 */
351	{DECIM9, DA},		/* 34 */
352	{COEF,	0},		/* 35 10 day tens */
353	{COEF,	1},		/* 36 20 */
354	{COEF,	2},		/* 37 40 */
355	{COEF,	3},		/* 38 80 */
356	{DECIM9, DA + 1},	/* 39 p4 */
357	{COEF,	0},		/* 40 100 day hundreds */
358	{COEF,	1},		/* 41 200 */
359	{COEF2,	2},		/* 42 400 (not used) */
360	{COEF2,	3},		/* 43 800 (not used) */
361	{DECIM3, DA + 2},	/* 44 */
362	{IDLE,	0},		/* 45 */
363	{IDLE,	0},		/* 46 */
364	{IDLE,	0},		/* 47 */
365	{IDLE,	0},		/* 48 */
366	{IDLE,	0},		/* 49 p5 */
367	{MSCBIT, DUTS},		/* 50 dut+- */
368	{COEF,	0},		/* 51 10 year tens */
369	{COEF,	1},		/* 52 20 */
370	{COEF,	2},		/* 53 40 */
371	{COEF,	3},		/* 54 80 */
372	{MSC20, DST1},		/* 55 dst1 */
373	{MSCBIT, DUT1},		/* 56 0.1 dut */
374	{MSCBIT, DUT2},		/* 57 0.2 */
375	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
376	{MIN1,	0},		/* 59 p6 latch time */
377	{MIN2,	0}		/* 60 leap second */
378};
379
380/*
381 * BCD coefficients for maximum-likelihood digit decode
382 */
383#define P15	1.		/* max positive number */
384#define N15	-1.		/* max negative number */
385
386/*
387 * Digits 0-9
388 */
389#define P9	(P15 / 4)	/* mark (+1) */
390#define N9	(N15 / 4)	/* space (-1) */
391
392double bcd9[][4] = {
393	{N9, N9, N9, N9}, 	/* 0 */
394	{P9, N9, N9, N9}, 	/* 1 */
395	{N9, P9, N9, N9}, 	/* 2 */
396	{P9, P9, N9, N9}, 	/* 3 */
397	{N9, N9, P9, N9}, 	/* 4 */
398	{P9, N9, P9, N9}, 	/* 5 */
399	{N9, P9, P9, N9}, 	/* 6 */
400	{P9, P9, P9, N9}, 	/* 7 */
401	{N9, N9, N9, P9}, 	/* 8 */
402	{P9, N9, N9, P9}, 	/* 9 */
403	{0, 0, 0, 0}		/* backstop */
404};
405
406/*
407 * Digits 0-6 (minute tens)
408 */
409#define P6	(P15 / 3)	/* mark (+1) */
410#define N6	(N15 / 3)	/* space (-1) */
411
412double bcd6[][4] = {
413	{N6, N6, N6, 0}, 	/* 0 */
414	{P6, N6, N6, 0}, 	/* 1 */
415	{N6, P6, N6, 0}, 	/* 2 */
416	{P6, P6, N6, 0}, 	/* 3 */
417	{N6, N6, P6, 0}, 	/* 4 */
418	{P6, N6, P6, 0}, 	/* 5 */
419	{N6, P6, P6, 0}, 	/* 6 */
420	{0, 0, 0, 0}		/* backstop */
421};
422
423/*
424 * Digits 0-3 (day hundreds)
425 */
426#define P3	(P15 / 2)	/* mark (+1) */
427#define N3	(N15 / 2)	/* space (-1) */
428
429double bcd3[][4] = {
430	{N3, N3, 0, 0}, 	/* 0 */
431	{P3, N3, 0, 0}, 	/* 1 */
432	{N3, P3, 0, 0}, 	/* 2 */
433	{P3, P3, 0, 0}, 	/* 3 */
434	{0, 0, 0, 0}		/* backstop */
435};
436
437/*
438 * Digits 0-2 (hour tens)
439 */
440#define P2	(P15 / 2)	/* mark (+1) */
441#define N2	(N15 / 2)	/* space (-1) */
442
443double bcd2[][4] = {
444	{N2, N2, 0, 0}, 	/* 0 */
445	{P2, N2, 0, 0}, 	/* 1 */
446	{N2, P2, 0, 0}, 	/* 2 */
447	{0, 0, 0, 0}		/* backstop */
448};
449
450/*
451 * DST decode (DST2 DST1) for prettyprint
452 */
453char dstcod[] = {
454	'S',			/* 00 standard time */
455	'I',			/* 01 set clock ahead at 0200 local */
456	'O',			/* 10 set clock back at 0200 local */
457	'D'			/* 11 daylight time */
458};
459
460/*
461 * The decoding matrix consists of nine row vectors, one for each digit
462 * of the timecode. The digits are stored from least to most significant
463 * order. The maximum-likelihood timecode is formed from the digits
464 * corresponding to the maximum-likelihood values reading in the
465 * opposite order: yy ddd hh:mm.
466 */
467struct decvec {
468	int radix;		/* radix (3, 4, 6, 10) */
469	int digit;		/* current clock digit */
470	int count;		/* match count */
471	double digprb;		/* max digit probability */
472	double digsnr;		/* likelihood function (dB) */
473	double like[10];	/* likelihood integrator 0-9 */
474};
475
476/*
477 * The station structure (sp) is used to acquire the minute pulse from
478 * WWV and/or WWVH. These stations are distinguished by the frequency
479 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
480 * Hz for WWVH. Other than frequency, the format is the same.
481 */
482struct sync {
483	double	epoch;		/* accumulated epoch differences */
484	double	maxeng;		/* sync max energy */
485	double	noieng;		/* sync noise energy */
486	long	pos;		/* max amplitude position */
487	long	lastpos;	/* last max position */
488	long	mepoch;		/* minute synch epoch */
489
490	double	amp;		/* sync signal */
491	double	syneng;		/* sync signal max */
492	double	synmax;		/* sync signal max latched at 0 s */
493	double	synsnr;		/* sync signal SNR */
494	double	metric;		/* signal quality metric */
495	int	reach;		/* reachability register */
496	int	count;		/* bit counter */
497	int	select;		/* select bits */
498	char	refid[5];	/* reference identifier */
499};
500
501/*
502 * The channel structure (cp) is used to mitigate between channels.
503 */
504struct chan {
505	int	gain;		/* audio gain */
506	struct sync wwv;	/* wwv station */
507	struct sync wwvh;	/* wwvh station */
508};
509
510/*
511 * WWV unit control structure (up)
512 */
513struct wwvunit {
514	l_fp	timestamp;	/* audio sample timestamp */
515	l_fp	tick;		/* audio sample increment */
516	double	phase, freq;	/* logical clock phase and frequency */
517	double	monitor;	/* audio monitor point */
518	double	pdelay;		/* propagation delay (s) */
519#ifdef ICOM
520	int	fd_icom;	/* ICOM file descriptor */
521#endif /* ICOM */
522	int	errflg;		/* error flags */
523	int	watch;		/* watchcat */
524
525	/*
526	 * Audio codec variables
527	 */
528	double	comp[SIZE];	/* decompanding table */
529 	int	port;		/* codec port */
530	int	gain;		/* codec gain */
531	int	mongain;	/* codec monitor gain */
532	int	clipcnt;	/* sample clipped count */
533
534	/*
535	 * Variables used to establish basic system timing
536	 */
537	int	avgint;		/* master time constant */
538	int	yepoch;		/* sync epoch */
539	int	repoch;		/* buffered sync epoch */
540	double	epomax;		/* second sync amplitude */
541	double	eposnr;		/* second sync SNR */
542	double	irig;		/* data I channel amplitude */
543	double	qrig;		/* data Q channel amplitude */
544	int	datapt;		/* 100 Hz ramp */
545	double	datpha;		/* 100 Hz VFO control */
546	int	rphase;		/* second sample counter */
547	long	mphase;		/* minute sample counter */
548
549	/*
550	 * Variables used to mitigate which channel to use
551	 */
552	struct chan mitig[NCHAN]; /* channel data */
553	struct sync *sptr;	/* station pointer */
554	int	dchan;		/* data channel */
555	int	schan;		/* probe channel */
556	int	achan;		/* active channel */
557
558	/*
559	 * Variables used by the clock state machine
560	 */
561	struct decvec decvec[9]; /* decoding matrix */
562	int	rsec;		/* seconds counter */
563	int	digcnt;		/* count of digits synchronized */
564
565	/*
566	 * Variables used to estimate signal levels and bit/digit
567	 * probabilities
568	 */
569	double	datsig;		/* data signal max */
570	double	datsnr;		/* data signal SNR (dB) */
571
572	/*
573	 * Variables used to establish status and alarm conditions
574	 */
575	int	status;		/* status bits */
576	int	alarm;		/* alarm flashers */
577	int	misc;		/* miscellaneous timecode bits */
578	int	errcnt;		/* data bit error counter */
579};
580
581/*
582 * Function prototypes
583 */
584static	int	wwv_start	(int, struct peer *);
585static	void	wwv_shutdown	(int, struct peer *);
586static	void	wwv_receive	(struct recvbuf *);
587static	void	wwv_poll	(int, struct peer *);
588
589/*
590 * More function prototypes
591 */
592static	void	wwv_epoch	(struct peer *);
593static	void	wwv_rf		(struct peer *, double);
594static	void	wwv_endpoc	(struct peer *, int);
595static	void	wwv_rsec	(struct peer *, double);
596static	void	wwv_qrz		(struct peer *, struct sync *, int);
597static	void	wwv_corr4	(struct peer *, struct decvec *,
598				    double [], double [][4]);
599static	void	wwv_gain	(struct peer *);
600static	void	wwv_tsec	(struct peer *);
601static	int	timecode	(struct wwvunit *, char *, size_t);
602static	double	wwv_snr		(double, double);
603static	int	carry		(struct decvec *);
604static	int	wwv_newchan	(struct peer *);
605static	void	wwv_newgame	(struct peer *);
606static	double	wwv_metric	(struct sync *);
607static	void	wwv_clock	(struct peer *);
608#ifdef ICOM
609static	int	wwv_qsy		(struct peer *, int);
610#endif /* ICOM */
611
612static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
613
614/*
615 * Transfer vector
616 */
617struct	refclock refclock_wwv = {
618	wwv_start,		/* start up driver */
619	wwv_shutdown,		/* shut down driver */
620	wwv_poll,		/* transmit poll message */
621	noentry,		/* not used (old wwv_control) */
622	noentry,		/* initialize driver (not used) */
623	noentry,		/* not used (old wwv_buginfo) */
624	NOFLAGS			/* not used */
625};
626
627
628/*
629 * wwv_start - open the devices and initialize data for processing
630 */
631static int
632wwv_start(
633	int	unit,		/* instance number (used by PCM) */
634	struct peer *peer	/* peer structure pointer */
635	)
636{
637	struct refclockproc *pp;
638	struct wwvunit *up;
639#ifdef ICOM
640	int	temp;
641#endif /* ICOM */
642
643	/*
644	 * Local variables
645	 */
646	int	fd;		/* file descriptor */
647	int	i;		/* index */
648	double	step;		/* codec adjustment */
649
650	/*
651	 * Open audio device
652	 */
653	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
654	if (fd < 0)
655		return (0);
656#ifdef DEBUG
657	if (debug)
658		audio_show();
659#endif /* DEBUG */
660
661	/*
662	 * Allocate and initialize unit structure
663	 */
664	up = emalloc_zero(sizeof(*up));
665	pp = peer->procptr;
666	pp->io.clock_recv = wwv_receive;
667	pp->io.srcclock = peer;
668	pp->io.datalen = 0;
669	pp->io.fd = fd;
670	if (!io_addclock(&pp->io)) {
671		close(fd);
672		free(up);
673		return (0);
674	}
675	pp->unitptr = up;
676
677	/*
678	 * Initialize miscellaneous variables
679	 */
680	peer->precision = PRECISION;
681	pp->clockdesc = DESCRIPTION;
682
683	/*
684	 * The companded samples are encoded sign-magnitude. The table
685	 * contains all the 256 values in the interest of speed.
