1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "DAGISelMatcher.h"
10#include "CodeGenDAGPatterns.h"
11#include "CodeGenRegisters.h"
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/ADT/StringMap.h"
14#include "llvm/TableGen/Error.h"
15#include "llvm/TableGen/Record.h"
16#include <utility>
17using namespace llvm;
18
19
20/// getRegisterValueType - Look up and return the ValueType of the specified
21/// register. If the register is a member of multiple register classes which
22/// have different associated types, return MVT::Other.
23static MVT::SimpleValueType getRegisterValueType(Record *R,
24                                                 const CodeGenTarget &T) {
25  bool FoundRC = false;
26  MVT::SimpleValueType VT = MVT::Other;
27  const CodeGenRegister *Reg = T.getRegBank().getReg(R);
28
29  for (const auto &RC : T.getRegBank().getRegClasses()) {
30    if (!RC.contains(Reg))
31      continue;
32
33    if (!FoundRC) {
34      FoundRC = true;
35      const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
36      if (VVT.isSimple())
37        VT = VVT.getSimple().SimpleTy;
38      continue;
39    }
40
41#ifndef NDEBUG
42    // If this occurs in multiple register classes, they all have to agree.
43    const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
44    assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
45           "ValueType mismatch between register classes for this register");
46#endif
47  }
48  return VT;
49}
50
51
52namespace {
53  class MatcherGen {
54    const PatternToMatch &Pattern;
55    const CodeGenDAGPatterns &CGP;
56
57    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
58    /// out with all of the types removed.  This allows us to insert type checks
59    /// as we scan the tree.
60    TreePatternNodePtr PatWithNoTypes;
61
62    /// VariableMap - A map from variable names ('$dst') to the recorded operand
63    /// number that they were captured as.  These are biased by 1 to make
64    /// insertion easier.
65    StringMap<unsigned> VariableMap;
66
67    /// This maintains the recorded operand number that OPC_CheckComplexPattern
68    /// drops each sub-operand into. We don't want to insert these into
69    /// VariableMap because that leads to identity checking if they are
70    /// encountered multiple times. Biased by 1 like VariableMap for
71    /// consistency.
72    StringMap<unsigned> NamedComplexPatternOperands;
73
74    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
75    /// the RecordedNodes array, this keeps track of which slot will be next to
76    /// record into.
77    unsigned NextRecordedOperandNo;
78
79    /// MatchedChainNodes - This maintains the position in the recorded nodes
80    /// array of all of the recorded input nodes that have chains.
81    SmallVector<unsigned, 2> MatchedChainNodes;
82
83    /// MatchedComplexPatterns - This maintains a list of all of the
84    /// ComplexPatterns that we need to check. The second element of each pair
85    /// is the recorded operand number of the input node.
86    SmallVector<std::pair<const TreePatternNode*,
87                          unsigned>, 2> MatchedComplexPatterns;
88
89    /// PhysRegInputs - List list has an entry for each explicitly specified
90    /// physreg input to the pattern.  The first elt is the Register node, the
91    /// second is the recorded slot number the input pattern match saved it in.
92    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
93
94    /// Matcher - This is the top level of the generated matcher, the result.
95    Matcher *TheMatcher;
96
97    /// CurPredicate - As we emit matcher nodes, this points to the latest check
98    /// which should have future checks stuck into its Next position.
99    Matcher *CurPredicate;
100  public:
101    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
102
103    bool EmitMatcherCode(unsigned Variant);
104    void EmitResultCode();
105
106    Matcher *GetMatcher() const { return TheMatcher; }
107  private:
108    void AddMatcher(Matcher *NewNode);
109    void InferPossibleTypes(unsigned ForceMode);
110
111    // Matcher Generation.
112    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
113                       unsigned ForceMode);
114    void EmitLeafMatchCode(const TreePatternNode *N);
115    void EmitOperatorMatchCode(const TreePatternNode *N,
116                               TreePatternNode *NodeNoTypes,
117                               unsigned ForceMode);
118
119    /// If this is the first time a node with unique identifier Name has been
120    /// seen, record it. Otherwise, emit a check to make sure this is the same
121    /// node. Returns true if this is the first encounter.
122    bool recordUniqueNode(ArrayRef<std::string> Names);
123
124    // Result Code Generation.
