1//===- HexagonGenInsert.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "BitTracker.h"
10#include "HexagonBitTracker.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/GraphTraits.h"
17#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/TargetRegisterInfo.h"
31#include "llvm/IR/DebugLoc.h"
32#include "llvm/InitializePasses.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Timer.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <iterator>
43#include <utility>
44#include <vector>
45
46#define DEBUG_TYPE "hexinsert"
47
48using namespace llvm;
49
50static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
51  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
52// The distance cutoff is selected based on the precheckin-perf results:
53// cutoffs 20, 25, 35, and 40 are worse than 30.
54static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
55  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
56  "generation."));
57
58// Limit the container sizes for extreme cases where we run out of memory.
59static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
60  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
61static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
62  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
63
64static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
65  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
66static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
67  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
68  "generation"));
69
70static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
71  cl::ZeroOrMore);
72static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
73  cl::ZeroOrMore);
74// Whether to construct constant values via "insert". Could eliminate constant
75// extenders, but often not practical.
76static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
77  cl::ZeroOrMore);
78
79// The preprocessor gets confused when the DEBUG macro is passed larger
80// chunks of code. Use this function to detect debugging.
81inline static bool isDebug() {
82#ifndef NDEBUG
83  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
84#else
85  return false;
86#endif
87}
88
89namespace {
90
91  // Set of virtual registers, based on BitVector.
92  struct RegisterSet : private BitVector {
93    RegisterSet() = default;
94    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
95    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
96    RegisterSet &operator=(const RegisterSet &RS) {
97      BitVector::operator=(RS);
98      return *this;
99    }
100
101    using BitVector::clear;
102
103    unsigned find_first() const {
104      int First = BitVector::find_first();
105      if (First < 0)
106        return 0;
107      return x2v(First);
108    }
109
110    unsigned find_next(unsigned Prev) const {
111      int Next = BitVector::find_next(v2x(Prev));
112      if (Next < 0)
113        return 0;
114      return x2v(Next);
115    }
116
117    RegisterSet &insert(unsigned R) {
118      unsigned Idx = v2x(R);
119      ensure(Idx);
120      return static_cast<RegisterSet&>(BitVector::set(Idx));
121    }
122    RegisterSet &remove(unsigned R) {
123      unsigned Idx = v2x(R);
124      if (Idx >= size())
125        return *this;
126      return static_cast<RegisterSet&>(BitVector::reset(Idx));
127    }
128
129    RegisterSet &insert(const RegisterSet &Rs) {
130      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
131    }
132    RegisterSet &remove(const RegisterSet &Rs) {
133      return static_cast<RegisterSet&>(BitVector::reset(Rs));
134    }
135
136    reference operator[](unsigned R) {
137      unsigned Idx = v2x(R);
138      ensure(Idx);
139      return BitVector::operator[](Idx);
140    }
141    bool operator[](unsigned R) const {
142      unsigned Idx = v2x(R);
143      assert(Idx < size());
144      return BitVector::operator[](Idx);
145    }
146    bool has(unsigned R) const {
147      unsigned Idx = v2x(R);
148      if (Idx >= size())
149        return false;
150      return BitVector::test(Idx);
151    }
152
153    bool empty() const {
154      return !BitVector::any();
155    }
156    bool includes(const RegisterSet &Rs) const {
157      // A.BitVector::test(B)  <=>  A-B != {}
158      return !Rs.BitVector::test(*this);
159    }
160    bool intersects(const RegisterSet &Rs) const {
161      return BitVector::anyCommon(Rs);
162    }
163
164  private:
165    void ensure(unsigned Idx) {
166      if (size() <= Idx)
167        resize(std::max(Idx+1, 32U));
168    }
169
170    static inline unsigned v2x(unsigned v) {
171      return Register::virtReg2Index(v);
172    }
173
174    static inline unsigned x2v(unsigned x) {
175      return Register::index2VirtReg(x);
176    }
177  };
178
179  struct PrintRegSet {
180    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
181      : RS(S), TRI(RI) {}
182
183    friend raw_ostream &operator<< (raw_ostream &OS,
184          const PrintRegSet &P);
185
186  private:
187    const RegisterSet &RS;
188    const TargetRegisterInfo *TRI;
189  };
190
191  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
192    OS << '{';
193    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
194      OS << ' ' << printReg(R, P.TRI);
195    OS << " }";
196    return OS;
197  }
198
199  // A convenience class to associate unsigned numbers (such as virtual
200  // registers) with unsigned numbers.
201  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
202    UnsignedMap() = default;
203
204  private:
205    using BaseType = DenseMap<unsigned, unsigned>;
206  };
207
208  // A utility to establish an ordering between virtual registers:
209  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
210  // This is meant as a cache for the ordering of virtual registers defined
211  // by a potentially expensive comparison function, or obtained by a proce-
212  // dure that should not be repeated each time two registers are compared.
213  struct RegisterOrdering : public UnsignedMap {
214    RegisterOrdering() = default;
215
216    unsigned operator[](unsigned VR) const {
217      const_iterator F = find(VR);
218      assert(F != end());
219      return F->second;
220    }
221
222    // Add operator(), so that objects of this class can be used as
223    // comparators in std::sort et al.
224    bool operator() (unsigned VR1, unsigned VR2) const {
225      return operator[](VR1) < operator[](VR2);
226    }
227  };
228
229  // Ordering of bit values. This class does not have operator[], but
230  // is supplies a comparison operator() for use in std:: algorithms.
231  // The order is as follows:
232  // - 0 < 1 < ref
233  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
234  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
235  struct BitValueOrdering {
236    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
237
238    bool operator() (const BitTracker::BitValue &V1,
239          const BitTracker::BitValue &V2) const;
240
241    const RegisterOrdering &BaseOrd;
242  };
243
244} // end anonymous namespace
245
246bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
247      const BitTracker::BitValue &V2) const {
248  if (V1 == V2)
249    return false;
250  // V1==0 => true, V2==0 => false
251  if (V1.is(0) || V2.is(0))
252    return V1.is(0);
253  // Neither of V1,V2 is 0, and V1!=V2.
