1//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass deletes dead arguments from internal functions.  Dead argument
10// elimination removes arguments which are directly dead, as well as arguments
11// only passed into function calls as dead arguments of other functions.  This
12// pass also deletes dead return values in a similar way.
13//
14// This pass is often useful as a cleanup pass to run after aggressive
15// interprocedural passes, which add possibly-dead arguments or return values.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/IR/Argument.h"
23#include "llvm/IR/Attributes.h"
24#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/InstrTypes.h"
30#include "llvm/IR/Instruction.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/NoFolder.h"
36#include "llvm/IR/PassManager.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/InitializePasses.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Transforms/IPO.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include <cassert>
49#include <cstdint>
50#include <utility>
51#include <vector>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "deadargelim"
56
57STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
59STATISTIC(NumArgumentsReplacedWithUndef,
60          "Number of unread args replaced with undef");
61
62namespace {
63
64  /// DAE - The dead argument elimination pass.
65  class DAE : public ModulePass {
66  protected:
67    // DAH uses this to specify a different ID.
68    explicit DAE(char &ID) : ModulePass(ID) {}
69
70  public:
71    static char ID; // Pass identification, replacement for typeid
72
73    DAE() : ModulePass(ID) {
74      initializeDAEPass(*PassRegistry::getPassRegistry());
75    }
76
77    bool runOnModule(Module &M) override {
78      if (skipModule(M))
79        return false;
80      DeadArgumentEliminationPass DAEP(ShouldHackArguments());
81      ModuleAnalysisManager DummyMAM;
82      PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83      return !PA.areAllPreserved();
84    }
85
86    virtual bool ShouldHackArguments() const { return false; }
87  };
88
89} // end anonymous namespace
90
91char DAE::ID = 0;
92
93INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
94
95namespace {
96
97  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
98  /// deletes arguments to functions which are external.  This is only for use
99  /// by bugpoint.
100  struct DAH : public DAE {
101    static char ID;
102
103    DAH() : DAE(ID) {}
104
105    bool ShouldHackArguments() const override { return true; }
106  };
107
108} // end anonymous namespace
109
110char DAH::ID = 0;
111
112INITIALIZE_PASS(DAH, "deadarghaX0r",
113                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
114                false, false)
115
116/// createDeadArgEliminationPass - This pass removes arguments from functions
117/// which are not used by the body of the function.
118ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
119
120ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
121
122/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
123/// llvm.vastart is never called, the varargs list is dead for the function.
124bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
125  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
126  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
127
128  // Ensure that the function is only directly called.
129  if (Fn.hasAddressTaken())
130    return false;
131
132  // Don't touch naked functions. The assembly might be using an argument, or
133  // otherwise rely on the frame layout in a way that this analysis will not
134  // see.
135  if (Fn.hasFnAttribute(Attribute::Naked)) {
136    return false;
137  }
138
139  // Okay, we know we can transform this function if safe.  Scan its body
140  // looking for calls marked musttail or calls to llvm.vastart.
141  for (BasicBlock &BB : Fn) {
142    for (Instruction &I : BB) {
143      CallInst *CI = dyn_cast<CallInst>(&I);
144      if (!CI)
145        continue;
146      if (CI->isMustTailCall())
147        return false;
148      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
149        if (II->getIntrinsicID() == Intrinsic::vastart)
150          return false;
151      }
152    }
153  }
154
155  // If we get here, there are no calls to llvm.vastart in the function body,
156  // remove the "..." and adjust all the calls.
157
158  // Start by computing a new prototype for the function, which is the same as
159  // the old function, but doesn't have isVarArg set.
160  FunctionType *FTy = Fn.getFunctionType();
161
162  std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
163  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
164                                                Params, false);
165  unsigned NumArgs = Params.size();
166
167  // Create the new function body and insert it into the module...
168  Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
169  NF->copyAttributesFrom(&Fn);
170  NF->setComdat(Fn.getComdat());
171  Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
172  NF->takeName(&Fn);
173
174  // Loop over all of the callers of the function, transforming the call sites
175  // to pass in a smaller number of arguments into the new function.
176  //
177  std::vector<Value *> Args;
178  for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
179    CallBase *CB = dyn_cast<CallBase>(*I++);
180    if (!CB)
181      continue;
182
183    // Pass all the same arguments.
184    Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
185
186    // Drop any attributes that were on the vararg arguments.