686	 */
687	up->comp[0] = up->comp[OFFSET] = 0.;
688	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
689	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
690	step = 2.;
691	for (i = 3; i < OFFSET; i++) {
692		up->comp[i] = up->comp[i - 1] + step;
693		up->comp[OFFSET + i] = -up->comp[i];
694		if (i % 16 == 0)
695			step *= 2.;
696	}
697	DTOLFP(1. / WWV_SEC, &up->tick);
698
699	/*
700	 * Initialize the decoding matrix with the radix for each digit
701	 * position.
702	 */
703	up->decvec[MN].radix = 10;	/* minutes */
704	up->decvec[MN + 1].radix = 6;
705	up->decvec[HR].radix = 10;	/* hours */
706	up->decvec[HR + 1].radix = 3;
707	up->decvec[DA].radix = 10;	/* days */
708	up->decvec[DA + 1].radix = 10;
709	up->decvec[DA + 2].radix = 4;
710	up->decvec[YR].radix = 10;	/* years */
711	up->decvec[YR + 1].radix = 10;
712
713#ifdef ICOM
714	/*
715	 * Initialize autotune if available. Note that the ICOM select
716	 * code must be less than 128, so the high order bit can be used
717	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
718	 * we don't complain if the ICOM device is not there; but, if it
719	 * is, the radio better be working.
720	 */
721	temp = 0;
722#ifdef DEBUG
723	if (debug > 1)
724		temp = P_TRACE;
725#endif /* DEBUG */
726	if (peer->ttl != 0) {
727		if (peer->ttl & 0x80)
728			up->fd_icom = icom_init("/dev/icom", B1200,
729			    temp);
730		else
731			up->fd_icom = icom_init("/dev/icom", B9600,
732			    temp);
733	}
734	if (up->fd_icom > 0) {
735		if (wwv_qsy(peer, DCHAN) != 0) {
736			msyslog(LOG_NOTICE, "icom: radio not found");
737			close(up->fd_icom);
738			up->fd_icom = 0;
739		} else {
740			msyslog(LOG_NOTICE, "icom: autotune enabled");
741		}
742	}
743#endif /* ICOM */
744
745	/*
746	 * Let the games begin.
747	 */
748	wwv_newgame(peer);
749	return (1);
750}
751
752
753/*
754 * wwv_shutdown - shut down the clock
755 */
756static void
757wwv_shutdown(
758	int	unit,		/* instance number (not used) */
759	struct peer *peer	/* peer structure pointer */
760	)
761{
762	struct refclockproc *pp;
763	struct wwvunit *up;
764
765	pp = peer->procptr;
766	up = pp->unitptr;
767	if (up == NULL)
768		return;
769
770	io_closeclock(&pp->io);
771#ifdef ICOM
772	if (up->fd_icom > 0)
773		close(up->fd_icom);
774#endif /* ICOM */
775	free(up);
776}
777
778
779/*
780 * wwv_receive - receive data from the audio device
781 *
782 * This routine reads input samples and adjusts the logical clock to
783 * track the A/D sample clock by dropping or duplicating codec samples.
784 * It also controls the A/D signal level with an AGC loop to mimimize
785 * quantization noise and avoid overload.
786 */
787static void
788wwv_receive(
789	struct recvbuf *rbufp	/* receive buffer structure pointer */
790	)
791{
792	struct peer *peer;
793	struct refclockproc *pp;
794	struct wwvunit *up;
795
796	/*
797	 * Local variables
798	 */
799	double	sample;		/* codec sample */
800	u_char	*dpt;		/* buffer pointer */
801	int	bufcnt;		/* buffer counter */
802	l_fp	ltemp;
803
804	peer = rbufp->recv_peer;
805	pp = peer->procptr;
806	up = pp->unitptr;
807
808	/*
809	 * Main loop - read until there ain't no more. Note codec
810	 * samples are bit-inverted.
811	 */
812	DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
813	L_SUB(&rbufp->recv_time, &ltemp);
814	up->timestamp = rbufp->recv_time;
815	dpt = rbufp->recv_buffer;
816	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
817		sample = up->comp[~*dpt++ & 0xff];
818
819		/*
820		 * Clip noise spikes greater than MAXAMP (6000) and
821		 * record the number of clips to be used later by the
822		 * AGC.
823		 */
824		if (sample > MAXAMP) {
825			sample = MAXAMP;
826			up->clipcnt++;
827		} else if (sample < -MAXAMP) {
828			sample = -MAXAMP;
829			up->clipcnt++;
830		}
831
832		/*
833		 * Variable frequency oscillator. The codec oscillator
834		 * runs at the nominal rate of 8000 samples per second,
835		 * or 125 us per sample. A frequency change of one unit
836		 * results in either duplicating or deleting one sample
837		 * per second, which results in a frequency change of
838		 * 125 PPM.
839		 */
840		up->phase += (up->freq + clock_codec) / WWV_SEC;
841		if (up->phase >= .5) {
842			up->phase -= 1.;
843		} else if (up->phase < -.5) {
844			up->phase += 1.;
845			wwv_rf(peer, sample);
846			wwv_rf(peer, sample);
847		} else {
848			wwv_rf(peer, sample);
849		}
850		L_ADD(&up->timestamp, &up->tick);
851	}
852
853	/*
854	 * Set the input port and monitor gain for the next buffer.
855	 */
856	if (pp->sloppyclockflag & CLK_FLAG2)
857		up->port = 2;
858	else
859		up->port = 1;
860	if (pp->sloppyclockflag & CLK_FLAG3)
861		up->mongain = MONGAIN;
862	else
863		up->mongain = 0;
864}
865
866
867/*
868 * wwv_poll - called by the transmit procedure
869 *
870 * This routine keeps track of status. If no offset samples have been
871 * processed during a poll interval, a timeout event is declared. If
872 * errors have have occurred during the interval, they are reported as
873 * well.
874 */
875static void
876wwv_poll(
877	int	unit,		/* instance number (not used) */
878	struct peer *peer	/* peer structure pointer */
879	)
880{
881	struct refclockproc *pp;
882	struct wwvunit *up;
883
884	pp = peer->procptr;
885	up = pp->unitptr;
886	if (up->errflg)
887		refclock_report(peer, up->errflg);
888	up->errflg = 0;
889	pp->polls++;
890}
891
892
893/*
894 * wwv_rf - process signals and demodulate to baseband
895 *
896 * This routine grooms and filters decompanded raw audio samples. The
897 * output signal is the 100-Hz filtered baseband data signal in
898 * quadrature phase. The routine also determines the minute synch epoch,
899 * as well as certain signal maxima, minima and related values.
900 *
901 * There are two 1-s ramps used by this program. Both count the 8000
902 * logical clock samples spanning exactly one second. The epoch ramp
903 * counts the samples starting at an arbitrary time. The rphase ramp
904 * counts the samples starting at the 5-ms second sync pulse found
905 * during the epoch ramp.
906 *
907 * There are two 1-m ramps used by this program. The mphase ramp counts
908 * the 480,000 logical clock samples spanning exactly one minute and
909 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
910 * the minute starting at the 800-ms minute sync pulse found during the
911 * mphase ramp. The rsec ramp drives the seconds state machine to
912 * determine the bits and digits of the timecode.
913 *
914 * Demodulation operations are based on three synthesized quadrature
915 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
916 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
917 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
918 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
919 * at 1200 Hz). Two additional matched filters are switched in
920 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
921 * WWVH second sync signal (6 cycles at 1200 Hz).