254  // V2==1 => false, V1==1 => true
255  if (V2.is(1) || V1.is(1))
256    return !V2.is(1);
257  // Both V1,V2 are refs.
258  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
259  if (Ind1 != Ind2)
260    return Ind1 < Ind2;
261  // If V1.Pos==V2.Pos
262  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
263  return V1.RefI.Pos < V2.RefI.Pos;
264}
265
266namespace {
267
268  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
269  // complexity, this class will memoize the lookup results to reduce
270  // the access time for repeated lookups of the same cell.
271  struct CellMapShadow {
272    CellMapShadow(const BitTracker &T) : BT(T) {}
273
274    const BitTracker::RegisterCell &lookup(unsigned VR) {
275      unsigned RInd = Register::virtReg2Index(VR);
276      // Grow the vector to at least 32 elements.
277      if (RInd >= CVect.size())
278        CVect.resize(std::max(RInd+16, 32U), nullptr);
279      const BitTracker::RegisterCell *CP = CVect[RInd];
280      if (CP == nullptr)
281        CP = CVect[RInd] = &BT.lookup(VR);
282      return *CP;
283    }
284
285    const BitTracker &BT;
286
287  private:
288    using CellVectType = std::vector<const BitTracker::RegisterCell *>;
289
290    CellVectType CVect;
291  };
292
293  // Comparator class for lexicographic ordering of virtual registers
294  // according to the corresponding BitTracker::RegisterCell objects.
295  struct RegisterCellLexCompare {
296    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
297      : BitOrd(BO), CM(M) {}
298
299    bool operator() (unsigned VR1, unsigned VR2) const;
300
301  private:
302    const BitValueOrdering &BitOrd;
303    CellMapShadow &CM;
304  };
305
306  // Comparator class for lexicographic ordering of virtual registers
307  // according to the specified bits of the corresponding BitTracker::
308  // RegisterCell objects.
309  // Specifically, this class will be used to compare bit B of a register
310  // cell for a selected virtual register R with bit N of any register
311  // other than R.
312  struct RegisterCellBitCompareSel {
313    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
314          const BitValueOrdering &BO, CellMapShadow &M)
315      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
316
317    bool operator() (unsigned VR1, unsigned VR2) const;
318
319  private:
320    const unsigned SelR, SelB;
321    const unsigned BitN;
322    const BitValueOrdering &BitOrd;
323    CellMapShadow &CM;
324  };
325
326} // end anonymous namespace
327
328bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
329  // Ordering of registers, made up from two given orderings:
330  // - the ordering of the register numbers, and
331  // - the ordering of register cells.
332  // Def. R1 < R2 if:
333  // - cell(R1) < cell(R2), or
334  // - cell(R1) == cell(R2), and index(R1) < index(R2).
335  //
336  // For register cells, the ordering is lexicographic, with index 0 being
337  // the most significant.
338  if (VR1 == VR2)
339    return false;
340
341  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
342  uint16_t W1 = RC1.width(), W2 = RC2.width();
343  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
344    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
345    if (V1 != V2)
346      return BitOrd(V1, V2);
347  }
348  // Cells are equal up until the common length.
349  if (W1 != W2)
350    return W1 < W2;
351
352  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
353}
354
355bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
356  if (VR1 == VR2)
357    return false;
358  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
359  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
360  uint16_t W1 = RC1.width(), W2 = RC2.width();
361  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
362  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
363  // If Bit1 exceeds the width of VR1, then:
364  // - return false, if at the same time Bit2 exceeds VR2, or
365  // - return true, otherwise.
366  // (I.e. "a bit value that does not exist is less than any bit value
367  // that does exist".)
368  if (W1 <= Bit1)
369    return Bit2 < W2;
370  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
371  if (W2 <= Bit2)
372    return false;
373
374  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
375  if (V1 != V2)
376    return BitOrd(V1, V2);
377  return false;
378}
379
380namespace {
381
382  class OrderedRegisterList {
383    using ListType = std::vector<unsigned>;
384    const unsigned MaxSize;
385
386  public:
387    OrderedRegisterList(const RegisterOrdering &RO)
388      : MaxSize(MaxORLSize), Ord(RO) {}
389
390    void insert(unsigned VR);
391    void remove(unsigned VR);
392
393    unsigned operator[](unsigned Idx) const {
394      assert(Idx < Seq.size());
395      return Seq[Idx];
396    }
397
398    unsigned size() const {
399      return Seq.size();
400    }
401
402    using iterator = ListType::iterator;
403    using const_iterator = ListType::const_iterator;
404
405    iterator begin() { return Seq.begin(); }
406    iterator end() { return Seq.end(); }
407    const_iterator begin() const { return Seq.begin(); }
408    const_iterator end() const { return Seq.end(); }
409
410    // Convenience function to convert an iterator to the corresponding index.