187    AttributeList PAL = CB->getAttributes();
188    if (!PAL.isEmpty()) {
189      SmallVector<AttributeSet, 8> ArgAttrs;
190      for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
191        ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
192      PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
193                               PAL.getRetAttributes(), ArgAttrs);
194    }
195
196    SmallVector<OperandBundleDef, 1> OpBundles;
197    CB->getOperandBundlesAsDefs(OpBundles);
198
199    CallBase *NewCB = nullptr;
200    if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
201      NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
202                                 Args, OpBundles, "", CB);
203    } else {
204      NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
205      cast<CallInst>(NewCB)->setTailCallKind(
206          cast<CallInst>(CB)->getTailCallKind());
207    }
208    NewCB->setCallingConv(CB->getCallingConv());
209    NewCB->setAttributes(PAL);
210    NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
211
212    Args.clear();
213
214    if (!CB->use_empty())
215      CB->replaceAllUsesWith(NewCB);
216
217    NewCB->takeName(CB);
218
219    // Finally, remove the old call from the program, reducing the use-count of
220    // F.
221    CB->eraseFromParent();
222  }
223
224  // Since we have now created the new function, splice the body of the old
225  // function right into the new function, leaving the old rotting hulk of the
226  // function empty.
227  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
228
229  // Loop over the argument list, transferring uses of the old arguments over to
230  // the new arguments, also transferring over the names as well.  While we're at
231  // it, remove the dead arguments from the DeadArguments list.
232  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
233       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
234    // Move the name and users over to the new version.
235    I->replaceAllUsesWith(&*I2);
236    I2->takeName(&*I);
237  }
238
239  // Clone metadatas from the old function, including debug info descriptor.
240  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
241  Fn.getAllMetadata(MDs);
242  for (auto MD : MDs)
243    NF->addMetadata(MD.first, *MD.second);
244
245  // Fix up any BlockAddresses that refer to the function.
246  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
247  // Delete the bitcast that we just created, so that NF does not
248  // appear to be address-taken.
249  NF->removeDeadConstantUsers();
250  // Finally, nuke the old function.
251  Fn.eraseFromParent();
252  return true;
253}
254
255/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
256/// arguments that are unused, and changes the caller parameters to be undefined
257/// instead.
258bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
259  // We cannot change the arguments if this TU does not define the function or
260  // if the linker may choose a function body from another TU, even if the
261  // nominal linkage indicates that other copies of the function have the same
262  // semantics. In the below example, the dead load from %p may not have been
263  // eliminated from the linker-chosen copy of f, so replacing %p with undef
264  // in callers may introduce undefined behavior.
265  //
266  // define linkonce_odr void @f(i32* %p) {
267  //   %v = load i32 %p
268  //   ret void
269  // }
270  if (!Fn.hasExactDefinition())
271    return false;
272
273  // Functions with local linkage should already have been handled, except the
274  // fragile (variadic) ones which we can improve here.
275  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
276    return false;
277
278  // Don't touch naked functions. The assembly might be using an argument, or
279  // otherwise rely on the frame layout in a way that this analysis will not
280  // see.
281  if (Fn.hasFnAttribute(Attribute::Naked))
282    return false;
283
284  if (Fn.use_empty())
285    return false;
286
287  SmallVector<unsigned, 8> UnusedArgs;
288  bool Changed = false;
289
290  for (Argument &Arg : Fn.args()) {
291    if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
292        !Arg.hasPassPointeeByValueCopyAttr()) {
293      if (Arg.isUsedByMetadata()) {
294        Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
295        Changed = true;
296      }
297      UnusedArgs.push_back(Arg.getArgNo());
298      Fn.removeParamUndefImplyingAttrs(Arg.getArgNo());
299    }
300  }
301
302  if (UnusedArgs.empty())
303    return false;
304
305  for (Use &U : Fn.uses()) {
306    CallBase *CB = dyn_cast<CallBase>(U.getUser());
307    if (!CB || !CB->isCallee(&U))
308      continue;
309
310    // Now go through all unused args and replace them with "undef".
311    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
312      unsigned ArgNo = UnusedArgs[I];
313
314      Value *Arg = CB->getArgOperand(ArgNo);
315      CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType()));
316      CB->removeParamUndefImplyingAttrs(ArgNo);
317
318      ++NumArgumentsReplacedWithUndef;
319      Changed = true;
320    }
321  }
322
323  return Changed;
324}
325
326/// Convenience function that returns the number of return values. It returns 0
327/// for void functions and 1 for functions not returning a struct. It returns
328/// the number of struct elements for functions returning a struct.
