1//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Pass to verify generated machine code. The following is checked:
10//
11// Operand counts: All explicit operands must be present.
12//
13// Register classes: All physical and virtual register operands must be
14// compatible with the register class required by the instruction descriptor.
15//
16// Register live intervals: Registers must be defined only once, and must be
17// defined before use.
18//
19// The machine code verifier is enabled with the command-line option
20// -verify-machineinstrs.
21//===----------------------------------------------------------------------===//
22
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/DenseSet.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/PostOrderIterator.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetOperations.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringRef.h"
33#include "llvm/ADT/Twine.h"
34#include "llvm/Analysis/EHPersonalities.h"
35#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36#include "llvm/CodeGen/LiveInterval.h"
37#include "llvm/CodeGen/LiveIntervalCalc.h"
38#include "llvm/CodeGen/LiveIntervals.h"
39#include "llvm/CodeGen/LiveStacks.h"
40#include "llvm/CodeGen/LiveVariables.h"
41#include "llvm/CodeGen/MachineBasicBlock.h"
42#include "llvm/CodeGen/MachineFrameInfo.h"
43#include "llvm/CodeGen/MachineFunction.h"
44#include "llvm/CodeGen/MachineFunctionPass.h"
45#include "llvm/CodeGen/MachineInstr.h"
46#include "llvm/CodeGen/MachineInstrBundle.h"
47#include "llvm/CodeGen/MachineMemOperand.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/PseudoSourceValue.h"
51#include "llvm/CodeGen/SlotIndexes.h"
52#include "llvm/CodeGen/StackMaps.h"
53#include "llvm/CodeGen/TargetInstrInfo.h"
54#include "llvm/CodeGen/TargetOpcodes.h"
55#include "llvm/CodeGen/TargetRegisterInfo.h"
56#include "llvm/CodeGen/TargetSubtargetInfo.h"
57#include "llvm/IR/BasicBlock.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/InlineAsm.h"
60#include "llvm/IR/Instructions.h"
61#include "llvm/InitializePasses.h"
62#include "llvm/MC/LaneBitmask.h"
63#include "llvm/MC/MCAsmInfo.h"
64#include "llvm/MC/MCInstrDesc.h"
65#include "llvm/MC/MCRegisterInfo.h"
66#include "llvm/MC/MCTargetOptions.h"
67#include "llvm/Pass.h"
68#include "llvm/Support/Casting.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/LowLevelTypeImpl.h"
71#include "llvm/Support/MathExtras.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Target/TargetMachine.h"
74#include <algorithm>
75#include <cassert>
76#include <cstddef>
77#include <cstdint>
78#include <iterator>
79#include <string>
80#include <utility>
81
82using namespace llvm;
83
84namespace {
85
86  struct MachineVerifier {
87    MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88
89    unsigned verify(const MachineFunction &MF);
90
91    Pass *const PASS;
92    const char *Banner;
93    const MachineFunction *MF;
94    const TargetMachine *TM;
95    const TargetInstrInfo *TII;
96    const TargetRegisterInfo *TRI;
97    const MachineRegisterInfo *MRI;
98
99    unsigned foundErrors;
100
101    // Avoid querying the MachineFunctionProperties for each operand.
102    bool isFunctionRegBankSelected;
103    bool isFunctionSelected;
104
105    using RegVector = SmallVector<Register, 16>;
106    using RegMaskVector = SmallVector<const uint32_t *, 4>;
107    using RegSet = DenseSet<Register>;
108    using RegMap = DenseMap<Register, const MachineInstr *>;
109    using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110
111    const MachineInstr *FirstNonPHI;
112    const MachineInstr *FirstTerminator;
113    BlockSet FunctionBlocks;
114
115    BitVector regsReserved;
116    RegSet regsLive;
117    RegVector regsDefined, regsDead, regsKilled;
118    RegMaskVector regMasks;
119
120    SlotIndex lastIndex;
121
122    // Add Reg and any sub-registers to RV
123    void addRegWithSubRegs(RegVector &RV, Register Reg) {
124      RV.push_back(Reg);
125      if (Reg.isPhysical())
126        append_range(RV, TRI->subregs(Reg.asMCReg()));
127    }
128
129    struct BBInfo {
130      // Is this MBB reachable from the MF entry point?
131      bool reachable = false;
132
133      // Vregs that must be live in because they are used without being
134      // defined. Map value is the user. vregsLiveIn doesn't include regs
135      // that only are used by PHI nodes.
136      RegMap vregsLiveIn;
137
138      // Regs killed in MBB. They may be defined again, and will then be in both
139      // regsKilled and regsLiveOut.
140      RegSet regsKilled;
141
142      // Regs defined in MBB and live out. Note that vregs passing through may
143      // be live out without being mentioned here.
144      RegSet regsLiveOut;
145
146      // Vregs that pass through MBB untouched. This set is disjoint from
147      // regsKilled and regsLiveOut.
148      RegSet vregsPassed;
149
150      // Vregs that must pass through MBB because they are needed by a successor
151      // block. This set is disjoint from regsLiveOut.
152      RegSet vregsRequired;
153
154      // Set versions of block's predecessor and successor lists.
155      BlockSet Preds, Succs;
156
157      BBInfo() = default;
158
159      // Add register to vregsRequired if it belongs there. Return true if
160      // anything changed.
161      bool addRequired(Register Reg) {
162        if (!Reg.isVirtual())
163          return false;
164        if (regsLiveOut.count(Reg))
165          return false;
166        return vregsRequired.insert(Reg).second;
167      }
168
169      // Same for a full set.
170      bool addRequired(const RegSet &RS) {
171        bool Changed = false;
172        for (Register Reg : RS)
173          Changed |= addRequired(Reg);
174        return Changed;
175      }
176
177      // Same for a full map.
178      bool addRequired(const RegMap &RM) {
179        bool Changed = false;
180        for (const auto &I : RM)
181          Changed |= addRequired(I.first);
182        return Changed;
183      }
184
185      // Live-out registers are either in regsLiveOut or vregsPassed.
186      bool isLiveOut(Register Reg) const {
187        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188      }
189    };
190
191    // Extra register info per MBB.
192    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193
194    bool isReserved(Register Reg) {
195      return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196    }
197
198    bool isAllocatable(Register Reg) const {
199      return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200             !regsReserved.test(Reg.id());
201    }
202
203    // Analysis information if available
204    LiveVariables *LiveVars;
205    LiveIntervals *LiveInts;
206    LiveStacks *LiveStks;
207    SlotIndexes *Indexes;
208
209    void visitMachineFunctionBefore();
210    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211    void visitMachineBundleBefore(const MachineInstr *MI);
212
213    bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214    void verifyPreISelGenericInstruction(const MachineInstr *MI);
215    void visitMachineInstrBefore(const MachineInstr *MI);
216    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217    void visitMachineBundleAfter(const MachineInstr *MI);
218    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219    void visitMachineFunctionAfter();
220
221    void report(const char *msg, const MachineFunction *MF);
222    void report(const char *msg, const MachineBasicBlock *MBB);
223    void report(const char *msg, const MachineInstr *MI);
224    void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                LLT MOVRegType = LLT{});
226    void report(const Twine &Msg, const MachineInstr *MI);
227
228    void report_context(const LiveInterval &LI) const;
229    void report_context(const LiveRange &LR, Register VRegUnit,
230                        LaneBitmask LaneMask) const;
231    void report_context(const LiveRange::Segment &S) const;
232    void report_context(const VNInfo &VNI) const;
233    void report_context(SlotIndex Pos) const;
234    void report_context(MCPhysReg PhysReg) const;
235    void report_context_liverange(const LiveRange &LR) const;
236    void report_context_lanemask(LaneBitmask LaneMask) const;
237    void report_context_vreg(Register VReg) const;
238    void report_context_vreg_regunit(Register VRegOrUnit) const;
239
240    void verifyInlineAsm(const MachineInstr *MI);
241
242    void checkLiveness(const MachineOperand *MO, unsigned MONum);
243    void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                            SlotIndex UseIdx, const LiveRange &LR,
245                            Register VRegOrUnit,
246                            LaneBitmask LaneMask = LaneBitmask::getNone());
247    void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                            SlotIndex DefIdx, const LiveRange &LR,
249                            Register VRegOrUnit, bool SubRangeCheck = false,
250                            LaneBitmask LaneMask = LaneBitmask::getNone());
251
252    void markReachable(const MachineBasicBlock *MBB);
253    void calcRegsPassed();
254    void checkPHIOps(const MachineBasicBlock &MBB);
255
256    void calcRegsRequired();
257    void verifyLiveVariables();
258    void verifyLiveIntervals();
259    void verifyLiveInterval(const LiveInterval&);
260    void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                              LaneBitmask);
262    void verifyLiveRangeSegment(const LiveRange &,
263                                const LiveRange::const_iterator I, Register,
264                                LaneBitmask);
265    void verifyLiveRange(const LiveRange &, Register,
266                         LaneBitmask LaneMask = LaneBitmask::getNone());
267
268    void verifyStackFrame();
269
270    void verifySlotIndexes() const;
271    void verifyProperties(const MachineFunction &MF);
272  };
273
274  struct MachineVerifierPass : public MachineFunctionPass {
275    static char ID; // Pass ID, replacement for typeid
276
277    const std::string Banner;
278
279    MachineVerifierPass(std::string banner = std::string())
280      : MachineFunctionPass(ID), Banner(std::move(banner)) {
281        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282      }
283
284    void getAnalysisUsage(AnalysisUsage &AU) const override {
285      AU.setPreservesAll();
286      MachineFunctionPass::getAnalysisUsage(AU);
287    }
288
289    bool runOnMachineFunction(MachineFunction &MF) override {
290      unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291      if (FoundErrors)
292        report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293      return false;
294    }
295  };
296
297} // end anonymous namespace
298
299char MachineVerifierPass::ID = 0;
300
301INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                "Verify generated machine code", false, false)
303
304FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305  return new MachineVerifierPass(Banner);
306}
307
308void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                 const std::string &Banner,
310                                 const MachineFunction &MF) {
311  // TODO: Use MFAM after porting below analyses.
312  // LiveVariables *LiveVars;
313  // LiveIntervals *LiveInts;
314  // LiveStacks *LiveStks;
315  // SlotIndexes *Indexes;
316  unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317  if (FoundErrors)
318    report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319}
320
321bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322    const {
323  MachineFunction &MF = const_cast<MachineFunction&>(*this);
324  unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325  if (AbortOnErrors && FoundErrors)
326    report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327  return FoundErrors == 0;
328}
329
330void MachineVerifier::verifySlotIndexes() const {
331  if (Indexes == nullptr)
332    return;
333
334  // Ensure the IdxMBB list is sorted by slot indexes.
335  SlotIndex Last;
336  for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337       E = Indexes->MBBIndexEnd(); I != E; ++I) {
338    assert(!Last.isValid() || I->first > Last);
339    Last = I->first;
340  }
341}
342
343void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344  // If a pass has introduced virtual registers without clearing the
345  // NoVRegs property (or set it without allocating the vregs)
346  // then report an error.