125    unsigned getNamedArgumentSlot(StringRef Name) {
126      unsigned VarMapEntry = VariableMap[Name];
127      assert(VarMapEntry != 0 &&
128             "Variable referenced but not defined and not caught earlier!");
129      return VarMapEntry-1;
130    }
131
132    void EmitResultOperand(const TreePatternNode *N,
133                           SmallVectorImpl<unsigned> &ResultOps);
134    void EmitResultOfNamedOperand(const TreePatternNode *N,
135                                  SmallVectorImpl<unsigned> &ResultOps);
136    void EmitResultLeafAsOperand(const TreePatternNode *N,
137                                 SmallVectorImpl<unsigned> &ResultOps);
138    void EmitResultInstructionAsOperand(const TreePatternNode *N,
139                                        SmallVectorImpl<unsigned> &ResultOps);
140    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
141                                        SmallVectorImpl<unsigned> &ResultOps);
142    };
143
144} // end anonymous namespace
145
146MatcherGen::MatcherGen(const PatternToMatch &pattern,
147                       const CodeGenDAGPatterns &cgp)
148: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
149  TheMatcher(nullptr), CurPredicate(nullptr) {
150  // We need to produce the matcher tree for the patterns source pattern.  To do
151  // this we need to match the structure as well as the types.  To do the type
152  // matching, we want to figure out the fewest number of type checks we need to
153  // emit.  For example, if there is only one integer type supported by a
154  // target, there should be no type comparisons at all for integer patterns!
155  //
156  // To figure out the fewest number of type checks needed, clone the pattern,
157  // remove the types, then perform type inference on the pattern as a whole.
158  // If there are unresolved types, emit an explicit check for those types,
159  // apply the type to the tree, then rerun type inference.  Iterate until all
160  // types are resolved.
161  //
162  PatWithNoTypes = Pattern.getSrcPattern()->clone();
163  PatWithNoTypes->RemoveAllTypes();
164
165  // If there are types that are manifestly known, infer them.
166  InferPossibleTypes(Pattern.getForceMode());
167}
168
169/// InferPossibleTypes - As we emit the pattern, we end up generating type
170/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
171/// want to propagate implied types as far throughout the tree as possible so
172/// that we avoid doing redundant type checks.  This does the type propagation.
173void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
174  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
175  // diagnostics, which we know are impossible at this point.
176  TreePattern &TP = *CGP.pf_begin()->second;
177  TP.getInfer().CodeGen = true;
178  TP.getInfer().ForceMode = ForceMode;
179
180  bool MadeChange = true;
181  while (MadeChange)
182    MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
183                                              true/*Ignore reg constraints*/);
184}
185
186
187/// AddMatcher - Add a matcher node to the current graph we're building.
188void MatcherGen::AddMatcher(Matcher *NewNode) {
189  if (CurPredicate)
190    CurPredicate->setNext(NewNode);
191  else
192    TheMatcher = NewNode;
193  CurPredicate = NewNode;
194}
195
196
197//===----------------------------------------------------------------------===//
198// Pattern Match Generation
199//===----------------------------------------------------------------------===//
200
201/// EmitLeafMatchCode - Generate matching code for leaf nodes.
202void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203  assert(N->isLeaf() && "Not a leaf?");
204
205  // Direct match against an integer constant.
206  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
207    // If this is the root of the dag we're matching, we emit a redundant opcode
208    // check to ensure that this gets folded into the normal top-level
209    // OpcodeSwitch.
210    if (N == Pattern.getSrcPattern()) {
211      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212      AddMatcher(new CheckOpcodeMatcher(NI));
213    }
214
215    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
216  }
217
218  // An UnsetInit represents a named node without any constraints.
219  if (isa<UnsetInit>(N->getLeafValue())) {
220    assert(N->hasName() && "Unnamed ? leaf");
221    return;
222  }
223
224  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
225  if (!DI) {
226    errs() << "Unknown leaf kind: " << *N << "\n";
227    abort();
228  }
229
230  Record *LeafRec = DI->getDef();
231
232  // A ValueType leaf node can represent a register when named, or itself when
233  // unnamed.
234  if (LeafRec->isSubClassOf("ValueType")) {
235    // A named ValueType leaf always matches: (add i32:$a, i32:$b).
236    if (N->hasName())
237      return;
238    // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
240  }
241
242  if (// Handle register references.  Nothing to do here, they always match.
243      LeafRec->isSubClassOf("RegisterClass") ||
244      LeafRec->isSubClassOf("RegisterOperand") ||
245      LeafRec->isSubClassOf("PointerLikeRegClass") ||
246      LeafRec->isSubClassOf("SubRegIndex") ||
247      // Place holder for SRCVALUE nodes. Nothing to do here.
248      LeafRec->getName() == "srcvalue")
249    return;
250
251  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252  // record the register
253  if (LeafRec->isSubClassOf("Register")) {
254    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
255                                 NextRecordedOperandNo));
256    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
257    return;
258  }
259
260  if (LeafRec->isSubClassOf("CondCode"))
261    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
262
263  if (LeafRec->isSubClassOf("ComplexPattern")) {
264    // We can't model ComplexPattern uses that don't have their name taken yet.
265    // The OPC_CheckComplexPattern operation implicitly records the results.