922 */
923static void
924wwv_rf(
925	struct peer *peer,	/* peerstructure pointer */
926	double isig		/* input signal */
927	)
928{
929	struct refclockproc *pp;
930	struct wwvunit *up;
931	struct sync *sp, *rp;
932
933	static double lpf[5];	/* 150-Hz lpf delay line */
934	double data;		/* lpf output */
935	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
936	double syncx;		/* bpf output */
937	static double mf[41];	/* 1000/1200-Hz mf delay line */
938	double mfsync;		/* mf output */
939
940	static int iptr;	/* data channel pointer */
941	static double ibuf[DATSIZ]; /* data I channel delay line */
942	static double qbuf[DATSIZ]; /* data Q channel delay line */
943
944	static int jptr;	/* sync channel pointer */
945	static int kptr;	/* tick channel pointer */
946
947	static int csinptr;	/* wwv channel phase */
948	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
949	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
950	static double ciamp;	/* wwv I channel amplitude */
951	static double cqamp;	/* wwv Q channel amplitude */
952
953	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
954	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
955	static double csiamp;	/* wwv I tick amplitude */
956	static double csqamp;	/* wwv Q tick amplitude */
957
958	static int hsinptr;	/* wwvh channel phase */
959	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
960	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
961	static double hiamp;	/* wwvh I channel amplitude */
962	static double hqamp;	/* wwvh Q channel amplitude */
963
964	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
965	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
966	static double hsiamp;	/* wwvh I tick amplitude */
967	static double hsqamp;	/* wwvh Q tick amplitude */
968
969	static double epobuf[WWV_SEC]; /* second sync comb filter */
970	static double epomax, nxtmax; /* second sync amplitude buffer */
971	static int epopos;	/* epoch second sync position buffer */
972
973	static int iniflg;	/* initialization flag */
974	int	epoch;		/* comb filter index */
975	double	dtemp;
976	int	i;
977
978	pp = peer->procptr;
979	up = pp->unitptr;
980
981	if (!iniflg) {
982		iniflg = 1;
983		memset((char *)lpf, 0, sizeof(lpf));
984		memset((char *)bpf, 0, sizeof(bpf));
985		memset((char *)mf, 0, sizeof(mf));
986		memset((char *)ibuf, 0, sizeof(ibuf));
987		memset((char *)qbuf, 0, sizeof(qbuf));
988		memset((char *)cibuf, 0, sizeof(cibuf));
989		memset((char *)cqbuf, 0, sizeof(cqbuf));
990		memset((char *)csibuf, 0, sizeof(csibuf));
991		memset((char *)csqbuf, 0, sizeof(csqbuf));
992		memset((char *)hibuf, 0, sizeof(hibuf));
993		memset((char *)hqbuf, 0, sizeof(hqbuf));
994		memset((char *)hsibuf, 0, sizeof(hsibuf));
995		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
996		memset((char *)epobuf, 0, sizeof(epobuf));
997	}
998
999	/*
1000	 * Baseband data demodulation. The 100-Hz subcarrier is
1001	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1002	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1003	 * 600-Hz tones and most of the noise and voice modulation
1004	 * components.
1005	 *
1006	 * The subcarrier is transmitted 10 dB down from the carrier.
1007	 * The DGAIN parameter can be adjusted for this and to
1008	 * compensate for the radio audio response at 100 Hz.
1009	 *
1010	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1011	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1012	 */
1013	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1014	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1015	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1016	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1017	lpf[0] = isig * DGAIN - data;
1018	data = lpf[0] * 3.281435e-03
1019	    + lpf[1] * -1.149947e-02
1020	    + lpf[2] * 1.654858e-02
1021	    + lpf[3] * -1.149947e-02
1022	    + lpf[4] * 3.281435e-03;
1023
1024	/*
1025	 * The 100-Hz data signal is demodulated using a pair of
1026	 * quadrature multipliers, matched filters and a phase lock
1027	 * loop. The I and Q quadrature data signals are produced by
1028	 * multiplying the filtered signal by 100-Hz sine and cosine
1029	 * signals, respectively. The signals are processed by 170-ms
1030	 * synchronous matched filters to produce the amplitude and
1031	 * phase signals used by the demodulator. The signals are scaled
1032	 * to produce unit energy at the maximum value.
1033	 */
1034	i = up->datapt;
1035	up->datapt = (up->datapt + IN100) % 80;
1036	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1037	up->irig -= ibuf[iptr];
1038	ibuf[iptr] = dtemp;
1039	up->irig += dtemp;
1040
1041	i = (i + 20) % 80;
1042	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1043	up->qrig -= qbuf[iptr];
1044	qbuf[iptr] = dtemp;
1045	up->qrig += dtemp;
1046	iptr = (iptr + 1) % DATSIZ;
1047
1048	/*
1049	 * Baseband sync demodulation. The 1000/1200 sync signals are
1050	 * extracted using a 600-Hz IIR bandpass filter. This removes
1051	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1052	 * tones and most of the noise and voice modulation components.
1053	 *
1054	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1055	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1056	 */
1057	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1058	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1059	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1060	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1061	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1062	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1063	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1064	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1065	bpf[0] = isig - syncx;
1066	syncx = bpf[0] * 8.203628e-03
1067	    + bpf[1] * -2.375732e-02
1068	    + bpf[2] * 3.353214e-02
1069	    + bpf[3] * -4.080258e-02
1070	    + bpf[4] * 4.605479e-02
1071	    + bpf[5] * -4.080258e-02
1072	    + bpf[6] * 3.353214e-02
1073	    + bpf[7] * -2.375732e-02
1074	    + bpf[8] * 8.203628e-03;
1075
1076	/*
1077	 * The 1000/1200 sync signals are demodulated using a pair of
1078	 * quadrature multipliers and matched filters. However,
1079	 * synchronous demodulation at these frequencies is impractical,
1080	 * so only the signal amplitude is used. The I and Q quadrature
1081	 * sync signals are produced by multiplying the filtered signal
1082	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1083	 * respectively. The WWV and WWVH signals are processed by 800-
1084	 * ms synchronous matched filters and combined to produce the
1085	 * minute sync signal and detect which one (or both) the WWV or
1086	 * WWVH signal is present. The WWV and WWVH signals are also
1087	 * processed by 5-ms synchronous matched filters and combined to
1088	 * produce the second sync signal. The signals are scaled to
1089	 * produce unit energy at the maximum value.
1090	 *
1091	 * Note the master timing ramps, which run continuously. The
1092	 * minute counter (mphase) counts the samples in the minute,
1093	 * while the second counter (epoch) counts the samples in the
1094	 * second.
1095	 */
1096	up->mphase = (up->mphase + 1) % WWV_MIN;
1097	epoch = up->mphase % WWV_SEC;
1098
1099	/*
1100	 * WWV
1101	 */
1102	i = csinptr;
1103	csinptr = (csinptr + IN1000) % 80;
1104
1105	dtemp = sintab[i] * syncx / (MS / 2.);
1106	ciamp -= cibuf[jptr];
1107	cibuf[jptr] = dtemp;
1108	ciamp += dtemp;
1109	csiamp -= csibuf[kptr];
1110	csibuf[kptr] = dtemp;
1111	csiamp += dtemp;
1112
1113	i = (i + 20) % 80;
1114	dtemp = sintab[i] * syncx / (MS / 2.);
1115	cqamp -= cqbuf[jptr];
1116	cqbuf[jptr] = dtemp;
1117	cqamp += dtemp;
1118	csqamp -= csqbuf[kptr];
1119	csqbuf[kptr] = dtemp;
1120	csqamp += dtemp;
1121
1122	sp = &up->mitig[up->achan].wwv;
1123	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1124	if (!(up->status & MSYNC))
1125		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));
1126
1127	/*
1128	 * WWVH
1129	 */
1130	i = hsinptr;
1131	hsinptr = (hsinptr + IN1200) % 80;
1132
1133	dtemp = sintab[i] * syncx / (MS / 2.);
1134	hiamp -= hibuf[jptr];
1135	hibuf[jptr] = dtemp;
1136	hiamp += dtemp;
1137	hsiamp -= hsibuf[kptr];
1138	hsibuf[kptr] = dtemp;
1139	hsiamp += dtemp;
1140
1141	i = (i + 20) % 80;
1142	dtemp = sintab[i] * syncx / (MS / 2.);
1143	hqamp -= hqbuf[jptr];
1144	hqbuf[jptr] = dtemp;
1145	hqamp += dtemp;
1146	hsqamp -= hsqbuf[kptr];
1147	hsqbuf[kptr] = dtemp;
1148	hsqamp += dtemp;
1149
1150	rp = &up->mitig[up->achan].wwvh;
1151	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1152	if (!(up->status & MSYNC))
1153		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
1154	jptr = (jptr + 1) % SYNSIZ;
1155	kptr = (kptr + 1) % TCKSIZ;
1156
1157	/*
1158	 * The following section is called once per minute. It does
1159	 * housekeeping and timeout functions and empties the dustbins.
1160	 */
1161	if (up->mphase == 0) {
1162		up->watch++;
1163		if (!(up->status & MSYNC)) {
1164
1165			/*
1166			 * If minute sync has not been acquired before
1167			 * ACQSN timeout (6 min), or if no signal is
1168			 * heard, the program cycles to the next
1169			 * frequency and tries again.
1170			 */
1171			if (!wwv_newchan(peer))
1172				up->watch = 0;
1173		} else {
1174
1175			/*
1176			 * If the leap bit is set, set the minute epoch
1177			 * back one second so the station processes
1178			 * don't miss a beat.
1179			 */
1180			if (up->status & LEPSEC) {
1181				up->mphase -= WWV_SEC;
1182				if (up->mphase < 0)
1183					up->mphase += WWV_MIN;
1184			}
1185		}
1186	}
1187
1188	/*
1189	 * When the channel metric reaches threshold and the second
1190	 * counter matches the minute epoch within the second, the
1191	 * driver has synchronized to the station. The second number is
1192	 * the remaining seconds until the next minute epoch, while the
1193	 * sync epoch is zero. Watch out for the first second; if
1194	 * already synchronized to the second, the buffered sync epoch
1195	 * must be set.
1196	 *
1197	 * Note the guard interval is 200 ms; if for some reason the
1198	 * clock drifts more than that, it might wind up in the wrong
1199	 * second. If the maximum frequency error is not more than about
1200	 * 1 PPM, the clock can go as much as two days while still in
1201	 * the same second.
1202	 */
1203	if (up->status & MSYNC) {
1204		wwv_epoch(peer);
1205	} else if (up->sptr != NULL) {
1206		sp = up->sptr;
1207		if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
1208 		    {
1209			up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
1210			up->rphase = 0;
1211			up->status |= MSYNC;
1212			up->watch = 0;
1213			if (!(up->status & SSYNC))
1214				up->repoch = up->yepoch = epoch;
1215			else
1216				up->repoch = up->yepoch;
1217
1218		}
1219	}
1220
1221	/*
1222	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1223	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1224	 * pulse is used for the most precise synchronization, since if
1225	 * provides a resolution of one sample (125 us). The filters run
1226	 * only if the station has been reliably determined.
1227	 */
1228	if (up->status & SELV)
1229		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1230		    TCKCYC;
1231	else if (up->status & SELH)
1232		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1233		    TCKCYC;
1234	else
1235		mfsync = 0;
1236
1237	/*
1238	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1239	 * filter. Correct for the FIR matched filter delay, which is 5
1240	 * ms for both the WWV and WWVH filters, and also for the
1241	 * propagation delay. Once each second look for second sync. If
1242	 * not in minute sync, fiddle the codec gain. Note the SNR is
1243	 * computed from the maximum sample and the envelope of the
1244	 * sample 6 ms before it, so if we slip more than a cycle the
1245	 * SNR should plummet. The signal is scaled to produce unit
1246	 * energy at the maximum value.
