1//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements all of the non-inline methods for the LLVM instruction
10// classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Instructions.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/IR/Attributes.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/InstrTypes.h"
27#include "llvm/IR/Instruction.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/Value.h"
36#include "llvm/Support/AtomicOrdering.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/TypeSize.h"
41#include <algorithm>
42#include <cassert>
43#include <cstdint>
44#include <vector>
45
46using namespace llvm;
47
48//===----------------------------------------------------------------------===//
49//                            AllocaInst Class
50//===----------------------------------------------------------------------===//
51
52Optional<TypeSize>
53AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54  TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55  if (isArrayAllocation()) {
56    auto *C = dyn_cast<ConstantInt>(getArraySize());
57    if (!C)
58      return None;
59    assert(!Size.isScalable() && "Array elements cannot have a scalable size");
60    Size *= C->getZExtValue();
61  }
62  return Size;
63}
64
65//===----------------------------------------------------------------------===//
66//                              SelectInst Class
67//===----------------------------------------------------------------------===//
68
69/// areInvalidOperands - Return a string if the specified operands are invalid
70/// for a select operation, otherwise return null.
71const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
72  if (Op1->getType() != Op2->getType())
73    return "both values to select must have same type";
74
75  if (Op1->getType()->isTokenTy())
76    return "select values cannot have token type";
77
78  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
79    // Vector select.
80    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
81      return "vector select condition element type must be i1";
82    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
83    if (!ET)
84      return "selected values for vector select must be vectors";
85    if (ET->getElementCount() != VT->getElementCount())
86      return "vector select requires selected vectors to have "
87                   "the same vector length as select condition";
88  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
89    return "select condition must be i1 or <n x i1>";
90  }
91  return nullptr;
92}
93
94//===----------------------------------------------------------------------===//
95//                               PHINode Class
96//===----------------------------------------------------------------------===//
97
98PHINode::PHINode(const PHINode &PN)
99    : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
100      ReservedSpace(PN.getNumOperands()) {
101  allocHungoffUses(PN.getNumOperands());
102  std::copy(PN.op_begin(), PN.op_end(), op_begin());
103  std::copy(PN.block_begin(), PN.block_end(), block_begin());
104  SubclassOptionalData = PN.SubclassOptionalData;
105}
106
107// removeIncomingValue - Remove an incoming value.  This is useful if a
108// predecessor basic block is deleted.
109Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
110  Value *Removed = getIncomingValue(Idx);
111
112  // Move everything after this operand down.
113  //
114  // FIXME: we could just swap with the end of the list, then erase.  However,
115  // clients might not expect this to happen.  The code as it is thrashes the
116  // use/def lists, which is kinda lame.
117  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
118  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
119
120  // Nuke the last value.
121  Op<-1>().set(nullptr);
122  setNumHungOffUseOperands(getNumOperands() - 1);
123
124  // If the PHI node is dead, because it has zero entries, nuke it now.
125  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
126    // If anyone is using this PHI, make them use a dummy value instead...
127    replaceAllUsesWith(UndefValue::get(getType()));
128    eraseFromParent();
129  }
130  return Removed;
131}
132
133/// growOperands - grow operands - This grows the operand list in response
134/// to a push_back style of operation.  This grows the number of ops by 1.5
135/// times.
136///
137void PHINode::growOperands() {
138  unsigned e = getNumOperands();
139  unsigned NumOps = e + e / 2;
140  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
141
142  ReservedSpace = NumOps;
143  growHungoffUses(ReservedSpace, /* IsPhi */ true);
144}
145
146/// hasConstantValue - If the specified PHI node always merges together the same
147/// value, return the value, otherwise return null.
148Value *PHINode::hasConstantValue() const {
149  // Exploit the fact that phi nodes always have at least one entry.
150  Value *ConstantValue = getIncomingValue(0);
151  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
152    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
153      if (ConstantValue != this)
154        return nullptr; // Incoming values not all the same.
155       // The case where the first value is this PHI.
156      ConstantValue = getIncomingValue(i);
157    }
158  if (ConstantValue == this)
159    return UndefValue::get(getType());
160  return ConstantValue;
161}
162
163/// hasConstantOrUndefValue - Whether the specified PHI node always merges
164/// together the same value, assuming that undefs result in the same value as
165/// non-undefs.
166/// Unlike \ref hasConstantValue, this does not return a value because the
167/// unique non-undef incoming value need not dominate the PHI node.
168bool PHINode::hasConstantOrUndefValue() const {
169  Value *ConstantValue = nullptr;
170  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
171    Value *Incoming = getIncomingValue(i);
172    if (Incoming != this && !isa<UndefValue>(Incoming)) {
173      if (ConstantValue && ConstantValue != Incoming)
174        return false;
175      ConstantValue = Incoming;
176    }
177  }
178  return true;
179}
180
181//===----------------------------------------------------------------------===//
182//                       LandingPadInst Implementation
183//===----------------------------------------------------------------------===//
184
185LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
186                               const Twine &NameStr, Instruction *InsertBefore)
187    : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
188  init(NumReservedValues, NameStr);
189}
190
191LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                               const Twine &NameStr, BasicBlock *InsertAtEnd)
193    : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
194  init(NumReservedValues, NameStr);
195}
196
197LandingPadInst::LandingPadInst(const LandingPadInst &LP)
198    : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
199                  LP.getNumOperands()),
200      ReservedSpace(LP.getNumOperands()) {
201  allocHungoffUses(LP.getNumOperands());
202  Use *OL = getOperandList();
203  const Use *InOL = LP.getOperandList();
204  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
205    OL[I] = InOL[I];
206
207  setCleanup(LP.isCleanup());
208}
209
210LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
211                                       const Twine &NameStr,
212                                       Instruction *InsertBefore) {
213  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
214}
215
216LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                       const Twine &NameStr,
218                                       BasicBlock *InsertAtEnd) {
219  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
220}
221
222void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
223  ReservedSpace = NumReservedValues;
224  setNumHungOffUseOperands(0);
225  allocHungoffUses(ReservedSpace);
226  setName(NameStr);
227  setCleanup(false);
228}
229
230/// growOperands - grow operands - This grows the operand list in response to a
231/// push_back style of operation. This grows the number of ops by 2 times.
232void LandingPadInst::growOperands(unsigned Size) {
233  unsigned e = getNumOperands();
234  if (ReservedSpace >= e + Size) return;
235  ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
236  growHungoffUses(ReservedSpace);
237}
238
239void LandingPadInst::addClause(Constant *Val) {
240  unsigned OpNo = getNumOperands();
241  growOperands(1);
242  assert(OpNo < ReservedSpace && "Growing didn't work!");
243  setNumHungOffUseOperands(getNumOperands() + 1);
244  getOperandList()[OpNo] = Val;
245}
246
247//===----------------------------------------------------------------------===//
248//                        CallBase Implementation
249//===----------------------------------------------------------------------===//
250
251CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
252                           Instruction *InsertPt) {
253  switch (CB->getOpcode()) {
254  case Instruction::Call:
255    return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
256  case Instruction::Invoke:
257    return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
258  case Instruction::CallBr:
259    return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
260  default:
261    llvm_unreachable("Unknown CallBase sub-class!");
262  }
263}
264
265CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
266                           Instruction *InsertPt) {
267  SmallVector<OperandBundleDef, 2> OpDefs;
268  for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
269    auto ChildOB = CI->getOperandBundleAt(i);
270    if (ChildOB.getTagName() != OpB.getTag())
271      OpDefs.emplace_back(ChildOB);
272  }
273  OpDefs.emplace_back(OpB);
274  return CallBase::Create(CI, OpDefs, InsertPt);
275}
276
277
278Function *CallBase::getCaller() { return getParent()->getParent(); }
279
280unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
281  assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
282  return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
283}
284
285bool CallBase::isIndirectCall() const {
286  const Value *V = getCalledOperand();
287  if (isa<Function>(V) || isa<Constant>(V))
288    return false;
289  return !isInlineAsm();
290}
291
292/// Tests if this call site must be tail call optimized. Only a CallInst can
293/// be tail call optimized.
294bool CallBase::isMustTailCall() const {
295  if (auto *CI = dyn_cast<CallInst>(this))
296    return CI->isMustTailCall();
297  return false;
298}
299
300/// Tests if this call site is marked as a tail call.
301bool CallBase::isTailCall() const {
302  if (auto *CI = dyn_cast<CallInst>(this))
303    return CI->isTailCall();
304  return false;
305}
306
307Intrinsic::ID CallBase::getIntrinsicID() const {
308  if (auto *F = getCalledFunction())
309    return F->getIntrinsicID();
310  return Intrinsic::not_intrinsic;
311}
312
313bool CallBase::isReturnNonNull() const {
314  if (hasRetAttr(Attribute::NonNull))
315    return true;
316
317  if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
318           !NullPointerIsDefined(getCaller(),
319                                 getType()->getPointerAddressSpace()))
320    return true;
321
322  return false;
323}
324
325Value *CallBase::getReturnedArgOperand() const {
326  unsigned Index;
327
328  if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
329    return getArgOperand(Index - AttributeList::FirstArgIndex);
330  if (const Function *F = getCalledFunction())
331    if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
332        Index)
333      return getArgOperand(Index - AttributeList::FirstArgIndex);
334
335  return nullptr;
336}
337
338/// Determine whether the argument or parameter has the given attribute.
339bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
340  assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
341
342  if (Attrs.hasParamAttribute(ArgNo, Kind))
343    return true;
344  if (const Function *F = getCalledFunction())
345    return F->getAttributes().hasParamAttribute(ArgNo, Kind);
346  return false;
347}
348
349bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
350  if (const Function *F = getCalledFunction())
351    return F->getAttributes().hasFnAttribute(Kind);
352  return false;
353}
354
355bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
356  if (const Function *F = getCalledFunction())
357    return F->getAttributes().hasFnAttribute(Kind);
358  return false;
359}
360
361void CallBase::getOperandBundlesAsDefs(
362    SmallVectorImpl<OperandBundleDef> &Defs) const {
363  for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
364    Defs.emplace_back(getOperandBundleAt(i));
365}
366
367CallBase::op_iterator
368CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
369                                     const unsigned BeginIndex) {
370  auto It = op_begin() + BeginIndex;
371  for (auto &B : Bundles)
372    It = std::copy(B.input_begin(), B.input_end(), It);
373
374  auto *ContextImpl = getContext().pImpl;
375  auto BI = Bundles.begin();
376  unsigned CurrentIndex = BeginIndex;
377
378  for (auto &BOI : bundle_op_infos()) {
379    assert(BI != Bundles.end() && "Incorrect allocation?");
380
381    BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
382    BOI.Begin = CurrentIndex;
383    BOI.End = CurrentIndex + BI->input_size();
384    CurrentIndex = BOI.End;
385    BI++;
386  }
387
388  assert(BI == Bundles.end() && "Incorrect allocation?");
389
390  return It;
391}
392
393CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
394  /// When there isn't many bundles, we do a simple linear search.
395  /// Else fallback to a binary-search that use the fact that bundles usually
396  /// have similar number of argument to get faster convergence.
397  if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
398    for (auto &BOI : bundle_op_infos())
399      if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
400        return BOI;
401
402    llvm_unreachable("Did not find operand bundle for operand!");
403  }
404
405  assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
406  assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
407         OpIdx < std::prev(bundle_op_info_end())->End &&
408         "The Idx isn't in the operand bundle");
409
410  /// We need a decimal number below and to prevent using floating point numbers
411  /// we use an intergal value multiplied by this constant.
412  constexpr unsigned NumberScaling = 1024;
413
414  bundle_op_iterator Begin = bundle_op_info_begin();
415  bundle_op_iterator End = bundle_op_info_end();
416  bundle_op_iterator Current = Begin;
417
418  while (Begin != End) {
419    unsigned ScaledOperandPerBundle =
420        NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
421    Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
422                       ScaledOperandPerBundle);
423    if (Current >= End)
424      Current = std::prev(End);
425    assert(Current < End && Current >= Begin &&
426           "the operand bundle doesn't cover every value in the range");
427    if (OpIdx >= Current->Begin && OpIdx < Current->End)
428      break;
429    if (OpIdx >= Current->End)
430      Begin = Current + 1;
431    else
432      End = Current;
433  }
434
435  assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
436         "the operand bundle doesn't cover every value in the range");
437  return *Current;
438}
439
440CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
441                                     OperandBundleDef OB,
442                                     Instruction *InsertPt) {
443  if (CB->getOperandBundle(ID))
444    return CB;
445
446  SmallVector<OperandBundleDef, 1> Bundles;
447  CB->getOperandBundlesAsDefs(Bundles);
448  Bundles.push_back(OB);
449  return Create(CB, Bundles, InsertPt);
450}
451
452CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
453                                        Instruction *InsertPt) {
454  SmallVector<OperandBundleDef, 1> Bundles;
455  bool CreateNew = false;
456
457  for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
458    auto Bundle = CB->getOperandBundleAt(I);
459    if (Bundle.getTagID() == ID) {
460      CreateNew = true;
461      continue;
462    }
463    Bundles.emplace_back(Bundle);
464  }
465
466  return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
467}
468
469bool CallBase::hasReadingOperandBundles() const {
470  // Implementation note: this is a conservative implementation of operand
471  // bundle semantics, where *any* non-assume operand bundle forces a callsite
472  // to be at least readonly.
473  return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
474}
475
476//===----------------------------------------------------------------------===//
477//                        CallInst Implementation
478//===----------------------------------------------------------------------===//
479
480void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
481                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
482  this->FTy = FTy;
483  assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
484         "NumOperands not set up?");
485  setCalledOperand(Func);
486
487#ifndef NDEBUG
488  assert((Args.size() == FTy->getNumParams() ||
489          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
490         "Calling a function with bad signature!");
491
492  for (unsigned i = 0; i != Args.size(); ++i)
493    assert((i >= FTy->getNumParams() ||
494            FTy->getParamType(i) == Args[i]->getType()) &&
495           "Calling a function with a bad signature!");
496#endif
497
498  llvm::copy(Args, op_begin());
499
500  auto It = populateBundleOperandInfos(Bundles, Args.size());
501  (void)It;
502  assert(It + 1 == op_end() && "Should add up!");
503
504  setName(NameStr);
505}
506
507void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
508  this->FTy = FTy;
509  assert(getNumOperands() == 1 && "NumOperands not set up?");
510  setCalledOperand(Func);
511
512  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
513
514  setName(NameStr);
515}
516
517CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
518                   Instruction *InsertBefore)
519    : CallBase(Ty->getReturnType(), Instruction::Call,
520               OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
521  init(Ty, Func, Name);
522}
523
524CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
525                   BasicBlock *InsertAtEnd)
526    : CallBase(Ty->getReturnType(), Instruction::Call,
527               OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
528  init(Ty, Func, Name);
529}
530
531CallInst::CallInst(const CallInst &CI)
532    : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
533               OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
534               CI.getNumOperands()) {
535  setTailCallKind(CI.getTailCallKind());
536  setCallingConv(CI.getCallingConv());
537
538  std::copy(CI.op_begin(), CI.op_end(), op_begin());
539  std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
540            bundle_op_info_begin());
541  SubclassOptionalData = CI.SubclassOptionalData;
542}
543
544CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
545                           Instruction *InsertPt) {
546  std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
547
548  auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
549                                 Args, OpB, CI->getName(), InsertPt);
550  NewCI->setTailCallKind(CI->getTailCallKind());
551  NewCI->setCallingConv(CI->getCallingConv());
552  NewCI->SubclassOptionalData = CI->SubclassOptionalData;
553  NewCI->setAttributes(CI->getAttributes());
554  NewCI->setDebugLoc(CI->getDebugLoc());
555  return NewCI;
556}
557
558// Update profile weight for call instruction by scaling it using the ratio
559// of S/T. The meaning of "branch_weights" meta data for call instruction is
560// transfered to represent call count.
561void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
562  auto *ProfileData = getMetadata(LLVMContext::MD_prof);
563  if (ProfileData == nullptr)
564    return;
565
566  auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
567  if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
568                        !ProfDataName->getString().equals("VP")))
569    return;
570
571  if (T == 0) {
572    LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
573                         "div by 0. Ignoring. Likely the function "
574                      << getParent()->getParent()->getName()
575                      << " has 0 entry count, and contains call instructions "
576                         "with non-zero prof info.");
577    return;
578  }
579
580  MDBuilder MDB(getContext());
581  SmallVector<Metadata *, 3> Vals;
582  Vals.push_back(ProfileData->getOperand(0));
583  APInt APS(128, S), APT(128, T);
584  if (ProfDataName->getString().equals("branch_weights") &&
585      ProfileData->getNumOperands() > 0) {
586    // Using APInt::div may be expensive, but most cases should fit 64 bits.
587    APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
588                       ->getValue()
589                       .getZExtValue());
590    Val *= APS;
591    Vals.push_back(MDB.createConstant(
592        ConstantInt::get(Type::getInt32Ty(getContext()),
593                         Val.udiv(APT).getLimitedValue(UINT32_MAX))));
594  } else if (ProfDataName->getString().equals("VP"))
595    for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
596      // The first value is the key of the value profile, which will not change.