266    if (N->getName().empty()) {
267      std::string S;
268      raw_string_ostream OS(S);
269      OS << "We expect complex pattern uses to have names: " << *N;
270      PrintFatalError(OS.str());
271    }
272
273    // Remember this ComplexPattern so that we can emit it after all the other
274    // structural matches are done.
275    unsigned InputOperand = VariableMap[N->getName()] - 1;
276    MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
277    return;
278  }
279
280  if (LeafRec->getName() == "immAllOnesV") {
281    // If this is the root of the dag we're matching, we emit a redundant opcode
282    // check to ensure that this gets folded into the normal top-level
283    // OpcodeSwitch.
284    if (N == Pattern.getSrcPattern()) {
285      MVT VT = N->getSimpleType(0);
286      StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
287      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
288      AddMatcher(new CheckOpcodeMatcher(NI));
289    }
290    return AddMatcher(new CheckImmAllOnesVMatcher());
291  }
292  if (LeafRec->getName() == "immAllZerosV") {
293    // If this is the root of the dag we're matching, we emit a redundant opcode
294    // check to ensure that this gets folded into the normal top-level
295    // OpcodeSwitch.
296    if (N == Pattern.getSrcPattern()) {
297      MVT VT = N->getSimpleType(0);
298      StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
299      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
300      AddMatcher(new CheckOpcodeMatcher(NI));
301    }
302    return AddMatcher(new CheckImmAllZerosVMatcher());
303  }
304
305  errs() << "Unknown leaf kind: " << *N << "\n";
306  abort();
307}
308
309void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
310                                       TreePatternNode *NodeNoTypes,
311                                       unsigned ForceMode) {
312  assert(!N->isLeaf() && "Not an operator?");
313
314  if (N->getOperator()->isSubClassOf("ComplexPattern")) {
315    // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
316    // "MY_PAT:op1:op2". We should already have validated that the uses are
317    // consistent.
318    std::string PatternName = std::string(N->getOperator()->getName());
319    for (unsigned i = 0; i < N->getNumChildren(); ++i) {
320      PatternName += ":";
321      PatternName += N->getChild(i)->getName();
322    }
323
324    if (recordUniqueNode(PatternName)) {
325      auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
326      MatchedComplexPatterns.push_back(NodeAndOpNum);
327    }
328
329    return;
330  }
331
332  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
333
334  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
335  // a constant without a predicate fn that has more than one bit set, handle
336  // this as a special case.  This is usually for targets that have special
337  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
338  // handling stuff).  Using these instructions is often far more efficient
339  // than materializing the constant.  Unfortunately, both the instcombiner
340  // and the dag combiner can often infer that bits are dead, and thus drop
341  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
342  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
343  // to handle this.
344  if ((N->getOperator()->getName() == "and" ||
345       N->getOperator()->getName() == "or") &&
346      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
347      N->getPredicateCalls().empty()) {
348    if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
349      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
350        // If this is at the root of the pattern, we emit a redundant
351        // CheckOpcode so that the following checks get factored properly under
352        // a single opcode check.
353        if (N == Pattern.getSrcPattern())
354          AddMatcher(new CheckOpcodeMatcher(CInfo));
355
356        // Emit the CheckAndImm/CheckOrImm node.
357        if (N->getOperator()->getName() == "and")
358          AddMatcher(new CheckAndImmMatcher(II->getValue()));
359        else
360          AddMatcher(new CheckOrImmMatcher(II->getValue()));
361
362        // Match the LHS of the AND as appropriate.
363        AddMatcher(new MoveChildMatcher(0));
364        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
365        AddMatcher(new MoveParentMatcher());
366        return;
367      }
368    }
369  }
370
371  // Check that the current opcode lines up.
372  AddMatcher(new CheckOpcodeMatcher(CInfo));
373
374  // If this node has memory references (i.e. is a load or store), tell the
375  // interpreter to capture them in the memref array.
376  if (N->NodeHasProperty(SDNPMemOperand, CGP))
377    AddMatcher(new RecordMemRefMatcher());
378
379  // If this node has a chain, then the chain is operand #0 is the SDNode, and
380  // the child numbers of the node are all offset by one.
381  unsigned OpNo = 0;
382  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
383    // Record the node and remember it in our chained nodes list.
384    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
385                                         "' chained node",
386                                 NextRecordedOperandNo));
387    // Remember all of the input chains our pattern will match.
388    MatchedChainNodes.push_back(NextRecordedOperandNo++);
389
390    // Don't look at the input chain when matching the tree pattern to the
391    // SDNode.
392    OpNo = 1;
393
394    // If this node is not the root and the subtree underneath it produces a
395    // chain, then the result of matching the node is also produce a chain.
396    // Beyond that, this means that we're also folding (at least) the root node
397    // into the node that produce the chain (for example, matching
398    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
399    // problematic, if the 'reg' node also uses the load (say, its chain).