329static unsigned NumRetVals(const Function *F) {
330  Type *RetTy = F->getReturnType();
331  if (RetTy->isVoidTy())
332    return 0;
333  else if (StructType *STy = dyn_cast<StructType>(RetTy))
334    return STy->getNumElements();
335  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
336    return ATy->getNumElements();
337  else
338    return 1;
339}
340
341/// Returns the sub-type a function will return at a given Idx. Should
342/// correspond to the result type of an ExtractValue instruction executed with
343/// just that one Idx (i.e. only top-level structure is considered).
344static Type *getRetComponentType(const Function *F, unsigned Idx) {
345  Type *RetTy = F->getReturnType();
346  assert(!RetTy->isVoidTy() && "void type has no subtype");
347
348  if (StructType *STy = dyn_cast<StructType>(RetTy))
349    return STy->getElementType(Idx);
350  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
351    return ATy->getElementType();
352  else
353    return RetTy;
354}
355
356/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
357/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
358/// liveness of Use.
359DeadArgumentEliminationPass::Liveness
360DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
361                                           UseVector &MaybeLiveUses) {
362  // We're live if our use or its Function is already marked as live.
363  if (IsLive(Use))
364    return Live;
365
366  // We're maybe live otherwise, but remember that we must become live if
367  // Use becomes live.
368  MaybeLiveUses.push_back(Use);
369  return MaybeLive;
370}
371
372/// SurveyUse - This looks at a single use of an argument or return value
373/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
374/// if it causes the used value to become MaybeLive.
375///
376/// RetValNum is the return value number to use when this use is used in a
377/// return instruction. This is used in the recursion, you should always leave
378/// it at 0.
379DeadArgumentEliminationPass::Liveness
380DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
381                                       unsigned RetValNum) {
382    const User *V = U->getUser();
383    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
384      // The value is returned from a function. It's only live when the
385      // function's return value is live. We use RetValNum here, for the case
386      // that U is really a use of an insertvalue instruction that uses the
387      // original Use.
388      const Function *F = RI->getParent()->getParent();
389      if (RetValNum != -1U) {
390        RetOrArg Use = CreateRet(F, RetValNum);
391        // We might be live, depending on the liveness of Use.
392        return MarkIfNotLive(Use, MaybeLiveUses);
393      } else {
394        DeadArgumentEliminationPass::Liveness Result = MaybeLive;
395        for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
396          RetOrArg Use = CreateRet(F, Ri);
397          // We might be live, depending on the liveness of Use. If any
398          // sub-value is live, then the entire value is considered live. This
399          // is a conservative choice, and better tracking is possible.
400          DeadArgumentEliminationPass::Liveness SubResult =
401              MarkIfNotLive(Use, MaybeLiveUses);
402          if (Result != Live)
403            Result = SubResult;
404        }
405        return Result;
406      }
407    }
408    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
409      if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
410          && IV->hasIndices())
411        // The use we are examining is inserted into an aggregate. Our liveness
412        // depends on all uses of that aggregate, but if it is used as a return
413        // value, only index at which we were inserted counts.
414        RetValNum = *IV->idx_begin();
415
416      // Note that if we are used as the aggregate operand to the insertvalue,
417      // we don't change RetValNum, but do survey all our uses.
418
419      Liveness Result = MaybeLive;
420      for (const Use &UU : IV->uses()) {
421        Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
422        if (Result == Live)
423          break;
424      }
425      return Result;
426    }
427
428    if (const auto *CB = dyn_cast<CallBase>(V)) {
429      const Function *F = CB->getCalledFunction();
430      if (F) {
431        // Used in a direct call.
432
433        // The function argument is live if it is used as a bundle operand.
434        if (CB->isBundleOperand(U))
435          return Live;
436
437        // Find the argument number. We know for sure that this use is an
438        // argument, since if it was the function argument this would be an
439        // indirect call and the we know can't be looking at a value of the
440        // label type (for the invoke instruction).
441        unsigned ArgNo = CB->getArgOperandNo(U);
442
443        if (ArgNo >= F->getFunctionType()->getNumParams())
444          // The value is passed in through a vararg! Must be live.
445          return Live;
446
447        assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
448               "Argument is not where we expected it");
449
450        // Value passed to a normal call. It's only live when the corresponding
451        // argument to the called function turns out live.
452        RetOrArg Use = CreateArg(F, ArgNo);
453        return MarkIfNotLive(Use, MaybeLiveUses);
454      }
455    }
456    // Used in any other way? Value must be live.
457    return Live;
458}
459
460/// SurveyUses - This looks at all the uses of the given value
461/// Returns the Liveness deduced from the uses of this value.
462///
463/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
464/// the result is Live, MaybeLiveUses might be modified but its content should
465/// be ignored (since it might not be complete).