597      Vals.push_back(ProfileData->getOperand(i));
598      uint64_t Count =
599          mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
600              ->getValue()
601              .getZExtValue();
602      // Don't scale the magic number.
603      if (Count == NOMORE_ICP_MAGICNUM) {
604        Vals.push_back(ProfileData->getOperand(i + 1));
605        continue;
606      }
607      // Using APInt::div may be expensive, but most cases should fit 64 bits.
608      APInt Val(128, Count);
609      Val *= APS;
610      Vals.push_back(MDB.createConstant(
611          ConstantInt::get(Type::getInt64Ty(getContext()),
612                           Val.udiv(APT).getLimitedValue())));
613    }
614  setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
615}
616
617/// IsConstantOne - Return true only if val is constant int 1
618static bool IsConstantOne(Value *val) {
619  assert(val && "IsConstantOne does not work with nullptr val");
620  const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
621  return CVal && CVal->isOne();
622}
623
624static Instruction *createMalloc(Instruction *InsertBefore,
625                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
626                                 Type *AllocTy, Value *AllocSize,
627                                 Value *ArraySize,
628                                 ArrayRef<OperandBundleDef> OpB,
629                                 Function *MallocF, const Twine &Name) {
630  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
631         "createMalloc needs either InsertBefore or InsertAtEnd");
632
633  // malloc(type) becomes:
634  //       bitcast (i8* malloc(typeSize)) to type*
635  // malloc(type, arraySize) becomes:
636  //       bitcast (i8* malloc(typeSize*arraySize)) to type*
637  if (!ArraySize)
638    ArraySize = ConstantInt::get(IntPtrTy, 1);
639  else if (ArraySize->getType() != IntPtrTy) {
640    if (InsertBefore)
641      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
642                                              "", InsertBefore);
643    else
644      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
645                                              "", InsertAtEnd);
646  }
647
648  if (!IsConstantOne(ArraySize)) {
649    if (IsConstantOne(AllocSize)) {
650      AllocSize = ArraySize;         // Operand * 1 = Operand
651    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
652      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
653                                                     false /*ZExt*/);
654      // Malloc arg is constant product of type size and array size
655      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
656    } else {
657      // Multiply type size by the array size...
658      if (InsertBefore)
659        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
660                                              "mallocsize", InsertBefore);
661      else
662        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
663                                              "mallocsize", InsertAtEnd);
664    }
665  }
666
667  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
668  // Create the call to Malloc.
669  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
670  Module *M = BB->getParent()->getParent();
671  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
672  FunctionCallee MallocFunc = MallocF;
673  if (!MallocFunc)
674    // prototype malloc as "void *malloc(size_t)"
675    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
676  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
677  CallInst *MCall = nullptr;
678  Instruction *Result = nullptr;
679  if (InsertBefore) {
680    MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
681                             InsertBefore);
682    Result = MCall;
683    if (Result->getType() != AllocPtrType)
684      // Create a cast instruction to convert to the right type...
685      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
686  } else {
687    MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
688    Result = MCall;
689    if (Result->getType() != AllocPtrType) {
690      InsertAtEnd->getInstList().push_back(MCall);
691      // Create a cast instruction to convert to the right type...
692      Result = new BitCastInst(MCall, AllocPtrType, Name);
693    }
694  }
695  MCall->setTailCall();
696  if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
697    MCall->setCallingConv(F->getCallingConv());
698    if (!F->returnDoesNotAlias())
699      F->setReturnDoesNotAlias();
700  }
701  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
702
703  return Result;
704}
705
706/// CreateMalloc - Generate the IR for a call to malloc:
707/// 1. Compute the malloc call's argument as the specified type's size,
708///    possibly multiplied by the array size if the array size is not
709///    constant 1.
710/// 2. Call malloc with that argument.
711/// 3. Bitcast the result of the malloc call to the specified type.
712Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
713                                    Type *IntPtrTy, Type *AllocTy,
714                                    Value *AllocSize, Value *ArraySize,
715                                    Function *MallocF,
716                                    const Twine &Name) {
717  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
718                      ArraySize, None, MallocF, Name);
719}
720Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
721                                    Type *IntPtrTy, Type *AllocTy,
722                                    Value *AllocSize, Value *ArraySize,
723                                    ArrayRef<OperandBundleDef> OpB,
724                                    Function *MallocF,
725                                    const Twine &Name) {
726  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
727                      ArraySize, OpB, MallocF, Name);
728}
729
730/// CreateMalloc - Generate the IR for a call to malloc:
731/// 1. Compute the malloc call's argument as the specified type's size,
732///    possibly multiplied by the array size if the array size is not
733///    constant 1.
734/// 2. Call malloc with that argument.
735/// 3. Bitcast the result of the malloc call to the specified type.
736/// Note: This function does not add the bitcast to the basic block, that is the
737/// responsibility of the caller.
738Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
739                                    Type *IntPtrTy, Type *AllocTy,
740                                    Value *AllocSize, Value *ArraySize,
741                                    Function *MallocF, const Twine &Name) {
742  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
743                      ArraySize, None, MallocF, Name);
744}
745Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
746                                    Type *IntPtrTy, Type *AllocTy,
747                                    Value *AllocSize, Value *ArraySize,
748                                    ArrayRef<OperandBundleDef> OpB,
749                                    Function *MallocF, const Twine &Name) {
750  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
751                      ArraySize, OpB, MallocF, Name);
752}
753
754static Instruction *createFree(Value *Source,
755                               ArrayRef<OperandBundleDef> Bundles,
756                               Instruction *InsertBefore,
757                               BasicBlock *InsertAtEnd) {
758  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
759         "createFree needs either InsertBefore or InsertAtEnd");
760  assert(Source->getType()->isPointerTy() &&
761         "Can not free something of nonpointer type!");
762
763  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
764  Module *M = BB->getParent()->getParent();
765
766  Type *VoidTy = Type::getVoidTy(M->getContext());
767  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
768  // prototype free as "void free(void*)"
769  FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
770  CallInst *Result = nullptr;
771  Value *PtrCast = Source;
772  if (InsertBefore) {
773    if (Source->getType() != IntPtrTy)
774      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
775    Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
776  } else {
777    if (Source->getType() != IntPtrTy)
778      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
779    Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
780  }
781  Result->setTailCall();
782  if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
783    Result->setCallingConv(F->getCallingConv());
784
785  return Result;
786}
787
788/// CreateFree - Generate the IR for a call to the builtin free function.
789Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
790  return createFree(Source, None, InsertBefore, nullptr);
791}
792Instruction *CallInst::CreateFree(Value *Source,
793                                  ArrayRef<OperandBundleDef> Bundles,
794                                  Instruction *InsertBefore) {
795  return createFree(Source, Bundles, InsertBefore, nullptr);
796}
797
798/// CreateFree - Generate the IR for a call to the builtin free function.
799/// Note: This function does not add the call to the basic block, that is the
800/// responsibility of the caller.
801Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
802  Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
803  assert(FreeCall && "CreateFree did not create a CallInst");
804  return FreeCall;
805}
806Instruction *CallInst::CreateFree(Value *Source,
807                                  ArrayRef<OperandBundleDef> Bundles,
808                                  BasicBlock *InsertAtEnd) {
809  Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
810  assert(FreeCall && "CreateFree did not create a CallInst");
811  return FreeCall;
812}
813
814//===----------------------------------------------------------------------===//
815//                        InvokeInst Implementation
816//===----------------------------------------------------------------------===//
817
818void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
819                      BasicBlock *IfException, ArrayRef<Value *> Args,
820                      ArrayRef<OperandBundleDef> Bundles,
821                      const Twine &NameStr) {
822  this->FTy = FTy;
823
824  assert((int)getNumOperands() ==
825             ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
826         "NumOperands not set up?");
827  setNormalDest(IfNormal);
828  setUnwindDest(IfException);
829  setCalledOperand(Fn);
830
831#ifndef NDEBUG
832  assert(((Args.size() == FTy->getNumParams()) ||
833          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
834         "Invoking a function with bad signature");
835
836  for (unsigned i = 0, e = Args.size(); i != e; i++)
837    assert((i >= FTy->getNumParams() ||
838            FTy->getParamType(i) == Args[i]->getType()) &&
839           "Invoking a function with a bad signature!");
840#endif
841
842  llvm::copy(Args, op_begin());
843
844  auto It = populateBundleOperandInfos(Bundles, Args.size());
845  (void)It;
846  assert(It + 3 == op_end() && "Should add up!");
847
848  setName(NameStr);
849}
850
851InvokeInst::InvokeInst(const InvokeInst &II)
852    : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
853               OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
854               II.getNumOperands()) {
855  setCallingConv(II.getCallingConv());
856  std::copy(II.op_begin(), II.op_end(), op_begin());
857  std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
858            bundle_op_info_begin());
859  SubclassOptionalData = II.SubclassOptionalData;
860}
861
862InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
863                               Instruction *InsertPt) {
864  std::vector<Value *> Args(II->arg_begin(), II->arg_end());
865
866  auto *NewII = InvokeInst::Create(
867      II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
868      II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
869  NewII->setCallingConv(II->getCallingConv());
870  NewII->SubclassOptionalData = II->SubclassOptionalData;
871  NewII->setAttributes(II->getAttributes());
872  NewII->setDebugLoc(II->getDebugLoc());
873  return NewII;
874}
875
876LandingPadInst *InvokeInst::getLandingPadInst() const {
877  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
878}
879
880//===----------------------------------------------------------------------===//
881//                        CallBrInst Implementation
882//===----------------------------------------------------------------------===//
883
884void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
885                      ArrayRef<BasicBlock *> IndirectDests,
886                      ArrayRef<Value *> Args,
887                      ArrayRef<OperandBundleDef> Bundles,
888                      const Twine &NameStr) {
889  this->FTy = FTy;
890
891  assert((int)getNumOperands() ==
892             ComputeNumOperands(Args.size(), IndirectDests.size(),
893                                CountBundleInputs(Bundles)) &&
894         "NumOperands not set up?");
895  NumIndirectDests = IndirectDests.size();
896  setDefaultDest(Fallthrough);
897  for (unsigned i = 0; i != NumIndirectDests; ++i)
898    setIndirectDest(i, IndirectDests[i]);
899  setCalledOperand(Fn);
900
901#ifndef NDEBUG
902  assert(((Args.size() == FTy->getNumParams()) ||
903          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
904         "Calling a function with bad signature");
905
906  for (unsigned i = 0, e = Args.size(); i != e; i++)
907    assert((i >= FTy->getNumParams() ||
908            FTy->getParamType(i) == Args[i]->getType()) &&
909           "Calling a function with a bad signature!");
910#endif
911
912  std::copy(Args.begin(), Args.end(), op_begin());
913
914  auto It = populateBundleOperandInfos(Bundles, Args.size());
915  (void)It;
916  assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
917
918  setName(NameStr);
919}
920
921void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
922  assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
923  if (BasicBlock *OldBB = getIndirectDest(i)) {
924    BlockAddress *Old = BlockAddress::get(OldBB);
925    BlockAddress *New = BlockAddress::get(B);
926    for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
927      if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
928        setArgOperand(ArgNo, New);
929  }
930}
931
932CallBrInst::CallBrInst(const CallBrInst &CBI)
933    : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
934               OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
935               CBI.getNumOperands()) {
936  setCallingConv(CBI.getCallingConv());
937  std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
938  std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
939            bundle_op_info_begin());
940  SubclassOptionalData = CBI.SubclassOptionalData;
941  NumIndirectDests = CBI.NumIndirectDests;
942}
943
944CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
945                               Instruction *InsertPt) {
946  std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
947
948  auto *NewCBI = CallBrInst::Create(
949      CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
950      CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
951  NewCBI->setCallingConv(CBI->getCallingConv());
952  NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
953  NewCBI->setAttributes(CBI->getAttributes());
954  NewCBI->setDebugLoc(CBI->getDebugLoc());
955  NewCBI->NumIndirectDests = CBI->NumIndirectDests;
956  return NewCBI;
957}
958
959//===----------------------------------------------------------------------===//
960//                        ReturnInst Implementation
961//===----------------------------------------------------------------------===//
962
963ReturnInst::ReturnInst(const ReturnInst &RI)
964    : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
965                  OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
966                  RI.getNumOperands()) {
967  if (RI.getNumOperands())
968    Op<0>() = RI.Op<0>();
969  SubclassOptionalData = RI.SubclassOptionalData;
970}
971
972ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
973    : Instruction(Type::getVoidTy(C), Instruction::Ret,
974                  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
975                  InsertBefore) {
976  if (retVal)
977    Op<0>() = retVal;
978}
979
980ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
981    : Instruction(Type::getVoidTy(C), Instruction::Ret,
982                  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
983                  InsertAtEnd) {
984  if (retVal)
985    Op<0>() = retVal;
986}
987
988ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
989    : Instruction(Type::getVoidTy(Context), Instruction::Ret,
990                  OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
991
992//===----------------------------------------------------------------------===//
993//                        ResumeInst Implementation
994//===----------------------------------------------------------------------===//
995
996ResumeInst::ResumeInst(const ResumeInst &RI)
997    : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
998                  OperandTraits<ResumeInst>::op_begin(this), 1) {
999  Op<0>() = RI.Op<0>();
1000}
1001
1002ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1003    : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1004                  OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1005  Op<0>() = Exn;
1006}
1007
1008ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1009    : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1010                  OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1011  Op<0>() = Exn;
1012}
1013
1014//===----------------------------------------------------------------------===//
1015//                        CleanupReturnInst Implementation
1016//===----------------------------------------------------------------------===//
1017
1018CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1019    : Instruction(CRI.getType(), Instruction::CleanupRet,
1020                  OperandTraits<CleanupReturnInst>::op_end(this) -
1021                      CRI.getNumOperands(),
1022                  CRI.getNumOperands()) {
1023  setSubclassData<Instruction::OpaqueField>(
1024      CRI.getSubclassData<Instruction::OpaqueField>());
1025  Op<0>() = CRI.Op<0>();
1026  if (CRI.hasUnwindDest())
1027    Op<1>() = CRI.Op<1>();
1028}
1029
1030void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1031  if (UnwindBB)
1032    setSubclassData<UnwindDestField>(true);
1033
1034  Op<0>() = CleanupPad;
1035  if (UnwindBB)
1036    Op<1>() = UnwindBB;
1037}
1038
1039CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1040                                     unsigned Values, Instruction *InsertBefore)
1041    : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1042                  Instruction::CleanupRet,
1043                  OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1044                  Values, InsertBefore) {
1045  init(CleanupPad, UnwindBB);
1046}
1047
1048CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1049                                     unsigned Values, BasicBlock *InsertAtEnd)
1050    : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1051                  Instruction::CleanupRet,
1052                  OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1053                  Values, InsertAtEnd) {
1054  init(CleanupPad, UnwindBB);
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//                        CatchReturnInst Implementation
1059//===----------------------------------------------------------------------===//
1060void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1061  Op<0>() = CatchPad;
1062  Op<1>() = BB;
1063}
1064
1065CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1066    : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1067                  OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1068  Op<0>() = CRI.Op<0>();
1069  Op<1>() = CRI.Op<1>();
1070}
1071
1072CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1073                                 Instruction *InsertBefore)
1074    : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1075                  OperandTraits<CatchReturnInst>::op_begin(this), 2,
1076                  InsertBefore) {
1077  init(CatchPad, BB);
1078}
1079
1080CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1081                                 BasicBlock *InsertAtEnd)
1082    : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1083                  OperandTraits<CatchReturnInst>::op_begin(this), 2,
1084                  InsertAtEnd) {
1085  init(CatchPad, BB);
1086}
1087
1088//===----------------------------------------------------------------------===//
1089//                       CatchSwitchInst Implementation
1090//===----------------------------------------------------------------------===//
1091
1092CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1093                                 unsigned NumReservedValues,
1094                                 const Twine &NameStr,
1095                                 Instruction *InsertBefore)
1096    : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1097                  InsertBefore) {
1098  if (UnwindDest)
1099    ++NumReservedValues;
1100  init(ParentPad, UnwindDest, NumReservedValues + 1);
1101  setName(NameStr);
1102}
1103
1104CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1105                                 unsigned NumReservedValues,
1106                                 const Twine &NameStr, BasicBlock *InsertAtEnd)
1107    : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1108                  InsertAtEnd) {
1109  if (UnwindDest)
1110    ++NumReservedValues;
1111  init(ParentPad, UnwindDest, NumReservedValues + 1);
1112  setName(NameStr);
1113}
1114
1115CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1116    : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1117                  CSI.getNumOperands()) {
1118  init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1119  setNumHungOffUseOperands(ReservedSpace);
1120  Use *OL = getOperandList();
1121  const Use *InOL = CSI.getOperandList();
1122  for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1123    OL[I] = InOL[I];
1124}
1125
1126void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1127                           unsigned NumReservedValues) {
1128  assert(ParentPad && NumReservedValues);
1129
1130  ReservedSpace = NumReservedValues;
1131  setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1132  allocHungoffUses(ReservedSpace);
1133
1134  Op<0>() = ParentPad;
1135  if (UnwindDest) {
1136    setSubclassData<UnwindDestField>(true);
1137    setUnwindDest(UnwindDest);
1138  }
1139}
1140
1141/// growOperands - grow operands - This grows the operand list in response to a
1142/// push_back style of operation. This grows the number of ops by 2 times.