400    // Graphically:
401    //
402    //         [LD]
403    //         ^  ^
404    //         |  \                              DAG's like cheese.
405    //        /    |
406    //       /    [YY]
407    //       |     ^
408    //      [XX]--/
409    //
410    // It would be invalid to fold XX and LD.  In this case, folding the two
411    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
412    // To prevent this, we emit a dynamic check for legality before allowing
413    // this to be folded.
414    //
415    const TreePatternNode *Root = Pattern.getSrcPattern();
416    if (N != Root) {                             // Not the root of the pattern.
417      // If there is a node between the root and this node, then we definitely
418      // need to emit the check.
419      bool NeedCheck = !Root->hasChild(N);
420
421      // If it *is* an immediate child of the root, we can still need a check if
422      // the root SDNode has multiple inputs.  For us, this means that it is an
423      // intrinsic, has multiple operands, or has other inputs like chain or
424      // glue).
425      if (!NeedCheck) {
426        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
427        NeedCheck =
428          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
429          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
430          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
431          PInfo.getNumOperands() > 1 ||
432          PInfo.hasProperty(SDNPHasChain) ||
433          PInfo.hasProperty(SDNPInGlue) ||
434          PInfo.hasProperty(SDNPOptInGlue);
435      }
436
437      if (NeedCheck)
438        AddMatcher(new CheckFoldableChainNodeMatcher());
439    }
440  }
441
442  // If this node has an output glue and isn't the root, remember it.
443  if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
444      N != Pattern.getSrcPattern()) {
445    // TODO: This redundantly records nodes with both glues and chains.
446
447    // Record the node and remember it in our chained nodes list.
448    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
449                                         "' glue output node",
450                                 NextRecordedOperandNo));
451  }
452
453  // If this node is known to have an input glue or if it *might* have an input
454  // glue, capture it as the glue input of the pattern.
455  if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
456      N->NodeHasProperty(SDNPInGlue, CGP))
457    AddMatcher(new CaptureGlueInputMatcher());
458
459  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
460    // Get the code suitable for matching this child.  Move to the child, check
461    // it then move back to the parent.
462    AddMatcher(new MoveChildMatcher(OpNo));
463    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
464    AddMatcher(new MoveParentMatcher());
465  }
466}
467
468bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
469  unsigned Entry = 0;
470  for (const std::string &Name : Names) {
471    unsigned &VarMapEntry = VariableMap[Name];
472    if (!Entry)
473      Entry = VarMapEntry;
474    assert(Entry == VarMapEntry);
475  }
476
477  bool NewRecord = false;
478  if (Entry == 0) {
479    // If it is a named node, we must emit a 'Record' opcode.
480    std::string WhatFor;
481    for (const std::string &Name : Names) {
482      if (!WhatFor.empty())
483        WhatFor += ',';
484      WhatFor += "$" + Name;
485    }
486    AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
487    Entry = ++NextRecordedOperandNo;
488    NewRecord = true;
489  } else {
490    // If we get here, this is a second reference to a specific name.  Since
491    // we already have checked that the first reference is valid, we don't
492    // have to recursively match it, just check that it's the same as the
493    // previously named thing.
494    AddMatcher(new CheckSameMatcher(Entry-1));
495  }
496
497  for (const std::string &Name : Names)
498    VariableMap[Name] = Entry;
499
500  return NewRecord;
501}
502
503void MatcherGen::EmitMatchCode(const TreePatternNode *N,
504                               TreePatternNode *NodeNoTypes,
505                               unsigned ForceMode) {
506  // If N and NodeNoTypes don't agree on a type, then this is a case where we
507  // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
508  // reinfer any correlated types.
509  SmallVector<unsigned, 2> ResultsToTypeCheck;
510
511  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
512    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
513    NodeNoTypes->setType(i, N->getExtType(i));
514    InferPossibleTypes(ForceMode);
515    ResultsToTypeCheck.push_back(i);
516  }
517
518  // If this node has a name associated with it, capture it in VariableMap. If
519  // we already saw this in the pattern, emit code to verify dagness.
520  SmallVector<std::string, 4> Names;
521  if (!N->getName().empty())
522    Names.push_back(N->getName());
523
524  for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
525    Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
526  }
527
528  if (!Names.empty()) {
529    if (!recordUniqueNode(Names))
530      return;
531  }
532
533  if (N->isLeaf())
534    EmitLeafMatchCode(N);
535  else
536    EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
537
538  // If there are node predicates for this node, generate their checks.