411    unsigned idx(iterator It) const { return It-begin(); }
412
413  private:
414    ListType Seq;
415    const RegisterOrdering &Ord;
416  };
417
418  struct PrintORL {
419    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
420      : RL(L), TRI(RI) {}
421
422    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
423
424  private:
425    const OrderedRegisterList &RL;
426    const TargetRegisterInfo *TRI;
427  };
428
429  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
430    OS << '(';
431    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
432    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
433      if (I != B)
434        OS << ", ";
435      OS << printReg(*I, P.TRI);
436    }
437    OS << ')';
438    return OS;
439  }
440
441} // end anonymous namespace
442
443void OrderedRegisterList::insert(unsigned VR) {
444  iterator L = llvm::lower_bound(Seq, VR, Ord);
445  if (L == Seq.end())
446    Seq.push_back(VR);
447  else
448    Seq.insert(L, VR);
449
450  unsigned S = Seq.size();
451  if (S > MaxSize)
452    Seq.resize(MaxSize);
453  assert(Seq.size() <= MaxSize);
454}
455
456void OrderedRegisterList::remove(unsigned VR) {
457  iterator L = llvm::lower_bound(Seq, VR, Ord);
458  if (L != Seq.end())
459    Seq.erase(L);
460}
461
462namespace {
463
464  // A record of the insert form. The fields correspond to the operands
465  // of the "insert" instruction:
466  // ... = insert(SrcR, InsR, #Wdh, #Off)
467  struct IFRecord {
468    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
469      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
470
471    unsigned SrcR, InsR;
472    uint16_t Wdh, Off;
473  };
474
475  struct PrintIFR {
476    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
477      : IFR(R), TRI(RI) {}
478
479  private:
480    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
481
482    const IFRecord &IFR;
483    const TargetRegisterInfo *TRI;
484  };
485
486  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
487    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
488    OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
489       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
490    return OS;
491  }
492
493  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
494
495} // end anonymous namespace
496
497namespace llvm {
498
499  void initializeHexagonGenInsertPass(PassRegistry&);
500  FunctionPass *createHexagonGenInsert();
501
502} // end namespace llvm
503
504namespace {
505
506  class HexagonGenInsert : public MachineFunctionPass {
507  public:
508    static char ID;
509
510    HexagonGenInsert() : MachineFunctionPass(ID) {
511      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
512    }
513
514    StringRef getPassName() const override {
515      return "Hexagon generate \"insert\" instructions";
516    }
517
518    void getAnalysisUsage(AnalysisUsage &AU) const override {
519      AU.addRequired<MachineDominatorTree>();
520      AU.addPreserved<MachineDominatorTree>();
521      MachineFunctionPass::getAnalysisUsage(AU);
522    }
523
524    bool runOnMachineFunction(MachineFunction &MF) override;
525
526  private:
527    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
528
529    void buildOrderingMF(RegisterOrdering &RO) const;
530    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
531    bool isIntClass(const TargetRegisterClass *RC) const;
532    bool isConstant(unsigned VR) const;
533    bool isSmallConstant(unsigned VR) const;
534    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
535          uint16_t L, uint16_t S) const;
536    bool findSelfReference(unsigned VR) const;
537    bool findNonSelfReference(unsigned VR) const;
538    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
539    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
540    unsigned distance(const MachineBasicBlock *FromB,
541          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
542          PairMapType &M) const;
543    unsigned distance(MachineBasicBlock::const_iterator FromI,
544          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
545          PairMapType &M) const;
546    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
547    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
548    void findRemovableRegisters(unsigned VR, IFRecord IF,
549          RegisterSet &RMs) const;
550    void computeRemovableRegisters();
551
552    void pruneEmptyLists();
553    void pruneCoveredSets(unsigned VR);
554    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
555    void pruneRegCopies(unsigned VR);
556    void pruneCandidates();
557    void selectCandidates();
558    bool generateInserts();
559
560    bool removeDeadCode(MachineDomTreeNode *N);
561
562    // IFRecord coupled with a set of potentially removable registers:
563    using IFListType = std::vector<IFRecordWithRegSet>;
564    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
565
566    void dump_map() const;
567
568    const HexagonInstrInfo *HII = nullptr;
569    const HexagonRegisterInfo *HRI = nullptr;
570
571    MachineFunction *MFN;
572    MachineRegisterInfo *MRI;
573    MachineDominatorTree *MDT;
574    CellMapShadow *CMS;
575
576    RegisterOrdering BaseOrd;
577    RegisterOrdering CellOrd;
578    IFMapType IFMap;
579  };
580
581} // end anonymous namespace
582
583char HexagonGenInsert::ID = 0;
584
585void HexagonGenInsert::dump_map() const {
586  using iterator = IFMapType::const_iterator;
587
588  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
589    dbgs() << "  " << printReg(I->first, HRI) << ":\n";
590    const IFListType &LL = I->second;
591    for (unsigned i = 0, n = LL.size(); i < n; ++i)
592      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
593             << PrintRegSet(LL[i].second, HRI) << '\n';
594  }
595}
596
597void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
598  unsigned Index = 0;
599
600  using mf_iterator = MachineFunction::const_iterator;
601
602  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
603    const MachineBasicBlock &B = *A;
604    if (!CMS->BT.reached(&B))
605      continue;
606
607    using mb_iterator = MachineBasicBlock::const_iterator;
608
609    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
610      const MachineInstr *MI = &*I;
611      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
612        const MachineOperand &MO = MI->getOperand(i);
613        if (MO.isReg() && MO.isDef()) {
614          Register R = MO.getReg();
615          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
616          if (R.isVirtual())
617            RO.insert(std::make_pair(R, Index++));
618        }
619      }
620    }
621  }
622  // Since some virtual registers may have had their def and uses eliminated,
623  // they are no longer referenced in the code, and so they will not appear
624  // in the map.
625}
626
627void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
628      RegisterOrdering &RO) const {
629  // Create a vector of all virtual registers (collect them from the base
630  // ordering RB), and then sort it using the RegisterCell comparator.
631  BitValueOrdering BVO(RB);
632  RegisterCellLexCompare LexCmp(BVO, *CMS);
633
634  using SortableVectorType = std::vector<unsigned>;
635
636  SortableVectorType VRs;
637  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
638    VRs.push_back(I->first);
639  llvm::sort(VRs, LexCmp);
640  // Transfer the results to the outgoing register ordering.
641  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
642    RO.insert(std::make_pair(VRs[i], i));
643}
644
645inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
646  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
647}
648
649bool HexagonGenInsert::isConstant(unsigned VR) const {
650  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
651  uint16_t W = RC.width();
652  for (uint16_t i = 0; i < W; ++i) {
653    const BitTracker::BitValue &BV = RC[i];
654    if (BV.is(0) || BV.is(1))
655      continue;
656    return false;
657  }
658  return true;
659}
660
661bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
662  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
663  uint16_t W = RC.width();
664  if (W > 64)
665    return false;
666  uint64_t V = 0, B = 1;
667  for (uint16_t i = 0; i < W; ++i) {
668    const BitTracker::BitValue &BV = RC[i];
669    if (BV.is(1))
670      V |= B;
671    else if (!BV.is(0))
672      return false;
673    B <<= 1;
674  }
675
676  // For 32-bit registers, consider: Rd = #s16.
677  if (W == 32)
678    return isInt<16>(V);
679
680  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
681  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
682}
683
684bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
685      unsigned InsR, uint16_t L, uint16_t S) const {
686  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
687  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
688  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
689  // Only integet (32-/64-bit) register classes.