466DeadArgumentEliminationPass::Liveness
467DeadArgumentEliminationPass::SurveyUses(const Value *V,
468                                        UseVector &MaybeLiveUses) {
469  // Assume it's dead (which will only hold if there are no uses at all..).
470  Liveness Result = MaybeLive;
471  // Check each use.
472  for (const Use &U : V->uses()) {
473    Result = SurveyUse(&U, MaybeLiveUses);
474    if (Result == Live)
475      break;
476  }
477  return Result;
478}
479
480// SurveyFunction - This performs the initial survey of the specified function,
481// checking out whether or not it uses any of its incoming arguments or whether
482// any callers use the return value.  This fills in the LiveValues set and Uses
483// map.
484//
485// We consider arguments of non-internal functions to be intrinsically alive as
486// well as arguments to functions which have their "address taken".
487void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
488  // Functions with inalloca/preallocated parameters are expecting args in a
489  // particular register and memory layout.
490  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
491      F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
492    MarkLive(F);
493    return;
494  }
495
496  // Don't touch naked functions. The assembly might be using an argument, or
497  // otherwise rely on the frame layout in a way that this analysis will not
498  // see.
499  if (F.hasFnAttribute(Attribute::Naked)) {
500    MarkLive(F);
501    return;
502  }
503
504  unsigned RetCount = NumRetVals(&F);
505
506  // Assume all return values are dead
507  using RetVals = SmallVector<Liveness, 5>;
508
509  RetVals RetValLiveness(RetCount, MaybeLive);
510
511  using RetUses = SmallVector<UseVector, 5>;
512
513  // These vectors map each return value to the uses that make it MaybeLive, so
514  // we can add those to the Uses map if the return value really turns out to be
515  // MaybeLive. Initialized to a list of RetCount empty lists.
516  RetUses MaybeLiveRetUses(RetCount);
517
518  bool HasMustTailCalls = false;
519
520  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
521    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
522      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
523          != F.getFunctionType()->getReturnType()) {
524        // We don't support old style multiple return values.
525        MarkLive(F);
526        return;
527      }
528    }
529
530    // If we have any returns of `musttail` results - the signature can't
531    // change
532    if (BB->getTerminatingMustTailCall() != nullptr)
533      HasMustTailCalls = true;
534  }
535
536  if (HasMustTailCalls) {
537    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
538                      << " has musttail calls\n");
539  }
540
541  if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
542    MarkLive(F);
543    return;
544  }
545
546  LLVM_DEBUG(
547      dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
548             << F.getName() << "\n");
549  // Keep track of the number of live retvals, so we can skip checks once all
550  // of them turn out to be live.
551  unsigned NumLiveRetVals = 0;
552
553  bool HasMustTailCallers = false;
554
555  // Loop all uses of the function.
556  for (const Use &U : F.uses()) {
557    // If the function is PASSED IN as an argument, its address has been
558    // taken.
559    const auto *CB = dyn_cast<CallBase>(U.getUser());
560    if (!CB || !CB->isCallee(&U)) {
561      MarkLive(F);
562      return;
563    }
564
565    // The number of arguments for `musttail` call must match the number of
566    // arguments of the caller
567    if (CB->isMustTailCall())
568      HasMustTailCallers = true;
569
570    // If we end up here, we are looking at a direct call to our function.
571
572    // Now, check how our return value(s) is/are used in this caller. Don't
573    // bother checking return values if all of them are live already.
574    if (NumLiveRetVals == RetCount)
575      continue;
576
577    // Check all uses of the return value.
578    for (const Use &U : CB->uses()) {
579      if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
580        // This use uses a part of our return value, survey the uses of
581        // that part and store the results for this index only.
582        unsigned Idx = *Ext->idx_begin();
583        if (RetValLiveness[Idx] != Live) {
584          RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
585          if (RetValLiveness[Idx] == Live)
586            NumLiveRetVals++;
587        }
588      } else {
589        // Used by something else than extractvalue. Survey, but assume that the
590        // result applies to all sub-values.
591        UseVector MaybeLiveAggregateUses;
592        if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
593          NumLiveRetVals = RetCount;
594          RetValLiveness.assign(RetCount, Live);
595          break;
596        } else {
597          for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
598            if (RetValLiveness[Ri] != Live)
599              MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
600                                          MaybeLiveAggregateUses.end());
601          }
602        }
603      }
604    }
605  }
606
607  if (HasMustTailCallers) {
608    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
609                      << " has musttail callers\n");
610  }
611
612  // Now we've inspected all callers, record the liveness of our return values.
613  for (unsigned Ri = 0; Ri != RetCount; ++Ri)
614    MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
615
616  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
617                    << F.getName() << "\n");
618
619  // Now, check all of our arguments.