539  for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
540    const TreePredicateCall &Pred = N->getPredicateCalls()[i];
541    SmallVector<unsigned, 4> Operands;
542    if (Pred.Fn.usesOperands()) {
543      TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
544      for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
545        std::string Name =
546            ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
547        Operands.push_back(getNamedArgumentSlot(Name));
548      }
549    }
550    AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
551  }
552
553  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
554    AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
555                                    ResultsToTypeCheck[i]));
556}
557
558/// EmitMatcherCode - Generate the code that matches the predicate of this
559/// pattern for the specified Variant.  If the variant is invalid this returns
560/// true and does not generate code, if it is valid, it returns false.
561bool MatcherGen::EmitMatcherCode(unsigned Variant) {
562  // If the root of the pattern is a ComplexPattern and if it is specified to
563  // match some number of root opcodes, these are considered to be our variants.
564  // Depending on which variant we're generating code for, emit the root opcode
565  // check.
566  if (const ComplexPattern *CP =
567                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
568    const std::vector<Record*> &OpNodes = CP->getRootNodes();
569    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
570    if (Variant >= OpNodes.size()) return true;
571
572    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
573  } else {
574    if (Variant != 0) return true;
575  }
576
577  // Emit the matcher for the pattern structure and types.
578  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
579                Pattern.getForceMode());
580
581  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
582  // feature is around, do the check).
583  if (!Pattern.getPredicateCheck().empty())
584    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
585
586  // Now that we've completed the structural type match, emit any ComplexPattern
587  // checks (e.g. addrmode matches).  We emit this after the structural match
588  // because they are generally more expensive to evaluate and more difficult to
589  // factor.
590  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
591    auto N = MatchedComplexPatterns[i].first;
592
593    // Remember where the results of this match get stuck.
594    if (N->isLeaf()) {
595      NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
596    } else {
597      unsigned CurOp = NextRecordedOperandNo;
598      for (unsigned i = 0; i < N->getNumChildren(); ++i) {
599        NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
600        CurOp += N->getChild(i)->getNumMIResults(CGP);
601      }
602    }
603
604    // Get the slot we recorded the value in from the name on the node.
605    unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
606
607    const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
608
609    // Emit a CheckComplexPat operation, which does the match (aborting if it
610    // fails) and pushes the matched operands onto the recorded nodes list.
611    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
612                                          N->getName(), NextRecordedOperandNo));
613
614    // Record the right number of operands.
615    NextRecordedOperandNo += CP.getNumOperands();
616    if (CP.hasProperty(SDNPHasChain)) {
617      // If the complex pattern has a chain, then we need to keep track of the
618      // fact that we just recorded a chain input.  The chain input will be
619      // matched as the last operand of the predicate if it was successful.
620      ++NextRecordedOperandNo; // Chained node operand.
621
622      // It is the last operand recorded.
623      assert(NextRecordedOperandNo > 1 &&
624             "Should have recorded input/result chains at least!");
625      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
626    }
627
628    // TODO: Complex patterns can't have output glues, if they did, we'd want
629    // to record them.
630  }
631
632  return false;
633}
634
635
636//===----------------------------------------------------------------------===//
637// Node Result Generation
638//===----------------------------------------------------------------------===//
639
640void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
641                                          SmallVectorImpl<unsigned> &ResultOps){
642  assert(!N->getName().empty() && "Operand not named!");
643
644  if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
645    // Complex operands have already been completely selected, just find the
646    // right slot ant add the arguments directly.
647    for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
648      ResultOps.push_back(SlotNo - 1 + i);
649
650    return;
651  }
652
653  unsigned SlotNo = getNamedArgumentSlot(N->getName());
654
655  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
656  // version of the immediate so that it doesn't get selected due to some other
657  // node use.
658  if (!N->isLeaf()) {
659    StringRef OperatorName = N->getOperator()->getName();
660    if (OperatorName == "imm" || OperatorName == "fpimm") {
661      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
662      ResultOps.push_back(NextRecordedOperandNo++);
663      return;
664    }
665  }
666
667  for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
668    ResultOps.push_back(SlotNo + i);
669}
670
671void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
672                                         SmallVectorImpl<unsigned> &ResultOps) {
673  assert(N->isLeaf() && "Must be a leaf");
674
675  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
676    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
677    ResultOps.push_back(NextRecordedOperandNo++);
678    return;
679  }
680
681  // If this is an explicit register reference, handle it.
682  if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
683    Record *Def = DI->getDef();
684    if (Def->isSubClassOf("Register")) {
685      const CodeGenRegister *Reg =
686        CGP.getTargetInfo().getRegBank().getReg(Def);
687      AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
688      ResultOps.push_back(NextRecordedOperandNo++);
689      return;
690    }
691
692    if (Def->getName() == "zero_reg") {
693      AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
694      ResultOps.push_back(NextRecordedOperandNo++);
695      return;
696    }
697
698    if (Def->getName() == "undef_tied_input") {
699      std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
700      std::array<unsigned, 0> InstOps;
701      auto IDOperandNo = NextRecordedOperandNo++;
702      AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
703                                     ResultVTs, InstOps, false, false, false,
704                                     false, -1, IDOperandNo));
705      ResultOps.push_back(IDOperandNo);
706      return;
707    }
708
709    // Handle a reference to a register class. This is used
710    // in COPY_TO_SUBREG instructions.