690  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
691    return false;
692  // The "source" register must be of the same class as DstR.
693  if (DstRC != SrcRC)
694    return false;
695  if (DstRC == InsRC)
696    return true;
697  // A 64-bit register can only be generated from other 64-bit registers.
698  if (DstRC == &Hexagon::DoubleRegsRegClass)
699    return false;
700  // Otherwise, the L and S cannot span 32-bit word boundary.
701  if (S < 32 && S+L > 32)
702    return false;
703  return true;
704}
705
706bool HexagonGenInsert::findSelfReference(unsigned VR) const {
707  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
708  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
709    const BitTracker::BitValue &V = RC[i];
710    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
711      return true;
712  }
713  return false;
714}
715
716bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
717  BitTracker::RegisterCell RC = CMS->lookup(VR);
718  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
719    const BitTracker::BitValue &V = RC[i];
720    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
721      return true;
722  }
723  return false;
724}
725
726void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
727      RegisterSet &Defs) const {
728  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
729    const MachineOperand &MO = MI->getOperand(i);
730    if (!MO.isReg() || !MO.isDef())
731      continue;
732    Register R = MO.getReg();
733    if (!R.isVirtual())
734      continue;
735    Defs.insert(R);
736  }
737}
738
739void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
740      RegisterSet &Uses) const {
741  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
742    const MachineOperand &MO = MI->getOperand(i);
743    if (!MO.isReg() || !MO.isUse())
744      continue;
745    Register R = MO.getReg();
746    if (!R.isVirtual())
747      continue;
748    Uses.insert(R);
749  }
750}
751
752unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
753      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
754      PairMapType &M) const {
755  // Forward distance from the end of a block to the beginning of it does
756  // not make sense. This function should not be called with FromB == ToB.
757  assert(FromB != ToB);
758
759  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
760  // If we have already computed it, return the cached result.
761  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
762  if (F != M.end())
763    return F->second;
764  unsigned ToRPO = RPO.lookup(ToN);
765
766  unsigned MaxD = 0;
767
768  using pred_iterator = MachineBasicBlock::const_pred_iterator;
769
770  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
771    const MachineBasicBlock *PB = *I;
772    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
773    // along that path will be 0, and we don't need to do any calculations
774    // on it.
775    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
776      continue;
777    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
778    if (D > MaxD)
779      MaxD = D;
780  }
781
782  // Memoize the result for later lookup.
783  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
784  return MaxD;
785}
786
787unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
788      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
789      PairMapType &M) const {
790  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
791  if (FB == TB)
792    return std::distance(FromI, ToI);
793  unsigned D1 = std::distance(TB->begin(), ToI);
794  unsigned D2 = distance(FB, TB, RPO, M);
795  unsigned D3 = std::distance(FromI, FB->end());
796  return D1+D2+D3;
797}
798
799bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
800      OrderedRegisterList &AVs) {
801  if (isDebug()) {
802    dbgs() << __func__ << ": " << printReg(VR, HRI)
803           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
804  }
805  if (AVs.size() == 0)
806    return false;
807
808  using iterator = OrderedRegisterList::iterator;
809
810  BitValueOrdering BVO(BaseOrd);
811  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
812  uint16_t W = RC.width();
813
814  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
815  using RSListType = std::vector<RSRecord>;
816  // Have a map, with key being the matching prefix length, and the value
817  // being the list of pairs (R,S), where R's prefix matches VR at S.
818  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
819  using LRSMapType = DenseMap<unsigned, RSListType>;
820  LRSMapType LM;
821
822  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
823  // and find matching prefixes from AVs with the rotated RC. Such a prefix
824  // would match a string of bits (of length L) in RC starting at S.
825  for (uint16_t S = 0; S < W; ++S) {
826    iterator B = AVs.begin(), E = AVs.end();
827    // The registers in AVs are ordered according to the lexical order of
828    // the corresponding register cells. This means that the range of regis-
829    // ters in AVs that match a prefix of length L+1 will be contained in
830    // the range that matches a prefix of length L. This means that we can
831    // keep narrowing the search space as the prefix length goes up. This
832    // helps reduce the overall complexity of the search.
833    uint16_t L;
834    for (L = 0; L < W-S; ++L) {
835      // Compare against VR's bits starting at S, which emulates rotation
836      // of VR by S.
837      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
838      iterator NewB = std::lower_bound(B, E, VR, RCB);
839      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
840      // For the registers that are eliminated from the next range, L is
841      // the longest prefix matching VR at position S (their prefixes
842      // differ from VR at S+L). If L>0, record this information for later
843      // use.
844      if (L > 0) {
845        for (iterator I = B; I != NewB; ++I)
846          LM[L].push_back(std::make_pair(*I, S));
847        for (iterator I = NewE; I != E; ++I)
848          LM[L].push_back(std::make_pair(*I, S));
849      }
850      B = NewB, E = NewE;
851      if (B == E)
852        break;
853    }
854    // Record the final register range. If this range is non-empty, then
855    // L=W-S.
856    assert(B == E || L == W-S);
857    if (B != E) {
858      for (iterator I = B; I != E; ++I)
859        LM[L].push_back(std::make_pair(*I, S));
860      // If B!=E, then we found a range of registers whose prefixes cover the
861      // rest of VR from position S. There is no need to further advance S.
862      break;
863    }
864  }
865
866  if (isDebug()) {
867    dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
868    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
869      dbgs() << "  L=" << I->first << ':';
870      const RSListType &LL = I->second;
871      for (unsigned i = 0, n = LL.size(); i < n; ++i)
872        dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
873               << LL[i].second << ')';
874      dbgs() << '\n';
875    }
876  }
877
878  bool Recorded = false;
879
880  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
881    unsigned SrcR = *I;
882    int FDi = -1, LDi = -1;   // First/last different bit.
883    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
884    uint16_t AW = AC.width();
885    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
886      if (RC[i] == AC[i])
887        continue;
888      if (FDi == -1)
889        FDi = i;
890      LDi = i;
891    }
892    if (FDi == -1)
893      continue;  // TODO (future): Record identical registers.