620  unsigned ArgI = 0;
621  UseVector MaybeLiveArgUses;
622  for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
623       AI != E; ++AI, ++ArgI) {
624    Liveness Result;
625    if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
626        HasMustTailCalls) {
627      // Variadic functions will already have a va_arg function expanded inside
628      // them, making them potentially very sensitive to ABI changes resulting
629      // from removing arguments entirely, so don't. For example AArch64 handles
630      // register and stack HFAs very differently, and this is reflected in the
631      // IR which has already been generated.
632      //
633      // `musttail` calls to this function restrict argument removal attempts.
634      // The signature of the caller must match the signature of the function.
635      //
636      // `musttail` calls in this function prevents us from changing its
637      // signature
638      Result = Live;
639    } else {
640      // See what the effect of this use is (recording any uses that cause
641      // MaybeLive in MaybeLiveArgUses).
642      Result = SurveyUses(&*AI, MaybeLiveArgUses);
643    }
644
645    // Mark the result.
646    MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
647    // Clear the vector again for the next iteration.
648    MaybeLiveArgUses.clear();
649  }
650}
651
652/// MarkValue - This function marks the liveness of RA depending on L. If L is
653/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
654/// such that RA will be marked live if any use in MaybeLiveUses gets marked
655/// live later on.
656void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
657                                            const UseVector &MaybeLiveUses) {
658  switch (L) {
659    case Live:
660      MarkLive(RA);
661      break;
662    case MaybeLive:
663      assert(!IsLive(RA) && "Use is already live!");
664      for (const auto &MaybeLiveUse : MaybeLiveUses) {
665        if (IsLive(MaybeLiveUse)) {
666          // A use is live, so this value is live.
667          MarkLive(RA);
668          break;
669        } else {
670          // Note any uses of this value, so this value can be
671          // marked live whenever one of the uses becomes live.
672          Uses.insert(std::make_pair(MaybeLiveUse, RA));
673        }
674      }
675      break;
676  }
677}
678
679/// MarkLive - Mark the given Function as alive, meaning that it cannot be
680/// changed in any way. Additionally,
681/// mark any values that are used as this function's parameters or by its return
682/// values (according to Uses) live as well.
683void DeadArgumentEliminationPass::MarkLive(const Function &F) {
684  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
685                    << F.getName() << "\n");
686  // Mark the function as live.
687  LiveFunctions.insert(&F);
688  // Mark all arguments as live.
689  for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
690    PropagateLiveness(CreateArg(&F, ArgI));
691  // Mark all return values as live.
692  for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
693    PropagateLiveness(CreateRet(&F, Ri));
694}
695
696/// MarkLive - Mark the given return value or argument as live. Additionally,
697/// mark any values that are used by this value (according to Uses) live as
698/// well.
699void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
700  if (IsLive(RA))
701    return; // Already marked Live.
702
703  LiveValues.insert(RA);
704
705  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
706                    << RA.getDescription() << " live\n");
707  PropagateLiveness(RA);
708}
709
710bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) {
711  return LiveFunctions.count(RA.F) || LiveValues.count(RA);
712}
713
714/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
715/// to any other values it uses (according to Uses).
716void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
717  // We don't use upper_bound (or equal_range) here, because our recursive call
718  // to ourselves is likely to cause the upper_bound (which is the first value
719  // not belonging to RA) to become erased and the iterator invalidated.
720  UseMap::iterator Begin = Uses.lower_bound(RA);
721  UseMap::iterator E = Uses.end();
722  UseMap::iterator I;
723  for (I = Begin; I != E && I->first == RA; ++I)
724    MarkLive(I->second);
725
726  // Erase RA from the Uses map (from the lower bound to wherever we ended up
727  // after the loop).
728  Uses.erase(Begin, I);
729}
730
731// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
732// that are not in LiveValues. Transform the function and all of the callees of
733// the function to not have these arguments and return values.
734//
735bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
736  // Don't modify fully live functions
737  if (LiveFunctions.count(F))
738    return false;
739
740  // Start by computing a new prototype for the function, which is the same as
741  // the old function, but has fewer arguments and a different return type.
742  FunctionType *FTy = F->getFunctionType();
743  std::vector<Type*> Params;
744
745  // Keep track of if we have a live 'returned' argument
746  bool HasLiveReturnedArg = false;
747
748  // Set up to build a new list of parameter attributes.
749  SmallVector<AttributeSet, 8> ArgAttrVec;
750  const AttributeList &PAL = F->getAttributes();
751
752  // Remember which arguments are still alive.