711    if (Def->isSubClassOf("RegisterOperand"))
712      Def = Def->getValueAsDef("RegClass");
713    if (Def->isSubClassOf("RegisterClass")) {
714      // If the register class has an enum integer value greater than 127, the
715      // encoding overflows the limit of 7 bits, which precludes the use of
716      // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
717      const CodeGenRegisterClass &RC =
718          CGP.getTargetInfo().getRegisterClass(Def);
719      if (RC.EnumValue <= 127) {
720        std::string Value = getQualifiedName(Def) + "RegClassID";
721        AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
722        ResultOps.push_back(NextRecordedOperandNo++);
723      } else {
724        AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
725        ResultOps.push_back(NextRecordedOperandNo++);
726      }
727      return;
728    }
729
730    // Handle a subregister index. This is used for INSERT_SUBREG etc.
731    if (Def->isSubClassOf("SubRegIndex")) {
732      const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
733      // If we have more than 127 subreg indices the encoding can overflow
734      // 7 bit and we cannot use StringInteger.
735      if (RB.getSubRegIndices().size() > 127) {
736        const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
737        assert(I && "Cannot find subreg index by name!");
738        if (I->EnumValue > 127) {
739          AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
740          ResultOps.push_back(NextRecordedOperandNo++);
741          return;
742        }
743      }
744      std::string Value = getQualifiedName(Def);
745      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
746      ResultOps.push_back(NextRecordedOperandNo++);
747      return;
748    }
749  }
750
751  errs() << "unhandled leaf node:\n";
752  N->dump();
753}
754
755static bool
756mayInstNodeLoadOrStore(const TreePatternNode *N,
757                       const CodeGenDAGPatterns &CGP) {
758  Record *Op = N->getOperator();
759  const CodeGenTarget &CGT = CGP.getTargetInfo();
760  CodeGenInstruction &II = CGT.getInstruction(Op);
761  return II.mayLoad || II.mayStore;
762}
763
764static unsigned
765numNodesThatMayLoadOrStore(const TreePatternNode *N,
766                           const CodeGenDAGPatterns &CGP) {
767  if (N->isLeaf())
768    return 0;
769
770  Record *OpRec = N->getOperator();
771  if (!OpRec->isSubClassOf("Instruction"))
772    return 0;
773
774  unsigned Count = 0;
775  if (mayInstNodeLoadOrStore(N, CGP))
776    ++Count;
777
778  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
779    Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
780
781  return Count;
782}
783
784void MatcherGen::
785EmitResultInstructionAsOperand(const TreePatternNode *N,
786                               SmallVectorImpl<unsigned> &OutputOps) {
787  Record *Op = N->getOperator();
788  const CodeGenTarget &CGT = CGP.getTargetInfo();
789  CodeGenInstruction &II = CGT.getInstruction(Op);
790  const DAGInstruction &Inst = CGP.getInstruction(Op);
791
792  bool isRoot = N == Pattern.getDstPattern();
793
794  // TreeHasOutGlue - True if this tree has glue.
795  bool TreeHasInGlue = false, TreeHasOutGlue = false;
796  if (isRoot) {
797    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
798    TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
799                    SrcPat->TreeHasProperty(SDNPInGlue, CGP);
800
801    // FIXME2: this is checking the entire pattern, not just the node in
802    // question, doing this just for the root seems like a total hack.
803    TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
804  }
805
806  // NumResults - This is the number of results produced by the instruction in
807  // the "outs" list.
808  unsigned NumResults = Inst.getNumResults();
809
810  // Number of operands we know the output instruction must have. If it is
811  // variadic, we could have more operands.
812  unsigned NumFixedOperands = II.Operands.size();
813
814  SmallVector<unsigned, 8> InstOps;
815
816  // Loop over all of the fixed operands of the instruction pattern, emitting
817  // code to fill them all in. The node 'N' usually has number children equal to
818  // the number of input operands of the instruction.  However, in cases where
819  // there are predicate operands for an instruction, we need to fill in the
820  // 'execute always' values. Match up the node operands to the instruction
821  // operands to do this.
822  unsigned ChildNo = 0;
823
824  // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
825  // number of operands at the end of the list which have default values.
826  // Those can come from the pattern if it provides enough arguments, or be
827  // filled in with the default if the pattern hasn't provided them. But any
828  // operand with a default value _before_ the last mandatory one will be
829  // filled in with their defaults unconditionally.