347  if (MF.getProperties().hasProperty(
348          MachineFunctionProperties::Property::NoVRegs) &&
349      MRI->getNumVirtRegs())
350    report("Function has NoVRegs property but there are VReg operands", &MF);
351}
352
353unsigned MachineVerifier::verify(const MachineFunction &MF) {
354  foundErrors = 0;
355
356  this->MF = &MF;
357  TM = &MF.getTarget();
358  TII = MF.getSubtarget().getInstrInfo();
359  TRI = MF.getSubtarget().getRegisterInfo();
360  MRI = &MF.getRegInfo();
361
362  const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363      MachineFunctionProperties::Property::FailedISel);
364
365  // If we're mid-GlobalISel and we already triggered the fallback path then
366  // it's expected that the MIR is somewhat broken but that's ok since we'll
367  // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368  if (isFunctionFailedISel)
369    return foundErrors;
370
371  isFunctionRegBankSelected = MF.getProperties().hasProperty(
372      MachineFunctionProperties::Property::RegBankSelected);
373  isFunctionSelected = MF.getProperties().hasProperty(
374      MachineFunctionProperties::Property::Selected);
375
376  LiveVars = nullptr;
377  LiveInts = nullptr;
378  LiveStks = nullptr;
379  Indexes = nullptr;
380  if (PASS) {
381    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382    // We don't want to verify LiveVariables if LiveIntervals is available.
383    if (!LiveInts)
384      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387  }
388
389  verifySlotIndexes();
390
391  verifyProperties(MF);
392
393  visitMachineFunctionBefore();
394  for (const MachineBasicBlock &MBB : MF) {
395    visitMachineBasicBlockBefore(&MBB);
396    // Keep track of the current bundle header.
397    const MachineInstr *CurBundle = nullptr;
398    // Do we expect the next instruction to be part of the same bundle?
399    bool InBundle = false;
400
401    for (const MachineInstr &MI : MBB.instrs()) {
402      if (MI.getParent() != &MBB) {
403        report("Bad instruction parent pointer", &MBB);
404        errs() << "Instruction: " << MI;
405        continue;
406      }
407
408      // Check for consistent bundle flags.
409      if (InBundle && !MI.isBundledWithPred())
410        report("Missing BundledPred flag, "
411               "BundledSucc was set on predecessor",
412               &MI);
413      if (!InBundle && MI.isBundledWithPred())
414        report("BundledPred flag is set, "
415               "but BundledSucc not set on predecessor",
416               &MI);
417
418      // Is this a bundle header?
419      if (!MI.isInsideBundle()) {
420        if (CurBundle)
421          visitMachineBundleAfter(CurBundle);
422        CurBundle = &MI;
423        visitMachineBundleBefore(CurBundle);
424      } else if (!CurBundle)
425        report("No bundle header", &MI);
426      visitMachineInstrBefore(&MI);
427      for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428        const MachineOperand &Op = MI.getOperand(I);
429        if (Op.getParent() != &MI) {
430          // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431          // functions when replacing operands of a MachineInstr.
432          report("Instruction has operand with wrong parent set", &MI);
433        }
434
435        visitMachineOperand(&Op, I);
436      }
437
438      // Was this the last bundled instruction?
439      InBundle = MI.isBundledWithSucc();
440    }
441    if (CurBundle)
442      visitMachineBundleAfter(CurBundle);
443    if (InBundle)
444      report("BundledSucc flag set on last instruction in block", &MBB.back());
445    visitMachineBasicBlockAfter(&MBB);
446  }
447  visitMachineFunctionAfter();
448
449  // Clean up.
450  regsLive.clear();
451  regsDefined.clear();
452  regsDead.clear();
453  regsKilled.clear();
454  regMasks.clear();
455  MBBInfoMap.clear();
456
457  return foundErrors;
458}
459
460void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461  assert(MF);
462  errs() << '\n';
463  if (!foundErrors++) {
464    if (Banner)
465      errs() << "# " << Banner << '\n';
466    if (LiveInts != nullptr)
467      LiveInts->print(errs());
468    else
469      MF->print(errs(), Indexes);
470  }
471  errs() << "*** Bad machine code: " << msg << " ***\n"
472      << "- function:    " << MF->getName() << "\n";
473}
474
475void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476  assert(MBB);
477  report(msg, MBB->getParent());
478  errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479         << MBB->getName() << " (" << (const void *)MBB << ')';
480  if (Indexes)
481    errs() << " [" << Indexes->getMBBStartIdx(MBB)
482        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483  errs() << '\n';
484}
485
486void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487  assert(MI);
488  report(msg, MI->getParent());
489  errs() << "- instruction: ";
490  if (Indexes && Indexes->hasIndex(*MI))
491    errs() << Indexes->getInstructionIndex(*MI) << '\t';
492  MI->print(errs(), /*IsStandalone=*/true);
493}
494
495void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                             unsigned MONum, LLT MOVRegType) {
497  assert(MO);
498  report(msg, MO->getParent());
499  errs() << "- operand " << MONum << ":   ";
500  MO->print(errs(), MOVRegType, TRI);
501  errs() << "\n";
502}
503
504void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505  report(Msg.str().c_str(), MI);
506}
507
508void MachineVerifier::report_context(SlotIndex Pos) const {
509  errs() << "- at:          " << Pos << '\n';
510}
511
512void MachineVerifier::report_context(const LiveInterval &LI) const {
513  errs() << "- interval:    " << LI << '\n';
514}
515
516void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517                                     LaneBitmask LaneMask) const {
518  report_context_liverange(LR);
519  report_context_vreg_regunit(VRegUnit);
520  if (LaneMask.any())
521    report_context_lanemask(LaneMask);
522}
523
524void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525  errs() << "- segment:     " << S << '\n';
526}
527
528void MachineVerifier::report_context(const VNInfo &VNI) const {
529  errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
530}
531
532void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533  errs() << "- liverange:   " << LR << '\n';
534}
535
536void MachineVerifier::report_context(MCPhysReg PReg) const {
537  errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538}
539
540void MachineVerifier::report_context_vreg(Register VReg) const {
541  errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542}
543
544void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545  if (Register::isVirtualRegister(VRegOrUnit)) {
546    report_context_vreg(VRegOrUnit);
547  } else {
548    errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
549  }
550}
551
552void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553  errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
554}
555
556void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557  BBInfo &MInfo = MBBInfoMap[MBB];
558  if (!MInfo.reachable) {
559    MInfo.reachable = true;
560    for (const MachineBasicBlock *Succ : MBB->successors())
561      markReachable(Succ);
562  }
563}
564
565void MachineVerifier::visitMachineFunctionBefore() {
566  lastIndex = SlotIndex();
567  regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568                                           : TRI->getReservedRegs(*MF);
569
570  if (!MF->empty())
571    markReachable(&MF->front());
572
573  // Build a set of the basic blocks in the function.
574  FunctionBlocks.clear();
575  for (const auto &MBB : *MF) {
576    FunctionBlocks.insert(&MBB);
577    BBInfo &MInfo = MBBInfoMap[&MBB];
578
579    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580    if (MInfo.Preds.size() != MBB.pred_size())
581      report("MBB has duplicate entries in its predecessor list.", &MBB);
582
583    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584    if (MInfo.Succs.size() != MBB.succ_size())
585      report("MBB has duplicate entries in its successor list.", &MBB);
586  }
587
588  // Check that the register use lists are sane.
589  MRI->verifyUseLists();
590
591  if (!MF->empty())
592    verifyStackFrame();
593}
594
595void
596MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597  FirstTerminator = nullptr;
598  FirstNonPHI = nullptr;
599
600  if (!MF->getProperties().hasProperty(
601      MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602    // If this block has allocatable physical registers live-in, check that
603    // it is an entry block or landing pad.
604    for (const auto &LI : MBB->liveins()) {
605      if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606          MBB->getIterator() != MBB->getParent()->begin()) {
607        report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608        report_context(LI.PhysReg);
609      }
610    }
611  }
612
613  // Count the number of landing pad successors.
614  SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615  for (const auto *succ : MBB->successors()) {
616    if (succ->isEHPad())
617      LandingPadSuccs.insert(succ);
618    if (!FunctionBlocks.count(succ))
619      report("MBB has successor that isn't part of the function.", MBB);
620    if (!MBBInfoMap[succ].Preds.count(MBB)) {
621      report("Inconsistent CFG", MBB);
622      errs() << "MBB is not in the predecessor list of the successor "
623             << printMBBReference(*succ) << ".\n";
624    }
625  }
626
627  // Check the predecessor list.
628  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629    if (!FunctionBlocks.count(Pred))
630      report("MBB has predecessor that isn't part of the function.", MBB);
631    if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632      report("Inconsistent CFG", MBB);
633      errs() << "MBB is not in the successor list of the predecessor "
634             << printMBBReference(*Pred) << ".\n";
635    }
636  }
637
638  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639  const BasicBlock *BB = MBB->getBasicBlock();
640  const Function &F = MF->getFunction();
641  if (LandingPadSuccs.size() > 1 &&
642      !(AsmInfo &&
643        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644        BB && isa<SwitchInst>(BB->getTerminator())) &&
645      !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646    report("MBB has more than one landing pad successor", MBB);
647
648  // Call analyzeBranch. If it succeeds, there several more conditions to check.
649  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650  SmallVector<MachineOperand, 4> Cond;
651  if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                          Cond)) {
653    // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654    // check whether its answers match up with reality.
655    if (!TBB && !FBB) {
656      // Block falls through to its successor.
657      if (!MBB->empty() && MBB->back().isBarrier() &&
658          !TII->isPredicated(MBB->back())) {
659        report("MBB exits via unconditional fall-through but ends with a "
660               "barrier instruction!", MBB);
661      }
662      if (!Cond.empty()) {
663        report("MBB exits via unconditional fall-through but has a condition!",
664               MBB);
665      }
666    } else if (TBB && !FBB && Cond.empty()) {
667      // Block unconditionally branches somewhere.
668      if (MBB->empty()) {
669        report("MBB exits via unconditional branch but doesn't contain "
670               "any instructions!", MBB);
671      } else if (!MBB->back().isBarrier()) {
672        report("MBB exits via unconditional branch but doesn't end with a "
673               "barrier instruction!", MBB);
674      } else if (!MBB->back().isTerminator()) {
675        report("MBB exits via unconditional branch but the branch isn't a "
676               "terminator instruction!", MBB);
677      }
678    } else if (TBB && !FBB && !Cond.empty()) {
679      // Block conditionally branches somewhere, otherwise falls through.
680      if (MBB->empty()) {
681        report("MBB exits via conditional branch/fall-through but doesn't "
682               "contain any instructions!", MBB);
683      } else if (MBB->back().isBarrier()) {
684        report("MBB exits via conditional branch/fall-through but ends with a "
685               "barrier instruction!", MBB);
686      } else if (!MBB->back().isTerminator()) {
687        report("MBB exits via conditional branch/fall-through but the branch "
688               "isn't a terminator instruction!", MBB);
689      }
690    } else if (TBB && FBB) {
691      // Block conditionally branches somewhere, otherwise branches
692      // somewhere else.