1247	 */
1248	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1249	    up->avgint);
1250	if (dtemp > epomax) {
1251		int	j;
1252
1253		epomax = dtemp;
1254		epopos = epoch;
1255		j = epoch - 6 * MS;
1256		if (j < 0)
1257			j += WWV_SEC;
1258		nxtmax = fabs(epobuf[j]);
1259	}
1260	if (epoch == 0) {
1261		up->epomax = epomax;
1262		up->eposnr = wwv_snr(epomax, nxtmax);
1263		epopos -= TCKCYC * MS;
1264		if (epopos < 0)
1265			epopos += WWV_SEC;
1266		wwv_endpoc(peer, epopos);
1267		if (!(up->status & SSYNC))
1268			up->alarm |= SYNERR;
1269		epomax = 0;
1270		if (!(up->status & MSYNC))
1271			wwv_gain(peer);
1272	}
1273}
1274
1275
1276/*
1277 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1278 *
1279 * This routine implements a virtual station process used to acquire
1280 * minute sync and to mitigate among the ten frequency and station
1281 * combinations. During minute sync acquisition the process probes each
1282 * frequency and station in turn for the minute pulse, which
1283 * involves searching through the entire 480,000-sample minute. The
1284 * process finds the maximum signal and RMS noise plus signal. Then, the
1285 * actual noise is determined by subtracting the energy of the matched
1286 * filter.
1287 *
1288 * Students of radar receiver technology will discover this algorithm
1289 * amounts to a range-gate discriminator. A valid pulse must have peak
1290 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1291 * difference between the current and previous epoch must be less than
1292 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1293 * into the second, so the timing is retarded to the previous second
1294 * epoch.
1295 */
1296static void
1297wwv_qrz(
1298	struct peer *peer,	/* peer structure pointer */
1299	struct sync *sp,	/* sync channel structure */
1300	int	pdelay		/* propagation delay (samples) */
1301	)
1302{
1303	struct refclockproc *pp;
1304	struct wwvunit *up;
1305	char	tbuf[TBUF];	/* monitor buffer */
1306	long	epoch;
1307
1308	pp = peer->procptr;
1309	up = pp->unitptr;
1310
1311	/*
1312	 * Find the sample with peak amplitude, which defines the minute
1313	 * epoch. Accumulate all samples to determine the total noise
1314	 * energy.
1315	 */
1316	epoch = up->mphase - pdelay - SYNSIZ;
1317	if (epoch < 0)
1318		epoch += WWV_MIN;
1319	if (sp->amp > sp->maxeng) {
1320		sp->maxeng = sp->amp;
1321		sp->pos = epoch;
1322	}
1323	sp->noieng += sp->amp;
1324
1325	/*
1326	 * At the end of the minute, determine the epoch of the minute
1327	 * sync pulse, as well as the difference between the current and
1328	 * previous epoches due to the intrinsic frequency error plus
1329	 * jitter. When calculating the SNR, subtract the pulse energy
1330	 * from the total noise energy and then normalize.
1331	 */
1332	if (up->mphase == 0) {
1333		sp->synmax = sp->maxeng;
1334		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1335		    sp->synmax) / WWV_MIN);
1336		if (sp->count == 0)
1337			sp->lastpos = sp->pos;
1338		epoch = (sp->pos - sp->lastpos) % WWV_MIN;
1339		sp->reach <<= 1;
1340		if (sp->reach & (1 << AMAX))
1341			sp->count--;
1342		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1343			if (labs(epoch) < AWND * MS) {
1344				sp->reach |= 1;
1345				sp->count++;
1346				sp->mepoch = sp->lastpos = sp->pos;
1347			} else if (sp->count == 1) {
1348				sp->lastpos = sp->pos;
1349			}
1350		}
1351		if (up->watch > ACQSN)
1352			sp->metric = 0;
1353		else
1354			sp->metric = wwv_metric(sp);
1355		if (pp->sloppyclockflag & CLK_FLAG4) {
1356			snprintf(tbuf, sizeof(tbuf),
1357			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1358			    up->status, up->gain, sp->refid,
1359			    sp->reach & 0xffff, sp->metric, sp->synmax,
1360			    sp->synsnr, sp->pos % WWV_SEC, epoch);
1361			record_clock_stats(&peer->srcadr, tbuf);
1362#ifdef DEBUG
1363			if (debug)
1364				printf("%s\n", tbuf);
1365#endif /* DEBUG */
1366		}
1367		sp->maxeng = sp->noieng = 0;
1368	}
1369}
1370
1371
1372/*
1373 * wwv_endpoc - identify and acquire second sync pulse
1374 *
1375 * This routine is called at the end of the second sync interval. It
1376 * determines the second sync epoch position within the second and
1377 * disciplines the sample clock using a frequency-lock loop (FLL).
1378 *
1379 * Second sync is determined in the RF input routine as the maximum
1380 * over all 8000 samples in the second comb filter. To assure accurate
1381 * and reliable time and frequency discipline, this routine performs a
1382 * great deal of heavy-handed heuristic data filtering and grooming.
1383 */
1384static void
1385wwv_endpoc(
1386	struct peer *peer,	/* peer structure pointer */
1387	int epopos		/* epoch max position */
1388	)
1389{
1390	struct refclockproc *pp;
1391	struct wwvunit *up;
1392	static int epoch_mf[3]; /* epoch median filter */
1393	static int tepoch;	/* current second epoch */
1394 	static int xepoch;	/* last second epoch */
1395 	static int zepoch;	/* last run epoch */
1396	static int zcount;	/* last run end time */
1397	static int scount;	/* seconds counter */
1398	static int syncnt;	/* run length counter */
1399	static int maxrun;	/* longest run length */
1400	static int mepoch;	/* longest run end epoch */
1401	static int mcount;	/* longest run end time */
1402	static int avgcnt;	/* averaging interval counter */
1403	static int avginc;	/* averaging ratchet */
1404	static int iniflg;	/* initialization flag */
1405	char tbuf[TBUF];		/* monitor buffer */
1406	double dtemp;
1407	int tmp2;
1408
1409	pp = peer->procptr;
1410	up = pp->unitptr;
1411	if (!iniflg) {
1412		iniflg = 1;
1413		ZERO(epoch_mf);
1414	}
1415
1416	/*
1417	 * If the signal amplitude or SNR fall below thresholds, dim the
1418	 * second sync lamp and wait for hotter ions. If no stations are
1419	 * heard, we are either in a probe cycle or the ions are really
1420	 * cold.
1421	 */
1422	scount++;
1423	if (up->epomax < STHR || up->eposnr < SSNR) {
1424		up->status &= ~(SSYNC | FGATE);
1425		avgcnt = syncnt = maxrun = 0;
1426		return;
1427	}
1428	if (!(up->status & (SELV | SELH)))
1429		return;
1430
1431	/*
1432	 * A three-stage median filter is used to help denoise the
1433	 * second sync pulse. The median sample becomes the candidate
1434	 * epoch.
1435	 */
1436	epoch_mf[2] = epoch_mf[1];
1437	epoch_mf[1] = epoch_mf[0];
1438	epoch_mf[0] = epopos;
1439	if (epoch_mf[0] > epoch_mf[1]) {
1440		if (epoch_mf[1] > epoch_mf[2])
1441			tepoch = epoch_mf[1];	/* 0 1 2 */
1442		else if (epoch_mf[2] > epoch_mf[0])
1443			tepoch = epoch_mf[0];	/* 2 0 1 */
1444		else
1445			tepoch = epoch_mf[2];	/* 0 2 1 */
1446	} else {
1447		if (epoch_mf[1] < epoch_mf[2])
1448			tepoch = epoch_mf[1];	/* 2 1 0 */
1449		else if (epoch_mf[2] < epoch_mf[0])
1450			tepoch = epoch_mf[0];	/* 1 0 2 */
1451		else
1452			tepoch = epoch_mf[2];	/* 1 2 0 */
1453	}
1454
1455
1456	/*
1457	 * If the epoch candidate is the same as the last one, increment
1458	 * the run counter. If not, save the length, epoch and end
1459	 * time of the current run for use later and reset the counter.
1460	 * The epoch is considered valid if the run is at least SCMP
1461	 * (10) s, the minute is synchronized and the interval since the
1462	 * last epoch  is not greater than the averaging interval. Thus,
1463	 * after a long absence, the program will wait a full averaging
1464	 * interval while the comb filter charges up and noise
1465	 * dissapates..
1466	 */
1467	tmp2 = (tepoch - xepoch) % WWV_SEC;
1468	if (tmp2 == 0) {
1469		syncnt++;
1470		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1471		    FGATE || scount - zcount <= up->avgint)) {
1472			up->status |= SSYNC;
1473			up->yepoch = tepoch;
1474		}
1475	} else if (syncnt >= maxrun) {
1476		maxrun = syncnt;
1477		mcount = scount;
1478		mepoch = xepoch;
1479		syncnt = 0;
1480	}
1481	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
1482	    MSYNC)) {
1483		snprintf(tbuf, sizeof(tbuf),
1484		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1485		    up->status, up->gain, tepoch, up->epomax,
1486		    up->eposnr, tmp2, avgcnt, syncnt,
1487		    maxrun);
1488		record_clock_stats(&peer->srcadr, tbuf);
1489#ifdef DEBUG
1490		if (debug)
1491			printf("%s\n", tbuf);
1492#endif /* DEBUG */
1493	}
1494	avgcnt++;
1495	if (avgcnt < up->avgint) {
1496		xepoch = tepoch;
1497		return;
1498	}
1499
1500	/*
1501	 * The sample clock frequency is disciplined using a first-order
1502	 * feedback loop with time constant consistent with the Allan
1503	 * intercept of typical computer clocks. During each averaging
1504	 * interval the candidate epoch at the end of the longest run is
1505	 * determined. If the longest run is zero, all epoches in the
1506	 * interval are different, so the candidate epoch is the current
1507	 * epoch. The frequency update is computed from the candidate
1508	 * epoch difference (125-us units) and time difference (seconds)
1509	 * between updates.
1510	 */
1511	if (syncnt >= maxrun) {
1512		maxrun = syncnt;
1513		mcount = scount;
1514		mepoch = xepoch;
1515	}
1516	xepoch = tepoch;
1517	if (maxrun == 0) {
1518		mepoch = tepoch;
1519		mcount = scount;
1520	}
1521
1522	/*
1523	 * The master clock runs at the codec sample frequency of 8000
1524	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1525	 * resolution ranges from 18 PPM at the minimum averaging
1526	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1527	 * s. An offset update is determined at the end of the longest
1528	 * run in each averaging interval. The frequency adjustment is
1529	 * computed from the difference between offset updates and the
1530	 * interval between them.