830  unsigned NonOverridableOperands = NumFixedOperands;
831  while (NonOverridableOperands > NumResults &&
832         CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
833    --NonOverridableOperands;
834
835  for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
836       InstOpNo != e; ++InstOpNo) {
837    // Determine what to emit for this operand.
838    Record *OperandNode = II.Operands[InstOpNo].Rec;
839    if (CGP.operandHasDefault(OperandNode) &&
840        (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
841      // This is a predicate or optional def operand which the pattern has not
842      // overridden, or which we aren't letting it override; emit the 'default
843      // ops' operands.
844      const DAGDefaultOperand &DefaultOp
845        = CGP.getDefaultOperand(OperandNode);
846      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
847        EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
848      continue;
849    }
850
851    // Otherwise this is a normal operand or a predicate operand without
852    // 'execute always'; emit it.
853
854    // For operands with multiple sub-operands we may need to emit
855    // multiple child patterns to cover them all.  However, ComplexPattern
856    // children may themselves emit multiple MI operands.
857    unsigned NumSubOps = 1;
858    if (OperandNode->isSubClassOf("Operand")) {
859      DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
860      if (unsigned NumArgs = MIOpInfo->getNumArgs())
861        NumSubOps = NumArgs;
862    }
863
864    unsigned FinalNumOps = InstOps.size() + NumSubOps;
865    while (InstOps.size() < FinalNumOps) {
866      const TreePatternNode *Child = N->getChild(ChildNo);
867      unsigned BeforeAddingNumOps = InstOps.size();
868      EmitResultOperand(Child, InstOps);
869      assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
870
871      // If the operand is an instruction and it produced multiple results, just
872      // take the first one.
873      if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
874        InstOps.resize(BeforeAddingNumOps+1);
875
876      ++ChildNo;
877    }
878  }
879
880  // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
881  // expand suboperands, use default operands, or other features determined from
882  // the CodeGenInstruction after the fixed operands, which were handled
883  // above. Emit the remaining instructions implicitly added by the use for
884  // variable_ops.
885  if (II.Operands.isVariadic) {
886    for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
887      EmitResultOperand(N->getChild(I), InstOps);
888  }
889
890  // If this node has input glue or explicitly specified input physregs, we
891  // need to add chained and glued copyfromreg nodes and materialize the glue
892  // input.
893  if (isRoot && !PhysRegInputs.empty()) {
894    // Emit all of the CopyToReg nodes for the input physical registers.  These
895    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
896    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
897      const CodeGenRegister *Reg =
898        CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
899      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
900                                          Reg));
901    }
902
903    // Even if the node has no other glue inputs, the resultant node must be
904    // glued to the CopyFromReg nodes we just generated.
905    TreeHasInGlue = true;
906  }
907
908  // Result order: node results, chain, glue
909
910  // Determine the result types.
911  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
912  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
913    ResultVTs.push_back(N->getSimpleType(i));
914
915  // If this is the root instruction of a pattern that has physical registers in
916  // its result pattern, add output VTs for them.  For example, X86 has:
917  //   (set AL, (mul ...))
918  // This also handles implicit results like:
919  //   (implicit EFLAGS)
920  if (isRoot && !Pattern.getDstRegs().empty()) {
921    // If the root came from an implicit def in the instruction handling stuff,
922    // don't re-add it.
923    Record *HandledReg = nullptr;
924    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
925      HandledReg = II.ImplicitDefs[0];
926
927    for (Record *Reg : Pattern.getDstRegs()) {
928      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
929      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
930    }
931  }
932
933  // If this is the root of the pattern and the pattern we're matching includes
934  // a node that is variadic, mark the generated node as variadic so that it
935  // gets the excess operands from the input DAG.
936  int NumFixedArityOperands = -1;
937  if (isRoot &&
938      Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
939    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
940
941  // If this is the root node and multiple matched nodes in the input pattern
942  // have MemRefs in them, have the interpreter collect them and plop them onto
943  // this node. If there is just one node with MemRefs, leave them on that node
944  // even if it is not the root.
945  //
946  // FIXME3: This is actively incorrect for result patterns with multiple
947  // memory-referencing instructions.
948  bool PatternHasMemOperands =
949    Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
950
951  bool NodeHasMemRefs = false;
952  if (PatternHasMemOperands) {
953    unsigned NumNodesThatLoadOrStore =
954      numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
955    bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
956                                   NumNodesThatLoadOrStore == 1;
957    NodeHasMemRefs =
958      NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
959                                             NumNodesThatLoadOrStore != 1));
960  }
961
962  // Determine whether we need to attach a chain to this node.
963  bool NodeHasChain = false;
964  if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
965    // For some instructions, we were able to infer from the pattern whether
966    // they should have a chain.  Otherwise, attach the chain to the root.
967    //
968    // FIXME2: This is extremely dubious for several reasons, not the least of
969    // which it gives special status to instructions with patterns that Pat<>
970    // nodes can't duplicate.