693      if (MBB->empty()) {
694        report("MBB exits via conditional branch/branch but doesn't "
695               "contain any instructions!", MBB);
696      } else if (!MBB->back().isBarrier()) {
697        report("MBB exits via conditional branch/branch but doesn't end with a "
698               "barrier instruction!", MBB);
699      } else if (!MBB->back().isTerminator()) {
700        report("MBB exits via conditional branch/branch but the branch "
701               "isn't a terminator instruction!", MBB);
702      }
703      if (Cond.empty()) {
704        report("MBB exits via conditional branch/branch but there's no "
705               "condition!", MBB);
706      }
707    } else {
708      report("analyzeBranch returned invalid data!", MBB);
709    }
710
711    // Now check that the successors match up with the answers reported by
712    // analyzeBranch.
713    if (TBB && !MBB->isSuccessor(TBB))
714      report("MBB exits via jump or conditional branch, but its target isn't a "
715             "CFG successor!",
716             MBB);
717    if (FBB && !MBB->isSuccessor(FBB))
718      report("MBB exits via conditional branch, but its target isn't a CFG "
719             "successor!",
720             MBB);
721
722    // There might be a fallthrough to the next block if there's either no
723    // unconditional true branch, or if there's a condition, and one of the
724    // branches is missing.
725    bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726
727    // A conditional fallthrough must be an actual CFG successor, not
728    // unreachable. (Conversely, an unconditional fallthrough might not really
729    // be a successor, because the block might end in unreachable.)
730    if (!Cond.empty() && !FBB) {
731      MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732      if (MBBI == MF->end()) {
733        report("MBB conditionally falls through out of function!", MBB);
734      } else if (!MBB->isSuccessor(&*MBBI))
735        report("MBB exits via conditional branch/fall-through but the CFG "
736               "successors don't match the actual successors!",
737               MBB);
738    }
739
740    // Verify that there aren't any extra un-accounted-for successors.
741    for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742      // If this successor is one of the branch targets, it's okay.
743      if (SuccMBB == TBB || SuccMBB == FBB)
744        continue;
745      // If we might have a fallthrough, and the successor is the fallthrough
746      // block, that's also ok.
747      if (Fallthrough && SuccMBB == MBB->getNextNode())
748        continue;
749      // Also accept successors which are for exception-handling or might be
750      // inlineasm_br targets.
751      if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752        continue;
753      report("MBB has unexpected successors which are not branch targets, "
754             "fallthrough, EHPads, or inlineasm_br targets.",
755             MBB);
756    }
757  }
758
759  regsLive.clear();
760  if (MRI->tracksLiveness()) {
761    for (const auto &LI : MBB->liveins()) {
762      if (!Register::isPhysicalRegister(LI.PhysReg)) {
763        report("MBB live-in list contains non-physical register", MBB);
764        continue;
765      }
766      for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767        regsLive.insert(SubReg);
768    }
769  }
770
771  const MachineFrameInfo &MFI = MF->getFrameInfo();
772  BitVector PR = MFI.getPristineRegs(*MF);
773  for (unsigned I : PR.set_bits()) {
774    for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775      regsLive.insert(SubReg);
776  }
777
778  regsKilled.clear();
779  regsDefined.clear();
780
781  if (Indexes)
782    lastIndex = Indexes->getMBBStartIdx(MBB);
783}
784
785// This function gets called for all bundle headers, including normal
786// stand-alone unbundled instructions.
787void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788  if (Indexes && Indexes->hasIndex(*MI)) {
789    SlotIndex idx = Indexes->getInstructionIndex(*MI);
790    if (!(idx > lastIndex)) {
791      report("Instruction index out of order", MI);
792      errs() << "Last instruction was at " << lastIndex << '\n';
793    }
794    lastIndex = idx;
795  }
796
797  // Ensure non-terminators don't follow terminators.
798  if (MI->isTerminator()) {
799    if (!FirstTerminator)
800      FirstTerminator = MI;
801  } else if (FirstTerminator) {
802    report("Non-terminator instruction after the first terminator", MI);
803    errs() << "First terminator was:\t" << *FirstTerminator;
804  }
805}
806
807// The operands on an INLINEASM instruction must follow a template.
808// Verify that the flag operands make sense.
809void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810  // The first two operands on INLINEASM are the asm string and global flags.
811  if (MI->getNumOperands() < 2) {
812    report("Too few operands on inline asm", MI);
813    return;
814  }
815  if (!MI->getOperand(0).isSymbol())
816    report("Asm string must be an external symbol", MI);
817  if (!MI->getOperand(1).isImm())
818    report("Asm flags must be an immediate", MI);
819  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821  // and Extra_IsConvergent = 32.
822  if (!isUInt<6>(MI->getOperand(1).getImm()))
823    report("Unknown asm flags", &MI->getOperand(1), 1);
824
825  static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826
827  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828  unsigned NumOps;
829  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830    const MachineOperand &MO = MI->getOperand(OpNo);
831    // There may be implicit ops after the fixed operands.
832    if (!MO.isImm())
833      break;
834    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835  }
836
837  if (OpNo > MI->getNumOperands())
838    report("Missing operands in last group", MI);
839
840  // An optional MDNode follows the groups.
841  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842    ++OpNo;
843
844  // All trailing operands must be implicit registers.
845  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846    const MachineOperand &MO = MI->getOperand(OpNo);
847    if (!MO.isReg() || !MO.isImplicit())
848      report("Expected implicit register after groups", &MO, OpNo);
849  }
850}
851
852/// Check that types are consistent when two operands need to have the same
853/// number of vector elements.
854/// \return true if the types are valid.
855bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856                                               const MachineInstr *MI) {
857  if (Ty0.isVector() != Ty1.isVector()) {
858    report("operand types must be all-vector or all-scalar", MI);
859    // Generally we try to report as many issues as possible at once, but in
860    // this case it's not clear what should we be comparing the size of the
861    // scalar with: the size of the whole vector or its lane. Instead of
862    // making an arbitrary choice and emitting not so helpful message, let's
863    // avoid the extra noise and stop here.
864    return false;
865  }
866
867  if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868    report("operand types must preserve number of vector elements", MI);
869    return false;
870  }
871
872  return true;
873}
874
875void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876  if (isFunctionSelected)
877    report("Unexpected generic instruction in a Selected function", MI);
878
879  const MCInstrDesc &MCID = MI->getDesc();
880  unsigned NumOps = MI->getNumOperands();
881
882  // Branches must reference a basic block if they are not indirect
883  if (MI->isBranch() && !MI->isIndirectBranch()) {
884    bool HasMBB = false;
885    for (const MachineOperand &Op : MI->operands()) {
886      if (Op.isMBB()) {
887        HasMBB = true;
888        break;
889      }
890    }
891
892    if (!HasMBB) {
893      report("Branch instruction is missing a basic block operand or "
894             "isIndirectBranch property",
895             MI);
896    }
897  }
898
899  // Check types.
900  SmallVector<LLT, 4> Types;
901  for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902       I != E; ++I) {
903    if (!MCID.OpInfo[I].isGenericType())
904      continue;
905    // Generic instructions specify type equality constraints between some of
906    // their operands. Make sure these are consistent.
907    size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908    Types.resize(std::max(TypeIdx + 1, Types.size()));
909
910    const MachineOperand *MO = &MI->getOperand(I);
911    if (!MO->isReg()) {
912      report("generic instruction must use register operands", MI);
913      continue;
914    }
915
916    LLT OpTy = MRI->getType(MO->getReg());
917    // Don't report a type mismatch if there is no actual mismatch, only a
918    // type missing, to reduce noise:
919    if (OpTy.isValid()) {
920      // Only the first valid type for a type index will be printed: don't
921      // overwrite it later so it's always clear which type was expected:
922      if (!Types[TypeIdx].isValid())
923        Types[TypeIdx] = OpTy;
924      else if (Types[TypeIdx] != OpTy)
925        report("Type mismatch in generic instruction", MO, I, OpTy);
926    } else {
927      // Generic instructions must have types attached to their operands.
928      report("Generic instruction is missing a virtual register type", MO, I);
929    }
930  }
931
932  // Generic opcodes must not have physical register operands.
933  for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934    const MachineOperand *MO = &MI->getOperand(I);
935    if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936      report("Generic instruction cannot have physical register", MO, I);
937  }
938
939  // Avoid out of bounds in checks below. This was already reported earlier.
940  if (MI->getNumOperands() < MCID.getNumOperands())
941    return;
942
943  StringRef ErrorInfo;
944  if (!TII->verifyInstruction(*MI, ErrorInfo))
945    report(ErrorInfo.data(), MI);
946
947  // Verify properties of various specific instruction types
948  unsigned Opc = MI->getOpcode();
949  switch (Opc) {
950  case TargetOpcode::G_ASSERT_SEXT:
951  case TargetOpcode::G_ASSERT_ZEXT: {
952    std::string OpcName =
953        Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
954    if (!MI->getOperand(2).isImm()) {
955      report(Twine(OpcName, " expects an immediate operand #2"), MI);
956      break;
957    }
958
959    Register Dst = MI->getOperand(0).getReg();
960    Register Src = MI->getOperand(1).getReg();
961    LLT SrcTy = MRI->getType(Src);
962    int64_t Imm = MI->getOperand(2).getImm();
963    if (Imm <= 0) {
964      report(Twine(OpcName, " size must be >= 1"), MI);
965      break;
966    }
967
968    if (Imm >= SrcTy.getScalarSizeInBits()) {
969      report(Twine(OpcName, " size must be less than source bit width"), MI);
970      break;
971    }
972
973    if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
974      report(
975          Twine(OpcName, " source and destination register banks must match"),
976          MI);
977      break;
978    }
979
980    if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
981      report(
982          Twine(OpcName, " source and destination register classes must match"),
983          MI);
984
985    break;
986  }
987
988  case TargetOpcode::G_CONSTANT:
989  case TargetOpcode::G_FCONSTANT: {
990    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991    if (DstTy.isVector())
992      report("Instruction cannot use a vector result type", MI);
993
994    if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
995      if (!MI->getOperand(1).isCImm()) {
996        report("G_CONSTANT operand must be cimm", MI);
997        break;
998      }
999
1000      const ConstantInt *CI = MI->getOperand(1).getCImm();
1001      if (CI->getBitWidth() != DstTy.getSizeInBits())
1002        report("inconsistent constant size", MI);
1003    } else {
1004      if (!MI->getOperand(1).isFPImm()) {
1005        report("G_FCONSTANT operand must be fpimm", MI);
1006        break;
1007      }
1008      const ConstantFP *CF = MI->getOperand(1).getFPImm();
1009
1010      if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1011          DstTy.getSizeInBits()) {
1012        report("inconsistent constant size", MI);
1013      }
1014    }
1015
1016    break;
1017  }
1018  case TargetOpcode::G_LOAD:
1019  case TargetOpcode::G_STORE:
1020  case TargetOpcode::G_ZEXTLOAD:
1021  case TargetOpcode::G_SEXTLOAD: {
1022    LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1023    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1024    if (!PtrTy.isPointer())
1025      report("Generic memory instruction must access a pointer", MI);
1026
1027    // Generic loads and stores must have a single MachineMemOperand
1028    // describing that access.