1143void CatchSwitchInst::growOperands(unsigned Size) {
1144  unsigned NumOperands = getNumOperands();
1145  assert(NumOperands >= 1);
1146  if (ReservedSpace >= NumOperands + Size)
1147    return;
1148  ReservedSpace = (NumOperands + Size / 2) * 2;
1149  growHungoffUses(ReservedSpace);
1150}
1151
1152void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1153  unsigned OpNo = getNumOperands();
1154  growOperands(1);
1155  assert(OpNo < ReservedSpace && "Growing didn't work!");
1156  setNumHungOffUseOperands(getNumOperands() + 1);
1157  getOperandList()[OpNo] = Handler;
1158}
1159
1160void CatchSwitchInst::removeHandler(handler_iterator HI) {
1161  // Move all subsequent handlers up one.
1162  Use *EndDst = op_end() - 1;
1163  for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1164    *CurDst = *(CurDst + 1);
1165  // Null out the last handler use.
1166  *EndDst = nullptr;
1167
1168  setNumHungOffUseOperands(getNumOperands() - 1);
1169}
1170
1171//===----------------------------------------------------------------------===//
1172//                        FuncletPadInst Implementation
1173//===----------------------------------------------------------------------===//
1174void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1175                          const Twine &NameStr) {
1176  assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1177  llvm::copy(Args, op_begin());
1178  setParentPad(ParentPad);
1179  setName(NameStr);
1180}
1181
1182FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1183    : Instruction(FPI.getType(), FPI.getOpcode(),
1184                  OperandTraits<FuncletPadInst>::op_end(this) -
1185                      FPI.getNumOperands(),
1186                  FPI.getNumOperands()) {
1187  std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1188  setParentPad(FPI.getParentPad());
1189}
1190
1191FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1192                               ArrayRef<Value *> Args, unsigned Values,
1193                               const Twine &NameStr, Instruction *InsertBefore)
1194    : Instruction(ParentPad->getType(), Op,
1195                  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1196                  InsertBefore) {
1197  init(ParentPad, Args, NameStr);
1198}
1199
1200FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1201                               ArrayRef<Value *> Args, unsigned Values,
1202                               const Twine &NameStr, BasicBlock *InsertAtEnd)
1203    : Instruction(ParentPad->getType(), Op,
1204                  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1205                  InsertAtEnd) {
1206  init(ParentPad, Args, NameStr);
1207}
1208
1209//===----------------------------------------------------------------------===//
1210//                      UnreachableInst Implementation
1211//===----------------------------------------------------------------------===//
1212
1213UnreachableInst::UnreachableInst(LLVMContext &Context,
1214                                 Instruction *InsertBefore)
1215    : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1216                  0, InsertBefore) {}
1217UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1218    : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1219                  0, InsertAtEnd) {}
1220
1221//===----------------------------------------------------------------------===//
1222//                        BranchInst Implementation
1223//===----------------------------------------------------------------------===//
1224
1225void BranchInst::AssertOK() {
1226  if (isConditional())
1227    assert(getCondition()->getType()->isIntegerTy(1) &&
1228           "May only branch on boolean predicates!");
1229}
1230
1231BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1232    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1233                  OperandTraits<BranchInst>::op_end(this) - 1, 1,
1234                  InsertBefore) {
1235  assert(IfTrue && "Branch destination may not be null!");
1236  Op<-1>() = IfTrue;
1237}
1238
1239BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1240                       Instruction *InsertBefore)
1241    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1242                  OperandTraits<BranchInst>::op_end(this) - 3, 3,
1243                  InsertBefore) {
1244  Op<-1>() = IfTrue;
1245  Op<-2>() = IfFalse;
1246  Op<-3>() = Cond;
1247#ifndef NDEBUG
1248  AssertOK();
1249#endif
1250}
1251
1252BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1253    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1254                  OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1255  assert(IfTrue && "Branch destination may not be null!");
1256  Op<-1>() = IfTrue;
1257}
1258
1259BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1260                       BasicBlock *InsertAtEnd)
1261    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1262                  OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1263  Op<-1>() = IfTrue;
1264  Op<-2>() = IfFalse;
1265  Op<-3>() = Cond;
1266#ifndef NDEBUG
1267  AssertOK();
1268#endif
1269}
1270
1271BranchInst::BranchInst(const BranchInst &BI)
1272    : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1273                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1274                  BI.getNumOperands()) {
1275  Op<-1>() = BI.Op<-1>();
1276  if (BI.getNumOperands() != 1) {
1277    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1278    Op<-3>() = BI.Op<-3>();
1279    Op<-2>() = BI.Op<-2>();
1280  }
1281  SubclassOptionalData = BI.SubclassOptionalData;
1282}
1283
1284void BranchInst::swapSuccessors() {
1285  assert(isConditional() &&
1286         "Cannot swap successors of an unconditional branch");
1287  Op<-1>().swap(Op<-2>());
1288
1289  // Update profile metadata if present and it matches our structural
1290  // expectations.
1291  swapProfMetadata();
1292}
1293
1294//===----------------------------------------------------------------------===//
1295//                        AllocaInst Implementation
1296//===----------------------------------------------------------------------===//
1297
1298static Value *getAISize(LLVMContext &Context, Value *Amt) {
1299  if (!Amt)
1300    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1301  else {
1302    assert(!isa<BasicBlock>(Amt) &&
1303           "Passed basic block into allocation size parameter! Use other ctor");
1304    assert(Amt->getType()->isIntegerTy() &&
1305           "Allocation array size is not an integer!");
1306  }
1307  return Amt;
1308}
1309
1310static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1311  assert(BB && "Insertion BB cannot be null when alignment not provided!");
1312  assert(BB->getParent() &&
1313         "BB must be in a Function when alignment not provided!");
1314  const DataLayout &DL = BB->getModule()->getDataLayout();
1315  return DL.getPrefTypeAlign(Ty);
1316}
1317
1318static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1319  assert(I && "Insertion position cannot be null when alignment not provided!");
1320  return computeAllocaDefaultAlign(Ty, I->getParent());
1321}
1322
1323AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1324                       Instruction *InsertBefore)
1325  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1326
1327AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1328                       BasicBlock *InsertAtEnd)
1329  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1330
1331AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1332                       const Twine &Name, Instruction *InsertBefore)
1333    : AllocaInst(Ty, AddrSpace, ArraySize,
1334                 computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1335                 InsertBefore) {}
1336
1337AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1338                       const Twine &Name, BasicBlock *InsertAtEnd)
1339    : AllocaInst(Ty, AddrSpace, ArraySize,
1340                 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1341                 InsertAtEnd) {}
1342
1343AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1344                       Align Align, const Twine &Name,
1345                       Instruction *InsertBefore)
1346    : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1347                       getAISize(Ty->getContext(), ArraySize), InsertBefore),
1348      AllocatedType(Ty) {
1349  setAlignment(Align);
1350  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1351  setName(Name);
1352}
1353
1354AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1355                       Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1356    : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1357                       getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1358      AllocatedType(Ty) {
1359  setAlignment(Align);
1360  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1361  setName(Name);
1362}
1363
1364
1365bool AllocaInst::isArrayAllocation() const {
1366  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1367    return !CI->isOne();
1368  return true;
1369}
1370
1371/// isStaticAlloca - Return true if this alloca is in the entry block of the
1372/// function and is a constant size.  If so, the code generator will fold it
1373/// into the prolog/epilog code, so it is basically free.
1374bool AllocaInst::isStaticAlloca() const {
1375  // Must be constant size.
1376  if (!isa<ConstantInt>(getArraySize())) return false;
1377
1378  // Must be in the entry block.
1379  const BasicBlock *Parent = getParent();
1380  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1381}
1382
1383//===----------------------------------------------------------------------===//
1384//                           LoadInst Implementation
1385//===----------------------------------------------------------------------===//
1386
1387void LoadInst::AssertOK() {
1388  assert(getOperand(0)->getType()->isPointerTy() &&
1389         "Ptr must have pointer type.");
1390  assert(!(isAtomic() && getAlignment() == 0) &&
1391         "Alignment required for atomic load");
1392}
1393
1394static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1395  assert(BB && "Insertion BB cannot be null when alignment not provided!");
1396  assert(BB->getParent() &&
1397         "BB must be in a Function when alignment not provided!");
1398  const DataLayout &DL = BB->getModule()->getDataLayout();
1399  return DL.getABITypeAlign(Ty);
1400}
1401
1402static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1403  assert(I && "Insertion position cannot be null when alignment not provided!");
1404  return computeLoadStoreDefaultAlign(Ty, I->getParent());
1405}
1406
1407LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1408                   Instruction *InsertBef)
1409    : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1410
1411LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1412                   BasicBlock *InsertAE)
1413    : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1414
1415LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1416                   Instruction *InsertBef)
1417    : LoadInst(Ty, Ptr, Name, isVolatile,
1418               computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1419
1420LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1421                   BasicBlock *InsertAE)
1422    : LoadInst(Ty, Ptr, Name, isVolatile,
1423               computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1424
1425LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1426                   Align Align, Instruction *InsertBef)
1427    : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1428               SyncScope::System, InsertBef) {}
1429
1430LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1431                   Align Align, BasicBlock *InsertAE)
1432    : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1433               SyncScope::System, InsertAE) {}
1434
1435LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1436                   Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1437                   Instruction *InsertBef)
1438    : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1439  assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1440  setVolatile(isVolatile);
1441  setAlignment(Align);
1442  setAtomic(Order, SSID);
1443  AssertOK();
1444  setName(Name);
1445}
1446
1447LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1448                   Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1449                   BasicBlock *InsertAE)
1450    : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1451  assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1452  setVolatile(isVolatile);
1453  setAlignment(Align);
1454  setAtomic(Order, SSID);
1455  AssertOK();
1456  setName(Name);
1457}
1458
1459//===----------------------------------------------------------------------===//
1460//                           StoreInst Implementation
1461//===----------------------------------------------------------------------===//
1462
1463void StoreInst::AssertOK() {
1464  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1465  assert(getOperand(1)->getType()->isPointerTy() &&
1466         "Ptr must have pointer type!");
1467  assert(cast<PointerType>(getOperand(1)->getType())
1468             ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1469         "Ptr must be a pointer to Val type!");
1470  assert(!(isAtomic() && getAlignment() == 0) &&
1471         "Alignment required for atomic store");
1472}
1473
1474StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1475    : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1476
1477StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1478    : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1479
1480StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1481                     Instruction *InsertBefore)
1482    : StoreInst(val, addr, isVolatile,
1483                computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1484                InsertBefore) {}
1485
1486StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1487                     BasicBlock *InsertAtEnd)
1488    : StoreInst(val, addr, isVolatile,
1489                computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1490                InsertAtEnd) {}
1491
1492StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1493                     Instruction *InsertBefore)
1494    : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1495                SyncScope::System, InsertBefore) {}
1496
1497StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1498                     BasicBlock *InsertAtEnd)
1499    : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1500                SyncScope::System, InsertAtEnd) {}
1501
1502StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1503                     AtomicOrdering Order, SyncScope::ID SSID,
1504                     Instruction *InsertBefore)
1505    : Instruction(Type::getVoidTy(val->getContext()), Store,
1506                  OperandTraits<StoreInst>::op_begin(this),
1507                  OperandTraits<StoreInst>::operands(this), InsertBefore) {
1508  Op<0>() = val;
1509  Op<1>() = addr;
1510  setVolatile(isVolatile);
1511  setAlignment(Align);
1512  setAtomic(Order, SSID);
1513  AssertOK();
1514}
1515
1516StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1517                     AtomicOrdering Order, SyncScope::ID SSID,
1518                     BasicBlock *InsertAtEnd)
1519    : Instruction(Type::getVoidTy(val->getContext()), Store,
1520                  OperandTraits<StoreInst>::op_begin(this),
1521                  OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1522  Op<0>() = val;
1523  Op<1>() = addr;
1524  setVolatile(isVolatile);
1525  setAlignment(Align);
1526  setAtomic(Order, SSID);
1527  AssertOK();
1528}
1529
1530
1531//===----------------------------------------------------------------------===//
1532//                       AtomicCmpXchgInst Implementation
1533//===----------------------------------------------------------------------===//
1534
1535void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1536                             Align Alignment, AtomicOrdering SuccessOrdering,
1537                             AtomicOrdering FailureOrdering,
1538                             SyncScope::ID SSID) {
1539  Op<0>() = Ptr;
1540  Op<1>() = Cmp;
1541  Op<2>() = NewVal;
1542  setSuccessOrdering(SuccessOrdering);
1543  setFailureOrdering(FailureOrdering);
1544  setSyncScopeID(SSID);
1545  setAlignment(Alignment);
1546
1547  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1548         "All operands must be non-null!");
1549  assert(getOperand(0)->getType()->isPointerTy() &&
1550         "Ptr must have pointer type!");
1551  assert(cast<PointerType>(getOperand(0)->getType())
1552             ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1553         "Ptr must be a pointer to Cmp type!");
1554  assert(cast<PointerType>(getOperand(0)->getType())
1555             ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1556         "Ptr must be a pointer to NewVal type!");
1557  assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1558         "Cmp type and NewVal type must be same!");
1559}
1560
1561AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1562                                     Align Alignment,
1563                                     AtomicOrdering SuccessOrdering,
1564                                     AtomicOrdering FailureOrdering,
1565                                     SyncScope::ID SSID,
1566                                     Instruction *InsertBefore)
1567    : Instruction(
1568          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1569          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1570          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1571  Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1572}
1573
1574AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1575                                     Align Alignment,
1576                                     AtomicOrdering SuccessOrdering,
1577                                     AtomicOrdering FailureOrdering,
1578                                     SyncScope::ID SSID,
1579                                     BasicBlock *InsertAtEnd)
1580    : Instruction(
1581          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1582          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1583          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1584  Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1585}
1586
1587//===----------------------------------------------------------------------===//
1588//                       AtomicRMWInst Implementation
1589//===----------------------------------------------------------------------===//
1590
1591void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1592                         Align Alignment, AtomicOrdering Ordering,
1593                         SyncScope::ID SSID) {
1594  Op<0>() = Ptr;
1595  Op<1>() = Val;
1596  setOperation(Operation);
1597  setOrdering(Ordering);
1598  setSyncScopeID(SSID);
1599  setAlignment(Alignment);
1600
1601  assert(getOperand(0) && getOperand(1) &&
1602         "All operands must be non-null!");
1603  assert(getOperand(0)->getType()->isPointerTy() &&
1604         "Ptr must have pointer type!");
1605  assert(cast<PointerType>(getOperand(0)->getType())
1606             ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1607         "Ptr must be a pointer to Val type!");
1608  assert(Ordering != AtomicOrdering::NotAtomic &&
1609         "AtomicRMW instructions must be atomic!");
1610}
1611
1612AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1613                             Align Alignment, AtomicOrdering Ordering,
1614                             SyncScope::ID SSID, Instruction *InsertBefore)
1615    : Instruction(Val->getType(), AtomicRMW,
1616                  OperandTraits<AtomicRMWInst>::op_begin(this),
1617                  OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1618  Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1619}
1620
1621AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1622                             Align Alignment, AtomicOrdering Ordering,
1623                             SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1624    : Instruction(Val->getType(), AtomicRMW,
1625                  OperandTraits<AtomicRMWInst>::op_begin(this),
1626                  OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1627  Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1628}
1629
1630StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1631  switch (Op) {
1632  case AtomicRMWInst::Xchg:
1633    return "xchg";
1634  case AtomicRMWInst::Add:
1635    return "add";
1636  case AtomicRMWInst::Sub:
1637    return "sub";
1638  case AtomicRMWInst::And:
1639    return "and";
1640  case AtomicRMWInst::Nand:
1641    return "nand";
1642  case AtomicRMWInst::Or:
1643    return "or";
1644  case AtomicRMWInst::Xor:
1645    return "xor";
1646  case AtomicRMWInst::Max:
1647    return "max";
1648  case AtomicRMWInst::Min:
1649    return "min";
1650  case AtomicRMWInst::UMax:
1651    return "umax";
1652  case AtomicRMWInst::UMin:
1653    return "umin";
1654  case AtomicRMWInst::FAdd:
1655    return "fadd";
1656  case AtomicRMWInst::FSub:
1657    return "fsub";
1658  case AtomicRMWInst::BAD_BINOP:
1659    return "<invalid operation>";
1660  }
1661
1662  llvm_unreachable("invalid atomicrmw operation");
1663}
1664
1665//===----------------------------------------------------------------------===//
1666//                       FenceInst Implementation
1667//===----------------------------------------------------------------------===//
1668
1669FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1670                     SyncScope::ID SSID,
1671                     Instruction *InsertBefore)
1672  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1673  setOrdering(Ordering);
1674  setSyncScopeID(SSID);
1675}
1676
1677FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1678                     SyncScope::ID SSID,
1679                     BasicBlock *InsertAtEnd)
1680  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1681  setOrdering(Ordering);
1682  setSyncScopeID(SSID);
1683}
1684
1685//===----------------------------------------------------------------------===//
1686//                       GetElementPtrInst Implementation
1687//===----------------------------------------------------------------------===//
1688
1689void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1690                             const Twine &Name) {
1691  assert(getNumOperands() == 1 + IdxList.size() &&
1692         "NumOperands not initialized?");
1693  Op<0>() = Ptr;
1694  llvm::copy(IdxList, op_begin() + 1);
1695  setName(Name);
1696}
1697
1698GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1699    : Instruction(GEPI.getType(), GetElementPtr,
1700                  OperandTraits<GetElementPtrInst>::op_end(this) -
1701                      GEPI.getNumOperands(),
1702                  GEPI.getNumOperands()),
1703      SourceElementType(GEPI.SourceElementType),
1704      ResultElementType(GEPI.ResultElementType) {
1705  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1706  SubclassOptionalData = GEPI.SubclassOptionalData;
1707}
1708
1709Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1710  if (auto *Struct = dyn_cast<StructType>(Ty)) {
1711    if (!Struct->indexValid(Idx))
1712      return nullptr;
1713    return Struct->getTypeAtIndex(Idx);
1714  }
1715  if (!Idx->getType()->isIntOrIntVectorTy())
1716    return nullptr;
1717  if (auto *Array = dyn_cast<ArrayType>(Ty))
1718    return Array->getElementType();
1719  if (auto *Vector = dyn_cast<VectorType>(Ty))
1720    return Vector->getElementType();
1721  return nullptr;
1722}
1723
1724Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1725  if (auto *Struct = dyn_cast<StructType>(Ty)) {
1726    if (Idx >= Struct->getNumElements())
1727      return nullptr;
1728    return Struct->getElementType(Idx);
1729  }
1730  if (auto *Array = dyn_cast<ArrayType>(Ty))
1731    return Array->getElementType();
1732  if (auto *Vector = dyn_cast<VectorType>(Ty))
1733    return Vector->getElementType();
1734  return nullptr;
1735}
1736
1737template <typename IndexTy>
1738static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1739  if (IdxList.empty())
1740    return Ty;
1741  for (IndexTy V : IdxList.slice(1)) {
1742    Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1743    if (!Ty)
1744      return Ty;
1745  }
1746  return Ty;
1747}
1748
1749Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1750  return getIndexedTypeInternal(Ty, IdxList);
1751}
1752
1753Type *GetElementPtrInst::getIndexedType(Type *Ty,
1754                                        ArrayRef<Constant *> IdxList) {
1755  return getIndexedTypeInternal(Ty, IdxList);
1756}
1757
1758Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1759  return getIndexedTypeInternal(Ty, IdxList);
1760}
1761
1762/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1763/// zeros.  If so, the result pointer and the first operand have the same
1764/// value, just potentially different types.