894    // Look for a register whose prefix could patch the range [FD..LD]
895    // where VR and SrcR differ.
896    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
897    uint16_t MinL = LD-FD+1;
898    for (uint16_t L = MinL; L < W; ++L) {
899      LRSMapType::iterator F = LM.find(L);
900      if (F == LM.end())
901        continue;
902      RSListType &LL = F->second;
903      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
904        uint16_t S = LL[i].second;
905        // MinL is the minimum length of the prefix. Any length above MinL
906        // allows some flexibility as to where the prefix can start:
907        // given the extra length EL=L-MinL, the prefix must start between
908        // max(0,FD-EL) and FD.
909        if (S > FD)   // Starts too late.
910          continue;
911        uint16_t EL = L-MinL;
912        uint16_t LowS = (EL < FD) ? FD-EL : 0;
913        if (S < LowS) // Starts too early.
914          continue;
915        unsigned InsR = LL[i].first;
916        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
917          continue;
918        if (isDebug()) {
919          dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
920                 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
921                 << S << ")\n";
922        }
923        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
924        IFMap[VR].push_back(RR);
925        Recorded = true;
926      }
927    }
928  }
929
930  return Recorded;
931}
932
933void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
934      OrderedRegisterList &AVs) {
935  if (isDebug())
936    dbgs() << "visiting block " << printMBBReference(*B) << "\n";
937
938  // First, check if this block is reachable at all. If not, the bit tracker
939  // will not have any information about registers in it.
940  if (!CMS->BT.reached(B))
941    return;
942
943  bool DoConst = OptConst;
944  // Keep a separate set of registers defined in this block, so that we
945  // can remove them from the list of available registers once all DT
946  // successors have been processed.
947  RegisterSet BlockDefs, InsDefs;
948  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
949    MachineInstr *MI = &*I;
950    InsDefs.clear();
951    getInstrDefs(MI, InsDefs);
952    // Leave those alone. They are more transparent than "insert".
953    bool Skip = MI->isCopy() || MI->isRegSequence();
954
955    if (!Skip) {
956      // Visit all defined registers, and attempt to find the corresponding
957      // "insert" representations.
958      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
959        // Do not collect registers that are known to be compile-time cons-
960        // tants, unless requested.
961        if (!DoConst && isConstant(VR))
962          continue;
963        // If VR's cell contains a reference to VR, then VR cannot be defined
964        // via "insert". If VR is a constant that can be generated in a single
965        // instruction (without constant extenders), generating it via insert
966        // makes no sense.
967        if (findSelfReference(VR) || isSmallConstant(VR))
968          continue;
969
970        findRecordInsertForms(VR, AVs);
971        // Stop if the map size is too large.
972        if (IFMap.size() > MaxIFMSize)
973          return;
974      }
975    }
976
977    // Insert the defined registers into the list of available registers
978    // after they have been processed.
979    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
980      AVs.insert(VR);
981    BlockDefs.insert(InsDefs);
982  }
983
984  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
985    MachineBasicBlock *SB = DTN->getBlock();
986    collectInBlock(SB, AVs);
987  }
988
989  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
990    AVs.remove(VR);
991}
992
993void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
994      RegisterSet &RMs) const {
995  // For a given register VR and a insert form, find the registers that are
996  // used by the current definition of VR, and which would no longer be
997  // needed for it after the definition of VR is replaced with the insert
998  // form. These are the registers that could potentially become dead.
999  RegisterSet Regs[2];
1000
1001  unsigned S = 0;  // Register set selector.
1002  Regs[S].insert(VR);
1003
1004  while (!Regs[S].empty()) {
1005    // Breadth-first search.
1006    unsigned OtherS = 1-S;
1007    Regs[OtherS].clear();
1008    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
1009      Regs[S].remove(R);
1010      if (R == IF.SrcR || R == IF.InsR)
1011        continue;
1012      // Check if a given register has bits that are references to any other
1013      // registers. This is to detect situations where the instruction that
1014      // defines register R takes register Q as an operand, but R itself does
1015      // not contain any bits from Q. Loads are examples of how this could
1016      // happen:
1017      //   R = load Q
1018      // In this case (assuming we do not have any knowledge about the loaded
1019      // value), we must not treat R as a "conveyance" of the bits from Q.
1020      // (The information in BT about R's bits would have them as constants,
1021      // in case of zero-extending loads, or refs to R.)
1022      if (!findNonSelfReference(R))
1023        continue;
1024      RMs.insert(R);
1025      const MachineInstr *DefI = MRI->getVRegDef(R);
1026      assert(DefI);
1027      // Do not iterate past PHI nodes to avoid infinite loops. This can
1028      // make the final set a bit less accurate, but the removable register
1029      // sets are an approximation anyway.
1030      if (DefI->isPHI())
1031        continue;
1032      getInstrUses(DefI, Regs[OtherS]);
1033    }
1034    S = OtherS;
1035  }
1036  // The register VR is added to the list as a side-effect of the algorithm,
1037  // but it is not "potentially removable". A potentially removable register
1038  // is one that may become unused (dead) after conversion to the insert form
1039  // IF, and obviously VR (or its replacement) will not become dead by apply-
1040  // ing IF.
1041  RMs.remove(VR);
1042}
1043
1044void HexagonGenInsert::computeRemovableRegisters() {
1045  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1046    IFListType &LL = I->second;
1047    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1048      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1049  }
1050}
1051
1052void HexagonGenInsert::pruneEmptyLists() {
1053  // Remove all entries from the map, where the register has no insert forms
1054  // associated with it.
1055  using IterListType = SmallVector<IFMapType::iterator, 16>;
1056  IterListType Prune;
1057  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1058    if (I->second.empty())
1059      Prune.push_back(I);
1060  }
1061  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1062    IFMap.erase(Prune[i]);
1063}
1064
1065void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1066  IFMapType::iterator F = IFMap.find(VR);
1067  assert(F != IFMap.end());
1068  IFListType &LL = F->second;
1069
1070  // First, examine the IF candidates for register VR whose removable-regis-
1071  // ter sets are empty. This means that a given candidate will not help eli-
1072  // minate any registers, but since "insert" is not a constant-extendable
1073  // instruction, using such a candidate may reduce code size if the defini-
1074  // tion of VR is constant-extended.