1029    if (!MI->hasOneMemOperand()) {
1030      report("Generic instruction accessing memory must have one mem operand",
1031             MI);
1032    } else {
1033      const MachineMemOperand &MMO = **MI->memoperands_begin();
1034      if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1035          MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1036        if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1037          report("Generic extload must have a narrower memory type", MI);
1038      } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1039        if (MMO.getSize() > ValTy.getSizeInBytes())
1040          report("load memory size cannot exceed result size", MI);
1041      } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1042        if (ValTy.getSizeInBytes() < MMO.getSize())
1043          report("store memory size cannot exceed value size", MI);
1044      }
1045    }
1046
1047    break;
1048  }
1049  case TargetOpcode::G_PHI: {
1050    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1051    if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1052                                    [this, &DstTy](const MachineOperand &MO) {
1053                                      if (!MO.isReg())
1054                                        return true;
1055                                      LLT Ty = MRI->getType(MO.getReg());
1056                                      if (!Ty.isValid() || (Ty != DstTy))
1057                                        return false;
1058                                      return true;
1059                                    }))
1060      report("Generic Instruction G_PHI has operands with incompatible/missing "
1061             "types",
1062             MI);
1063    break;
1064  }
1065  case TargetOpcode::G_BITCAST: {
1066    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068    if (!DstTy.isValid() || !SrcTy.isValid())
1069      break;
1070
1071    if (SrcTy.isPointer() != DstTy.isPointer())
1072      report("bitcast cannot convert between pointers and other types", MI);
1073
1074    if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1075      report("bitcast sizes must match", MI);
1076
1077    if (SrcTy == DstTy)
1078      report("bitcast must change the type", MI);
1079
1080    break;
1081  }
1082  case TargetOpcode::G_INTTOPTR:
1083  case TargetOpcode::G_PTRTOINT:
1084  case TargetOpcode::G_ADDRSPACE_CAST: {
1085    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087    if (!DstTy.isValid() || !SrcTy.isValid())
1088      break;
1089
1090    verifyVectorElementMatch(DstTy, SrcTy, MI);
1091
1092    DstTy = DstTy.getScalarType();
1093    SrcTy = SrcTy.getScalarType();
1094
1095    if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1096      if (!DstTy.isPointer())
1097        report("inttoptr result type must be a pointer", MI);
1098      if (SrcTy.isPointer())
1099        report("inttoptr source type must not be a pointer", MI);
1100    } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1101      if (!SrcTy.isPointer())
1102        report("ptrtoint source type must be a pointer", MI);
1103      if (DstTy.isPointer())
1104        report("ptrtoint result type must not be a pointer", MI);
1105    } else {
1106      assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1107      if (!SrcTy.isPointer() || !DstTy.isPointer())
1108        report("addrspacecast types must be pointers", MI);
1109      else {
1110        if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1111          report("addrspacecast must convert different address spaces", MI);
1112      }
1113    }
1114
1115    break;
1116  }
1117  case TargetOpcode::G_PTR_ADD: {
1118    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1120    LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1121    if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1122      break;
1123
1124    if (!PtrTy.getScalarType().isPointer())
1125      report("gep first operand must be a pointer", MI);
1126
1127    if (OffsetTy.getScalarType().isPointer())
1128      report("gep offset operand must not be a pointer", MI);
1129
1130    // TODO: Is the offset allowed to be a scalar with a vector?
1131    break;
1132  }
1133  case TargetOpcode::G_PTRMASK: {
1134    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1135    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1136    LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1137    if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1138      break;
1139
1140    if (!DstTy.getScalarType().isPointer())
1141      report("ptrmask result type must be a pointer", MI);
1142
1143    if (!MaskTy.getScalarType().isScalar())
1144      report("ptrmask mask type must be an integer", MI);
1145
1146    verifyVectorElementMatch(DstTy, MaskTy, MI);
1147    break;
1148  }
1149  case TargetOpcode::G_SEXT:
1150  case TargetOpcode::G_ZEXT:
1151  case TargetOpcode::G_ANYEXT:
1152  case TargetOpcode::G_TRUNC:
1153  case TargetOpcode::G_FPEXT:
1154  case TargetOpcode::G_FPTRUNC: {
1155    // Number of operands and presense of types is already checked (and
1156    // reported in case of any issues), so no need to report them again. As
1157    // we're trying to report as many issues as possible at once, however, the
1158    // instructions aren't guaranteed to have the right number of operands or
1159    // types attached to them at this point
1160    assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1161    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163    if (!DstTy.isValid() || !SrcTy.isValid())
1164      break;
1165
1166    LLT DstElTy = DstTy.getScalarType();
1167    LLT SrcElTy = SrcTy.getScalarType();
1168    if (DstElTy.isPointer() || SrcElTy.isPointer())
1169      report("Generic extend/truncate can not operate on pointers", MI);
1170
1171    verifyVectorElementMatch(DstTy, SrcTy, MI);
1172
1173    unsigned DstSize = DstElTy.getSizeInBits();
1174    unsigned SrcSize = SrcElTy.getSizeInBits();
1175    switch (MI->getOpcode()) {
1176    default:
1177      if (DstSize <= SrcSize)
1178        report("Generic extend has destination type no larger than source", MI);
1179      break;
1180    case TargetOpcode::G_TRUNC:
1181    case TargetOpcode::G_FPTRUNC:
1182      if (DstSize >= SrcSize)
1183        report("Generic truncate has destination type no smaller than source",
1184               MI);
1185      break;
1186    }
1187    break;
1188  }
1189  case TargetOpcode::G_SELECT: {
1190    LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1191    LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1192    if (!SelTy.isValid() || !CondTy.isValid())
1193      break;
1194
1195    // Scalar condition select on a vector is valid.
1196    if (CondTy.isVector())
1197      verifyVectorElementMatch(SelTy, CondTy, MI);
1198    break;
1199  }
1200  case TargetOpcode::G_MERGE_VALUES: {
1201    // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1202    // e.g. s2N = MERGE sN, sN
1203    // Merging multiple scalars into a vector is not allowed, should use
1204    // G_BUILD_VECTOR for that.
1205    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1207    if (DstTy.isVector() || SrcTy.isVector())
1208      report("G_MERGE_VALUES cannot operate on vectors", MI);
1209
1210    const unsigned NumOps = MI->getNumOperands();
1211    if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1212      report("G_MERGE_VALUES result size is inconsistent", MI);
1213
1214    for (unsigned I = 2; I != NumOps; ++I) {
1215      if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1216        report("G_MERGE_VALUES source types do not match", MI);
1217    }
1218
1219    break;
1220  }
1221  case TargetOpcode::G_UNMERGE_VALUES: {
1222    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1223    LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1224    // For now G_UNMERGE can split vectors.
1225    for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1226      if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1227        report("G_UNMERGE_VALUES destination types do not match", MI);
1228    }
1229    if (SrcTy.getSizeInBits() !=
1230        (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1231      report("G_UNMERGE_VALUES source operand does not cover dest operands",
1232             MI);
1233    }
1234    break;
1235  }
1236  case TargetOpcode::G_BUILD_VECTOR: {
1237    // Source types must be scalars, dest type a vector. Total size of scalars
1238    // must match the dest vector size.
1239    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1241    if (!DstTy.isVector() || SrcEltTy.isVector()) {
1242      report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1243      break;
1244    }
1245
1246    if (DstTy.getElementType() != SrcEltTy)
1247      report("G_BUILD_VECTOR result element type must match source type", MI);
1248
1249    if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1250      report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1251
1252    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1253      if (MRI->getType(MI->getOperand(1).getReg()) !=
1254          MRI->getType(MI->getOperand(i).getReg()))
1255        report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1256    }
1257
1258    break;
1259  }
1260  case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1261    // Source types must be scalars, dest type a vector. Scalar types must be
1262    // larger than the dest vector elt type, as this is a truncating operation.
1263    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1264    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1265    if (!DstTy.isVector() || SrcEltTy.isVector())
1266      report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1267             MI);
1268    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1269      if (MRI->getType(MI->getOperand(1).getReg()) !=
1270          MRI->getType(MI->getOperand(i).getReg()))
1271        report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1272               MI);
1273    }
1274    if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1275      report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1276             "dest elt type",
1277             MI);
1278    break;
1279  }
1280  case TargetOpcode::G_CONCAT_VECTORS: {
1281    // Source types should be vectors, and total size should match the dest
1282    // vector size.
1283    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1285    if (!DstTy.isVector() || !SrcTy.isVector())
1286      report("G_CONCAT_VECTOR requires vector source and destination operands",
1287             MI);
1288
1289    if (MI->getNumOperands() < 3)
1290      report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1291
1292    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1293      if (MRI->getType(MI->getOperand(1).getReg()) !=
1294          MRI->getType(MI->getOperand(i).getReg()))
1295        report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1296    }
1297    if (DstTy.getNumElements() !=
1298        SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1299      report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1300    break;
1301  }
1302  case TargetOpcode::G_ICMP:
1303  case TargetOpcode::G_FCMP: {
1304    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1305    LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1306
1307    if ((DstTy.isVector() != SrcTy.isVector()) ||
1308        (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1309      report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1310
1311    break;
1312  }
1313  case TargetOpcode::G_EXTRACT: {
1314    const MachineOperand &SrcOp = MI->getOperand(1);
1315    if (!SrcOp.isReg()) {
1316      report("extract source must be a register", MI);
1317      break;
1318    }
1319
1320    const MachineOperand &OffsetOp = MI->getOperand(2);
1321    if (!OffsetOp.isImm()) {
1322      report("extract offset must be a constant", MI);
1323      break;
1324    }
1325
1326    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1327    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1328    if (SrcSize == DstSize)
1329      report("extract source must be larger than result", MI);
1330
1331    if (DstSize + OffsetOp.getImm() > SrcSize)
1332      report("extract reads past end of register", MI);
1333    break;
1334  }
1335  case TargetOpcode::G_INSERT: {
1336    const MachineOperand &SrcOp = MI->getOperand(2);
1337    if (!SrcOp.isReg()) {
1338      report("insert source must be a register", MI);
1339      break;
1340    }
1341
1342    const MachineOperand &OffsetOp = MI->getOperand(3);
1343    if (!OffsetOp.isImm()) {
1344      report("insert offset must be a constant", MI);
1345      break;
1346    }
1347
1348    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1349    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1350
1351    if (DstSize <= SrcSize)
1352      report("inserted size must be smaller than total register", MI);
1353
1354    if (SrcSize + OffsetOp.getImm() > DstSize)
1355      report("insert writes past end of register", MI);
1356
1357    break;
1358  }
1359  case TargetOpcode::G_JUMP_TABLE: {
1360    if (!MI->getOperand(1).isJTI())
1361      report("G_JUMP_TABLE source operand must be a jump table index", MI);
1362    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1363    if (!DstTy.isPointer())
1364      report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1365    break;
1366  }
1367  case TargetOpcode::G_BRJT: {
1368    if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1369      report("G_BRJT src operand 0 must be a pointer type", MI);
1370
1371    if (!MI->getOperand(1).isJTI())
1372      report("G_BRJT src operand 1 must be a jump table index", MI);
1373
1374    const auto &IdxOp = MI->getOperand(2);
1375    if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1376      report("G_BRJT src operand 2 must be a scalar reg type", MI);
1377    break;
1378  }
1379  case TargetOpcode::G_INTRINSIC:
1380  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1381    // TODO: Should verify number of def and use operands, but the current
1382    // interface requires passing in IR types for mangling.