1765bool GetElementPtrInst::hasAllZeroIndices() const {
1766  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1767    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1768      if (!CI->isZero()) return false;
1769    } else {
1770      return false;
1771    }
1772  }
1773  return true;
1774}
1775
1776/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1777/// constant integers.  If so, the result pointer and the first operand have
1778/// a constant offset between them.
1779bool GetElementPtrInst::hasAllConstantIndices() const {
1780  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1781    if (!isa<ConstantInt>(getOperand(i)))
1782      return false;
1783  }
1784  return true;
1785}
1786
1787void GetElementPtrInst::setIsInBounds(bool B) {
1788  cast<GEPOperator>(this)->setIsInBounds(B);
1789}
1790
1791bool GetElementPtrInst::isInBounds() const {
1792  return cast<GEPOperator>(this)->isInBounds();
1793}
1794
1795bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1796                                                 APInt &Offset) const {
1797  // Delegate to the generic GEPOperator implementation.
1798  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1799}
1800
1801bool GetElementPtrInst::collectOffset(
1802    const DataLayout &DL, unsigned BitWidth,
1803    SmallDenseMap<Value *, APInt, 8> &VariableOffsets,
1804    APInt &ConstantOffset) const {
1805  // Delegate to the generic GEPOperator implementation.
1806  return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1807                                                ConstantOffset);
1808}
1809
1810//===----------------------------------------------------------------------===//
1811//                           ExtractElementInst Implementation
1812//===----------------------------------------------------------------------===//
1813
1814ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1815                                       const Twine &Name,
1816                                       Instruction *InsertBef)
1817  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1818                ExtractElement,
1819                OperandTraits<ExtractElementInst>::op_begin(this),
1820                2, InsertBef) {
1821  assert(isValidOperands(Val, Index) &&
1822         "Invalid extractelement instruction operands!");
1823  Op<0>() = Val;
1824  Op<1>() = Index;
1825  setName(Name);
1826}
1827
1828ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1829                                       const Twine &Name,
1830                                       BasicBlock *InsertAE)
1831  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1832                ExtractElement,
1833                OperandTraits<ExtractElementInst>::op_begin(this),
1834                2, InsertAE) {
1835  assert(isValidOperands(Val, Index) &&
1836         "Invalid extractelement instruction operands!");
1837
1838  Op<0>() = Val;
1839  Op<1>() = Index;
1840  setName(Name);
1841}
1842
1843bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1844  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1845    return false;
1846  return true;
1847}
1848
1849//===----------------------------------------------------------------------===//
1850//                           InsertElementInst Implementation
1851//===----------------------------------------------------------------------===//
1852
1853InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1854                                     const Twine &Name,
1855                                     Instruction *InsertBef)
1856  : Instruction(Vec->getType(), InsertElement,
1857                OperandTraits<InsertElementInst>::op_begin(this),
1858                3, InsertBef) {
1859  assert(isValidOperands(Vec, Elt, Index) &&
1860         "Invalid insertelement instruction operands!");
1861  Op<0>() = Vec;
1862  Op<1>() = Elt;
1863  Op<2>() = Index;
1864  setName(Name);
1865}
1866
1867InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1868                                     const Twine &Name,
1869                                     BasicBlock *InsertAE)
1870  : Instruction(Vec->getType(), InsertElement,
1871                OperandTraits<InsertElementInst>::op_begin(this),
1872                3, InsertAE) {
1873  assert(isValidOperands(Vec, Elt, Index) &&
1874         "Invalid insertelement instruction operands!");
1875
1876  Op<0>() = Vec;
1877  Op<1>() = Elt;
1878  Op<2>() = Index;
1879  setName(Name);
1880}
1881
1882bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1883                                        const Value *Index) {
1884  if (!Vec->getType()->isVectorTy())
1885    return false;   // First operand of insertelement must be vector type.
1886
1887  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1888    return false;// Second operand of insertelement must be vector element type.
1889
1890  if (!Index->getType()->isIntegerTy())
1891    return false;  // Third operand of insertelement must be i32.
1892  return true;
1893}
1894
1895//===----------------------------------------------------------------------===//
1896//                      ShuffleVectorInst Implementation
1897//===----------------------------------------------------------------------===//
1898
1899ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1900                                     const Twine &Name,
1901                                     Instruction *InsertBefore)
1902    : Instruction(
1903          VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1904                          cast<VectorType>(Mask->getType())->getElementCount()),
1905          ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1906          OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1907  assert(isValidOperands(V1, V2, Mask) &&
1908         "Invalid shuffle vector instruction operands!");
1909
1910  Op<0>() = V1;
1911  Op<1>() = V2;
1912  SmallVector<int, 16> MaskArr;
1913  getShuffleMask(cast<Constant>(Mask), MaskArr);
1914  setShuffleMask(MaskArr);
1915  setName(Name);
1916}
1917
1918ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1919                                     const Twine &Name, BasicBlock *InsertAtEnd)
1920    : Instruction(
1921          VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1922                          cast<VectorType>(Mask->getType())->getElementCount()),
1923          ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1924          OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1925  assert(isValidOperands(V1, V2, Mask) &&
1926         "Invalid shuffle vector instruction operands!");
1927
1928  Op<0>() = V1;
1929  Op<1>() = V2;
1930  SmallVector<int, 16> MaskArr;
1931  getShuffleMask(cast<Constant>(Mask), MaskArr);
1932  setShuffleMask(MaskArr);
1933  setName(Name);
1934}
1935
1936ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1937                                     const Twine &Name,
1938                                     Instruction *InsertBefore)
1939    : Instruction(
1940          VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1941                          Mask.size(), isa<ScalableVectorType>(V1->getType())),
1942          ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1943          OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1944  assert(isValidOperands(V1, V2, Mask) &&
1945         "Invalid shuffle vector instruction operands!");
1946  Op<0>() = V1;
1947  Op<1>() = V2;
1948  setShuffleMask(Mask);
1949  setName(Name);
1950}
1951
1952ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1953                                     const Twine &Name, BasicBlock *InsertAtEnd)
1954    : Instruction(
1955          VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1956                          Mask.size(), isa<ScalableVectorType>(V1->getType())),
1957          ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1958          OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1959  assert(isValidOperands(V1, V2, Mask) &&
1960         "Invalid shuffle vector instruction operands!");
1961
1962  Op<0>() = V1;
1963  Op<1>() = V2;
1964  setShuffleMask(Mask);
1965  setName(Name);
1966}
1967
1968void ShuffleVectorInst::commute() {
1969  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1970  int NumMaskElts = ShuffleMask.size();
1971  SmallVector<int, 16> NewMask(NumMaskElts);
1972  for (int i = 0; i != NumMaskElts; ++i) {
1973    int MaskElt = getMaskValue(i);
1974    if (MaskElt == UndefMaskElem) {
1975      NewMask[i] = UndefMaskElem;
1976      continue;
1977    }
1978    assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1979    MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1980    NewMask[i] = MaskElt;
1981  }
1982  setShuffleMask(NewMask);
1983  Op<0>().swap(Op<1>());
1984}
1985
1986bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1987                                        ArrayRef<int> Mask) {
1988  // V1 and V2 must be vectors of the same type.
1989  if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1990    return false;
1991
1992  // Make sure the mask elements make sense.
1993  int V1Size =
1994      cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1995  for (int Elem : Mask)
1996    if (Elem != UndefMaskElem && Elem >= V1Size * 2)
1997      return false;
1998
1999  if (isa<ScalableVectorType>(V1->getType()))
2000    if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2001      return false;
2002
2003  return true;
2004}
2005
2006bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2007                                        const Value *Mask) {
2008  // V1 and V2 must be vectors of the same type.
2009  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2010    return false;
2011
2012  // Mask must be vector of i32, and must be the same kind of vector as the
2013  // input vectors
2014  auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2015  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2016      isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2017    return false;
2018
2019  // Check to see if Mask is valid.
2020  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2021    return true;
2022
2023  if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2024    unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2025    for (Value *Op : MV->operands()) {
2026      if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2027        if (CI->uge(V1Size*2))
2028          return false;
2029      } else if (!isa<UndefValue>(Op)) {
2030        return false;
2031      }
2032    }
2033    return true;
2034  }
2035
2036  if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2037    unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2038    for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2039         i != e; ++i)
2040      if (CDS->getElementAsInteger(i) >= V1Size*2)
2041        return false;
2042    return true;
2043  }
2044
2045  return false;
2046}
2047
2048void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2049                                       SmallVectorImpl<int> &Result) {
2050  ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2051
2052  if (isa<ConstantAggregateZero>(Mask)) {
2053    Result.resize(EC.getKnownMinValue(), 0);
2054    return;
2055  }
2056
2057  Result.reserve(EC.getKnownMinValue());
2058
2059  if (EC.isScalable()) {
2060    assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2061           "Scalable vector shuffle mask must be undef or zeroinitializer");
2062    int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2063    for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2064      Result.emplace_back(MaskVal);
2065    return;
2066  }
2067
2068  unsigned NumElts = EC.getKnownMinValue();
2069
2070  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2071    for (unsigned i = 0; i != NumElts; ++i)
2072      Result.push_back(CDS->getElementAsInteger(i));
2073    return;
2074  }
2075  for (unsigned i = 0; i != NumElts; ++i) {
2076    Constant *C = Mask->getAggregateElement(i);
2077    Result.push_back(isa<UndefValue>(C) ? -1 :
2078                     cast<ConstantInt>(C)->getZExtValue());
2079  }
2080}
2081
2082void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2083  ShuffleMask.assign(Mask.begin(), Mask.end());
2084  ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2085}
2086Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2087                                                          Type *ResultTy) {
2088  Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2089  if (isa<ScalableVectorType>(ResultTy)) {
2090    assert(is_splat(Mask) && "Unexpected shuffle");
2091    Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2092    if (Mask[0] == 0)
2093      return Constant::getNullValue(VecTy);
2094    return UndefValue::get(VecTy);
2095  }
2096  SmallVector<Constant *, 16> MaskConst;
2097  for (int Elem : Mask) {
2098    if (Elem == UndefMaskElem)
2099      MaskConst.push_back(UndefValue::get(Int32Ty));
2100    else
2101      MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2102  }
2103  return ConstantVector::get(MaskConst);
2104}
2105
2106static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2107  assert(!Mask.empty() && "Shuffle mask must contain elements");
2108  bool UsesLHS = false;
2109  bool UsesRHS = false;
2110  for (int I : Mask) {
2111    if (I == -1)
2112      continue;
2113    assert(I >= 0 && I < (NumOpElts * 2) &&
2114           "Out-of-bounds shuffle mask element");
2115    UsesLHS |= (I < NumOpElts);
2116    UsesRHS |= (I >= NumOpElts);
2117    if (UsesLHS && UsesRHS)
2118      return false;
2119  }
2120  // Allow for degenerate case: completely undef mask means neither source is used.
2121  return UsesLHS || UsesRHS;
2122}
2123
2124bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2125  // We don't have vector operand size information, so assume operands are the
2126  // same size as the mask.
2127  return isSingleSourceMaskImpl(Mask, Mask.size());
2128}
2129
2130static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2131  if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2132    return false;
2133  for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2134    if (Mask[i] == -1)
2135      continue;
2136    if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2137      return false;
2138  }
2139  return true;
2140}
2141
2142bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2143  // We don't have vector operand size information, so assume operands are the
2144  // same size as the mask.
2145  return isIdentityMaskImpl(Mask, Mask.size());
2146}
2147
2148bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2149  if (!isSingleSourceMask(Mask))
2150    return false;
2151  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2152    if (Mask[i] == -1)
2153      continue;
2154    if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2155      return false;
2156  }
2157  return true;
2158}
2159
2160bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2161  if (!isSingleSourceMask(Mask))
2162    return false;
2163  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2164    if (Mask[i] == -1)
2165      continue;
2166    if (Mask[i] != 0 && Mask[i] != NumElts)
2167      return false;
2168  }
2169  return true;
2170}
2171
2172bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2173  // Select is differentiated from identity. It requires using both sources.
2174  if (isSingleSourceMask(Mask))
2175    return false;
2176  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2177    if (Mask[i] == -1)
2178      continue;
2179    if (Mask[i] != i && Mask[i] != (NumElts + i))
2180      return false;
2181  }
2182  return true;
2183}
2184
2185bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2186  // Example masks that will return true:
2187  // v1 = <a, b, c, d>
2188  // v2 = <e, f, g, h>
2189  // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2190  // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2191
2192  // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2193  int NumElts = Mask.size();
2194  if (NumElts < 2 || !isPowerOf2_32(NumElts))
2195    return false;
2196
2197  // 2. The first element of the mask must be either a 0 or a 1.
2198  if (Mask[0] != 0 && Mask[0] != 1)
2199    return false;
2200
2201  // 3. The difference between the first 2 elements must be equal to the
2202  // number of elements in the mask.
2203  if ((Mask[1] - Mask[0]) != NumElts)
2204    return false;
2205
2206  // 4. The difference between consecutive even-numbered and odd-numbered
2207  // elements must be equal to 2.
2208  for (int i = 2; i < NumElts; ++i) {
2209    int MaskEltVal = Mask[i];
2210    if (MaskEltVal == -1)
2211      return false;
2212    int MaskEltPrevVal = Mask[i - 2];
2213    if (MaskEltVal - MaskEltPrevVal != 2)
2214      return false;
2215  }
2216  return true;
2217}
2218
2219bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2220                                               int NumSrcElts, int &Index) {
2221  // Must extract from a single source.
2222  if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2223    return false;
2224
2225  // Must be smaller (else this is an Identity shuffle).
2226  if (NumSrcElts <= (int)Mask.size())
2227    return false;
2228
2229  // Find start of extraction, accounting that we may start with an UNDEF.
2230  int SubIndex = -1;
2231  for (int i = 0, e = Mask.size(); i != e; ++i) {
2232    int M = Mask[i];
2233    if (M < 0)
2234      continue;
2235    int Offset = (M % NumSrcElts) - i;
2236    if (0 <= SubIndex && SubIndex != Offset)
2237      return false;
2238    SubIndex = Offset;
2239  }
2240
2241  if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2242    Index = SubIndex;
2243    return true;
2244  }
2245  return false;
2246}
2247
2248bool ShuffleVectorInst::isIdentityWithPadding() const {
2249  if (isa<UndefValue>(Op<2>()))
2250    return false;
2251
2252  // FIXME: Not currently possible to express a shuffle mask for a scalable
2253  // vector for this case.