1075  // If there exists a candidate with a non-empty set, the ones with empty
1076  // sets will not be used and can be removed.
1077  MachineInstr *DefVR = MRI->getVRegDef(VR);
1078  bool DefEx = HII->isConstExtended(*DefVR);
1079  bool HasNE = false;
1080  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1081    if (LL[i].second.empty())
1082      continue;
1083    HasNE = true;
1084    break;
1085  }
1086  if (!DefEx || HasNE) {
1087    // The definition of VR is not constant-extended, or there is a candidate
1088    // with a non-empty set. Remove all candidates with empty sets.
1089    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1090      return IR.second.empty();
1091    };
1092    llvm::erase_if(LL, IsEmpty);
1093  } else {
1094    // The definition of VR is constant-extended, and all candidates have
1095    // empty removable-register sets. Pick the maximum candidate, and remove
1096    // all others. The "maximum" does not have any special meaning here, it
1097    // is only so that the candidate that will remain on the list is selec-
1098    // ted deterministically.
1099    IFRecord MaxIF = LL[0].first;
1100    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1101      // If LL[MaxI] < LL[i], then MaxI = i.
1102      const IFRecord &IF = LL[i].first;
1103      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1104      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1105      if (M0 > R0)
1106        continue;
1107      if (M0 == R0) {
1108        if (M1 > R1)
1109          continue;
1110        if (M1 == R1) {
1111          if (MaxIF.Wdh > IF.Wdh)
1112            continue;
1113          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1114            continue;
1115        }
1116      }
1117      // MaxIF < IF.
1118      MaxIF = IF;
1119    }
1120    // Remove everything except the maximum candidate. All register sets
1121    // are empty, so no need to preserve anything.
1122    LL.clear();
1123    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1124  }
1125
1126  // Now, remove those whose sets of potentially removable registers are
1127  // contained in another IF candidate for VR. For example, given these
1128  // candidates for %45,
1129  //   %45:
1130  //     (%44,%41,#9,#8), { %42 }
1131  //     (%43,%41,#9,#8), { %42 %44 }
1132  // remove the first one, since it is contained in the second one.
1133  for (unsigned i = 0, n = LL.size(); i < n; ) {
1134    const RegisterSet &RMi = LL[i].second;
1135    unsigned j = 0;
1136    while (j < n) {
1137      if (j != i && LL[j].second.includes(RMi))
1138        break;
1139      j++;
1140    }
1141    if (j == n) {   // RMi not contained in anything else.
1142      i++;
1143      continue;
1144    }
1145    LL.erase(LL.begin()+i);
1146    n = LL.size();
1147  }
1148}
1149
1150void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1151      PairMapType &M) {
1152  IFMapType::iterator F = IFMap.find(VR);
1153  assert(F != IFMap.end());
1154  IFListType &LL = F->second;
1155  unsigned Cutoff = VRegDistCutoff;
1156  const MachineInstr *DefV = MRI->getVRegDef(VR);
1157
1158  for (unsigned i = LL.size(); i > 0; --i) {
1159    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1160    const MachineInstr *DefS = MRI->getVRegDef(SR);
1161    const MachineInstr *DefI = MRI->getVRegDef(IR);
1162    unsigned DSV = distance(DefS, DefV, RPO, M);
1163    if (DSV < Cutoff) {
1164      unsigned DIV = distance(DefI, DefV, RPO, M);
1165      if (DIV < Cutoff)
1166        continue;
1167    }
1168    LL.erase(LL.begin()+(i-1));
1169  }
1170}
1171
1172void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1173  IFMapType::iterator F = IFMap.find(VR);
1174  assert(F != IFMap.end());
1175  IFListType &LL = F->second;
1176
1177  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1178    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1179  };
1180  llvm::erase_if(LL, IsCopy);
1181}
1182
1183void HexagonGenInsert::pruneCandidates() {
1184  // Remove candidates that are not beneficial, regardless of the final
1185  // selection method.
1186  // First, remove candidates whose potentially removable set is a subset
1187  // of another candidate's set.
1188  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1189    pruneCoveredSets(I->first);
1190
1191  UnsignedMap RPO;
1192
1193  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1194
1195  RPOTType RPOT(MFN);
1196  unsigned RPON = 0;
1197  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1198    RPO[(*I)->getNumber()] = RPON++;
1199
1200  PairMapType Memo; // Memoization map for distance calculation.
1201  // Remove candidates that would use registers defined too far away.
1202  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1203    pruneUsesTooFar(I->first, RPO, Memo);
1204
1205  pruneEmptyLists();
1206
1207  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1208    pruneRegCopies(I->first);
1209}
1210
1211namespace {
1212
1213  // Class for comparing IF candidates for registers that have multiple of
1214  // them. The smaller the candidate, according to this ordering, the better.
1215  // First, compare the number of zeros in the associated potentially remova-
1216  // ble register sets. "Zero" indicates that the register is very likely to
1217  // become dead after this transformation.
1218  // Second, compare "averages", i.e. use-count per size. The lower wins.
1219  // After that, it does not really matter which one is smaller. Resolve
1220  // the tie in some deterministic way.
1221  struct IFOrdering {
1222    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1223      : UseC(UC), BaseOrd(BO) {}
1224
1225    bool operator() (const IFRecordWithRegSet &A,
1226                     const IFRecordWithRegSet &B) const;
1227
1228  private:
1229    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1230          unsigned &Sum) const;
1231
1232    const UnsignedMap &UseC;
1233    const RegisterOrdering &BaseOrd;
1234  };
1235
1236} // end anonymous namespace
1237
1238bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1239      const IFRecordWithRegSet &B) const {
1240  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1241  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1242  stats(A.second, SizeA, ZeroA, SumA);
1243  stats(B.second, SizeB, ZeroB, SumB);
1244
1245  // We will pick the minimum element. The more zeros, the better.
1246  if (ZeroA != ZeroB)
1247    return ZeroA > ZeroB;
1248  // Compare SumA/SizeA with SumB/SizeB, lower is better.