1383    const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1384    if (!IntrIDOp.isIntrinsicID()) {
1385      report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1386      break;
1387    }
1388
1389    bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1390    unsigned IntrID = IntrIDOp.getIntrinsicID();
1391    if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1392      AttributeList Attrs
1393        = Intrinsic::getAttributes(MF->getFunction().getContext(),
1394                                   static_cast<Intrinsic::ID>(IntrID));
1395      bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1396      if (NoSideEffects && DeclHasSideEffects) {
1397        report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1398        break;
1399      }
1400      if (!NoSideEffects && !DeclHasSideEffects) {
1401        report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1402        break;
1403      }
1404    }
1405
1406    break;
1407  }
1408  case TargetOpcode::G_SEXT_INREG: {
1409    if (!MI->getOperand(2).isImm()) {
1410      report("G_SEXT_INREG expects an immediate operand #2", MI);
1411      break;
1412    }
1413
1414    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1415    int64_t Imm = MI->getOperand(2).getImm();
1416    if (Imm <= 0)
1417      report("G_SEXT_INREG size must be >= 1", MI);
1418    if (Imm >= SrcTy.getScalarSizeInBits())
1419      report("G_SEXT_INREG size must be less than source bit width", MI);
1420    break;
1421  }
1422  case TargetOpcode::G_SHUFFLE_VECTOR: {
1423    const MachineOperand &MaskOp = MI->getOperand(3);
1424    if (!MaskOp.isShuffleMask()) {
1425      report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1426      break;
1427    }
1428
1429    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1430    LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1431    LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1432
1433    if (Src0Ty != Src1Ty)
1434      report("Source operands must be the same type", MI);
1435
1436    if (Src0Ty.getScalarType() != DstTy.getScalarType())
1437      report("G_SHUFFLE_VECTOR cannot change element type", MI);
1438
1439    // Don't check that all operands are vector because scalars are used in
1440    // place of 1 element vectors.
1441    int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1442    int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1443
1444    ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1445
1446    if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1447      report("Wrong result type for shufflemask", MI);
1448
1449    for (int Idx : MaskIdxes) {
1450      if (Idx < 0)
1451        continue;
1452
1453      if (Idx >= 2 * SrcNumElts)
1454        report("Out of bounds shuffle index", MI);
1455    }
1456
1457    break;
1458  }
1459  case TargetOpcode::G_DYN_STACKALLOC: {
1460    const MachineOperand &DstOp = MI->getOperand(0);
1461    const MachineOperand &AllocOp = MI->getOperand(1);
1462    const MachineOperand &AlignOp = MI->getOperand(2);
1463
1464    if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1465      report("dst operand 0 must be a pointer type", MI);
1466      break;
1467    }
1468
1469    if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1470      report("src operand 1 must be a scalar reg type", MI);
1471      break;
1472    }
1473
1474    if (!AlignOp.isImm()) {
1475      report("src operand 2 must be an immediate type", MI);
1476      break;
1477    }
1478    break;
1479  }
1480  case TargetOpcode::G_MEMCPY:
1481  case TargetOpcode::G_MEMMOVE: {
1482    ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1483    if (MMOs.size() != 2) {
1484      report("memcpy/memmove must have 2 memory operands", MI);
1485      break;
1486    }
1487
1488    if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1489        (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1490      report("wrong memory operand types", MI);
1491      break;
1492    }
1493
1494    if (MMOs[0]->getSize() != MMOs[1]->getSize())
1495      report("inconsistent memory operand sizes", MI);
1496
1497    LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1498    LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1499
1500    if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1501      report("memory instruction operand must be a pointer", MI);
1502      break;
1503    }
1504
1505    if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1506      report("inconsistent store address space", MI);
1507    if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1508      report("inconsistent load address space", MI);
1509
1510    break;
1511  }
1512  case TargetOpcode::G_BZERO:
1513  case TargetOpcode::G_MEMSET: {
1514    ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1515    std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1516    if (MMOs.size() != 1) {
1517      report(Twine(Name, " must have 1 memory operand"), MI);
1518      break;
1519    }
1520
1521    if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1522      report(Twine(Name, " memory operand must be a store"), MI);
1523      break;
1524    }
1525
1526    LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1527    if (!DstPtrTy.isPointer()) {
1528      report(Twine(Name, " operand must be a pointer"), MI);
1529      break;
1530    }
1531
1532    if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1533      report("inconsistent " + Twine(Name, " address space"), MI);
1534
1535    break;
1536  }
1537  case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1538  case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1539    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1540    LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1541    LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1542    if (!DstTy.isScalar())
1543      report("Vector reduction requires a scalar destination type", MI);
1544    if (!Src1Ty.isScalar())
1545      report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1546    if (!Src2Ty.isVector())
1547      report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1548    break;
1549  }
1550  case TargetOpcode::G_VECREDUCE_FADD:
1551  case TargetOpcode::G_VECREDUCE_FMUL:
1552  case TargetOpcode::G_VECREDUCE_FMAX:
1553  case TargetOpcode::G_VECREDUCE_FMIN:
1554  case TargetOpcode::G_VECREDUCE_ADD:
1555  case TargetOpcode::G_VECREDUCE_MUL:
1556  case TargetOpcode::G_VECREDUCE_AND:
1557  case TargetOpcode::G_VECREDUCE_OR:
1558  case TargetOpcode::G_VECREDUCE_XOR:
1559  case TargetOpcode::G_VECREDUCE_SMAX:
1560  case TargetOpcode::G_VECREDUCE_SMIN:
1561  case TargetOpcode::G_VECREDUCE_UMAX:
1562  case TargetOpcode::G_VECREDUCE_UMIN: {
1563    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1564    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1565    if (!DstTy.isScalar())
1566      report("Vector reduction requires a scalar destination type", MI);
1567    if (!SrcTy.isVector())
1568      report("Vector reduction requires vector source=", MI);
1569    break;
1570  }
1571
1572  case TargetOpcode::G_SBFX:
1573  case TargetOpcode::G_UBFX: {
1574    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1575    if (DstTy.isVector()) {
1576      report("Bitfield extraction is not supported on vectors", MI);
1577      break;
1578    }
1579    break;
1580  }
1581  case TargetOpcode::G_ROTR:
1582  case TargetOpcode::G_ROTL: {
1583    LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1584    LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1585    if (Src1Ty.isVector() != Src2Ty.isVector()) {
1586      report("Rotate requires operands to be either all scalars or all vectors",
1587             MI);
1588      break;
1589    }
1590    break;
1591  }
1592
1593  default:
1594    break;
1595  }
1596}
1597
1598void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1599  const MCInstrDesc &MCID = MI->getDesc();
1600  if (MI->getNumOperands() < MCID.getNumOperands()) {
1601    report("Too few operands", MI);
1602    errs() << MCID.getNumOperands() << " operands expected, but "
1603           << MI->getNumOperands() << " given.\n";
1604  }
1605
1606  if (MI->isPHI()) {
1607    if (MF->getProperties().hasProperty(
1608            MachineFunctionProperties::Property::NoPHIs))
1609      report("Found PHI instruction with NoPHIs property set", MI);
1610
1611    if (FirstNonPHI)
1612      report("Found PHI instruction after non-PHI", MI);
1613  } else if (FirstNonPHI == nullptr)
1614    FirstNonPHI = MI;
1615
1616  // Check the tied operands.
1617  if (MI->isInlineAsm())
1618    verifyInlineAsm(MI);
1619
1620  // Check that unspillable terminators define a reg and have at most one use.
1621  if (TII->isUnspillableTerminator(MI)) {
1622    if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1623      report("Unspillable Terminator does not define a reg", MI);
1624    Register Def = MI->getOperand(0).getReg();
1625    if (Def.isVirtual() &&
1626        std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1627      report("Unspillable Terminator expected to have at most one use!", MI);
1628  }
1629
1630  // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1631  // DBG_VALUEs: these are convenient to use in tests, but should never get
1632  // generated.
1633  if (MI->isDebugValue() && MI->getNumOperands() == 4)
1634    if (!MI->getDebugLoc())
1635      report("Missing DebugLoc for debug instruction", MI);
1636
1637  // Meta instructions should never be the subject of debug value tracking,
1638  // they don't create a value in the output program at all.
1639  if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1640    report("Metadata instruction should not have a value tracking number", MI);
1641
1642  // Check the MachineMemOperands for basic consistency.
1643  for (MachineMemOperand *Op : MI->memoperands()) {
1644    if (Op->isLoad() && !MI->mayLoad())
1645      report("Missing mayLoad flag", MI);
1646    if (Op->isStore() && !MI->mayStore())
1647      report("Missing mayStore flag", MI);
1648  }
1649
1650  // Debug values must not have a slot index.
1651  // Other instructions must have one, unless they are inside a bundle.
1652  if (LiveInts) {
1653    bool mapped = !LiveInts->isNotInMIMap(*MI);
1654    if (MI->isDebugOrPseudoInstr()) {
1655      if (mapped)
1656        report("Debug instruction has a slot index", MI);
1657    } else if (MI->isInsideBundle()) {
1658      if (mapped)
1659        report("Instruction inside bundle has a slot index", MI);
1660    } else {
1661      if (!mapped)
1662        report("Missing slot index", MI);
1663    }
1664  }
1665
1666  unsigned Opc = MCID.getOpcode();
1667  if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1668    verifyPreISelGenericInstruction(MI);
1669    return;
1670  }
1671
1672  StringRef ErrorInfo;
1673  if (!TII->verifyInstruction(*MI, ErrorInfo))
1674    report(ErrorInfo.data(), MI);
1675
1676  // Verify properties of various specific instruction types
1677  switch (MI->getOpcode()) {
1678  case TargetOpcode::COPY: {
1679    const MachineOperand &DstOp = MI->getOperand(0);
1680    const MachineOperand &SrcOp = MI->getOperand(1);
1681    const Register SrcReg = SrcOp.getReg();
1682    const Register DstReg = DstOp.getReg();
1683
1684    LLT DstTy = MRI->getType(DstReg);
1685    LLT SrcTy = MRI->getType(SrcReg);
1686    if (SrcTy.isValid() && DstTy.isValid()) {
1687      // If both types are valid, check that the types are the same.