1531	 *
1532	 * The maximum frequency adjustment ranges from 187 PPM at the
1533	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1534	 * exceeds the maximum, the update is discarded and the
1535	 * hysteresis counter is decremented. Otherwise, the frequency
1536	 * is incremented by the adjustment, but clamped to the maximum
1537	 * 187.5 PPM. If the update is less than half the maximum, the
1538	 * hysteresis counter is incremented. If the counter increments
1539	 * to +3, the averaging interval is doubled and the counter set
1540	 * to zero; if it decrements to -3, the interval is halved and
1541	 * the counter set to zero.
1542	 */
1543	dtemp = (mepoch - zepoch) % WWV_SEC;
1544	if (up->status & FGATE) {
1545		if (fabs(dtemp) < MAXFREQ * MINAVG) {
1546			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1547			    FCONST);
1548			if (up->freq > MAXFREQ)
1549				up->freq = MAXFREQ;
1550			else if (up->freq < -MAXFREQ)
1551				up->freq = -MAXFREQ;
1552			if (fabs(dtemp) < MAXFREQ * MINAVG / 2.) {
1553				if (avginc < 3) {
1554					avginc++;
1555				} else {
1556					if (up->avgint < MAXAVG) {
1557						up->avgint <<= 1;
1558						avginc = 0;
1559					}
1560				}
1561			}
1562		} else {
1563			if (avginc > -3) {
1564				avginc--;
1565			} else {
1566				if (up->avgint > MINAVG) {
1567					up->avgint >>= 1;
1568					avginc = 0;
1569				}
1570			}
1571		}
1572	}
1573	if (pp->sloppyclockflag & CLK_FLAG4) {
1574		snprintf(tbuf, sizeof(tbuf),
1575		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1576		    up->status, up->epomax, up->eposnr, mepoch,
1577		    up->avgint, maxrun, mcount - zcount, dtemp,
1578		    up->freq * 1e6 / WWV_SEC);
1579		record_clock_stats(&peer->srcadr, tbuf);
1580#ifdef DEBUG
1581		if (debug)
1582			printf("%s\n", tbuf);
1583#endif /* DEBUG */
1584	}
1585
1586	/*
1587	 * This is a valid update; set up for the next interval.
1588	 */
1589	up->status |= FGATE;
1590	zepoch = mepoch;
1591	zcount = mcount;
1592	avgcnt = syncnt = maxrun = 0;
1593}
1594
1595
1596/*
1597 * wwv_epoch - epoch scanner
1598 *
1599 * This routine extracts data signals from the 100-Hz subcarrier. It
1600 * scans the receiver second epoch to determine the signal amplitudes
1601 * and pulse timings. Receiver synchronization is determined by the
1602 * minute sync pulse detected in the wwv_rf() routine and the second
1603 * sync pulse detected in the wwv_epoch() routine. The transmitted
1604 * signals are delayed by the propagation delay, receiver delay and
1605 * filter delay of this program. Delay corrections are introduced
1606 * separately for WWV and WWVH.
1607 *
1608 * Most communications radios use a highpass filter in the audio stages,
1609 * which can do nasty things to the subcarrier phase relative to the
1610 * sync pulses. Therefore, the data subcarrier reference phase is
1611 * disciplined using the hardlimited quadrature-phase signal sampled at
1612 * the same time as the in-phase signal. The phase tracking loop uses
1613 * phase adjustments of plus-minus one sample (125 us).
1614 */
1615static void
1616wwv_epoch(
1617	struct peer *peer	/* peer structure pointer */
1618	)
1619{
1620	struct refclockproc *pp;
1621	struct wwvunit *up;
1622	struct chan *cp;
1623	static double sigmin, sigzer, sigone, engmax, engmin;
1624
1625	pp = peer->procptr;
1626	up = pp->unitptr;
1627
1628	/*
1629	 * Find the maximum minute sync pulse energy for both the
1630	 * WWV and WWVH stations. This will be used later for channel
1631	 * and station mitigation. Also set the seconds epoch at 800 ms
1632	 * well before the end of the second to make sure we never set
1633	 * the epoch backwards.
1634	 */
1635	cp = &up->mitig[up->achan];
1636	if (cp->wwv.amp > cp->wwv.syneng)
1637		cp->wwv.syneng = cp->wwv.amp;
1638	if (cp->wwvh.amp > cp->wwvh.syneng)
1639		cp->wwvh.syneng = cp->wwvh.amp;
1640	if (up->rphase == 800 * MS)
1641		up->repoch = up->yepoch;
1642
1643	/*
1644	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1645	 * This gives a guard time of +-15 ms from the beginning of the
1646	 * second until the second pulse rises at 30 ms. There is a
1647	 * compromise here; we want to delay the sample as long as
1648	 * possible to give the radio time to change frequency and the
1649	 * AGC to stabilize, but as early as possible if the second
1650	 * epoch is not exact.
1651	 */
1652	if (up->rphase == 15 * MS)
1653		sigmin = sigzer = sigone = up->irig;
1654
1655	/*
1656	 * Latch the data signal at 200 ms. Keep this around until the
1657	 * end of the second. Use the signal energy as the peak to
1658	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1659	 * reference oscillator phase.
1660	 */
1661	if (up->rphase == 200 * MS) {
1662		sigzer = up->irig;
1663		engmax = sqrt(up->irig * up->irig + up->qrig *
1664		    up->qrig);
1665		up->datpha = up->qrig / up->avgint;
1666		if (up->datpha >= 0) {
1667			up->datapt++;
1668			if (up->datapt >= 80)
1669				up->datapt -= 80;
1670		} else {
1671			up->datapt--;
1672			if (up->datapt < 0)
1673				up->datapt += 80;
1674		}
1675	}
1676
1677
1678	/*
1679	 * Latch the data signal at 500 ms. Keep this around until the
1680	 * end of the second.
1681	 */
1682	else if (up->rphase == 500 * MS)
1683		sigone = up->irig;
1684
1685	/*
1686	 * At the end of the second crank the clock state machine and
1687	 * adjust the codec gain. Note the epoch is buffered from the
1688	 * center of the second in order to avoid jitter while the
1689	 * seconds synch is diddling the epoch. Then, determine the true
1690	 * offset and update the median filter in the driver interface.
1691	 *
1692	 * Use the energy at the end of the second as the noise to
1693	 * compute the SNR for the data pulse. This gives a better
1694	 * measurement than the beginning of the second, especially when
1695	 * returning from the probe channel. This gives a guard time of
1696	 * 30 ms from the decay of the longest pulse to the rise of the
1697	 * next pulse.
1698	 */
1699	up->rphase++;
1700	if (up->mphase % WWV_SEC == up->repoch) {
1701		up->status &= ~(DGATE | BGATE);
1702		engmin = sqrt(up->irig * up->irig + up->qrig *
1703		    up->qrig);
1704		up->datsig = engmax;
1705		up->datsnr = wwv_snr(engmax, engmin);
1706
1707		/*
1708		 * If the amplitude or SNR is below threshold, average a
1709		 * 0 in the the integrators; otherwise, average the
1710		 * bipolar signal. This is done to avoid noise polution.
1711		 */
1712		if (engmax < DTHR || up->datsnr < DSNR) {
1713			up->status |= DGATE;
1714			wwv_rsec(peer, 0);
1715		} else {
1716			sigzer -= sigone;
1717			sigone -= sigmin;
1718			wwv_rsec(peer, sigone - sigzer);
1719		}
1720		if (up->status & (DGATE | BGATE))
1721			up->errcnt++;
1722		if (up->errcnt > MAXERR)
1723			up->alarm |= LOWERR;
1724		wwv_gain(peer);
1725		cp = &up->mitig[up->achan];
1726		cp->wwv.syneng = 0;
1727		cp->wwvh.syneng = 0;
1728		up->rphase = 0;
1729	}
1730}
1731
1732
1733/*
1734 * wwv_rsec - process receiver second
1735 *
1736 * This routine is called at the end of each receiver second to
1737 * implement the per-second state machine. The machine assembles BCD
1738 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1739 *
1740 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1741 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1742 * for leap years) or 31 December (day 365 or 366 for leap years) is
1743 * augmented by one second numbered 60. This is accomplished by
1744 * extending the minute interval by one second and teaching the state
1745 * machine to ignore it.
1746 */
1747static void
1748wwv_rsec(
1749	struct peer *peer,	/* peer structure pointer */
1750	double bit
1751	)
1752{
1753	static int iniflg;	/* initialization flag */
1754	static double bcddld[4]; /* BCD data bits */
1755	static double bitvec[61]; /* bit integrator for misc bits */
1756	struct refclockproc *pp;
1757	struct wwvunit *up;
1758	struct chan *cp;
1759	struct sync *sp, *rp;
1760	char	tbuf[TBUF];	/* monitor buffer */
1761	int	sw, arg, nsec;
1762
1763	pp = peer->procptr;
1764	up = pp->unitptr;
1765	if (!iniflg) {
1766		iniflg = 1;
1767		ZERO(bitvec);
1768	}
1769
1770	/*
1771	 * The bit represents the probability of a hit on zero (negative
1772	 * values), a hit on one (positive values) or a miss (zero
1773	 * value). The likelihood vector is the exponential average of
1774	 * these probabilities. Only the bits of this vector
1775	 * corresponding to the miscellaneous bits of the timecode are
1776	 * used, but it's easier to do them all. After that, crank the
1777	 * seconds state machine.
1778	 */
1779	nsec = up->rsec;
1780	up->rsec++;
1781	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1782	sw = progx[nsec].sw;
1783	arg = progx[nsec].arg;
1784
1785	/*
1786	 * The minute state machine. Fly off to a particular section as
1787	 * directed by the transition matrix and second number.
1788	 */
1789	switch (sw) {
1790
1791	/*
1792	 * Ignore this second.
1793	 */
1794	case IDLE:			/* 9, 45-49 */
1795		break;
1796
1797	/*
1798	 * Probe channel stuff
1799	 *
1800	 * The WWV/H format contains data pulses in second 59 (position
1801	 * identifier) and second 1, but not in second 0. The minute
1802	 * sync pulse is contained in second 0. At the end of second 58
1803	 * QSY to the probe channel, which rotates in turn over all
1804	 * WWV/H frequencies. At the end of second 0 measure the minute
1805	 * sync pulse. At the end of second 1 measure the data pulse and
1806	 * QSY back to the data channel. Note that the actions commented
1807	 * here happen at the end of the second numbered as shown.