2254  if (isa<ScalableVectorType>(getType()))
2255    return false;
2256
2257  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2258  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2259  if (NumMaskElts <= NumOpElts)
2260    return false;
2261
2262  // The first part of the mask must choose elements from exactly 1 source op.
2263  ArrayRef<int> Mask = getShuffleMask();
2264  if (!isIdentityMaskImpl(Mask, NumOpElts))
2265    return false;
2266
2267  // All extending must be with undef elements.
2268  for (int i = NumOpElts; i < NumMaskElts; ++i)
2269    if (Mask[i] != -1)
2270      return false;
2271
2272  return true;
2273}
2274
2275bool ShuffleVectorInst::isIdentityWithExtract() const {
2276  if (isa<UndefValue>(Op<2>()))
2277    return false;
2278
2279  // FIXME: Not currently possible to express a shuffle mask for a scalable
2280  // vector for this case.
2281  if (isa<ScalableVectorType>(getType()))
2282    return false;
2283
2284  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2285  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2286  if (NumMaskElts >= NumOpElts)
2287    return false;
2288
2289  return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2290}
2291
2292bool ShuffleVectorInst::isConcat() const {
2293  // Vector concatenation is differentiated from identity with padding.
2294  if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2295      isa<UndefValue>(Op<2>()))
2296    return false;
2297
2298  // FIXME: Not currently possible to express a shuffle mask for a scalable
2299  // vector for this case.
2300  if (isa<ScalableVectorType>(getType()))
2301    return false;
2302
2303  int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2304  int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2305  if (NumMaskElts != NumOpElts * 2)
2306    return false;
2307
2308  // Use the mask length rather than the operands' vector lengths here. We
2309  // already know that the shuffle returns a vector twice as long as the inputs,
2310  // and neither of the inputs are undef vectors. If the mask picks consecutive
2311  // elements from both inputs, then this is a concatenation of the inputs.
2312  return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2313}
2314
2315//===----------------------------------------------------------------------===//
2316//                             InsertValueInst Class
2317//===----------------------------------------------------------------------===//
2318
2319void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2320                           const Twine &Name) {
2321  assert(getNumOperands() == 2 && "NumOperands not initialized?");
2322
2323  // There's no fundamental reason why we require at least one index
2324  // (other than weirdness with &*IdxBegin being invalid; see
2325  // getelementptr's init routine for example). But there's no
2326  // present need to support it.
2327  assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2328
2329  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2330         Val->getType() && "Inserted value must match indexed type!");
2331  Op<0>() = Agg;
2332  Op<1>() = Val;
2333
2334  Indices.append(Idxs.begin(), Idxs.end());
2335  setName(Name);
2336}
2337
2338InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2339  : Instruction(IVI.getType(), InsertValue,
2340                OperandTraits<InsertValueInst>::op_begin(this), 2),
2341    Indices(IVI.Indices) {
2342  Op<0>() = IVI.getOperand(0);
2343  Op<1>() = IVI.getOperand(1);
2344  SubclassOptionalData = IVI.SubclassOptionalData;
2345}
2346
2347//===----------------------------------------------------------------------===//
2348//                             ExtractValueInst Class
2349//===----------------------------------------------------------------------===//
2350
2351void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2352  assert(getNumOperands() == 1 && "NumOperands not initialized?");
2353
2354  // There's no fundamental reason why we require at least one index.
2355  // But there's no present need to support it.
2356  assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2357
2358  Indices.append(Idxs.begin(), Idxs.end());
2359  setName(Name);
2360}
2361
2362ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2363  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2364    Indices(EVI.Indices) {
2365  SubclassOptionalData = EVI.SubclassOptionalData;
2366}
2367
2368// getIndexedType - Returns the type of the element that would be extracted
2369// with an extractvalue instruction with the specified parameters.
2370//
2371// A null type is returned if the indices are invalid for the specified
2372// pointer type.
2373//
2374Type *ExtractValueInst::getIndexedType(Type *Agg,
2375                                       ArrayRef<unsigned> Idxs) {
2376  for (unsigned Index : Idxs) {
2377    // We can't use CompositeType::indexValid(Index) here.
2378    // indexValid() always returns true for arrays because getelementptr allows
2379    // out-of-bounds indices. Since we don't allow those for extractvalue and
2380    // insertvalue we need to check array indexing manually.
2381    // Since the only other types we can index into are struct types it's just
2382    // as easy to check those manually as well.
2383    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2384      if (Index >= AT->getNumElements())
2385        return nullptr;
2386      Agg = AT->getElementType();
2387    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2388      if (Index >= ST->getNumElements())
2389        return nullptr;
2390      Agg = ST->getElementType(Index);
2391    } else {
2392      // Not a valid type to index into.
2393      return nullptr;
2394    }
2395  }
2396  return const_cast<Type*>(Agg);
2397}
2398
2399//===----------------------------------------------------------------------===//
2400//                             UnaryOperator Class
2401//===----------------------------------------------------------------------===//
2402
2403UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2404                             Type *Ty, const Twine &Name,
2405                             Instruction *InsertBefore)
2406  : UnaryInstruction(Ty, iType, S, InsertBefore) {
2407  Op<0>() = S;
2408  setName(Name);
2409  AssertOK();
2410}
2411
2412UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2413                             Type *Ty, const Twine &Name,
2414                             BasicBlock *InsertAtEnd)
2415  : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2416  Op<0>() = S;
2417  setName(Name);
2418  AssertOK();
2419}
2420
2421UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2422                                     const Twine &Name,
2423                                     Instruction *InsertBefore) {
2424  return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2425}
2426
2427UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2428                                     const Twine &Name,
2429                                     BasicBlock *InsertAtEnd) {
2430  UnaryOperator *Res = Create(Op, S, Name);
2431  InsertAtEnd->getInstList().push_back(Res);
2432  return Res;
2433}
2434
2435void UnaryOperator::AssertOK() {
2436  Value *LHS = getOperand(0);
2437  (void)LHS; // Silence warnings.
2438#ifndef NDEBUG
2439  switch (getOpcode()) {
2440  case FNeg:
2441    assert(getType() == LHS->getType() &&
2442           "Unary operation should return same type as operand!");
2443    assert(getType()->isFPOrFPVectorTy() &&
2444           "Tried to create a floating-point operation on a "
2445           "non-floating-point type!");
2446    break;
2447  default: llvm_unreachable("Invalid opcode provided");
2448  }
2449#endif
2450}
2451
2452//===----------------------------------------------------------------------===//
2453//                             BinaryOperator Class
2454//===----------------------------------------------------------------------===//
2455
2456BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2457                               Type *Ty, const Twine &Name,
2458                               Instruction *InsertBefore)
2459  : Instruction(Ty, iType,
2460                OperandTraits<BinaryOperator>::op_begin(this),
2461                OperandTraits<BinaryOperator>::operands(this),
2462                InsertBefore) {
2463  Op<0>() = S1;
2464  Op<1>() = S2;
2465  setName(Name);
2466  AssertOK();
2467}
2468
2469BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2470                               Type *Ty, const Twine &Name,
2471                               BasicBlock *InsertAtEnd)
2472  : Instruction(Ty, iType,
2473                OperandTraits<BinaryOperator>::op_begin(this),
2474                OperandTraits<BinaryOperator>::operands(this),
2475                InsertAtEnd) {
2476  Op<0>() = S1;
2477  Op<1>() = S2;
2478  setName(Name);
2479  AssertOK();
2480}
2481
2482void BinaryOperator::AssertOK() {
2483  Value *LHS = getOperand(0), *RHS = getOperand(1);
2484  (void)LHS; (void)RHS; // Silence warnings.
2485  assert(LHS->getType() == RHS->getType() &&
2486         "Binary operator operand types must match!");
2487#ifndef NDEBUG
2488  switch (getOpcode()) {
2489  case Add: case Sub:
2490  case Mul:
2491    assert(getType() == LHS->getType() &&
2492           "Arithmetic operation should return same type as operands!");
2493    assert(getType()->isIntOrIntVectorTy() &&
2494           "Tried to create an integer operation on a non-integer type!");
2495    break;
2496  case FAdd: case FSub:
2497  case FMul:
2498    assert(getType() == LHS->getType() &&
2499           "Arithmetic operation should return same type as operands!");
2500    assert(getType()->isFPOrFPVectorTy() &&
2501           "Tried to create a floating-point operation on a "
2502           "non-floating-point type!");
2503    break;
2504  case UDiv:
2505  case SDiv:
2506    assert(getType() == LHS->getType() &&
2507           "Arithmetic operation should return same type as operands!");
2508    assert(getType()->isIntOrIntVectorTy() &&
2509           "Incorrect operand type (not integer) for S/UDIV");
2510    break;
2511  case FDiv:
2512    assert(getType() == LHS->getType() &&
2513           "Arithmetic operation should return same type as operands!");
2514    assert(getType()->isFPOrFPVectorTy() &&
2515           "Incorrect operand type (not floating point) for FDIV");
2516    break;
2517  case URem:
2518  case SRem:
2519    assert(getType() == LHS->getType() &&
2520           "Arithmetic operation should return same type as operands!");
2521    assert(getType()->isIntOrIntVectorTy() &&
2522           "Incorrect operand type (not integer) for S/UREM");
2523    break;
2524  case FRem:
2525    assert(getType() == LHS->getType() &&
2526           "Arithmetic operation should return same type as operands!");
2527    assert(getType()->isFPOrFPVectorTy() &&
2528           "Incorrect operand type (not floating point) for FREM");
2529    break;
2530  case Shl:
2531  case LShr:
2532  case AShr:
2533    assert(getType() == LHS->getType() &&
2534           "Shift operation should return same type as operands!");
2535    assert(getType()->isIntOrIntVectorTy() &&
2536           "Tried to create a shift operation on a non-integral type!");
2537    break;
2538  case And: case Or:
2539  case Xor:
2540    assert(getType() == LHS->getType() &&
2541           "Logical operation should return same type as operands!");
2542    assert(getType()->isIntOrIntVectorTy() &&
2543           "Tried to create a logical operation on a non-integral type!");
2544    break;
2545  default: llvm_unreachable("Invalid opcode provided");
2546  }
2547#endif
2548}
2549
2550BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2551                                       const Twine &Name,
2552                                       Instruction *InsertBefore) {
2553  assert(S1->getType() == S2->getType() &&
2554         "Cannot create binary operator with two operands of differing type!");
2555  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2556}
2557
2558BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2559                                       const Twine &Name,
2560                                       BasicBlock *InsertAtEnd) {
2561  BinaryOperator *Res = Create(Op, S1, S2, Name);
2562  InsertAtEnd->getInstList().push_back(Res);
2563  return Res;
2564}
2565
2566BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2567                                          Instruction *InsertBefore) {
2568  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2569  return new BinaryOperator(Instruction::Sub,
2570                            zero, Op,
2571                            Op->getType(), Name, InsertBefore);
2572}
2573
2574BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2575                                          BasicBlock *InsertAtEnd) {
2576  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2577  return new BinaryOperator(Instruction::Sub,
2578                            zero, Op,
2579                            Op->getType(), Name, InsertAtEnd);
2580}
2581
2582BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2583                                             Instruction *InsertBefore) {
2584  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2585  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2586}
2587
2588BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2589                                             BasicBlock *InsertAtEnd) {
2590  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2591  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2592}
2593
2594BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2595                                             Instruction *InsertBefore) {
2596  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2597  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2598}
2599
2600BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2601                                             BasicBlock *InsertAtEnd) {
2602  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2603  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2604}
2605
2606BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2607                                          Instruction *InsertBefore) {
2608  Constant *C = Constant::getAllOnesValue(Op->getType());
2609  return new BinaryOperator(Instruction::Xor, Op, C,
2610                            Op->getType(), Name, InsertBefore);
2611}
2612
2613BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2614                                          BasicBlock *InsertAtEnd) {
2615  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2616  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2617                            Op->getType(), Name, InsertAtEnd);
2618}
2619
2620// Exchange the two operands to this instruction. This instruction is safe to
2621// use on any binary instruction and does not modify the semantics of the
2622// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2623// is changed.
2624bool BinaryOperator::swapOperands() {
2625  if (!isCommutative())
2626    return true; // Can't commute operands
2627  Op<0>().swap(Op<1>());
2628  return false;
2629}
2630
2631//===----------------------------------------------------------------------===//
2632//                             FPMathOperator Class
2633//===----------------------------------------------------------------------===//
2634
2635float FPMathOperator::getFPAccuracy() const {
2636  const MDNode *MD =
2637      cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2638  if (!MD)
2639    return 0.0;
2640  ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2641  return Accuracy->getValueAPF().convertToFloat();
2642}
2643
2644//===----------------------------------------------------------------------===//
2645//                                CastInst Class
2646//===----------------------------------------------------------------------===//
2647
2648// Just determine if this cast only deals with integral->integral conversion.
2649bool CastInst::isIntegerCast() const {
2650  switch (getOpcode()) {
2651    default: return false;
2652    case Instruction::ZExt:
2653    case Instruction::SExt:
2654    case Instruction::Trunc:
2655      return true;
2656    case Instruction::BitCast:
2657      return getOperand(0)->getType()->isIntegerTy() &&
2658        getType()->isIntegerTy();
2659  }
2660}
2661
2662bool CastInst::isLosslessCast() const {
2663  // Only BitCast can be lossless, exit fast if we're not BitCast
2664  if (getOpcode() != Instruction::BitCast)
2665    return false;
2666
2667  // Identity cast is always lossless
2668  Type *SrcTy = getOperand(0)->getType();
2669  Type *DstTy = getType();
2670  if (SrcTy == DstTy)
2671    return true;
2672
2673  // Pointer to pointer is always lossless.
2674  if (SrcTy->isPointerTy())
2675    return DstTy->isPointerTy();
2676  return false;  // Other types have no identity values
2677}
2678
2679/// This function determines if the CastInst does not require any bits to be
2680/// changed in order to effect the cast. Essentially, it identifies cases where
2681/// no code gen is necessary for the cast, hence the name no-op cast.  For
2682/// example, the following are all no-op casts:
2683/// # bitcast i32* %x to i8*
2684/// # bitcast <2 x i32> %x to <4 x i16>
2685/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2686/// Determine if the described cast is a no-op.
2687bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2688                          Type *SrcTy,
2689                          Type *DestTy,
2690                          const DataLayout &DL) {
2691  assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2692  switch (Opcode) {
2693    default: llvm_unreachable("Invalid CastOp");
2694    case Instruction::Trunc:
2695    case Instruction::ZExt:
2696    case Instruction::SExt:
2697    case Instruction::FPTrunc:
2698    case Instruction::FPExt:
2699    case Instruction::UIToFP:
2700    case Instruction::SIToFP:
2701    case Instruction::FPToUI:
2702    case Instruction::FPToSI:
2703    case Instruction::AddrSpaceCast:
2704      // TODO: Target informations may give a more accurate answer here.
2705      return false;
2706    case Instruction::BitCast:
2707      return true;  // BitCast never modifies bits.
2708    case Instruction::PtrToInt:
2709      return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2710             DestTy->getScalarSizeInBits();
2711    case Instruction::IntToPtr:
2712      return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2713             SrcTy->getScalarSizeInBits();
2714  }
2715}
2716
2717bool CastInst::isNoopCast(const DataLayout &DL) const {
2718  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2719}
2720
2721/// This function determines if a pair of casts can be eliminated and what
2722/// opcode should be used in the elimination. This assumes that there are two
2723/// instructions like this:
2724/// *  %F = firstOpcode SrcTy %x to MidTy
2725/// *  %S = secondOpcode MidTy %F to DstTy
2726/// The function returns a resultOpcode so these two casts can be replaced with:
2727/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2728/// If no such cast is permitted, the function returns 0.
2729unsigned CastInst::isEliminableCastPair(
2730  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2731  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2732  Type *DstIntPtrTy) {
2733  // Define the 144 possibilities for these two cast instructions. The values
2734  // in this matrix determine what to do in a given situation and select the
2735  // case in the switch below.  The rows correspond to firstOp, the columns
2736  // correspond to secondOp.  In looking at the table below, keep in mind
2737  // the following cast properties:
2738  //
2739  //          Size Compare       Source               Destination
2740  // Operator  Src ? Size   Type       Sign         Type       Sign
2741  // -------- ------------ -------------------   ---------------------
2742  // TRUNC         >       Integer      Any        Integral     Any
2743  // ZEXT          <       Integral   Unsigned     Integer      Any
2744  // SEXT          <       Integral    Signed      Integer      Any
2745  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2746  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2747  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2748  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2749  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2750  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2751  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2752  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2753  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2754  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2755  //
2756  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2757  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2758  // into "fptoui double to i64", but this loses information about the range
2759  // of the produced value (we no longer know the top-part is all zeros).
2760  // Further this conversion is often much more expensive for typical hardware,
2761  // and causes issues when building libgcc.  We disallow fptosi+sext for the
2762  // same reason.
2763  const unsigned numCastOps =
2764    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2765  static const uint8_t CastResults[numCastOps][numCastOps] = {
2766    // T        F  F  U  S  F  F  P  I  B  A  -+
2767    // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2768    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2769    // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2770    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2771    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2772    {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2773    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2774    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2775    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2776    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2777    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2778    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2779    { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2780    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2781    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2782    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2783    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2784  };
2785
2786  // TODO: This logic could be encoded into the table above and handled in the
2787  // switch below.