1249  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1250  if (AvgA != AvgB)
1251    return AvgA < AvgB;
1252
1253  // The sets compare identical so far. Resort to comparing the IF records.
1254  // The actual values don't matter, this is only for determinism.
1255  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1256  if (OSA != OSB)
1257    return OSA < OSB;
1258  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1259  if (OIA != OIB)
1260    return OIA < OIB;
1261  if (A.first.Wdh != B.first.Wdh)
1262    return A.first.Wdh < B.first.Wdh;
1263  return A.first.Off < B.first.Off;
1264}
1265
1266void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1267      unsigned &Sum) const {
1268  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1269    UnsignedMap::const_iterator F = UseC.find(R);
1270    assert(F != UseC.end());
1271    unsigned UC = F->second;
1272    if (UC == 0)
1273      Zero++;
1274    Sum += UC;
1275    Size++;
1276  }
1277}
1278
1279void HexagonGenInsert::selectCandidates() {
1280  // Some registers may have multiple valid candidates. Pick the best one
1281  // (or decide not to use any).
1282
1283  // Compute the "removability" measure of R:
1284  // For each potentially removable register R, record the number of regis-
1285  // ters with IF candidates, where R appears in at least one set.
1286  RegisterSet AllRMs;
1287  UnsignedMap UseC, RemC;
1288  IFMapType::iterator End = IFMap.end();
1289
1290  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1291    const IFListType &LL = I->second;
1292    RegisterSet TT;
1293    for (unsigned i = 0, n = LL.size(); i < n; ++i)
1294      TT.insert(LL[i].second);
1295    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1296      RemC[R]++;
1297    AllRMs.insert(TT);
1298  }
1299
1300  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1301    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1302    using InstrSet = SmallSet<const MachineInstr *, 16>;
1303
1304    InstrSet UIs;
1305    // Count as the number of instructions in which R is used, not the
1306    // number of operands.
1307    use_iterator E = MRI->use_nodbg_end();
1308    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1309      UIs.insert(I->getParent());
1310    unsigned C = UIs.size();
1311    // Calculate a measure, which is the number of instructions using R,
1312    // minus the "removability" count computed earlier.
1313    unsigned D = RemC[R];
1314    UseC[R] = (C > D) ? C-D : 0;  // doz
1315  }
1316
1317  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1318  if (!SelectAll0 && !SelectHas0)
1319    SelectAll0 = true;
1320
1321  // The smaller the number UseC for a given register R, the "less used"
1322  // R is aside from the opportunities for removal offered by generating
1323  // "insert" instructions.
1324  // Iterate over the IF map, and for those registers that have multiple
1325  // candidates, pick the minimum one according to IFOrdering.
1326  IFOrdering IFO(UseC, BaseOrd);
1327  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1328    IFListType &LL = I->second;
1329    if (LL.empty())
1330      continue;
1331    // Get the minimum element, remember it and clear the list. If the
1332    // element found is adequate, we will put it back on the list, other-
1333    // wise the list will remain empty, and the entry for this register
1334    // will be removed (i.e. this register will not be replaced by insert).
1335    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1336    assert(MinI != LL.end());
1337    IFRecordWithRegSet M = *MinI;
1338    LL.clear();
1339
1340    // We want to make sure that this replacement will have a chance to be
1341    // beneficial, and that means that we want to have indication that some
1342    // register will be removed. The most likely registers to be eliminated
1343    // are the use operands in the definition of I->first. Accept/reject a
1344    // candidate based on how many of its uses it can potentially eliminate.
1345
1346    RegisterSet Us;
1347    const MachineInstr *DefI = MRI->getVRegDef(I->first);
1348    getInstrUses(DefI, Us);
1349    bool Accept = false;
1350
1351    if (SelectAll0) {
1352      bool All0 = true;
1353      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1354        if (UseC[R] == 0)
1355          continue;
1356        All0 = false;
1357        break;
1358      }
1359      Accept = All0;
1360    } else if (SelectHas0) {
1361      bool Has0 = false;
1362      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1363        if (UseC[R] != 0)
1364          continue;
1365        Has0 = true;
1366        break;
1367      }
1368      Accept = Has0;
1369    }
1370    if (Accept)
1371      LL.push_back(M);
1372  }
1373
1374  // Remove candidates that add uses of removable registers, unless the
1375  // removable registers are among replacement candidates.
1376  // Recompute the removable registers, since some candidates may have
1377  // been eliminated.
1378  AllRMs.clear();
1379  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1380    const IFListType &LL = I->second;
1381    if (!LL.empty())
1382      AllRMs.insert(LL[0].second);
1383  }
1384  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1385    IFListType &LL = I->second;
1386    if (LL.empty())
1387      continue;
1388    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1389    if (AllRMs[SR] || AllRMs[IR])
1390      LL.clear();
1391  }
1392
1393  pruneEmptyLists();
1394}
1395
1396bool HexagonGenInsert::generateInserts() {
1397  // Create a new register for each one from IFMap, and store them in the
1398  // map.
1399  UnsignedMap RegMap;
1400  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1401    unsigned VR = I->first;
1402    const TargetRegisterClass *RC = MRI->getRegClass(VR);
1403    Register NewVR = MRI->createVirtualRegister(RC);
1404    RegMap[VR] = NewVR;
1405  }
1406
1407  // We can generate the "insert" instructions using potentially stale re-
1408  // gisters: SrcR and InsR for a given VR may be among other registers that
1409  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1410  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1411    MachineInstr *MI = MRI->getVRegDef(I->first);
1412    MachineBasicBlock &B = *MI->getParent();
1413    DebugLoc DL = MI->getDebugLoc();
1414    unsigned NewR = RegMap[I->first];
1415    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1416    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1417                               : HII->get(Hexagon::S2_insertp);
1418    IFRecord IF = I->second[0].first;
1419    unsigned Wdh = IF.Wdh, Off = IF.Off;
1420    unsigned InsS = 0;
1421    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1422      InsS = Hexagon::isub_lo;
1423      if (Off >= 32) {
1424        InsS = Hexagon::isub_hi;
1425        Off -= 32;
1426      }
1427    }
1428    // Advance to the proper location for inserting instructions. This could
1429    // be B.end().