1808	 *
1809	 * At the end of second 0 save the minute sync amplitude latched
1810	 * at 800 ms as the signal later used to calculate the SNR.
1811	 */
1812	case SYNC2:			/* 0 */
1813		cp = &up->mitig[up->achan];
1814		cp->wwv.synmax = cp->wwv.syneng;
1815		cp->wwvh.synmax = cp->wwvh.syneng;
1816		break;
1817
1818	/*
1819	 * At the end of second 1 use the minute sync amplitude latched
1820	 * at 800 ms as the noise to calculate the SNR. If the minute
1821	 * sync pulse and SNR are above thresholds and the data pulse
1822	 * amplitude and SNR are above thresolds, shift a 1 into the
1823	 * station reachability register; otherwise, shift a 0. The
1824	 * number of 1 bits in the last six intervals is a component of
1825	 * the channel metric computed by the wwv_metric() routine.
1826	 * Finally, QSY back to the data channel.
1827	 */
1828	case SYNC3:			/* 1 */
1829		cp = &up->mitig[up->achan];
1830
1831		/*
1832		 * WWV station
1833		 */
1834		sp = &cp->wwv;
1835		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1836		sp->reach <<= 1;
1837		if (sp->reach & (1 << AMAX))
1838			sp->count--;
1839		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1840		    !(up->status & (DGATE | BGATE))) {
1841			sp->reach |= 1;
1842			sp->count++;
1843		}
1844		sp->metric = wwv_metric(sp);
1845
1846		/*
1847		 * WWVH station
1848		 */
1849		rp = &cp->wwvh;
1850		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1851		rp->reach <<= 1;
1852		if (rp->reach & (1 << AMAX))
1853			rp->count--;
1854		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1855		    !(up->status & (DGATE | BGATE))) {
1856			rp->reach |= 1;
1857			rp->count++;
1858		}
1859		rp->metric = wwv_metric(rp);
1860		if (pp->sloppyclockflag & CLK_FLAG4) {
1861			snprintf(tbuf, sizeof(tbuf),
1862			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1863			    up->status, up->gain, up->yepoch,
1864			    up->epomax, up->eposnr, up->datsig,
1865			    up->datsnr,
1866			    sp->refid, sp->reach & 0xffff,
1867			    sp->metric, sp->synmax, sp->synsnr,
1868			    rp->refid, rp->reach & 0xffff,
1869			    rp->metric, rp->synmax, rp->synsnr);
1870			record_clock_stats(&peer->srcadr, tbuf);
1871#ifdef DEBUG
1872			if (debug)
1873				printf("%s\n", tbuf);
1874#endif /* DEBUG */
1875		}
1876		up->errcnt = up->digcnt = up->alarm = 0;
1877
1878		/*
1879		 * If synchronized to a station, restart if no stations
1880		 * have been heard within the PANIC timeout (2 days). If
1881		 * not and the minute digit has been found, restart if
1882		 * not synchronized withing the SYNCH timeout (40 m). If
1883		 * not, restart if the unit digit has not been found
1884		 * within the DATA timeout (15 m).
1885		 */
1886		if (up->status & INSYNC) {
1887			if (up->watch > PANIC) {
1888				wwv_newgame(peer);
1889				return;
1890			}
1891		} else if (up->status & DSYNC) {
1892			if (up->watch > SYNCH) {
1893				wwv_newgame(peer);
1894				return;
1895			}
1896		} else if (up->watch > DATA) {
1897			wwv_newgame(peer);
1898			return;
1899		}
1900		wwv_newchan(peer);
1901		break;
1902
1903	/*
1904	 * Save the bit probability in the BCD data vector at the index
1905	 * given by the argument. Bits not used in the digit are forced
1906	 * to zero.
1907	 */
1908	case COEF1:			/* 4-7 */
1909		bcddld[arg] = bit;
1910		break;
1911
1912	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1913					   30-33, 35-38, 40-41, 51-54 */
1914		if (up->status & DSYNC)
1915			bcddld[arg] = bit;
1916		else
1917			bcddld[arg] = 0;
1918		break;
1919
1920	case COEF2:			/* 18, 27-28, 42-43 */
1921		bcddld[arg] = 0;
1922		break;
1923
1924	/*
1925	 * Correlate coefficient vector with each valid digit vector and
1926	 * save in decoding matrix. We step through the decoding matrix
1927	 * digits correlating each with the coefficients and saving the
1928	 * greatest and the next lower for later SNR calculation.
1929	 */
1930	case DECIM2:			/* 29 */
1931		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1932		break;
1933
1934	case DECIM3:			/* 44 */
1935		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1936		break;
1937
1938	case DECIM6:			/* 19 */
1939		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1940		break;
1941
1942	case DECIM9:			/* 8, 14, 24, 34, 39 */
1943		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1944		break;
1945
1946	/*
1947	 * Miscellaneous bits. If above the positive threshold, declare
1948	 * 1; if below the negative threshold, declare 0; otherwise
1949	 * raise the BGATE bit. The design is intended to avoid
1950	 * integrating noise under low SNR conditions.
1951	 */
1952	case MSC20:			/* 55 */
1953		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1954		/* fall through */
1955
1956	case MSCBIT:			/* 2-3, 50, 56-57 */
1957		if (bitvec[nsec] > BTHR) {
1958			if (!(up->misc & arg))
1959				up->alarm |= CMPERR;
1960			up->misc |= arg;
1961		} else if (bitvec[nsec] < -BTHR) {
1962			if (up->misc & arg)
1963				up->alarm |= CMPERR;
1964			up->misc &= ~arg;
1965		} else {
1966			up->status |= BGATE;
1967		}
1968		break;
1969
1970	/*
1971	 * Save the data channel gain, then QSY to the probe channel and
1972	 * dim the seconds comb filters. The www_newchan() routine will
1973	 * light them back up.
1974	 */
1975	case MSC21:			/* 58 */
1976		if (bitvec[nsec] > BTHR) {
1977			if (!(up->misc & arg))
1978				up->alarm |= CMPERR;
1979			up->misc |= arg;
1980		} else if (bitvec[nsec] < -BTHR) {
1981			if (up->misc & arg)
1982				up->alarm |= CMPERR;
1983			up->misc &= ~arg;
1984		} else {
1985			up->status |= BGATE;
1986		}
1987		up->status &= ~(SELV | SELH);
1988#ifdef ICOM
1989		if (up->fd_icom > 0) {
1990			up->schan = (up->schan + 1) % NCHAN;
1991			wwv_qsy(peer, up->schan);
1992		} else {
1993			up->mitig[up->achan].gain = up->gain;
1994		}
1995#else
1996		up->mitig[up->achan].gain = up->gain;
1997#endif /* ICOM */
1998		break;
1999
2000	/*
2001	 * The endgames
2002	 *
2003	 * During second 59 the receiver and codec AGC are settling
2004	 * down, so the data pulse is unusable as quality metric. If
2005	 * LEPSEC is set on the last minute of 30 June or 31 December,
2006	 * the transmitter and receiver insert an extra second (60) in
2007	 * the timescale and the minute sync repeats the second. Once
2008	 * leaps occurred at intervals of about 18 months, but the last
2009	 * leap before the most recent leap in 1995 was in  1998.
2010	 */
2011	case MIN1:			/* 59 */
2012		if (up->status & LEPSEC)
2013			break;
2014
2015		/* fall through */
2016
2017	case MIN2:			/* 60 */
2018		up->status &= ~LEPSEC;
2019		wwv_tsec(peer);
2020		up->rsec = 0;
2021		wwv_clock(peer);
2022		break;
2023	}
2024	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2025	    DSYNC)) {
2026		snprintf(tbuf, sizeof(tbuf),
2027		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2028		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2029		    up->eposnr, up->datsig, up->datsnr, bit);
2030		record_clock_stats(&peer->srcadr, tbuf);
2031#ifdef DEBUG
2032		if (debug)
2033			printf("%s\n", tbuf);
2034#endif /* DEBUG */
2035	}
2036	pp->disp += AUDIO_PHI;
2037}
2038
2039/*
2040 * The radio clock is set if the alarm bits are all zero. After that,
2041 * the time is considered valid if the second sync bit is lit. It should
2042 * not be a surprise, especially if the radio is not tunable, that
2043 * sometimes no stations are above the noise and the integrators
2044 * discharge below the thresholds. We assume that, after a day of signal
2045 * loss, the minute sync epoch will be in the same second. This requires
2046 * the codec frequency be accurate within 6 PPM. Practical experience
2047 * shows the frequency typically within 0.1 PPM, so after a day of
2048 * signal loss, the time should be within 8.6 ms..
2049 */
2050static void
2051wwv_clock(
2052	struct peer *peer	/* peer unit pointer */
2053	)
2054{
2055	struct refclockproc *pp;
2056	struct wwvunit *up;
2057	l_fp	offset;		/* offset in NTP seconds */
2058
2059	pp = peer->procptr;
2060	up = pp->unitptr;
2061	if (!(up->status & SSYNC))
2062		up->alarm |= SYNERR;
2063	if (up->digcnt < 9)
2064		up->alarm |= NINERR;
2065	if (!(up->alarm))
2066		up->status |= INSYNC;
2067	if (up->status & INSYNC && up->status & SSYNC) {
2068		if (up->misc & SECWAR)
2069			pp->leap = LEAP_ADDSECOND;
2070		else
2071			pp->leap = LEAP_NOWARNING;
2072		pp->second = up->rsec;
2073		pp->minute = up->decvec[MN].digit + up->decvec[MN +
2074		    1].digit * 10;
2075		pp->hour = up->decvec[HR].digit + up->decvec[HR +
2076		    1].digit * 10;
2077		pp->day = up->decvec[DA].digit + up->decvec[DA +
2078		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
2079		pp->year = up->decvec[YR].digit + up->decvec[YR +
2080		    1].digit * 10;
2081		pp->year += 2000;
2082		L_CLR(&offset);
2083		if (!clocktime(pp->day, pp->hour, pp->minute,
2084		    pp->second, GMT, up->timestamp.l_ui,
2085		    &pp->yearstart, &offset.l_ui)) {
2086			up->errflg = CEVNT_BADTIME;
2087		} else {
2088			up->watch = 0;
2089			pp->disp = 0;
2090			pp->lastref = up->timestamp;
2091			refclock_process_offset(pp, offset,
2092			    up->timestamp, PDELAY + up->pdelay);
2093			refclock_receive(peer);
2094		}
2095	}
2096	pp->lencode = timecode(up, pp->a_lastcode,
2097			       sizeof(pp->a_lastcode));
2098	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2099#ifdef DEBUG
2100	if (debug)
2101		printf("wwv: timecode %d %s\n", pp->lencode,
2102		    pp->a_lastcode);
2103#endif /* DEBUG */
2104}
2105
2106
2107/*
2108 * wwv_corr4 - determine maximum-likelihood digit
2109 *
2110 * This routine correlates the received digit vector with the BCD
2111 * coefficient vectors corresponding to all valid digits at the given
2112 * position in the decoding matrix. The maximum value corresponds to the
2113 * maximum-likelihood digit, while the ratio of this value to the next
2114 * lower value determines the likelihood function. Note that, if the
2115 * digit is invalid, the likelihood vector is averaged toward a miss.