2788  // If either of the casts are a bitcast from scalar to vector, disallow the
2789  // merging. However, any pair of bitcasts are allowed.
2790  bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2791  bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2792  bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2793
2794  // Check if any of the casts convert scalars <-> vectors.
2795  if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2796      (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2797    if (!AreBothBitcasts)
2798      return 0;
2799
2800  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2801                            [secondOp-Instruction::CastOpsBegin];
2802  switch (ElimCase) {
2803    case 0:
2804      // Categorically disallowed.
2805      return 0;
2806    case 1:
2807      // Allowed, use first cast's opcode.
2808      return firstOp;
2809    case 2:
2810      // Allowed, use second cast's opcode.
2811      return secondOp;
2812    case 3:
2813      // No-op cast in second op implies firstOp as long as the DestTy
2814      // is integer and we are not converting between a vector and a
2815      // non-vector type.
2816      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2817        return firstOp;
2818      return 0;
2819    case 4:
2820      // No-op cast in second op implies firstOp as long as the DestTy
2821      // is floating point.
2822      if (DstTy->isFloatingPointTy())
2823        return firstOp;
2824      return 0;
2825    case 5:
2826      // No-op cast in first op implies secondOp as long as the SrcTy
2827      // is an integer.
2828      if (SrcTy->isIntegerTy())
2829        return secondOp;
2830      return 0;
2831    case 6:
2832      // No-op cast in first op implies secondOp as long as the SrcTy
2833      // is a floating point.
2834      if (SrcTy->isFloatingPointTy())
2835        return secondOp;
2836      return 0;
2837    case 7: {
2838      // Cannot simplify if address spaces are different!
2839      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2840        return 0;
2841
2842      unsigned MidSize = MidTy->getScalarSizeInBits();
2843      // We can still fold this without knowing the actual sizes as long we
2844      // know that the intermediate pointer is the largest possible
2845      // pointer size.
2846      // FIXME: Is this always true?
2847      if (MidSize == 64)
2848        return Instruction::BitCast;
2849
2850      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2851      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2852        return 0;
2853      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2854      if (MidSize >= PtrSize)
2855        return Instruction::BitCast;
2856      return 0;
2857    }
2858    case 8: {
2859      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2860      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2861      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2862      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2863      unsigned DstSize = DstTy->getScalarSizeInBits();
2864      if (SrcSize == DstSize)
2865        return Instruction::BitCast;
2866      else if (SrcSize < DstSize)
2867        return firstOp;
2868      return secondOp;
2869    }
2870    case 9:
2871      // zext, sext -> zext, because sext can't sign extend after zext
2872      return Instruction::ZExt;
2873    case 11: {
2874      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2875      if (!MidIntPtrTy)
2876        return 0;
2877      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2878      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2879      unsigned DstSize = DstTy->getScalarSizeInBits();
2880      if (SrcSize <= PtrSize && SrcSize == DstSize)
2881        return Instruction::BitCast;
2882      return 0;
2883    }
2884    case 12:
2885      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2886      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2887      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2888        return Instruction::AddrSpaceCast;
2889      return Instruction::BitCast;
2890    case 13:
2891      // FIXME: this state can be merged with (1), but the following assert
2892      // is useful to check the correcteness of the sequence due to semantic
2893      // change of bitcast.
2894      assert(
2895        SrcTy->isPtrOrPtrVectorTy() &&
2896        MidTy->isPtrOrPtrVectorTy() &&
2897        DstTy->isPtrOrPtrVectorTy() &&
2898        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2899        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2900        "Illegal addrspacecast, bitcast sequence!");
2901      // Allowed, use first cast's opcode
2902      return firstOp;
2903    case 14:
2904      // bitcast, addrspacecast -> addrspacecast if the element type of
2905      // bitcast's source is the same as that of addrspacecast's destination.
2906      if (SrcTy->getScalarType()->getPointerElementType() ==
2907          DstTy->getScalarType()->getPointerElementType())
2908        return Instruction::AddrSpaceCast;
2909      return 0;
2910    case 15:
2911      // FIXME: this state can be merged with (1), but the following assert
2912      // is useful to check the correcteness of the sequence due to semantic
2913      // change of bitcast.
2914      assert(
2915        SrcTy->isIntOrIntVectorTy() &&
2916        MidTy->isPtrOrPtrVectorTy() &&
2917        DstTy->isPtrOrPtrVectorTy() &&
2918        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2919        "Illegal inttoptr, bitcast sequence!");
2920      // Allowed, use first cast's opcode
2921      return firstOp;
2922    case 16:
2923      // FIXME: this state can be merged with (2), but the following assert
2924      // is useful to check the correcteness of the sequence due to semantic
2925      // change of bitcast.
2926      assert(
2927        SrcTy->isPtrOrPtrVectorTy() &&
2928        MidTy->isPtrOrPtrVectorTy() &&
2929        DstTy->isIntOrIntVectorTy() &&
2930        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2931        "Illegal bitcast, ptrtoint sequence!");
2932      // Allowed, use second cast's opcode
2933      return secondOp;
2934    case 17:
2935      // (sitofp (zext x)) -> (uitofp x)
2936      return Instruction::UIToFP;
2937    case 99:
2938      // Cast combination can't happen (error in input). This is for all cases
2939      // where the MidTy is not the same for the two cast instructions.
2940      llvm_unreachable("Invalid Cast Combination");
2941    default:
2942      llvm_unreachable("Error in CastResults table!!!");
2943  }
2944}
2945
2946CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2947  const Twine &Name, Instruction *InsertBefore) {
2948  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2949  // Construct and return the appropriate CastInst subclass
2950  switch (op) {
2951  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2952  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2953  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2954  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2955  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2956  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2957  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2958  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2959  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2960  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2961  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2962  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2963  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2964  default: llvm_unreachable("Invalid opcode provided");
2965  }
2966}
2967
2968CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2969  const Twine &Name, BasicBlock *InsertAtEnd) {
2970  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2971  // Construct and return the appropriate CastInst subclass
2972  switch (op) {
2973  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2974  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2975  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2976  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2977  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2978  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2979  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2980  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2981  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2982  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2983  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2984  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2985  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2986  default: llvm_unreachable("Invalid opcode provided");
2987  }
2988}
2989
2990CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2991                                        const Twine &Name,
2992                                        Instruction *InsertBefore) {
2993  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2994    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2995  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2996}
2997
2998CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2999                                        const Twine &Name,
3000                                        BasicBlock *InsertAtEnd) {
3001  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3002    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3003  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3004}
3005
3006CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3007                                        const Twine &Name,
3008                                        Instruction *InsertBefore) {
3009  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3010    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3011  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3012}
3013
3014CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3015                                        const Twine &Name,
3016                                        BasicBlock *InsertAtEnd) {
3017  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3018    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3019  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3020}
3021
3022CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3023                                         const Twine &Name,
3024                                         Instruction *InsertBefore) {
3025  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3026    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3027  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3028}
3029
3030CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3031                                         const Twine &Name,
3032                                         BasicBlock *InsertAtEnd) {
3033  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3034    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3035  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3036}
3037
3038CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3039                                      const Twine &Name,
3040                                      BasicBlock *InsertAtEnd) {
3041  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3042  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3043         "Invalid cast");
3044  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3045  assert((!Ty->isVectorTy() ||
3046          cast<VectorType>(Ty)->getElementCount() ==
3047              cast<VectorType>(S->getType())->getElementCount()) &&
3048         "Invalid cast");
3049
3050  if (Ty->isIntOrIntVectorTy())
3051    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3052
3053  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3054}
3055
3056/// Create a BitCast or a PtrToInt cast instruction
3057CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3058                                      const Twine &Name,
3059                                      Instruction *InsertBefore) {
3060  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3061  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3062         "Invalid cast");
3063  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3064  assert((!Ty->isVectorTy() ||
3065          cast<VectorType>(Ty)->getElementCount() ==
3066              cast<VectorType>(S->getType())->getElementCount()) &&
3067         "Invalid cast");
3068
3069  if (Ty->isIntOrIntVectorTy())
3070    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3071
3072  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3073}
3074
3075CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3076  Value *S, Type *Ty,
3077  const Twine &Name,
3078  BasicBlock *InsertAtEnd) {
3079  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3080  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3081
3082  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3083    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3084
3085  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3086}
3087
3088CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3089  Value *S, Type *Ty,
3090  const Twine &Name,
3091  Instruction *InsertBefore) {
3092  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3093  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3094
3095  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3096    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3097
3098  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3099}
3100
3101CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3102                                           const Twine &Name,
3103                                           Instruction *InsertBefore) {
3104  if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3105    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3106  if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3107    return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3108
3109  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3110}
3111
3112CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3113                                      bool isSigned, const Twine &Name,
3114                                      Instruction *InsertBefore) {
3115  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3116         "Invalid integer cast");
3117  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3118  unsigned DstBits = Ty->getScalarSizeInBits();
3119  Instruction::CastOps opcode =
3120    (SrcBits == DstBits ? Instruction::BitCast :
3121     (SrcBits > DstBits ? Instruction::Trunc :
3122      (isSigned ? Instruction::SExt : Instruction::ZExt)));
3123  return Create(opcode, C, Ty, Name, InsertBefore);
3124}
3125
3126CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3127                                      bool isSigned, const Twine &Name,
3128                                      BasicBlock *InsertAtEnd) {
3129  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3130         "Invalid cast");
3131  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3132  unsigned DstBits = Ty->getScalarSizeInBits();
3133  Instruction::CastOps opcode =
3134    (SrcBits == DstBits ? Instruction::BitCast :
3135     (SrcBits > DstBits ? Instruction::Trunc :
3136      (isSigned ? Instruction::SExt : Instruction::ZExt)));
3137  return Create(opcode, C, Ty, Name, InsertAtEnd);
3138}
3139
3140CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3141                                 const Twine &Name,
3142                                 Instruction *InsertBefore) {
3143  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3144         "Invalid cast");
3145  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3146  unsigned DstBits = Ty->getScalarSizeInBits();
3147  Instruction::CastOps opcode =
3148    (SrcBits == DstBits ? Instruction::BitCast :
3149     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3150  return Create(opcode, C, Ty, Name, InsertBefore);
3151}
3152
3153CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3154                                 const Twine &Name,
3155                                 BasicBlock *InsertAtEnd) {
3156  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3157         "Invalid cast");
3158  unsigned SrcBits = C->getType()->getScalarSizeInBits();
3159  unsigned DstBits = Ty->getScalarSizeInBits();
3160  Instruction::CastOps opcode =
3161    (SrcBits == DstBits ? Instruction::BitCast :
3162     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3163  return Create(opcode, C, Ty, Name, InsertAtEnd);
3164}
3165
3166bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3167  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3168    return false;
3169
3170  if (SrcTy == DestTy)
3171    return true;
3172
3173  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3174    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3175      if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3176        // An element by element cast. Valid if casting the elements is valid.
3177        SrcTy = SrcVecTy->getElementType();
3178        DestTy = DestVecTy->getElementType();
3179      }
3180    }
3181  }
3182
3183  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3184    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3185      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3186    }
3187  }
3188
3189  TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3190  TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3191
3192  // Could still have vectors of pointers if the number of elements doesn't
3193  // match
3194  if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3195    return false;
3196
3197  if (SrcBits != DestBits)
3198    return false;
3199
3200  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3201    return false;
3202
3203  return true;
3204}
3205
3206bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3207                                          const DataLayout &DL) {
3208  // ptrtoint and inttoptr are not allowed on non-integral pointers
3209  if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3210    if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3211      return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3212              !DL.isNonIntegralPointerType(PtrTy));
3213  if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3214    if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3215      return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3216              !DL.isNonIntegralPointerType(PtrTy));
3217
3218  return isBitCastable(SrcTy, DestTy);
3219}
3220
3221// Provide a way to get a "cast" where the cast opcode is inferred from the
3222// types and size of the operand. This, basically, is a parallel of the
3223// logic in the castIsValid function below.  This axiom should hold:
3224//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3225// should not assert in castIsValid. In other words, this produces a "correct"
3226// casting opcode for the arguments passed to it.
3227Instruction::CastOps
3228CastInst::getCastOpcode(
3229  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3230  Type *SrcTy = Src->getType();
3231
3232  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3233         "Only first class types are castable!");
3234
3235  if (SrcTy == DestTy)
3236    return BitCast;
3237
3238  // FIXME: Check address space sizes here
3239  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3240    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3241      if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3242        // An element by element cast.  Find the appropriate opcode based on the
3243        // element types.
3244        SrcTy = SrcVecTy->getElementType();
3245        DestTy = DestVecTy->getElementType();
3246      }
3247
3248  // Get the bit sizes, we'll need these
3249  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3250  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3251
3252  // Run through the possibilities ...
3253  if (DestTy->isIntegerTy()) {                      // Casting to integral
3254    if (SrcTy->isIntegerTy()) {                     // Casting from integral
3255      if (DestBits < SrcBits)
3256        return Trunc;                               // int -> smaller int
3257      else if (DestBits > SrcBits) {                // its an extension
3258        if (SrcIsSigned)
3259          return SExt;                              // signed -> SEXT
3260        else
3261          return ZExt;                              // unsigned -> ZEXT
3262      } else {
3263        return BitCast;                             // Same size, No-op cast
3264      }
3265    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3266      if (DestIsSigned)
3267        return FPToSI;                              // FP -> sint
3268      else
3269        return FPToUI;                              // FP -> uint
3270    } else if (SrcTy->isVectorTy()) {
3271      assert(DestBits == SrcBits &&
3272             "Casting vector to integer of different width");
3273      return BitCast;                             // Same size, no-op cast
3274    } else {
3275      assert(SrcTy->isPointerTy() &&
3276             "Casting from a value that is not first-class type");
3277      return PtrToInt;                              // ptr -> int
3278    }
3279  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3280    if (SrcTy->isIntegerTy()) {                     // Casting from integral
3281      if (SrcIsSigned)
3282        return SIToFP;                              // sint -> FP
3283      else
3284        return UIToFP;                              // uint -> FP
3285    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3286      if (DestBits < SrcBits) {
3287        return FPTrunc;                             // FP -> smaller FP
3288      } else if (DestBits > SrcBits) {
3289        return FPExt;                               // FP -> larger FP
3290      } else  {
3291        return BitCast;                             // same size, no-op cast
3292      }
3293    } else if (SrcTy->isVectorTy()) {
3294      assert(DestBits == SrcBits &&
3295             "Casting vector to floating point of different width");
3296      return BitCast;                             // same size, no-op cast
3297    }
3298    llvm_unreachable("Casting pointer or non-first class to float");
3299  } else if (DestTy->isVectorTy()) {
3300    assert(DestBits == SrcBits &&
3301           "Illegal cast to vector (wrong type or size)");
3302    return BitCast;
3303  } else if (DestTy->isPointerTy()) {
3304    if (SrcTy->isPointerTy()) {
3305      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3306        return AddrSpaceCast;
3307      return BitCast;                               // ptr -> ptr
3308    } else if (SrcTy->isIntegerTy()) {
3309      return IntToPtr;                              // int -> ptr
3310    }
3311    llvm_unreachable("Casting pointer to other than pointer or int");
3312  } else if (DestTy->isX86_MMXTy()) {
3313    if (SrcTy->isVectorTy()) {
3314      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3315      return BitCast;                               // 64-bit vector to MMX
3316    }
3317    llvm_unreachable("Illegal cast to X86_MMX");
3318  }
3319  llvm_unreachable("Casting to type that is not first-class");
3320}
3321
3322//===----------------------------------------------------------------------===//
3323//                    CastInst SubClass Constructors
3324//===----------------------------------------------------------------------===//
3325
3326/// Check that the construction parameters for a CastInst are correct. This
3327/// could be broken out into the separate constructors but it is useful to have
3328/// it in one place and to eliminate the redundant code for getting the sizes
3329/// of the types involved.
3330bool
3331CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3332  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3333      SrcTy->isAggregateType() || DstTy->isAggregateType())
3334    return false;
3335
3336  // Get the size of the types in bits, and whether we are dealing
3337  // with vector types, we'll need this later.
3338  bool SrcIsVec = isa<VectorType>(SrcTy);
3339  bool DstIsVec = isa<VectorType>(DstTy);
3340  unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3341  unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3342
3343  // If these are vector types, get the lengths of the vectors (using zero for
3344  // scalar types means that checking that vector lengths match also checks that
3345  // scalars are not being converted to vectors or vectors to scalars).