753  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
754  // Construct the new parameter list from non-dead arguments. Also construct
755  // a new set of parameter attributes to correspond. Skip the first parameter
756  // attribute, since that belongs to the return value.
757  unsigned ArgI = 0;
758  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
759       ++I, ++ArgI) {
760    RetOrArg Arg = CreateArg(F, ArgI);
761    if (LiveValues.erase(Arg)) {
762      Params.push_back(I->getType());
763      ArgAlive[ArgI] = true;
764      ArgAttrVec.push_back(PAL.getParamAttributes(ArgI));
765      HasLiveReturnedArg |= PAL.hasParamAttribute(ArgI, Attribute::Returned);
766    } else {
767      ++NumArgumentsEliminated;
768      LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
769                        << ArgI << " (" << I->getName() << ") from "
770                        << F->getName() << "\n");
771    }
772  }
773
774  // Find out the new return value.
775  Type *RetTy = FTy->getReturnType();
776  Type *NRetTy = nullptr;
777  unsigned RetCount = NumRetVals(F);
778
779  // -1 means unused, other numbers are the new index
780  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
781  std::vector<Type*> RetTypes;
782
783  // If there is a function with a live 'returned' argument but a dead return
784  // value, then there are two possible actions:
785  // 1) Eliminate the return value and take off the 'returned' attribute on the
786  //    argument.
787  // 2) Retain the 'returned' attribute and treat the return value (but not the
788  //    entire function) as live so that it is not eliminated.
789  //
790  // It's not clear in the general case which option is more profitable because,
791  // even in the absence of explicit uses of the return value, code generation
792  // is free to use the 'returned' attribute to do things like eliding
793  // save/restores of registers across calls. Whether or not this happens is
794  // target and ABI-specific as well as depending on the amount of register
795  // pressure, so there's no good way for an IR-level pass to figure this out.
796  //
797  // Fortunately, the only places where 'returned' is currently generated by
798  // the FE are places where 'returned' is basically free and almost always a
799  // performance win, so the second option can just be used always for now.
800  //
801  // This should be revisited if 'returned' is ever applied more liberally.
802  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
803    NRetTy = RetTy;
804  } else {
805    // Look at each of the original return values individually.
806    for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
807      RetOrArg Ret = CreateRet(F, Ri);
808      if (LiveValues.erase(Ret)) {
809        RetTypes.push_back(getRetComponentType(F, Ri));
810        NewRetIdxs[Ri] = RetTypes.size() - 1;
811      } else {
812        ++NumRetValsEliminated;
813        LLVM_DEBUG(
814            dbgs() << "DeadArgumentEliminationPass - Removing return value "
815                   << Ri << " from " << F->getName() << "\n");
816      }
817    }
818    if (RetTypes.size() > 1) {
819      // More than one return type? Reduce it down to size.
820      if (StructType *STy = dyn_cast<StructType>(RetTy)) {
821        // Make the new struct packed if we used to return a packed struct
822        // already.
823        NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
824      } else {
825        assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
826        NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
827      }
828    } else if (RetTypes.size() == 1)
829      // One return type? Just a simple value then, but only if we didn't use to
830      // return a struct with that simple value before.
831      NRetTy = RetTypes.front();
832    else if (RetTypes.empty())
833      // No return types? Make it void, but only if we didn't use to return {}.
834      NRetTy = Type::getVoidTy(F->getContext());
835  }
836
837  assert(NRetTy && "No new return type found?");
838
839  // The existing function return attributes.
840  AttrBuilder RAttrs(PAL.getRetAttributes());
841
842  // Remove any incompatible attributes, but only if we removed all return
843  // values. Otherwise, ensure that we don't have any conflicting attributes
844  // here. Currently, this should not be possible, but special handling might be
845  // required when new return value attributes are added.
846  if (NRetTy->isVoidTy())
847    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
848  else
849    assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
850           "Return attributes no longer compatible?");
851
852  AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
853
854  // Strip allocsize attributes. They might refer to the deleted arguments.
855  AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
856      F->getContext(), Attribute::AllocSize);
857
858  // Reconstruct the AttributesList based on the vector we constructed.
859  assert(ArgAttrVec.size() == Params.size());
860  AttributeList NewPAL =
861      AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
862
863  // Create the new function type based on the recomputed parameters.
864  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
865
866  // No change?
867  if (NFTy == FTy)
868    return false;
869
870  // Create the new function body and insert it into the module...
871  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
872  NF->copyAttributesFrom(F);
873  NF->setComdat(F->getComdat());
874  NF->setAttributes(NewPAL);
875  // Insert the new function before the old function, so we won't be processing
876  // it again.