2116 */
2117static void
2118wwv_corr4(
2119	struct peer *peer,	/* peer unit pointer */
2120	struct decvec *vp,	/* decoding table pointer */
2121	double	data[],		/* received data vector */
2122	double	tab[][4]	/* correlation vector array */
2123	)
2124{
2125	struct refclockproc *pp;
2126	struct wwvunit *up;
2127	double	topmax, nxtmax;	/* metrics */
2128	double	acc;		/* accumulator */
2129	char	tbuf[TBUF];	/* monitor buffer */
2130	int	mldigit;	/* max likelihood digit */
2131	int	i, j;
2132
2133	pp = peer->procptr;
2134	up = pp->unitptr;
2135
2136	/*
2137	 * Correlate digit vector with each BCD coefficient vector. If
2138	 * any BCD digit bit is bad, consider all bits a miss. Until the
2139	 * minute units digit has been resolved, don't to anything else.
2140	 * Note the SNR is calculated as the ratio of the largest
2141	 * likelihood value to the next largest likelihood value.
2142 	 */
2143	mldigit = 0;
2144	topmax = nxtmax = -MAXAMP;
2145	for (i = 0; tab[i][0] != 0; i++) {
2146		acc = 0;
2147		for (j = 0; j < 4; j++)
2148			acc += data[j] * tab[i][j];
2149		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2150		if (acc > topmax) {
2151			nxtmax = topmax;
2152			topmax = acc;
2153			mldigit = i;
2154		} else if (acc > nxtmax) {
2155			nxtmax = acc;
2156		}
2157	}
2158	vp->digprb = topmax;
2159	vp->digsnr = wwv_snr(topmax, nxtmax);
2160
2161	/*
2162	 * The current maximum-likelihood digit is compared to the last
2163	 * maximum-likelihood digit. If different, the compare counter
2164	 * and maximum-likelihood digit are reset.  When the compare
2165	 * counter reaches the BCMP threshold (3), the digit is assumed
2166	 * correct. When the compare counter of all nine digits have
2167	 * reached threshold, the clock is assumed correct.
2168	 *
2169	 * Note that the clock display digit is set before the compare
2170	 * counter has reached threshold; however, the clock display is
2171	 * not considered correct until all nine clock digits have
2172	 * reached threshold. This is intended as eye candy, but avoids
2173	 * mistakes when the signal is low and the SNR is very marginal.
2174	 */
2175	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2176		up->status |= BGATE;
2177	} else {
2178		if (vp->digit != mldigit) {
2179			up->alarm |= CMPERR;
2180			if (vp->count > 0)
2181				vp->count--;
2182			if (vp->count == 0)
2183				vp->digit = mldigit;
2184		} else {
2185			if (vp->count < BCMP)
2186				vp->count++;
2187			if (vp->count == BCMP) {
2188				up->status |= DSYNC;
2189				up->digcnt++;
2190			}
2191		}
2192	}
2193	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2194	    INSYNC)) {
2195		snprintf(tbuf, sizeof(tbuf),
2196		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2197		    up->rsec - 1, up->status, up->gain, up->yepoch,
2198		    up->epomax, vp->radix, vp->digit, mldigit,
2199		    vp->count, vp->digprb, vp->digsnr);
2200		record_clock_stats(&peer->srcadr, tbuf);
2201#ifdef DEBUG
2202		if (debug)
2203			printf("%s\n", tbuf);
2204#endif /* DEBUG */
2205	}
2206}
2207
2208
2209/*
2210 * wwv_tsec - transmitter minute processing
2211 *
2212 * This routine is called at the end of the transmitter minute. It
2213 * implements a state machine that advances the logical clock subject to
2214 * the funny rules that govern the conventional clock and calendar.
2215 */
2216static void
2217wwv_tsec(
2218	struct peer *peer	/* driver structure pointer */
2219	)
2220{
2221	struct refclockproc *pp;
2222	struct wwvunit *up;
2223	int minute, day, isleap;
2224	int temp;
2225
2226	pp = peer->procptr;
2227	up = pp->unitptr;
2228
2229	/*
2230	 * Advance minute unit of the day. Don't propagate carries until
2231	 * the unit minute digit has been found.
2232	 */
2233	temp = carry(&up->decvec[MN]);	/* minute units */
2234	if (!(up->status & DSYNC))
2235		return;
2236
2237	/*
2238	 * Propagate carries through the day.
2239	 */
2240	if (temp == 0)			/* carry minutes */
2241		temp = carry(&up->decvec[MN + 1]);
2242	if (temp == 0)			/* carry hours */
2243		temp = carry(&up->decvec[HR]);
2244	if (temp == 0)
2245		temp = carry(&up->decvec[HR + 1]);
2246	// XXX: Does temp have an expected value here?
2247
2248	/*
2249	 * Decode the current minute and day. Set leap day if the
2250	 * timecode leap bit is set on 30 June or 31 December. Set leap
2251	 * minute if the last minute on leap day, but only if the clock
2252	 * is syncrhronized. This code fails in 2400 AD.
2253	 */
2254	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2255	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2256	    1].digit * 600;
2257	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2258	    up->decvec[DA + 2].digit * 100;
2259
2260	/*
2261	 * Set the leap bit on the last minute of the leap day.
2262	 */
2263	isleap = up->decvec[YR].digit & 0x3;
2264	if (up->misc & SECWAR && up->status & INSYNC) {
2265		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2266		    365 : 366)) && minute == 1439)
2267			up->status |= LEPSEC;
2268	}
2269
2270	/*
2271	 * Roll the day if this the first minute and propagate carries
2272	 * through the year.
2273	 */
2274	if (minute != 1440)
2275		return;
2276
2277	// minute = 0;
2278	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2279	while (carry(&up->decvec[HR + 1]) != 0);
2280	day++;
2281	temp = carry(&up->decvec[DA]);	/* carry days */
2282	if (temp == 0)
2283		temp = carry(&up->decvec[DA + 1]);
2284	if (temp == 0)
2285		temp = carry(&up->decvec[DA + 2]);
2286	// XXX: Is there an expected value of temp here?
2287
2288	/*
2289	 * Roll the year if this the first day and propagate carries
2290	 * through the century.
2291	 */
2292	if (day != (isleap ? 365 : 366))
2293		return;
2294
2295	// day = 1;
2296	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2297	while (carry(&up->decvec[DA + 1]) != 0);
2298	while (carry(&up->decvec[DA + 2]) != 0);
2299	temp = carry(&up->decvec[YR]);	/* carry years */
2300	if (temp == 0)
2301		carry(&up->decvec[YR + 1]);
2302}
2303
2304
2305/*
2306 * carry - process digit
2307 *
2308 * This routine rotates a likelihood vector one position and increments
2309 * the clock digit modulo the radix. It returns the new clock digit or
2310 * zero if a carry occurred. Once synchronized, the clock digit will
2311 * match the maximum-likelihood digit corresponding to that position.
2312 */
2313static int
2314carry(
2315	struct decvec *dp	/* decoding table pointer */
2316	)
2317{
2318	int temp;
2319	int j;
2320
2321	dp->digit++;
2322	if (dp->digit == dp->radix)
2323		dp->digit = 0;
2324	temp = dp->like[dp->radix - 1];
2325	for (j = dp->radix - 1; j > 0; j--)
2326		dp->like[j] = dp->like[j - 1];
2327	dp->like[0] = temp;
2328	return (dp->digit);
2329}
2330
2331
2332/*
2333 * wwv_snr - compute SNR or likelihood function
2334 */
2335static double
2336wwv_snr(
2337	double signal,		/* signal */
2338	double noise		/* noise */
2339	)
2340{
2341	double rval;
2342
2343	/*
2344	 * This is a little tricky. Due to the way things are measured,
2345	 * either or both the signal or noise amplitude can be negative
2346	 * or zero. The intent is that, if the signal is negative or
2347	 * zero, the SNR must always be zero. This can happen with the
2348	 * subcarrier SNR before the phase has been aligned. On the
2349	 * other hand, in the likelihood function the "noise" is the
2350	 * next maximum down from the peak and this could be negative.
2351	 * However, in this case the SNR is truly stupendous, so we
2352	 * simply cap at MAXSNR dB (40).
2353	 */
2354	if (signal <= 0) {
2355		rval = 0;
2356	} else if (noise <= 0) {
2357		rval = MAXSNR;
2358	} else {
2359		rval = 20. * log10(signal / noise);
2360		if (rval > MAXSNR)
2361			rval = MAXSNR;
2362	}
2363	return (rval);
2364}
2365
2366
2367/*
2368 * wwv_newchan - change to new data channel
2369 *
2370 * The radio actually appears to have ten channels, one channel for each
2371 * of five frequencies and each of two stations (WWV and WWVH), although
2372 * if not tunable only the DCHAN channel appears live. While the radio
2373 * is tuned to the working data channel frequency and station for most
2374 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2375 * probe frequency in order to search for minute sync pulse and data
2376 * subcarrier from other transmitters.
2377 *
2378 * The search for WWV and WWVH operates simultaneously, with WWV minute
2379 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2380 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2381 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2382 * on 25 MHz.
2383 *
2384 * This routine selects the best channel using a metric computed from
2385 * the reachability register and minute pulse amplitude. Normally, the
2386 * award goes to the the channel with the highest metric; but, in case
2387 * of ties, the award goes to the channel with the highest minute sync
2388 * pulse amplitude and then to the highest frequency.