1430    MachineBasicBlock::iterator At = MI;
1431    if (MI->isPHI())
1432      At = B.getFirstNonPHI();
1433
1434    BuildMI(B, At, DL, D, NewR)
1435      .addReg(IF.SrcR)
1436      .addReg(IF.InsR, 0, InsS)
1437      .addImm(Wdh)
1438      .addImm(Off);
1439
1440    MRI->clearKillFlags(IF.SrcR);
1441    MRI->clearKillFlags(IF.InsR);
1442  }
1443
1444  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1445    MachineInstr *DefI = MRI->getVRegDef(I->first);
1446    MRI->replaceRegWith(I->first, RegMap[I->first]);
1447    DefI->eraseFromParent();
1448  }
1449
1450  return true;
1451}
1452
1453bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1454  bool Changed = false;
1455
1456  for (auto *DTN : children<MachineDomTreeNode*>(N))
1457    Changed |= removeDeadCode(DTN);
1458
1459  MachineBasicBlock *B = N->getBlock();
1460  std::vector<MachineInstr*> Instrs;
1461  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1462    Instrs.push_back(&*I);
1463
1464  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1465    MachineInstr *MI = *I;
1466    unsigned Opc = MI->getOpcode();
1467    // Do not touch lifetime markers. This is why the target-independent DCE
1468    // cannot be used.
1469    if (Opc == TargetOpcode::LIFETIME_START ||
1470        Opc == TargetOpcode::LIFETIME_END)
1471      continue;
1472    bool Store = false;
1473    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1474      continue;
1475
1476    bool AllDead = true;
1477    SmallVector<unsigned,2> Regs;
1478    for (const MachineOperand &MO : MI->operands()) {
1479      if (!MO.isReg() || !MO.isDef())
1480        continue;
1481      Register R = MO.getReg();
1482      if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) {
1483        AllDead = false;
1484        break;
1485      }
1486      Regs.push_back(R);
1487    }
1488    if (!AllDead)
1489      continue;
1490
1491    B->erase(MI);
1492    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1493      MRI->markUsesInDebugValueAsUndef(Regs[I]);
1494    Changed = true;
1495  }
1496
1497  return Changed;
1498}
1499
1500bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1501  if (skipFunction(MF.getFunction()))
1502    return false;
1503
1504  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1505  bool Changed = false;
1506
1507  // Sanity check: one, but not both.
1508  assert(!OptSelectAll0 || !OptSelectHas0);
1509
1510  IFMap.clear();
1511  BaseOrd.clear();
1512  CellOrd.clear();
1513
1514  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1515  HII = ST.getInstrInfo();
1516  HRI = ST.getRegisterInfo();
1517  MFN = &MF;
1518  MRI = &MF.getRegInfo();
1519  MDT = &getAnalysis<MachineDominatorTree>();
1520
1521  // Clean up before any further processing, so that dead code does not
1522  // get used in a newly generated "insert" instruction. Have a custom
1523  // version of DCE that preserves lifetime markers. Without it, merging
1524  // of stack objects can fail to recognize and merge disjoint objects
1525  // leading to unnecessary stack growth.
1526  Changed = removeDeadCode(MDT->getRootNode());
1527
1528  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1529  BitTracker BTLoc(HE, MF);
1530  BTLoc.trace(isDebug());
1531  BTLoc.run();
1532  CellMapShadow MS(BTLoc);
1533  CMS = &MS;
1534
1535  buildOrderingMF(BaseOrd);
1536  buildOrderingBT(BaseOrd, CellOrd);
1537
1538  if (isDebug()) {
1539    dbgs() << "Cell ordering:\n";
1540    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1541        I != E; ++I) {
1542      unsigned VR = I->first, Pos = I->second;
1543      dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1544    }
1545  }
1546
1547  // Collect candidates for conversion into the insert forms.
1548  MachineBasicBlock *RootB = MDT->getRoot();
1549  OrderedRegisterList AvailR(CellOrd);
1550
1551  const char *const TGName = "hexinsert";
1552  const char *const TGDesc = "Generate Insert Instructions";
1553
1554  {
1555    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1556                        TimingDetail);
1557    collectInBlock(RootB, AvailR);
1558    // Complete the information gathered in IFMap.
1559    computeRemovableRegisters();
1560  }
1561
1562  if (isDebug()) {
1563    dbgs() << "Candidates after collection:\n";
1564    dump_map();
1565  }
1566
1567  if (IFMap.empty())
1568    return Changed;
1569
1570  {
1571    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1572    pruneCandidates();
1573  }
1574
1575  if (isDebug()) {
1576    dbgs() << "Candidates after pruning:\n";
1577    dump_map();
1578  }
1579
1580  if (IFMap.empty())
1581    return Changed;
1582
1583  {
1584    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1585    selectCandidates();
1586  }
1587
1588  if (isDebug()) {
1589    dbgs() << "Candidates after selection:\n";
1590    dump_map();
1591  }
1592
1593  // Filter out vregs beyond the cutoff.
1594  if (VRegIndexCutoff.getPosition()) {
1595    unsigned Cutoff = VRegIndexCutoff;
1596
1597    using IterListType = SmallVector<IFMapType::iterator, 16>;
1598
1599    IterListType Out;
1600    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1601      unsigned Idx = Register::virtReg2Index(I->first);
1602      if (Idx >= Cutoff)
1603        Out.push_back(I);
1604    }
1605    for (unsigned i = 0, n = Out.size(); i < n; ++i)
1606      IFMap.erase(Out[i]);
1607  }
1608  if (IFMap.empty())
1609    return Changed;
1610
1611  {
1612    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1613                        TimingDetail);
1614    generateInserts();
1615  }
1616
1617  return true;
1618}
1619
1620FunctionPass *llvm::createHexagonGenInsert() {
1621  return new HexagonGenInsert();
1622}
1623
1624//===----------------------------------------------------------------------===//
1625//                         Public Constructor Functions
1626//===----------------------------------------------------------------------===//
1627
1628INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1629  "Hexagon generate \"insert\" instructions", false, false)
1630INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1631INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1632  "Hexagon generate \"insert\" instructions", false, false)
1633