877  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
878  NF->takeName(F);
879
880  // Loop over all of the callers of the function, transforming the call sites
881  // to pass in a smaller number of arguments into the new function.
882  std::vector<Value*> Args;
883  while (!F->use_empty()) {
884    CallBase &CB = cast<CallBase>(*F->user_back());
885
886    ArgAttrVec.clear();
887    const AttributeList &CallPAL = CB.getAttributes();
888
889    // Adjust the call return attributes in case the function was changed to
890    // return void.
891    AttrBuilder RAttrs(CallPAL.getRetAttributes());
892    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
893    AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
894
895    // Declare these outside of the loops, so we can reuse them for the second
896    // loop, which loops the varargs.
897    auto I = CB.arg_begin();
898    unsigned Pi = 0;
899    // Loop over those operands, corresponding to the normal arguments to the
900    // original function, and add those that are still alive.
901    for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
902      if (ArgAlive[Pi]) {
903        Args.push_back(*I);
904        // Get original parameter attributes, but skip return attributes.
905        AttributeSet Attrs = CallPAL.getParamAttributes(Pi);
906        if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
907          // If the return type has changed, then get rid of 'returned' on the
908          // call site. The alternative is to make all 'returned' attributes on
909          // call sites keep the return value alive just like 'returned'
910          // attributes on function declaration but it's less clearly a win and
911          // this is not an expected case anyway
912          ArgAttrVec.push_back(AttributeSet::get(
913              F->getContext(),
914              AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
915        } else {
916          // Otherwise, use the original attributes.
917          ArgAttrVec.push_back(Attrs);
918        }
919      }
920
921    // Push any varargs arguments on the list. Don't forget their attributes.
922    for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
923      Args.push_back(*I);
924      ArgAttrVec.push_back(CallPAL.getParamAttributes(Pi));
925    }
926
927    // Reconstruct the AttributesList based on the vector we constructed.
928    assert(ArgAttrVec.size() == Args.size());
929
930    // Again, be sure to remove any allocsize attributes, since their indices
931    // may now be incorrect.
932    AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
933        F->getContext(), Attribute::AllocSize);
934
935    AttributeList NewCallPAL = AttributeList::get(
936        F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
937
938    SmallVector<OperandBundleDef, 1> OpBundles;
939    CB.getOperandBundlesAsDefs(OpBundles);
940
941    CallBase *NewCB = nullptr;
942    if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
943      NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
944                                 Args, OpBundles, "", CB.getParent());
945    } else {
946      NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
947      cast<CallInst>(NewCB)->setTailCallKind(
948          cast<CallInst>(&CB)->getTailCallKind());
949    }
950    NewCB->setCallingConv(CB.getCallingConv());
951    NewCB->setAttributes(NewCallPAL);
952    NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
953    Args.clear();
954    ArgAttrVec.clear();
955
956    if (!CB.use_empty() || CB.isUsedByMetadata()) {
957      if (NewCB->getType() == CB.getType()) {
958        // Return type not changed? Just replace users then.
959        CB.replaceAllUsesWith(NewCB);
960        NewCB->takeName(&CB);
961      } else if (NewCB->getType()->isVoidTy()) {
962        // If the return value is dead, replace any uses of it with undef
963        // (any non-debug value uses will get removed later on).
964        if (!CB.getType()->isX86_MMXTy())
965          CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
966      } else {
967        assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
968               "Return type changed, but not into a void. The old return type"
969               " must have been a struct or an array!");
970        Instruction *InsertPt = &CB;
971        if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
972          BasicBlock *NewEdge =
973              SplitEdge(NewCB->getParent(), II->getNormalDest());
974          InsertPt = &*NewEdge->getFirstInsertionPt();
975        }
976
977        // We used to return a struct or array. Instead of doing smart stuff
978        // with all the uses, we will just rebuild it using extract/insertvalue
979        // chaining and let instcombine clean that up.
980        //
981        // Start out building up our return value from undef
982        Value *RetVal = UndefValue::get(RetTy);
983        for (unsigned Ri = 0; Ri != RetCount; ++Ri)
984          if (NewRetIdxs[Ri] != -1) {
985            Value *V;
986            IRBuilder<NoFolder> IRB(InsertPt);
987            if (RetTypes.size() > 1)
988              // We are still returning a struct, so extract the value from our
989              // return value
990              V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
991            else
992              // We are now returning a single element, so just insert that
993              V = NewCB;
994            // Insert the value at the old position
995            RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
996          }
997        // Now, replace all uses of the old call instruction with the return
998        // struct we built
999        CB.replaceAllUsesWith(RetVal);
1000        NewCB->takeName(&CB);
1001      }
1002    }
1003
1004    // Finally, remove the old call from the program, reducing the use-count of
1005    // F.