1688      if (SrcTy != DstTy) {
1689        report("Copy Instruction is illegal with mismatching types", MI);
1690        errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1691      }
1692
1693      break;
1694    }
1695
1696    if (!SrcTy.isValid() && !DstTy.isValid())
1697      break;
1698
1699    // If we have only one valid type, this is likely a copy between a virtual
1700    // and physical register.
1701    unsigned SrcSize = 0;
1702    unsigned DstSize = 0;
1703    if (SrcReg.isPhysical() && DstTy.isValid()) {
1704      const TargetRegisterClass *SrcRC =
1705          TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1706      if (SrcRC)
1707        SrcSize = TRI->getRegSizeInBits(*SrcRC);
1708    }
1709
1710    if (SrcSize == 0)
1711      SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1712
1713    if (DstReg.isPhysical() && SrcTy.isValid()) {
1714      const TargetRegisterClass *DstRC =
1715          TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1716      if (DstRC)
1717        DstSize = TRI->getRegSizeInBits(*DstRC);
1718    }
1719
1720    if (DstSize == 0)
1721      DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1722
1723    if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1724      if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1725        report("Copy Instruction is illegal with mismatching sizes", MI);
1726        errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1727               << "\n";
1728      }
1729    }
1730    break;
1731  }
1732  case TargetOpcode::STATEPOINT: {
1733    StatepointOpers SO(MI);
1734    if (!MI->getOperand(SO.getIDPos()).isImm() ||
1735        !MI->getOperand(SO.getNBytesPos()).isImm() ||
1736        !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1737      report("meta operands to STATEPOINT not constant!", MI);
1738      break;
1739    }
1740
1741    auto VerifyStackMapConstant = [&](unsigned Offset) {
1742      if (Offset >= MI->getNumOperands()) {
1743        report("stack map constant to STATEPOINT is out of range!", MI);
1744        return;
1745      }
1746      if (!MI->getOperand(Offset - 1).isImm() ||
1747          MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1748          !MI->getOperand(Offset).isImm())
1749        report("stack map constant to STATEPOINT not well formed!", MI);
1750    };
1751    VerifyStackMapConstant(SO.getCCIdx());
1752    VerifyStackMapConstant(SO.getFlagsIdx());
1753    VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1754    VerifyStackMapConstant(SO.getNumGCPtrIdx());
1755    VerifyStackMapConstant(SO.getNumAllocaIdx());
1756    VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1757
1758    // Verify that all explicit statepoint defs are tied to gc operands as
1759    // they are expected to be a relocation of gc operands.
1760    unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1761    unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1762    for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1763      unsigned UseOpIdx;
1764      if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1765        report("STATEPOINT defs expected to be tied", MI);
1766        break;
1767      }
1768      if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1769        report("STATEPOINT def tied to non-gc operand", MI);
1770        break;
1771      }
1772    }
1773
1774    // TODO: verify we have properly encoded deopt arguments
1775  } break;
1776  }
1777}
1778
1779void
1780MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1781  const MachineInstr *MI = MO->getParent();
1782  const MCInstrDesc &MCID = MI->getDesc();
1783  unsigned NumDefs = MCID.getNumDefs();
1784  if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1785    NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1786
1787  // The first MCID.NumDefs operands must be explicit register defines
1788  if (MONum < NumDefs) {
1789    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1790    if (!MO->isReg())
1791      report("Explicit definition must be a register", MO, MONum);
1792    else if (!MO->isDef() && !MCOI.isOptionalDef())
1793      report("Explicit definition marked as use", MO, MONum);
1794    else if (MO->isImplicit())
1795      report("Explicit definition marked as implicit", MO, MONum);
1796  } else if (MONum < MCID.getNumOperands()) {
1797    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1798    // Don't check if it's the last operand in a variadic instruction. See,
1799    // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1800    bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1801    if (!IsOptional) {
1802      if (MO->isReg()) {
1803        if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1804          report("Explicit operand marked as def", MO, MONum);
1805        if (MO->isImplicit())
1806          report("Explicit operand marked as implicit", MO, MONum);
1807      }
1808
1809      // Check that an instruction has register operands only as expected.
1810      if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1811          !MO->isReg() && !MO->isFI())
1812        report("Expected a register operand.", MO, MONum);
1813      if (MO->isReg()) {
1814        if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1815            (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1816             !TII->isPCRelRegisterOperandLegal(*MO)))
1817          report("Expected a non-register operand.", MO, MONum);
1818      }
1819    }
1820
1821    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1822    if (TiedTo != -1) {
1823      if (!MO->isReg())
1824        report("Tied use must be a register", MO, MONum);
1825      else if (!MO->isTied())
1826        report("Operand should be tied", MO, MONum);
1827      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1828        report("Tied def doesn't match MCInstrDesc", MO, MONum);
1829      else if (Register::isPhysicalRegister(MO->getReg())) {
1830        const MachineOperand &MOTied = MI->getOperand(TiedTo);
1831        if (!MOTied.isReg())
1832          report("Tied counterpart must be a register", &MOTied, TiedTo);
1833        else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1834                 MO->getReg() != MOTied.getReg())
1835          report("Tied physical registers must match.", &MOTied, TiedTo);
1836      }
1837    } else if (MO->isReg() && MO->isTied())
1838      report("Explicit operand should not be tied", MO, MONum);
1839  } else {
1840    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1841    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1842      report("Extra explicit operand on non-variadic instruction", MO, MONum);
1843  }
1844
1845  switch (MO->getType()) {
1846  case MachineOperand::MO_Register: {
1847    const Register Reg = MO->getReg();
1848    if (!Reg)
1849      return;
1850    if (MRI->tracksLiveness() && !MI->isDebugValue())
1851      checkLiveness(MO, MONum);
1852
1853    // Verify the consistency of tied operands.
1854    if (MO->isTied()) {
1855      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1856      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1857      if (!OtherMO.isReg())
1858        report("Must be tied to a register", MO, MONum);
1859      if (!OtherMO.isTied())
1860        report("Missing tie flags on tied operand", MO, MONum);
1861      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1862        report("Inconsistent tie links", MO, MONum);
1863      if (MONum < MCID.getNumDefs()) {
1864        if (OtherIdx < MCID.getNumOperands()) {
1865          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1866            report("Explicit def tied to explicit use without tie constraint",
1867                   MO, MONum);
1868        } else {
1869          if (!OtherMO.isImplicit())
1870            report("Explicit def should be tied to implicit use", MO, MONum);
1871        }
1872      }
1873    }
1874
1875    // Verify two-address constraints after the twoaddressinstruction pass.
1876    // Both twoaddressinstruction pass and phi-node-elimination pass call
1877    // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1878    // twoaddressinstruction pass not after phi-node-elimination pass. So we
1879    // shouldn't use the NoSSA as the condition, we should based on
1880    // TiedOpsRewritten property to verify two-address constraints, this
1881    // property will be set in twoaddressinstruction pass.
1882    unsigned DefIdx;
1883    if (MF->getProperties().hasProperty(
1884            MachineFunctionProperties::Property::TiedOpsRewritten) &&
1885        MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1886        Reg != MI->getOperand(DefIdx).getReg())
1887      report("Two-address instruction operands must be identical", MO, MONum);
1888
1889    // Check register classes.
1890    unsigned SubIdx = MO->getSubReg();
1891
1892    if (Register::isPhysicalRegister(Reg)) {
1893      if (SubIdx) {
1894        report("Illegal subregister index for physical register", MO, MONum);
1895        return;
1896      }
1897      if (MONum < MCID.getNumOperands()) {
1898        if (const TargetRegisterClass *DRC =
1899              TII->getRegClass(MCID, MONum, TRI, *MF)) {
1900          if (!DRC->contains(Reg)) {
1901            report("Illegal physical register for instruction", MO, MONum);
1902            errs() << printReg(Reg, TRI) << " is not a "
1903                   << TRI->getRegClassName(DRC) << " register.\n";
1904          }
1905        }
1906      }
1907      if (MO->isRenamable()) {
1908        if (MRI->isReserved(Reg)) {
1909          report("isRenamable set on reserved register", MO, MONum);
1910          return;
1911        }
1912      }
1913      if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1914        report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1915        return;
1916      }
1917    } else {
1918      // Virtual register.
1919      const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1920      if (!RC) {
1921        // This is a generic virtual register.
1922
1923        // Do not allow undef uses for generic virtual registers. This ensures
1924        // getVRegDef can never fail and return null on a generic register.
1925        //
1926        // FIXME: This restriction should probably be broadened to all SSA
1927        // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1928        // run on the SSA function just before phi elimination.
1929        if (MO->isUndef())
1930          report("Generic virtual register use cannot be undef", MO, MONum);
1931
1932        // If we're post-Select, we can't have gvregs anymore.
1933        if (isFunctionSelected) {
1934          report("Generic virtual register invalid in a Selected function",
1935                 MO, MONum);
1936          return;
1937        }
1938
1939        // The gvreg must have a type and it must not have a SubIdx.
1940        LLT Ty = MRI->getType(Reg);
1941        if (!Ty.isValid()) {
1942          report("Generic virtual register must have a valid type", MO,
1943                 MONum);
1944          return;
1945        }
1946
1947        const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1948
1949        // If we're post-RegBankSelect, the gvreg must have a bank.
1950        if (!RegBank && isFunctionRegBankSelected) {
1951          report("Generic virtual register must have a bank in a "
1952                 "RegBankSelected function",
1953                 MO, MONum);
1954          return;
1955        }
1956
1957        // Make sure the register fits into its register bank if any.
1958        if (RegBank && Ty.isValid() &&
1959            RegBank->getSize() < Ty.getSizeInBits()) {
1960          report("Register bank is too small for virtual register", MO,
1961                 MONum);
1962          errs() << "Register bank " << RegBank->getName() << " too small("
1963                 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1964                 << "-bits\n";
1965          return;
1966        }
1967        if (SubIdx)  {
1968          report("Generic virtual register does not allow subregister index", MO,
1969                 MONum);
1970          return;
1971        }
1972
1973        // If this is a target specific instruction and this operand
1974        // has register class constraint, the virtual register must
1975        // comply to it.