971    if (II.hasChain_Inferred)
972      NodeHasChain = II.hasChain;
973    else
974      NodeHasChain = isRoot;
975    // Instructions which load and store from memory should have a chain,
976    // regardless of whether they happen to have a pattern saying so.
977    if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
978        II.hasSideEffects)
979      NodeHasChain = true;
980  }
981
982  assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
983         "Node has no result");
984
985  AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
986                                 ResultVTs, InstOps,
987                                 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
988                                 NodeHasMemRefs, NumFixedArityOperands,
989                                 NextRecordedOperandNo));
990
991  // The non-chain and non-glue results of the newly emitted node get recorded.
992  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
993    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
994    OutputOps.push_back(NextRecordedOperandNo++);
995  }
996}
997
998void MatcherGen::
999EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
1000                               SmallVectorImpl<unsigned> &ResultOps) {
1001  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
1002
1003  // Emit the operand.
1004  SmallVector<unsigned, 8> InputOps;
1005
1006  // FIXME2: Could easily generalize this to support multiple inputs and outputs
1007  // to the SDNodeXForm.  For now we just support one input and one output like
1008  // the old instruction selector.
1009  assert(N->getNumChildren() == 1);
1010  EmitResultOperand(N->getChild(0), InputOps);
1011
1012  // The input currently must have produced exactly one result.
1013  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1014
1015  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
1016  ResultOps.push_back(NextRecordedOperandNo++);
1017}
1018
1019void MatcherGen::EmitResultOperand(const TreePatternNode *N,
1020                                   SmallVectorImpl<unsigned> &ResultOps) {
1021  // This is something selected from the pattern we matched.
1022  if (!N->getName().empty())
1023    return EmitResultOfNamedOperand(N, ResultOps);
1024
1025  if (N->isLeaf())
1026    return EmitResultLeafAsOperand(N, ResultOps);
1027
1028  Record *OpRec = N->getOperator();
1029  if (OpRec->isSubClassOf("Instruction"))
1030    return EmitResultInstructionAsOperand(N, ResultOps);
1031  if (OpRec->isSubClassOf("SDNodeXForm"))
1032    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1033  errs() << "Unknown result node to emit code for: " << *N << '\n';
1034  PrintFatalError("Unknown node in result pattern!");
1035}
1036
1037void MatcherGen::EmitResultCode() {
1038  // Patterns that match nodes with (potentially multiple) chain inputs have to
1039  // merge them together into a token factor.  This informs the generated code
1040  // what all the chained nodes are.
1041  if (!MatchedChainNodes.empty())
1042    AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1043
1044  // Codegen the root of the result pattern, capturing the resulting values.
1045  SmallVector<unsigned, 8> Ops;
1046  EmitResultOperand(Pattern.getDstPattern(), Ops);
1047
1048  // At this point, we have however many values the result pattern produces.
1049  // However, the input pattern might not need all of these.  If there are
1050  // excess values at the end (such as implicit defs of condition codes etc)
1051  // just lop them off.  This doesn't need to worry about glue or chains, just
1052  // explicit results.
1053  //
1054  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1055
1056  // If the pattern also has (implicit) results, count them as well.
1057  if (!Pattern.getDstRegs().empty()) {
1058    // If the root came from an implicit def in the instruction handling stuff,
1059    // don't re-add it.
1060    Record *HandledReg = nullptr;
1061    const TreePatternNode *DstPat = Pattern.getDstPattern();
1062    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1063      const CodeGenTarget &CGT = CGP.getTargetInfo();
1064      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1065
1066      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1067        HandledReg = II.ImplicitDefs[0];
1068    }
1069
1070    for (Record *Reg : Pattern.getDstRegs()) {
1071      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1072      ++NumSrcResults;
1073    }
1074  }
1075
1076  SmallVector<unsigned, 8> Results(Ops);
1077
1078  // Apply result permutation.
1079  for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1080       ++ResNo) {
1081    Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1082  }
1083
1084  Results.resize(NumSrcResults);
1085  AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1086}
1087
1088
1089/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1090/// the specified variant.  If the variant number is invalid, this returns null.
1091Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1092                                       unsigned Variant,
1093                                       const CodeGenDAGPatterns &CGP) {
1094  MatcherGen Gen(Pattern, CGP);
1095
1096  // Generate the code for the matcher.
1097  if (Gen.EmitMatcherCode(Variant))
1098    return nullptr;
1099
1100  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1101  // FIXME2: Split result code out to another table, and make the matcher end
1102  // with an "Emit <index>" command.  This allows result generation stuff to be
1103  // shared and factored?
1104
1105  // If the match succeeds, then we generate Pattern.
1106  Gen.EmitResultCode();
1107
1108  // Unconditional match.
1109  return Gen.GetMatcher();
1110}
1111