3346  ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3347                                : ElementCount::getFixed(0);
3348  ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3349                                : ElementCount::getFixed(0);
3350
3351  // Switch on the opcode provided
3352  switch (op) {
3353  default: return false; // This is an input error
3354  case Instruction::Trunc:
3355    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3356           SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3357  case Instruction::ZExt:
3358    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3359           SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3360  case Instruction::SExt:
3361    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3362           SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3363  case Instruction::FPTrunc:
3364    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3365           SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3366  case Instruction::FPExt:
3367    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3368           SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3369  case Instruction::UIToFP:
3370  case Instruction::SIToFP:
3371    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3372           SrcEC == DstEC;
3373  case Instruction::FPToUI:
3374  case Instruction::FPToSI:
3375    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3376           SrcEC == DstEC;
3377  case Instruction::PtrToInt:
3378    if (SrcEC != DstEC)
3379      return false;
3380    return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3381  case Instruction::IntToPtr:
3382    if (SrcEC != DstEC)
3383      return false;
3384    return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3385  case Instruction::BitCast: {
3386    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3387    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3388
3389    // BitCast implies a no-op cast of type only. No bits change.
3390    // However, you can't cast pointers to anything but pointers.
3391    if (!SrcPtrTy != !DstPtrTy)
3392      return false;
3393
3394    // For non-pointer cases, the cast is okay if the source and destination bit
3395    // widths are identical.
3396    if (!SrcPtrTy)
3397      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3398
3399    // If both are pointers then the address spaces must match.
3400    if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3401      return false;
3402
3403    // A vector of pointers must have the same number of elements.
3404    if (SrcIsVec && DstIsVec)
3405      return SrcEC == DstEC;
3406    if (SrcIsVec)
3407      return SrcEC == ElementCount::getFixed(1);
3408    if (DstIsVec)
3409      return DstEC == ElementCount::getFixed(1);
3410
3411    return true;
3412  }
3413  case Instruction::AddrSpaceCast: {
3414    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3415    if (!SrcPtrTy)
3416      return false;
3417
3418    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3419    if (!DstPtrTy)
3420      return false;
3421
3422    if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3423      return false;
3424
3425    return SrcEC == DstEC;
3426  }
3427  }
3428}
3429
3430TruncInst::TruncInst(
3431  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3432) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3433  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3434}
3435
3436TruncInst::TruncInst(
3437  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3438) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3439  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3440}
3441
3442ZExtInst::ZExtInst(
3443  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3444)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3445  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3446}
3447
3448ZExtInst::ZExtInst(
3449  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3450)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3451  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3452}
3453SExtInst::SExtInst(
3454  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3455) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3456  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3457}
3458
3459SExtInst::SExtInst(
3460  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3461)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3462  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3463}
3464
3465FPTruncInst::FPTruncInst(
3466  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3467) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3468  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3469}
3470
3471FPTruncInst::FPTruncInst(
3472  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3473) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3474  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3475}
3476
3477FPExtInst::FPExtInst(
3478  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3479) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3480  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3481}
3482
3483FPExtInst::FPExtInst(
3484  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3485) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3486  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3487}
3488
3489UIToFPInst::UIToFPInst(
3490  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3491) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3492  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3493}
3494
3495UIToFPInst::UIToFPInst(
3496  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3497) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3498  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3499}
3500
3501SIToFPInst::SIToFPInst(
3502  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3503) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3504  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3505}
3506
3507SIToFPInst::SIToFPInst(
3508  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3509) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3510  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3511}
3512
3513FPToUIInst::FPToUIInst(
3514  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3515) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3516  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3517}
3518
3519FPToUIInst::FPToUIInst(
3520  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3521) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3522  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3523}
3524
3525FPToSIInst::FPToSIInst(
3526  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3527) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3528  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3529}
3530
3531FPToSIInst::FPToSIInst(
3532  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3533) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3534  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3535}
3536
3537PtrToIntInst::PtrToIntInst(
3538  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3539) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3540  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3541}
3542
3543PtrToIntInst::PtrToIntInst(
3544  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3545) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3546  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3547}
3548
3549IntToPtrInst::IntToPtrInst(
3550  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3551) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3552  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3553}
3554
3555IntToPtrInst::IntToPtrInst(
3556  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3557) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3558  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3559}
3560
3561BitCastInst::BitCastInst(
3562  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3563) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3564  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3565}
3566
3567BitCastInst::BitCastInst(
3568  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3569) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3570  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3571}
3572
3573AddrSpaceCastInst::AddrSpaceCastInst(
3574  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3575) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3576  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3577}
3578
3579AddrSpaceCastInst::AddrSpaceCastInst(
3580  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3581) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3582  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3583}
3584
3585//===----------------------------------------------------------------------===//
3586//                               CmpInst Classes
3587//===----------------------------------------------------------------------===//
3588
3589CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3590                 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3591                 Instruction *FlagsSource)
3592  : Instruction(ty, op,
3593                OperandTraits<CmpInst>::op_begin(this),
3594                OperandTraits<CmpInst>::operands(this),
3595                InsertBefore) {
3596  Op<0>() = LHS;
3597  Op<1>() = RHS;
3598  setPredicate((Predicate)predicate);
3599  setName(Name);
3600  if (FlagsSource)
3601    copyIRFlags(FlagsSource);
3602}
3603
3604CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3605                 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3606  : Instruction(ty, op,
3607                OperandTraits<CmpInst>::op_begin(this),
3608                OperandTraits<CmpInst>::operands(this),
3609                InsertAtEnd) {
3610  Op<0>() = LHS;
3611  Op<1>() = RHS;
3612  setPredicate((Predicate)predicate);
3613  setName(Name);
3614}
3615
3616CmpInst *
3617CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3618                const Twine &Name, Instruction *InsertBefore) {
3619  if (Op == Instruction::ICmp) {
3620    if (InsertBefore)
3621      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3622                          S1, S2, Name);
3623    else
3624      return new ICmpInst(CmpInst::Predicate(predicate),
3625                          S1, S2, Name);
3626  }
3627
3628  if (InsertBefore)
3629    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3630                        S1, S2, Name);
3631  else
3632    return new FCmpInst(CmpInst::Predicate(predicate),
3633                        S1, S2, Name);
3634}
3635
3636CmpInst *
3637CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3638                const Twine &Name, BasicBlock *InsertAtEnd) {
3639  if (Op == Instruction::ICmp) {
3640    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3641                        S1, S2, Name);
3642  }
3643  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3644                      S1, S2, Name);
3645}
3646
3647void CmpInst::swapOperands() {
3648  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3649    IC->swapOperands();
3650  else
3651    cast<FCmpInst>(this)->swapOperands();
3652}
3653
3654bool CmpInst::isCommutative() const {
3655  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3656    return IC->isCommutative();
3657  return cast<FCmpInst>(this)->isCommutative();
3658}
3659
3660bool CmpInst::isEquality(Predicate P) {
3661  if (ICmpInst::isIntPredicate(P))
3662    return ICmpInst::isEquality(P);
3663  if (FCmpInst::isFPPredicate(P))
3664    return FCmpInst::isEquality(P);
3665  llvm_unreachable("Unsupported predicate kind");
3666}
3667
3668CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3669  switch (pred) {
3670    default: llvm_unreachable("Unknown cmp predicate!");
3671    case ICMP_EQ: return ICMP_NE;
3672    case ICMP_NE: return ICMP_EQ;
3673    case ICMP_UGT: return ICMP_ULE;
3674    case ICMP_ULT: return ICMP_UGE;
3675    case ICMP_UGE: return ICMP_ULT;
3676    case ICMP_ULE: return ICMP_UGT;
3677    case ICMP_SGT: return ICMP_SLE;
3678    case ICMP_SLT: return ICMP_SGE;
3679    case ICMP_SGE: return ICMP_SLT;
3680    case ICMP_SLE: return ICMP_SGT;
3681
3682    case FCMP_OEQ: return FCMP_UNE;
3683    case FCMP_ONE: return FCMP_UEQ;
3684    case FCMP_OGT: return FCMP_ULE;
3685    case FCMP_OLT: return FCMP_UGE;
3686    case FCMP_OGE: return FCMP_ULT;
3687    case FCMP_OLE: return FCMP_UGT;
3688    case FCMP_UEQ: return FCMP_ONE;
3689    case FCMP_UNE: return FCMP_OEQ;
3690    case FCMP_UGT: return FCMP_OLE;
3691    case FCMP_ULT: return FCMP_OGE;
3692    case FCMP_UGE: return FCMP_OLT;
3693    case FCMP_ULE: return FCMP_OGT;
3694    case FCMP_ORD: return FCMP_UNO;
3695    case FCMP_UNO: return FCMP_ORD;
3696    case FCMP_TRUE: return FCMP_FALSE;
3697    case FCMP_FALSE: return FCMP_TRUE;
3698  }
3699}
3700
3701StringRef CmpInst::getPredicateName(Predicate Pred) {
3702  switch (Pred) {
3703  default:                   return "unknown";
3704  case FCmpInst::FCMP_FALSE: return "false";
3705  case FCmpInst::FCMP_OEQ:   return "oeq";
3706  case FCmpInst::FCMP_OGT:   return "ogt";
3707  case FCmpInst::FCMP_OGE:   return "oge";
3708  case FCmpInst::FCMP_OLT:   return "olt";
3709  case FCmpInst::FCMP_OLE:   return "ole";
3710  case FCmpInst::FCMP_ONE:   return "one";
3711  case FCmpInst::FCMP_ORD:   return "ord";
3712  case FCmpInst::FCMP_UNO:   return "uno";
3713  case FCmpInst::FCMP_UEQ:   return "ueq";
3714  case FCmpInst::FCMP_UGT:   return "ugt";
3715  case FCmpInst::FCMP_UGE:   return "uge";
3716  case FCmpInst::FCMP_ULT:   return "ult";
3717  case FCmpInst::FCMP_ULE:   return "ule";
3718  case FCmpInst::FCMP_UNE:   return "une";
3719  case FCmpInst::FCMP_TRUE:  return "true";
3720  case ICmpInst::ICMP_EQ:    return "eq";
3721  case ICmpInst::ICMP_NE:    return "ne";
3722  case ICmpInst::ICMP_SGT:   return "sgt";
3723  case ICmpInst::ICMP_SGE:   return "sge";
3724  case ICmpInst::ICMP_SLT:   return "slt";
3725  case ICmpInst::ICMP_SLE:   return "sle";
3726  case ICmpInst::ICMP_UGT:   return "ugt";
3727  case ICmpInst::ICMP_UGE:   return "uge";
3728  case ICmpInst::ICMP_ULT:   return "ult";
3729  case ICmpInst::ICMP_ULE:   return "ule";
3730  }
3731}
3732
3733ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3734  switch (pred) {
3735    default: llvm_unreachable("Unknown icmp predicate!");
3736    case ICMP_EQ: case ICMP_NE:
3737    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3738       return pred;
3739    case ICMP_UGT: return ICMP_SGT;
3740    case ICMP_ULT: return ICMP_SLT;
3741    case ICMP_UGE: return ICMP_SGE;
3742    case ICMP_ULE: return ICMP_SLE;
3743  }
3744}
3745
3746ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3747  switch (pred) {
3748    default: llvm_unreachable("Unknown icmp predicate!");
3749    case ICMP_EQ: case ICMP_NE:
3750    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3751       return pred;
3752    case ICMP_SGT: return ICMP_UGT;
3753    case ICMP_SLT: return ICMP_ULT;
3754    case ICMP_SGE: return ICMP_UGE;
3755    case ICMP_SLE: return ICMP_ULE;
3756  }
3757}
3758
3759CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3760  switch (pred) {
3761    default: llvm_unreachable("Unknown cmp predicate!");
3762    case ICMP_EQ: case ICMP_NE:
3763      return pred;
3764    case ICMP_SGT: return ICMP_SLT;
3765    case ICMP_SLT: return ICMP_SGT;
3766    case ICMP_SGE: return ICMP_SLE;
3767    case ICMP_SLE: return ICMP_SGE;
3768    case ICMP_UGT: return ICMP_ULT;
3769    case ICMP_ULT: return ICMP_UGT;
3770    case ICMP_UGE: return ICMP_ULE;
3771    case ICMP_ULE: return ICMP_UGE;
3772
3773    case FCMP_FALSE: case FCMP_TRUE:
3774    case FCMP_OEQ: case FCMP_ONE:
3775    case FCMP_UEQ: case FCMP_UNE:
3776    case FCMP_ORD: case FCMP_UNO:
3777      return pred;
3778    case FCMP_OGT: return FCMP_OLT;
3779    case FCMP_OLT: return FCMP_OGT;
3780    case FCMP_OGE: return FCMP_OLE;
3781    case FCMP_OLE: return FCMP_OGE;
3782    case FCMP_UGT: return FCMP_ULT;
3783    case FCMP_ULT: return FCMP_UGT;
3784    case FCMP_UGE: return FCMP_ULE;
3785    case FCMP_ULE: return FCMP_UGE;
3786  }
3787}
3788
3789bool CmpInst::isNonStrictPredicate(Predicate pred) {
3790  switch (pred) {
3791  case ICMP_SGE:
3792  case ICMP_SLE:
3793  case ICMP_UGE:
3794  case ICMP_ULE:
3795  case FCMP_OGE:
3796  case FCMP_OLE:
3797  case FCMP_UGE:
3798  case FCMP_ULE:
3799    return true;
3800  default:
3801    return false;
3802  }
3803}
3804
3805bool CmpInst::isStrictPredicate(Predicate pred) {
3806  switch (pred) {
3807  case ICMP_SGT:
3808  case ICMP_SLT:
3809  case ICMP_UGT:
3810  case ICMP_ULT:
3811  case FCMP_OGT:
3812  case FCMP_OLT:
3813  case FCMP_UGT:
3814  case FCMP_ULT:
3815    return true;
3816  default:
3817    return false;
3818  }
3819}
3820
3821CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3822  switch (pred) {
3823  case ICMP_SGE:
3824    return ICMP_SGT;
3825  case ICMP_SLE:
3826    return ICMP_SLT;
3827  case ICMP_UGE:
3828    return ICMP_UGT;
3829  case ICMP_ULE:
3830    return ICMP_ULT;
3831  case FCMP_OGE:
3832    return FCMP_OGT;
3833  case FCMP_OLE:
3834    return FCMP_OLT;
3835  case FCMP_UGE:
3836    return FCMP_UGT;
3837  case FCMP_ULE:
3838    return FCMP_ULT;
3839  default:
3840    return pred;
3841  }
3842}
3843
3844CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3845  switch (pred) {
3846  case ICMP_SGT:
3847    return ICMP_SGE;
3848  case ICMP_SLT:
3849    return ICMP_SLE;
3850  case ICMP_UGT:
3851    return ICMP_UGE;
3852  case ICMP_ULT:
3853    return ICMP_ULE;
3854  case FCMP_OGT:
3855    return FCMP_OGE;
3856  case FCMP_OLT:
3857    return FCMP_OLE;
3858  case FCMP_UGT:
3859    return FCMP_UGE;
3860  case FCMP_ULT:
3861    return FCMP_ULE;
3862  default:
3863    return pred;
3864  }
3865}
3866
3867CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3868  assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3869
3870  if (isStrictPredicate(pred))
3871    return getNonStrictPredicate(pred);
3872  if (isNonStrictPredicate(pred))
3873    return getStrictPredicate(pred);
3874
3875  llvm_unreachable("Unknown predicate!");
3876}
3877
3878CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3879  assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3880
3881  switch (pred) {
3882  default:
3883    llvm_unreachable("Unknown predicate!");
3884  case CmpInst::ICMP_ULT:
3885    return CmpInst::ICMP_SLT;
3886  case CmpInst::ICMP_ULE:
3887    return CmpInst::ICMP_SLE;
3888  case CmpInst::ICMP_UGT:
3889    return CmpInst::ICMP_SGT;
3890  case CmpInst::ICMP_UGE:
3891    return CmpInst::ICMP_SGE;
3892  }
3893}
3894
3895CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3896  assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3897
3898  switch (pred) {
3899  default:
3900    llvm_unreachable("Unknown predicate!");
3901  case CmpInst::ICMP_SLT:
3902    return CmpInst::ICMP_ULT;
3903  case CmpInst::ICMP_SLE:
3904    return CmpInst::ICMP_ULE;
3905  case CmpInst::ICMP_SGT:
3906    return CmpInst::ICMP_UGT;
3907  case CmpInst::ICMP_SGE:
3908    return CmpInst::ICMP_UGE;
3909  }
3910}
3911
3912bool CmpInst::isUnsigned(Predicate predicate) {
3913  switch (predicate) {
3914    default: return false;
3915    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3916    case ICmpInst::ICMP_UGE: return true;
3917  }
3918}
3919
3920bool CmpInst::isSigned(Predicate predicate) {
3921  switch (predicate) {
3922    default: return false;
3923    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3924    case ICmpInst::ICMP_SGE: return true;
3925  }
3926}
3927
3928CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3929  assert(CmpInst::isRelational(pred) &&
3930         "Call only with non-equality predicates!");
3931
3932  if (isSigned(pred))
3933    return getUnsignedPredicate(pred);
3934  if (isUnsigned(pred))
3935    return getSignedPredicate(pred);
3936
3937  llvm_unreachable("Unknown predicate!");
3938}
3939
3940bool CmpInst::isOrdered(Predicate predicate) {
3941  switch (predicate) {
3942    default: return false;
3943    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3944    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3945    case FCmpInst::FCMP_ORD: return true;
3946  }
3947}
3948
3949bool CmpInst::isUnordered(Predicate predicate) {
3950  switch (predicate) {
3951    default: return false;
3952    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3953    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3954    case FCmpInst::FCMP_UNO: return true;
3955  }
3956}
3957
3958bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3959  switch(predicate) {
3960    default: return false;
3961    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3962    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3963  }
3964}
3965
3966bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3967  switch(predicate) {
3968  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3969  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3970  default: return false;
3971  }
3972}
3973
3974bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3975  // If the predicates match, then we know the first condition implies the
3976  // second is true.