1976        if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1977            MONum < MCID.getNumOperands() &&
1978            TII->getRegClass(MCID, MONum, TRI, *MF)) {
1979          report("Virtual register does not match instruction constraint", MO,
1980                 MONum);
1981          errs() << "Expect register class "
1982                 << TRI->getRegClassName(
1983                        TII->getRegClass(MCID, MONum, TRI, *MF))
1984                 << " but got nothing\n";
1985          return;
1986        }
1987
1988        break;
1989      }
1990      if (SubIdx) {
1991        const TargetRegisterClass *SRC =
1992          TRI->getSubClassWithSubReg(RC, SubIdx);
1993        if (!SRC) {
1994          report("Invalid subregister index for virtual register", MO, MONum);
1995          errs() << "Register class " << TRI->getRegClassName(RC)
1996              << " does not support subreg index " << SubIdx << "\n";
1997          return;
1998        }
1999        if (RC != SRC) {
2000          report("Invalid register class for subregister index", MO, MONum);
2001          errs() << "Register class " << TRI->getRegClassName(RC)
2002              << " does not fully support subreg index " << SubIdx << "\n";
2003          return;
2004        }
2005      }
2006      if (MONum < MCID.getNumOperands()) {
2007        if (const TargetRegisterClass *DRC =
2008              TII->getRegClass(MCID, MONum, TRI, *MF)) {
2009          if (SubIdx) {
2010            const TargetRegisterClass *SuperRC =
2011                TRI->getLargestLegalSuperClass(RC, *MF);
2012            if (!SuperRC) {
2013              report("No largest legal super class exists.", MO, MONum);
2014              return;
2015            }
2016            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2017            if (!DRC) {
2018              report("No matching super-reg register class.", MO, MONum);
2019              return;
2020            }
2021          }
2022          if (!RC->hasSuperClassEq(DRC)) {
2023            report("Illegal virtual register for instruction", MO, MONum);
2024            errs() << "Expected a " << TRI->getRegClassName(DRC)
2025                << " register, but got a " << TRI->getRegClassName(RC)
2026                << " register\n";
2027          }
2028        }
2029      }
2030    }
2031    break;
2032  }
2033
2034  case MachineOperand::MO_RegisterMask:
2035    regMasks.push_back(MO->getRegMask());
2036    break;
2037
2038  case MachineOperand::MO_MachineBasicBlock:
2039    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2040      report("PHI operand is not in the CFG", MO, MONum);
2041    break;
2042
2043  case MachineOperand::MO_FrameIndex:
2044    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2045        LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2046      int FI = MO->getIndex();
2047      LiveInterval &LI = LiveStks->getInterval(FI);
2048      SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2049
2050      bool stores = MI->mayStore();
2051      bool loads = MI->mayLoad();
2052      // For a memory-to-memory move, we need to check if the frame
2053      // index is used for storing or loading, by inspecting the
2054      // memory operands.
2055      if (stores && loads) {
2056        for (auto *MMO : MI->memoperands()) {
2057          const PseudoSourceValue *PSV = MMO->getPseudoValue();
2058          if (PSV == nullptr) continue;
2059          const FixedStackPseudoSourceValue *Value =
2060            dyn_cast<FixedStackPseudoSourceValue>(PSV);
2061          if (Value == nullptr) continue;
2062          if (Value->getFrameIndex() != FI) continue;
2063
2064          if (MMO->isStore())
2065            loads = false;
2066          else
2067            stores = false;
2068          break;
2069        }
2070        if (loads == stores)
2071          report("Missing fixed stack memoperand.", MI);
2072      }
2073      if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2074        report("Instruction loads from dead spill slot", MO, MONum);
2075        errs() << "Live stack: " << LI << '\n';
2076      }
2077      if (stores && !LI.liveAt(Idx.getRegSlot())) {
2078        report("Instruction stores to dead spill slot", MO, MONum);
2079        errs() << "Live stack: " << LI << '\n';
2080      }
2081    }
2082    break;
2083
2084  default:
2085    break;
2086  }
2087}
2088
2089void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2090                                         unsigned MONum, SlotIndex UseIdx,
2091                                         const LiveRange &LR,
2092                                         Register VRegOrUnit,
2093                                         LaneBitmask LaneMask) {
2094  LiveQueryResult LRQ = LR.Query(UseIdx);
2095  // Check if we have a segment at the use, note however that we only need one
2096  // live subregister range, the others may be dead.
2097  if (!LRQ.valueIn() && LaneMask.none()) {
2098    report("No live segment at use", MO, MONum);
2099    report_context_liverange(LR);
2100    report_context_vreg_regunit(VRegOrUnit);
2101    report_context(UseIdx);
2102  }
2103  if (MO->isKill() && !LRQ.isKill()) {
2104    report("Live range continues after kill flag", MO, MONum);
2105    report_context_liverange(LR);
2106    report_context_vreg_regunit(VRegOrUnit);
2107    if (LaneMask.any())
2108      report_context_lanemask(LaneMask);
2109    report_context(UseIdx);
2110  }
2111}
2112
2113void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2114                                         unsigned MONum, SlotIndex DefIdx,
2115                                         const LiveRange &LR,
2116                                         Register VRegOrUnit,
2117                                         bool SubRangeCheck,
2118                                         LaneBitmask LaneMask) {
2119  if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2120    assert(VNI && "NULL valno is not allowed");
2121    if (VNI->def != DefIdx) {
2122      report("Inconsistent valno->def", MO, MONum);
2123      report_context_liverange(LR);
2124      report_context_vreg_regunit(VRegOrUnit);
2125      if (LaneMask.any())
2126        report_context_lanemask(LaneMask);
2127      report_context(*VNI);
2128      report_context(DefIdx);
2129    }
2130  } else {
2131    report("No live segment at def", MO, MONum);
2132    report_context_liverange(LR);
2133    report_context_vreg_regunit(VRegOrUnit);
2134    if (LaneMask.any())
2135      report_context_lanemask(LaneMask);
2136    report_context(DefIdx);
2137  }
2138  // Check that, if the dead def flag is present, LiveInts agree.
2139  if (MO->isDead()) {
2140    LiveQueryResult LRQ = LR.Query(DefIdx);
2141    if (!LRQ.isDeadDef()) {
2142      assert(Register::isVirtualRegister(VRegOrUnit) &&
2143             "Expecting a virtual register.");
2144      // A dead subreg def only tells us that the specific subreg is dead. There
2145      // could be other non-dead defs of other subregs, or we could have other
2146      // parts of the register being live through the instruction. So unless we
2147      // are checking liveness for a subrange it is ok for the live range to
2148      // continue, given that we have a dead def of a subregister.
2149      if (SubRangeCheck || MO->getSubReg() == 0) {
2150        report("Live range continues after dead def flag", MO, MONum);
2151        report_context_liverange(LR);
2152        report_context_vreg_regunit(VRegOrUnit);
2153        if (LaneMask.any())
2154          report_context_lanemask(LaneMask);
2155      }
2156    }
2157  }
2158}
2159
2160void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2161  const MachineInstr *MI = MO->getParent();
2162  const Register Reg = MO->getReg();
2163
2164  // Both use and def operands can read a register.
2165  if (MO->readsReg()) {
2166    if (MO->isKill())
2167      addRegWithSubRegs(regsKilled, Reg);
2168
2169    // Check that LiveVars knows this kill.
2170    if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2171      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2172      if (!is_contained(VI.Kills, MI))
2173        report("Kill missing from LiveVariables", MO, MONum);
2174    }
2175
2176    // Check LiveInts liveness and kill.
2177    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2178      SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2179      // Check the cached regunit intervals.
2180      if (Reg.isPhysical() && !isReserved(Reg)) {
2181        for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2182             ++Units) {
2183          if (MRI->isReservedRegUnit(*Units))
2184            continue;
2185          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2186            checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2187        }
2188      }
2189
2190      if (Register::isVirtualRegister(Reg)) {
2191        if (LiveInts->hasInterval(Reg)) {
2192          // This is a virtual register interval.
2193          const LiveInterval &LI = LiveInts->getInterval(Reg);
2194          checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2195
2196          if (LI.hasSubRanges() && !MO->isDef()) {
2197            unsigned SubRegIdx = MO->getSubReg();
2198            LaneBitmask MOMask = SubRegIdx != 0
2199                               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2200                               : MRI->getMaxLaneMaskForVReg(Reg);
2201            LaneBitmask LiveInMask;
2202            for (const LiveInterval::SubRange &SR : LI.subranges()) {
2203              if ((MOMask & SR.LaneMask).none())
2204                continue;
2205              checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2206              LiveQueryResult LRQ = SR.Query(UseIdx);
2207              if (LRQ.valueIn())
2208                LiveInMask |= SR.LaneMask;
2209            }
2210            // At least parts of the register has to be live at the use.
2211            if ((LiveInMask & MOMask).none()) {
2212              report("No live subrange at use", MO, MONum);
2213              report_context(LI);
2214              report_context(UseIdx);
2215            }
2216          }
2217        } else {
2218          report("Virtual register has no live interval", MO, MONum);
2219        }
2220      }
2221    }
2222
2223    // Use of a dead register.
2224    if (!regsLive.count(Reg)) {
2225      if (Register::isPhysicalRegister(Reg)) {
2226        // Reserved registers may be used even when 'dead'.
2227        bool Bad = !isReserved(Reg);
2228        // We are fine if just any subregister has a defined value.
2229        if (Bad) {
2230
2231          for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2232            if (regsLive.count(SubReg)) {
2233              Bad = false;
2234              break;
2235            }
2236          }
2237        }
2238        // If there is an additional implicit-use of a super register we stop
2239        // here. By definition we are fine if the super register is not
2240        // (completely) dead, if the complete super register is dead we will
2241        // get a report for its operand.
2242        if (Bad) {
2243          for (const MachineOperand &MOP : MI->uses()) {
2244            if (!MOP.isReg() || !MOP.isImplicit())
2245              continue;
2246
2247            if (!Register::isPhysicalRegister(MOP.getReg()))
2248              continue;
2249
2250            if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2251              Bad = false;
2252          }
2253        }
2254        if (Bad)
2255          report("Using an undefined physical register", MO, MONum);
2256      } else if (MRI->def_empty(Reg)) {
2257        report("Reading virtual register without a def", MO, MONum);
2258      } else {
2259        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2260        // We don't know which virtual registers are live in, so only complain
2261        // if vreg was killed in this MBB. Otherwise keep track of vregs that
2262        // must be live in. PHI instructions are handled separately.
2263        if (MInfo.regsKilled.count(Reg))
2264          report("Using a killed virtual register", MO, MONum);
2265        else if (!MI->isPHI())
2266          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2267      }
2268    }
2269  }
2270
2271  if (MO->isDef()) {
2272    // Register defined.
2273    // TODO: verify that earlyclobber ops are not used.
2274    if (MO->isDead())
2275      addRegWithSubRegs(regsDead, Reg);
2276    else
2277      addRegWithSubRegs(regsDefined, Reg);
2278
2279    // Verify SSA form.
2280    if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2281        std::next(MRI->def_begin(Reg)) != MRI->def_end())
2282      report("Multiple virtual register defs in SSA form", MO, MONum);
2283
2284    // Check LiveInts for a live segment, but only for virtual registers.