1006    CB.eraseFromParent();
1007  }
1008
1009  // Since we have now created the new function, splice the body of the old
1010  // function right into the new function, leaving the old rotting hulk of the
1011  // function empty.
1012  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1013
1014  // Loop over the argument list, transferring uses of the old arguments over to
1015  // the new arguments, also transferring over the names as well.
1016  ArgI = 0;
1017  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1018                              I2 = NF->arg_begin();
1019       I != E; ++I, ++ArgI)
1020    if (ArgAlive[ArgI]) {
1021      // If this is a live argument, move the name and users over to the new
1022      // version.
1023      I->replaceAllUsesWith(&*I2);
1024      I2->takeName(&*I);
1025      ++I2;
1026    } else {
1027      // If this argument is dead, replace any uses of it with undef
1028      // (any non-debug value uses will get removed later on).
1029      if (!I->getType()->isX86_MMXTy())
1030        I->replaceAllUsesWith(UndefValue::get(I->getType()));
1031    }
1032
1033  // If we change the return value of the function we must rewrite any return
1034  // instructions.  Check this now.
1035  if (F->getReturnType() != NF->getReturnType())
1036    for (BasicBlock &BB : *NF)
1037      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1038        IRBuilder<NoFolder> IRB(RI);
1039        Value *RetVal = nullptr;
1040
1041        if (!NFTy->getReturnType()->isVoidTy()) {
1042          assert(RetTy->isStructTy() || RetTy->isArrayTy());
1043          // The original return value was a struct or array, insert
1044          // extractvalue/insertvalue chains to extract only the values we need
1045          // to return and insert them into our new result.
1046          // This does generate messy code, but we'll let it to instcombine to
1047          // clean that up.
1048          Value *OldRet = RI->getOperand(0);
1049          // Start out building up our return value from undef
1050          RetVal = UndefValue::get(NRetTy);
1051          for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1052            if (NewRetIdxs[RetI] != -1) {
1053              Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1054
1055              if (RetTypes.size() > 1) {
1056                // We're still returning a struct, so reinsert the value into
1057                // our new return value at the new index
1058
1059                RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1060                                               "newret");
1061              } else {
1062                // We are now only returning a simple value, so just return the
1063                // extracted value.
1064                RetVal = EV;
1065              }
1066            }
1067        }
1068        // Replace the return instruction with one returning the new return
1069        // value (possibly 0 if we became void).
1070        auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1071        NewRet->setDebugLoc(RI->getDebugLoc());
1072        BB.getInstList().erase(RI);
1073      }
1074
1075  // Clone metadatas from the old function, including debug info descriptor.
1076  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1077  F->getAllMetadata(MDs);
1078  for (auto MD : MDs)
1079    NF->addMetadata(MD.first, *MD.second);
1080
1081  // Now that the old function is dead, delete it.
1082  F->eraseFromParent();
1083
1084  return true;
1085}
1086
1087PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1088                                                   ModuleAnalysisManager &) {
1089  bool Changed = false;
1090
1091  // First pass: Do a simple check to see if any functions can have their "..."
1092  // removed.  We can do this if they never call va_start.  This loop cannot be
1093  // fused with the next loop, because deleting a function invalidates
1094  // information computed while surveying other functions.
1095  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1096  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1097    Function &F = *I++;
1098    if (F.getFunctionType()->isVarArg())
1099      Changed |= DeleteDeadVarargs(F);
1100  }
1101
1102  // Second phase:loop through the module, determining which arguments are live.
1103  // We assume all arguments are dead unless proven otherwise (allowing us to
1104  // determine that dead arguments passed into recursive functions are dead).
1105  //
1106  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1107  for (auto &F : M)
1108    SurveyFunction(F);
1109
1110  // Now, remove all dead arguments and return values from each function in
1111  // turn.
1112  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1113    // Increment now, because the function will probably get removed (ie.
1114    // replaced by a new one).
1115    Function *F = &*I++;
1116    Changed |= RemoveDeadStuffFromFunction(F);
1117  }
1118
1119  // Finally, look for any unused parameters in functions with non-local
1120  // linkage and replace the passed in parameters with undef.
1121  for (auto &F : M)
1122    Changed |= RemoveDeadArgumentsFromCallers(F);
1123
1124  if (!Changed)
1125    return PreservedAnalyses::all();
1126  return PreservedAnalyses::none();
1127}
1128