2389 *
2390 * The routine performs an important squelch function to keep dirty data
2391 * from polluting the integrators. In order to consider a station valid,
2392 * the metric must be at least MTHR (13); otherwise, the station select
2393 * bits are cleared so the second sync is disabled and the data bit
2394 * integrators averaged to a miss.
2395 */
2396static int
2397wwv_newchan(
2398	struct peer *peer	/* peer structure pointer */
2399	)
2400{
2401	struct refclockproc *pp;
2402	struct wwvunit *up;
2403	struct sync *sp, *rp;
2404	double rank, dtemp;
2405	int i, j, rval;
2406
2407	pp = peer->procptr;
2408	up = pp->unitptr;
2409
2410	/*
2411	 * Search all five station pairs looking for the channel with
2412	 * maximum metric.
2413	 */
2414	sp = NULL;
2415	j = 0;
2416	rank = 0;
2417	for (i = 0; i < NCHAN; i++) {
2418		rp = &up->mitig[i].wwvh;
2419		dtemp = rp->metric;
2420		if (dtemp >= rank) {
2421			rank = dtemp;
2422			sp = rp;
2423			j = i;
2424		}
2425		rp = &up->mitig[i].wwv;
2426		dtemp = rp->metric;
2427		if (dtemp >= rank) {
2428			rank = dtemp;
2429			sp = rp;
2430			j = i;
2431		}
2432	}
2433
2434	/*
2435	 * If the strongest signal is less than the MTHR threshold (13),
2436	 * we are beneath the waves, so squelch the second sync and
2437	 * advance to the next station. This makes sure all stations are
2438	 * scanned when the ions grow dim. If the strongest signal is
2439	 * greater than the threshold, tune to that frequency and
2440	 * transmitter QTH.
2441	 */
2442	up->status &= ~(SELV | SELH);
2443	if (rank < MTHR) {
2444		up->dchan = (up->dchan + 1) % NCHAN;
2445		if (up->status & METRIC) {
2446			up->status &= ~METRIC;
2447			refclock_report(peer, CEVNT_PROP);
2448		}
2449		rval = FALSE;
2450	} else {
2451		up->dchan = j;
2452		up->sptr = sp;
2453		memcpy(&pp->refid, sp->refid, 4);
2454		peer->refid = pp->refid;
2455		up->status |= METRIC;
2456		if (sp->select & SELV) {
2457			up->status |= SELV;
2458			up->pdelay = pp->fudgetime1;
2459		} else if (sp->select & SELH) {
2460			up->status |= SELH;
2461			up->pdelay = pp->fudgetime2;
2462		} else {
2463			up->pdelay = 0;
2464		}
2465		rval = TRUE;
2466	}
2467#ifdef ICOM
2468	if (up->fd_icom > 0)
2469		wwv_qsy(peer, up->dchan);
2470#endif /* ICOM */
2471	return (rval);
2472}
2473
2474
2475/*
2476 * wwv_newgame - reset and start over
2477 *
2478 * There are three conditions resulting in a new game:
2479 *
2480 * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
2481 *	(DATA) without finding the unit seconds digit.
2482 *
2483 * 2	After finding good data (DSYNC lit), going more than 40 minutes
2484 *	(SYNCH) without finding station sync (INSYNC lit).
2485 *
2486 * 3	After finding station sync (INSYNC lit), going more than 2 days
2487 *	(PANIC) without finding any station.
2488 */
2489static void
2490wwv_newgame(
2491	struct peer *peer	/* peer structure pointer */
2492	)
2493{
2494	struct refclockproc *pp;
2495	struct wwvunit *up;
2496	struct chan *cp;
2497	int i;
2498
2499	pp = peer->procptr;
2500	up = pp->unitptr;
2501
2502	/*
2503	 * Initialize strategic values. Note we set the leap bits
2504	 * NOTINSYNC and the refid "NONE".
2505	 */
2506	if (up->status)
2507		up->errflg = CEVNT_TIMEOUT;
2508	peer->leap = LEAP_NOTINSYNC;
2509	up->watch = up->status = up->alarm = 0;
2510	up->avgint = MINAVG;
2511	up->freq = 0;
2512	up->gain = MAXGAIN / 2;
2513
2514	/*
2515	 * Initialize the station processes for audio gain, select bit,
2516	 * station/frequency identifier and reference identifier. Start
2517	 * probing at the strongest channel or the default channel if
2518	 * nothing heard.
2519	 */
2520	memset(up->mitig, 0, sizeof(up->mitig));
2521	for (i = 0; i < NCHAN; i++) {
2522		cp = &up->mitig[i];
2523		cp->gain = up->gain;
2524		cp->wwv.select = SELV;
2525		snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
2526		    floor(qsy[i]));
2527		cp->wwvh.select = SELH;
2528		snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
2529		    floor(qsy[i]));
2530	}
2531	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
2532	wwv_newchan(peer);
2533	up->schan = up->dchan;
2534}
2535
2536/*
2537 * wwv_metric - compute station metric
2538 *
2539 * The most significant bits represent the number of ones in the
2540 * station reachability register. The least significant bits represent
2541 * the minute sync pulse amplitude. The combined value is scaled 0-100.
2542 */
2543double
2544wwv_metric(
2545	struct sync *sp		/* station pointer */
2546	)
2547{
2548	double	dtemp;
2549
2550	dtemp = sp->count * MAXAMP;
2551	if (sp->synmax < MAXAMP)
2552		dtemp += sp->synmax;
2553	else
2554		dtemp += MAXAMP - 1;
2555	dtemp /= (AMAX + 1) * MAXAMP;
2556	return (dtemp * 100.);
2557}
2558
2559
2560#ifdef ICOM
2561/*
2562 * wwv_qsy - Tune ICOM receiver
2563 *
2564 * This routine saves the AGC for the current channel, switches to a new
2565 * channel and restores the AGC for that channel. If a tunable receiver
2566 * is not available, just fake it.
2567 */
2568static int
2569wwv_qsy(
2570	struct peer *peer,	/* peer structure pointer */
2571	int	chan		/* channel */
2572	)
2573{
2574	int rval = 0;
2575	struct refclockproc *pp;
2576	struct wwvunit *up;
2577
2578	pp = peer->procptr;
2579	up = pp->unitptr;
2580	if (up->fd_icom > 0) {
2581		up->mitig[up->achan].gain = up->gain;
2582		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2583		    qsy[chan]);
2584		up->achan = chan;
2585		up->gain = up->mitig[up->achan].gain;
2586	}
2587	return (rval);
2588}
2589#endif /* ICOM */
2590
2591
2592/*
2593 * timecode - assemble timecode string and length
2594 *
2595 * Prettytime format - similar to Spectracom
2596 *
2597 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2598 *
2599 * s	sync indicator ('?' or ' ')
2600 * q	error bits (hex 0-F)
2601 * yyyy	year of century
2602 * ddd	day of year
2603 * hh	hour of day
2604 * mm	minute of hour
2605 * ss	second of minute)
2606 * l	leap second warning (' ' or 'L')
2607 * d	DST state ('S', 'D', 'I', or 'O')
2608 * dut	DUT sign and magnitude (0.1 s)
2609 * lset	minutes since last clock update
2610 * agc	audio gain (0-255)
2611 * iden	reference identifier (station and frequency)
2612 * sig	signal quality (0-100)
2613 * errs	bit errors in last minute
2614 * freq	frequency offset (PPM)
2615 * avgt	averaging time (s)
2616 */
2617static int
2618timecode(
2619	struct wwvunit *up,	/* driver structure pointer */
2620	char *		tc,	/* target string */
2621	size_t		tcsiz	/* target max chars */
2622	)
2623{
2624	struct sync *sp;
2625	int year, day, hour, minute, second, dut;
2626	char synchar, leapchar, dst;
2627	char cptr[50];
2628
2629
2630	/*
2631	 * Common fixed-format fields
2632	 */
2633	synchar = (up->status & INSYNC) ? ' ' : '?';
2634	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2635	    2000;
2636	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2637	    up->decvec[DA + 2].digit * 100;
2638	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2639	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2640	second = 0;
2641	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2642	dst = dstcod[(up->misc >> 4) & 0x3];
2643	dut = up->misc & 0x7;
2644	if (!(up->misc & DUTS))
2645		dut = -dut;
2646	snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
2647	snprintf(cptr, sizeof(cptr),
2648		 " %4d %03d %02d:%02d:%02d %c%c %+d",
2649		 year, day, hour, minute, second, leapchar, dst, dut);
2650	strlcat(tc, cptr, tcsiz);
2651
2652	/*
2653	 * Specific variable-format fields
2654	 */
2655	sp = up->sptr;
2656	snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
2657		 up->watch, up->mitig[up->dchan].gain, sp->refid,
2658		 sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
2659		 up->avgint);
2660	strlcat(tc, cptr, tcsiz);
2661
2662	return strlen(tc);
2663}
2664
2665
2666/*
2667 * wwv_gain - adjust codec gain
2668 *
2669 * This routine is called at the end of each second. During the second
2670 * the number of signal clips above the MAXAMP threshold (6000). If
2671 * there are no clips, the gain is bumped up; if there are more than
2672 * MAXCLP clips (100), it is bumped down. The decoder is relatively
2673 * insensitive to amplitude, so this crudity works just peachy. The
2674 * routine also jiggles the input port and selectively mutes the
2675 * monitor.
2676 */
2677static void
2678wwv_gain(
2679	struct peer *peer	/* peer structure pointer */
2680	)
2681{
2682	struct refclockproc *pp;
2683	struct wwvunit *up;
2684
2685	pp = peer->procptr;
2686	up = pp->unitptr;
2687
2688	/*
2689	 * Apparently, the codec uses only the high order bits of the
2690	 * gain control field. Thus, it may take awhile for changes to
2691	 * wiggle the hardware bits.
2692	 */
2693	if (up->clipcnt == 0) {
2694		up->gain += 4;
2695		if (up->gain > MAXGAIN)
2696			up->gain = MAXGAIN;
2697	} else if (up->clipcnt > MAXCLP) {
2698		up->gain -= 4;
2699		if (up->gain < 0)
2700			up->gain = 0;
2701	}
2702	audio_gain(up->gain, up->mongain, up->port);
2703	up->clipcnt = 0;
2704#if DEBUG
2705	if (debug > 1)
2706		audio_show();
2707#endif
2708}
2709
2710
2711#else
2712int refclock_wwv_bs;
2713#endif /* REFCLOCK */
2714