3977  if (Pred1 == Pred2)
3978    return true;
3979
3980  switch (Pred1) {
3981  default:
3982    break;
3983  case ICMP_EQ:
3984    // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3985    return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3986           Pred2 == ICMP_SLE;
3987  case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3988    return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3989  case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3990    return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3991  case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3992    return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3993  case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3994    return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3995  }
3996  return false;
3997}
3998
3999bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4000  return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4001}
4002
4003//===----------------------------------------------------------------------===//
4004//                        SwitchInst Implementation
4005//===----------------------------------------------------------------------===//
4006
4007void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4008  assert(Value && Default && NumReserved);
4009  ReservedSpace = NumReserved;
4010  setNumHungOffUseOperands(2);
4011  allocHungoffUses(ReservedSpace);
4012
4013  Op<0>() = Value;
4014  Op<1>() = Default;
4015}
4016
4017/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4018/// switch on and a default destination.  The number of additional cases can
4019/// be specified here to make memory allocation more efficient.  This
4020/// constructor can also autoinsert before another instruction.
4021SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4022                       Instruction *InsertBefore)
4023    : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4024                  nullptr, 0, InsertBefore) {
4025  init(Value, Default, 2+NumCases*2);
4026}
4027
4028/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4029/// switch on and a default destination.  The number of additional cases can
4030/// be specified here to make memory allocation more efficient.  This
4031/// constructor also autoinserts at the end of the specified BasicBlock.
4032SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4033                       BasicBlock *InsertAtEnd)
4034    : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4035                  nullptr, 0, InsertAtEnd) {
4036  init(Value, Default, 2+NumCases*2);
4037}
4038
4039SwitchInst::SwitchInst(const SwitchInst &SI)
4040    : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4041  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4042  setNumHungOffUseOperands(SI.getNumOperands());
4043  Use *OL = getOperandList();
4044  const Use *InOL = SI.getOperandList();
4045  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4046    OL[i] = InOL[i];
4047    OL[i+1] = InOL[i+1];
4048  }
4049  SubclassOptionalData = SI.SubclassOptionalData;
4050}
4051
4052/// addCase - Add an entry to the switch instruction...
4053///
4054void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4055  unsigned NewCaseIdx = getNumCases();
4056  unsigned OpNo = getNumOperands();
4057  if (OpNo+2 > ReservedSpace)
4058    growOperands();  // Get more space!
4059  // Initialize some new operands.
4060  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4061  setNumHungOffUseOperands(OpNo+2);
4062  CaseHandle Case(this, NewCaseIdx);
4063  Case.setValue(OnVal);
4064  Case.setSuccessor(Dest);
4065}
4066
4067/// removeCase - This method removes the specified case and its successor
4068/// from the switch instruction.
4069SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4070  unsigned idx = I->getCaseIndex();
4071
4072  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4073
4074  unsigned NumOps = getNumOperands();
4075  Use *OL = getOperandList();
4076
4077  // Overwrite this case with the end of the list.
4078  if (2 + (idx + 1) * 2 != NumOps) {
4079    OL[2 + idx * 2] = OL[NumOps - 2];
4080    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4081  }
4082
4083  // Nuke the last value.
4084  OL[NumOps-2].set(nullptr);
4085  OL[NumOps-2+1].set(nullptr);
4086  setNumHungOffUseOperands(NumOps-2);
4087
4088  return CaseIt(this, idx);
4089}
4090
4091/// growOperands - grow operands - This grows the operand list in response
4092/// to a push_back style of operation.  This grows the number of ops by 3 times.
4093///
4094void SwitchInst::growOperands() {
4095  unsigned e = getNumOperands();
4096  unsigned NumOps = e*3;
4097
4098  ReservedSpace = NumOps;
4099  growHungoffUses(ReservedSpace);
4100}
4101
4102MDNode *
4103SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4104  if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4105    if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4106      if (MDName->getString() == "branch_weights")
4107        return ProfileData;
4108  return nullptr;
4109}
4110
4111MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4112  assert(Changed && "called only if metadata has changed");
4113
4114  if (!Weights)
4115    return nullptr;
4116
4117  assert(SI.getNumSuccessors() == Weights->size() &&
4118         "num of prof branch_weights must accord with num of successors");
4119
4120  bool AllZeroes =
4121      all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4122
4123  if (AllZeroes || Weights.getValue().size() < 2)
4124    return nullptr;
4125
4126  return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4127}
4128
4129void SwitchInstProfUpdateWrapper::init() {
4130  MDNode *ProfileData = getProfBranchWeightsMD(SI);
4131  if (!ProfileData)
4132    return;
4133
4134  if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4135    llvm_unreachable("number of prof branch_weights metadata operands does "
4136                     "not correspond to number of succesors");
4137  }
4138
4139  SmallVector<uint32_t, 8> Weights;
4140  for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4141    ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4142    uint32_t CW = C->getValue().getZExtValue();
4143    Weights.push_back(CW);
4144  }
4145  this->Weights = std::move(Weights);
4146}
4147
4148SwitchInst::CaseIt
4149SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4150  if (Weights) {
4151    assert(SI.getNumSuccessors() == Weights->size() &&
4152           "num of prof branch_weights must accord with num of successors");
4153    Changed = true;
4154    // Copy the last case to the place of the removed one and shrink.
4155    // This is tightly coupled with the way SwitchInst::removeCase() removes
4156    // the cases in SwitchInst::removeCase(CaseIt).
4157    Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4158    Weights.getValue().pop_back();
4159  }
4160  return SI.removeCase(I);
4161}
4162
4163void SwitchInstProfUpdateWrapper::addCase(
4164    ConstantInt *OnVal, BasicBlock *Dest,
4165    SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4166  SI.addCase(OnVal, Dest);
4167
4168  if (!Weights && W && *W) {
4169    Changed = true;
4170    Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4171    Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4172  } else if (Weights) {
4173    Changed = true;
4174    Weights.getValue().push_back(W ? *W : 0);
4175  }
4176  if (Weights)
4177    assert(SI.getNumSuccessors() == Weights->size() &&
4178           "num of prof branch_weights must accord with num of successors");
4179}
4180
4181SymbolTableList<Instruction>::iterator
4182SwitchInstProfUpdateWrapper::eraseFromParent() {
4183  // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4184  Changed = false;
4185  if (Weights)
4186    Weights->resize(0);
4187  return SI.eraseFromParent();
4188}
4189
4190SwitchInstProfUpdateWrapper::CaseWeightOpt
4191SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4192  if (!Weights)
4193    return None;
4194  return Weights.getValue()[idx];
4195}
4196
4197void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4198    unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4199  if (!W)
4200    return;
4201
4202  if (!Weights && *W)
4203    Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4204
4205  if (Weights) {
4206    auto &OldW = Weights.getValue()[idx];
4207    if (*W != OldW) {
4208      Changed = true;
4209      OldW = *W;
4210    }
4211  }
4212}
4213
4214SwitchInstProfUpdateWrapper::CaseWeightOpt
4215SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4216                                                unsigned idx) {
4217  if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4218    if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4219      return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4220          ->getValue()
4221          .getZExtValue();
4222
4223  return None;
4224}
4225
4226//===----------------------------------------------------------------------===//
4227//                        IndirectBrInst Implementation
4228//===----------------------------------------------------------------------===//
4229
4230void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4231  assert(Address && Address->getType()->isPointerTy() &&
4232         "Address of indirectbr must be a pointer");
4233  ReservedSpace = 1+NumDests;
4234  setNumHungOffUseOperands(1);
4235  allocHungoffUses(ReservedSpace);
4236
4237  Op<0>() = Address;
4238}
4239
4240
4241/// growOperands - grow operands - This grows the operand list in response
4242/// to a push_back style of operation.  This grows the number of ops by 2 times.
4243///
4244void IndirectBrInst::growOperands() {
4245  unsigned e = getNumOperands();
4246  unsigned NumOps = e*2;
4247
4248  ReservedSpace = NumOps;
4249  growHungoffUses(ReservedSpace);
4250}
4251
4252IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4253                               Instruction *InsertBefore)
4254    : Instruction(Type::getVoidTy(Address->getContext()),
4255                  Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4256  init(Address, NumCases);
4257}
4258
4259IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4260                               BasicBlock *InsertAtEnd)
4261    : Instruction(Type::getVoidTy(Address->getContext()),
4262                  Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4263  init(Address, NumCases);
4264}
4265
4266IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4267    : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4268                  nullptr, IBI.getNumOperands()) {
4269  allocHungoffUses(IBI.getNumOperands());
4270  Use *OL = getOperandList();
4271  const Use *InOL = IBI.getOperandList();
4272  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4273    OL[i] = InOL[i];
4274  SubclassOptionalData = IBI.SubclassOptionalData;
4275}
4276
4277/// addDestination - Add a destination.
4278///
4279void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4280  unsigned OpNo = getNumOperands();
4281  if (OpNo+1 > ReservedSpace)
4282    growOperands();  // Get more space!
4283  // Initialize some new operands.
4284  assert(OpNo < ReservedSpace && "Growing didn't work!");
4285  setNumHungOffUseOperands(OpNo+1);
4286  getOperandList()[OpNo] = DestBB;
4287}
4288
4289/// removeDestination - This method removes the specified successor from the
4290/// indirectbr instruction.
4291void IndirectBrInst::removeDestination(unsigned idx) {
4292  assert(idx < getNumOperands()-1 && "Successor index out of range!");
4293
4294  unsigned NumOps = getNumOperands();
4295  Use *OL = getOperandList();
4296
4297  // Replace this value with the last one.
4298  OL[idx+1] = OL[NumOps-1];
4299
4300  // Nuke the last value.
4301  OL[NumOps-1].set(nullptr);
4302  setNumHungOffUseOperands(NumOps-1);
4303}
4304
4305//===----------------------------------------------------------------------===//
4306//                            FreezeInst Implementation
4307//===----------------------------------------------------------------------===//
4308
4309FreezeInst::FreezeInst(Value *S,
4310                       const Twine &Name, Instruction *InsertBefore)
4311    : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4312  setName(Name);
4313}
4314
4315FreezeInst::FreezeInst(Value *S,
4316                       const Twine &Name, BasicBlock *InsertAtEnd)
4317    : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4318  setName(Name);
4319}
4320
4321//===----------------------------------------------------------------------===//
4322//                           cloneImpl() implementations
4323//===----------------------------------------------------------------------===//
4324
4325// Define these methods here so vtables don't get emitted into every translation
4326// unit that uses these classes.
4327
4328GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4329  return new (getNumOperands()) GetElementPtrInst(*this);
4330}
4331
4332UnaryOperator *UnaryOperator::cloneImpl() const {
4333  return Create(getOpcode(), Op<0>());
4334}
4335
4336BinaryOperator *BinaryOperator::cloneImpl() const {
4337  return Create(getOpcode(), Op<0>(), Op<1>());
4338}
4339
4340FCmpInst *FCmpInst::cloneImpl() const {
4341  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4342}
4343
4344ICmpInst *ICmpInst::cloneImpl() const {
4345  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4346}
4347
4348ExtractValueInst *ExtractValueInst::cloneImpl() const {
4349  return new ExtractValueInst(*this);
4350}
4351
4352InsertValueInst *InsertValueInst::cloneImpl() const {
4353  return new InsertValueInst(*this);
4354}
4355
4356AllocaInst *AllocaInst::cloneImpl() const {
4357  AllocaInst *Result =
4358      new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4359                     getOperand(0), getAlign());
4360  Result->setUsedWithInAlloca(isUsedWithInAlloca());
4361  Result->setSwiftError(isSwiftError());
4362  return Result;
4363}
4364
4365LoadInst *LoadInst::cloneImpl() const {
4366  return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4367                      getAlign(), getOrdering(), getSyncScopeID());
4368}
4369
4370StoreInst *StoreInst::cloneImpl() const {
4371  return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4372                       getOrdering(), getSyncScopeID());
4373}
4374
4375AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4376  AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4377      getOperand(0), getOperand(1), getOperand(2), getAlign(),
4378      getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4379  Result->setVolatile(isVolatile());
4380  Result->setWeak(isWeak());
4381  return Result;
4382}
4383
4384AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4385  AtomicRMWInst *Result =
4386      new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4387                        getAlign(), getOrdering(), getSyncScopeID());
4388  Result->setVolatile(isVolatile());
4389  return Result;
4390}
4391
4392FenceInst *FenceInst::cloneImpl() const {
4393  return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4394}
4395
4396TruncInst *TruncInst::cloneImpl() const {
4397  return new TruncInst(getOperand(0), getType());
4398}
4399
4400ZExtInst *ZExtInst::cloneImpl() const {
4401  return new ZExtInst(getOperand(0), getType());
4402}
4403
4404SExtInst *SExtInst::cloneImpl() const {
4405  return new SExtInst(getOperand(0), getType());
4406}
4407
4408FPTruncInst *FPTruncInst::cloneImpl() const {
4409  return new FPTruncInst(getOperand(0), getType());
4410}
4411
4412FPExtInst *FPExtInst::cloneImpl() const {
4413  return new FPExtInst(getOperand(0), getType());
4414}
4415
4416UIToFPInst *UIToFPInst::cloneImpl() const {
4417  return new UIToFPInst(getOperand(0), getType());
4418}
4419
4420SIToFPInst *SIToFPInst::cloneImpl() const {
4421  return new SIToFPInst(getOperand(0), getType());
4422}
4423
4424FPToUIInst *FPToUIInst::cloneImpl() const {
4425  return new FPToUIInst(getOperand(0), getType());
4426}
4427
4428FPToSIInst *FPToSIInst::cloneImpl() const {
4429  return new FPToSIInst(getOperand(0), getType());
4430}
4431
4432PtrToIntInst *PtrToIntInst::cloneImpl() const {
4433  return new PtrToIntInst(getOperand(0), getType());
4434}
4435
4436IntToPtrInst *IntToPtrInst::cloneImpl() const {
4437  return new IntToPtrInst(getOperand(0), getType());
4438}
4439
4440BitCastInst *BitCastInst::cloneImpl() const {
4441  return new BitCastInst(getOperand(0), getType());
4442}
4443
4444AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4445  return new AddrSpaceCastInst(getOperand(0), getType());
4446}
4447
4448CallInst *CallInst::cloneImpl() const {
4449  if (hasOperandBundles()) {
4450    unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4451    return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4452  }
4453  return  new(getNumOperands()) CallInst(*this);
4454}
4455
4456SelectInst *SelectInst::cloneImpl() const {
4457  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4458}
4459
4460VAArgInst *VAArgInst::cloneImpl() const {
4461  return new VAArgInst(getOperand(0), getType());
4462}
4463
4464ExtractElementInst *ExtractElementInst::cloneImpl() const {
4465  return ExtractElementInst::Create(getOperand(0), getOperand(1));
4466}
4467
4468InsertElementInst *InsertElementInst::cloneImpl() const {
4469  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4470}
4471
4472ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4473  return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4474}
4475
4476PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4477
4478LandingPadInst *LandingPadInst::cloneImpl() const {
4479  return new LandingPadInst(*this);
4480}
4481
4482ReturnInst *ReturnInst::cloneImpl() const {
4483  return new(getNumOperands()) ReturnInst(*this);
4484}
4485
4486BranchInst *BranchInst::cloneImpl() const {
4487  return new(getNumOperands()) BranchInst(*this);
4488}
4489
4490SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4491
4492IndirectBrInst *IndirectBrInst::cloneImpl() const {
4493  return new IndirectBrInst(*this);
4494}
4495
4496InvokeInst *InvokeInst::cloneImpl() const {
4497  if (hasOperandBundles()) {
4498    unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4499    return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4500  }
4501  return new(getNumOperands()) InvokeInst(*this);
4502}
4503
4504CallBrInst *CallBrInst::cloneImpl() const {
4505  if (hasOperandBundles()) {
4506    unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4507    return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4508  }
4509  return new (getNumOperands()) CallBrInst(*this);
4510}
4511
4512ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4513
4514CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4515  return new (getNumOperands()) CleanupReturnInst(*this);
4516}
4517
4518CatchReturnInst *CatchReturnInst::cloneImpl() const {
4519  return new (getNumOperands()) CatchReturnInst(*this);
4520}
4521
4522CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4523  return new CatchSwitchInst(*this);
4524}
4525
4526FuncletPadInst *FuncletPadInst::cloneImpl() const {
4527  return new (getNumOperands()) FuncletPadInst(*this);
4528}
4529
4530UnreachableInst *UnreachableInst::cloneImpl() const {
4531  LLVMContext &Context = getContext();
4532  return new UnreachableInst(Context);
4533}
4534
4535FreezeInst *FreezeInst::cloneImpl() const {
4536  return new FreezeInst(getOperand(0));
4537}
4538