2285    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2286      SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2287      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2288
2289      if (Register::isVirtualRegister(Reg)) {
2290        if (LiveInts->hasInterval(Reg)) {
2291          const LiveInterval &LI = LiveInts->getInterval(Reg);
2292          checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2293
2294          if (LI.hasSubRanges()) {
2295            unsigned SubRegIdx = MO->getSubReg();
2296            LaneBitmask MOMask = SubRegIdx != 0
2297              ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2298              : MRI->getMaxLaneMaskForVReg(Reg);
2299            for (const LiveInterval::SubRange &SR : LI.subranges()) {
2300              if ((SR.LaneMask & MOMask).none())
2301                continue;
2302              checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2303            }
2304          }
2305        } else {
2306          report("Virtual register has no Live interval", MO, MONum);
2307        }
2308      }
2309    }
2310  }
2311}
2312
2313// This function gets called after visiting all instructions in a bundle. The
2314// argument points to the bundle header.
2315// Normal stand-alone instructions are also considered 'bundles', and this
2316// function is called for all of them.
2317void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2318  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2319  set_union(MInfo.regsKilled, regsKilled);
2320  set_subtract(regsLive, regsKilled); regsKilled.clear();
2321  // Kill any masked registers.
2322  while (!regMasks.empty()) {
2323    const uint32_t *Mask = regMasks.pop_back_val();
2324    for (Register Reg : regsLive)
2325      if (Reg.isPhysical() &&
2326          MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2327        regsDead.push_back(Reg);
2328  }
2329  set_subtract(regsLive, regsDead);   regsDead.clear();
2330  set_union(regsLive, regsDefined);   regsDefined.clear();
2331}
2332
2333void
2334MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2335  MBBInfoMap[MBB].regsLiveOut = regsLive;
2336  regsLive.clear();
2337
2338  if (Indexes) {
2339    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2340    if (!(stop > lastIndex)) {
2341      report("Block ends before last instruction index", MBB);
2342      errs() << "Block ends at " << stop
2343          << " last instruction was at " << lastIndex << '\n';
2344    }
2345    lastIndex = stop;
2346  }
2347}
2348
2349namespace {
2350// This implements a set of registers that serves as a filter: can filter other
2351// sets by passing through elements not in the filter and blocking those that
2352// are. Any filter implicitly includes the full set of physical registers upon
2353// creation, thus filtering them all out. The filter itself as a set only grows,
2354// and needs to be as efficient as possible.
2355struct VRegFilter {
2356  // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2357  // no duplicates. Both virtual and physical registers are fine.
2358  template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2359    SmallVector<Register, 0> VRegsBuffer;
2360    filterAndAdd(FromRegSet, VRegsBuffer);
2361  }
2362  // Filter \p FromRegSet through the filter and append passed elements into \p
2363  // ToVRegs. All elements appended are then added to the filter itself.
2364  // \returns true if anything changed.
2365  template <typename RegSetT>
2366  bool filterAndAdd(const RegSetT &FromRegSet,
2367                    SmallVectorImpl<Register> &ToVRegs) {
2368    unsigned SparseUniverse = Sparse.size();
2369    unsigned NewSparseUniverse = SparseUniverse;
2370    unsigned NewDenseSize = Dense.size();
2371    size_t Begin = ToVRegs.size();
2372    for (Register Reg : FromRegSet) {
2373      if (!Reg.isVirtual())
2374        continue;
2375      unsigned Index = Register::virtReg2Index(Reg);
2376      if (Index < SparseUniverseMax) {
2377        if (Index < SparseUniverse && Sparse.test(Index))
2378          continue;
2379        NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2380      } else {
2381        if (Dense.count(Reg))
2382          continue;
2383        ++NewDenseSize;
2384      }
2385      ToVRegs.push_back(Reg);
2386    }
2387    size_t End = ToVRegs.size();
2388    if (Begin == End)
2389      return false;
2390    // Reserving space in sets once performs better than doing so continuously
2391    // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2392    // tuned all the way down) and double iteration (the second one is over a
2393    // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2394    Sparse.resize(NewSparseUniverse);
2395    Dense.reserve(NewDenseSize);
2396    for (unsigned I = Begin; I < End; ++I) {
2397      Register Reg = ToVRegs[I];
2398      unsigned Index = Register::virtReg2Index(Reg);
2399      if (Index < SparseUniverseMax)
2400        Sparse.set(Index);
2401      else
2402        Dense.insert(Reg);
2403    }
2404    return true;
2405  }
2406
2407private:
2408  static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2409  // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2410  // are tracked by Dense. The only purpose of the threashold and the Dense set
2411  // is to have a reasonably growing memory usage in pathological cases (large
2412  // number of very sparse VRegFilter instances live at the same time). In
2413  // practice even in the worst-by-execution time cases having all elements
2414  // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2415  // space efficient than if tracked by Dense. The threashold is set to keep the
2416  // worst-case memory usage within 2x of figures determined empirically for
2417  // "all Dense" scenario in such worst-by-execution-time cases.
2418  BitVector Sparse;
2419  DenseSet<unsigned> Dense;
2420};
2421
2422// Implements both a transfer function and a (binary, in-place) join operator
2423// for a dataflow over register sets with set union join and filtering transfer
2424// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2425// Maintains out_b as its state, allowing for O(n) iteration over it at any
2426// time, where n is the size of the set (as opposed to O(U) where U is the
2427// universe). filter_b implicitly contains all physical registers at all times.
2428class FilteringVRegSet {
2429  VRegFilter Filter;
2430  SmallVector<Register, 0> VRegs;
2431
2432public:
2433  // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2434  // Both virtual and physical registers are fine.
2435  template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2436    Filter.add(RS);
2437  }
2438  // Passes \p RS through the filter_b (transfer function) and adds what's left
2439  // to itself (out_b).
2440  template <typename RegSetT> bool add(const RegSetT &RS) {
2441    // Double-duty the Filter: to maintain VRegs a set (and the join operation
2442    // a set union) just add everything being added here to the Filter as well.
2443    return Filter.filterAndAdd(RS, VRegs);
2444  }
2445  using const_iterator = decltype(VRegs)::const_iterator;
2446  const_iterator begin() const { return VRegs.begin(); }
2447  const_iterator end() const { return VRegs.end(); }
2448  size_t size() const { return VRegs.size(); }
2449};
2450} // namespace
2451
2452// Calculate the largest possible vregsPassed sets. These are the registers that
2453// can pass through an MBB live, but may not be live every time. It is assumed
2454// that all vregsPassed sets are empty before the call.
2455void MachineVerifier::calcRegsPassed() {
2456  if (MF->empty())
2457    // ReversePostOrderTraversal doesn't handle empty functions.
2458    return;
2459
2460  for (const MachineBasicBlock *MB :
2461       ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2462    FilteringVRegSet VRegs;
2463    BBInfo &Info = MBBInfoMap[MB];
2464    assert(Info.reachable);
2465
2466    VRegs.addToFilter(Info.regsKilled);
2467    VRegs.addToFilter(Info.regsLiveOut);
2468    for (const MachineBasicBlock *Pred : MB->predecessors()) {
2469      const BBInfo &PredInfo = MBBInfoMap[Pred];
2470      if (!PredInfo.reachable)
2471        continue;
2472
2473      VRegs.add(PredInfo.regsLiveOut);
2474      VRegs.add(PredInfo.vregsPassed);
2475    }
2476    Info.vregsPassed.reserve(VRegs.size());
2477    Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2478  }
2479}
2480
2481// Calculate the set of virtual registers that must be passed through each basic
2482// block in order to satisfy the requirements of successor blocks. This is very
2483// similar to calcRegsPassed, only backwards.
2484void MachineVerifier::calcRegsRequired() {
2485  // First push live-in regs to predecessors' vregsRequired.
2486  SmallPtrSet<const MachineBasicBlock*, 8> todo;
2487  for (const auto &MBB : *MF) {
2488    BBInfo &MInfo = MBBInfoMap[&MBB];
2489    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2490      BBInfo &PInfo = MBBInfoMap[Pred];
2491      if (PInfo.addRequired(MInfo.vregsLiveIn))
2492        todo.insert(Pred);
2493    }
2494
2495    // Handle the PHI node.
2496    for (const MachineInstr &MI : MBB.phis()) {
2497      for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2498        // Skip those Operands which are undef regs or not regs.
2499        if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2500          continue;
2501
2502        // Get register and predecessor for one PHI edge.
2503        Register Reg = MI.getOperand(i).getReg();
2504        const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2505
2506        BBInfo &PInfo = MBBInfoMap[Pred];
2507        if (PInfo.addRequired(Reg))
2508          todo.insert(Pred);
2509      }
2510    }
2511  }
2512
2513  // Iteratively push vregsRequired to predecessors. This will converge to the
2514  // same final state regardless of DenseSet iteration order.
2515  while (!todo.empty()) {
2516    const MachineBasicBlock *MBB = *todo.begin();
2517    todo.erase(MBB);
2518    BBInfo &MInfo = MBBInfoMap[MBB];
2519    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2520      if (Pred == MBB)
2521        continue;
2522      BBInfo &SInfo = MBBInfoMap[Pred];
2523      if (SInfo.addRequired(MInfo.vregsRequired))
2524        todo.insert(Pred);
2525    }
2526  }
2527}
2528
2529// Check PHI instructions at the beginning of MBB. It is assumed that
2530// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2531void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2532  BBInfo &MInfo = MBBInfoMap[&MBB];
2533
2534  SmallPtrSet<const MachineBasicBlock*, 8> seen;
2535  for (const MachineInstr &Phi : MBB) {
2536    if (!Phi.isPHI())
2537      break;
2538    seen.clear();
2539
2540    const MachineOperand &MODef = Phi.getOperand(0);
2541    if (!MODef.isReg() || !MODef.isDef()) {
2542      report("Expected first PHI operand to be a register def", &MODef, 0);
2543      continue;
2544    }
2545    if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2546        MODef.isEarlyClobber() || MODef.isDebug())
2547      report("Unexpected flag on PHI operand", &MODef, 0);
2548    Register DefReg = MODef.getReg();
2549    if (!Register::isVirtualRegister(DefReg))
2550      report("Expected first PHI operand to be a virtual register", &MODef, 0);
2551
2552    for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2553      const MachineOperand &MO0 = Phi.getOperand(I);
2554      if (!MO0.isReg()) {
2555        report("Expected PHI operand to be a register", &MO0, I);
2556        continue;
2557      }
2558      if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2559          MO0.isDebug() || MO0.isTied())
2560        report("Unexpected flag on PHI operand", &MO0, I);
2561
2562      const MachineOperand &MO1 = Phi.getOperand(I + 1);
2563      if (!MO1.isMBB()) {
2564        report("Expected PHI operand to be a basic block", &MO1, I + 1);
2565        continue;
2566      }
2567
2568      const MachineBasicBlock &Pre = *MO1.getMBB();
2569      if (!Pre.isSuccessor(&MBB)) {
2570        report("PHI input is not a predecessor block", &MO1, I + 1);
2571        continue;
2572      }
2573
2574      if (MInfo.reachable) {
2575        seen.insert(&Pre);
2576        BBInfo &PrInfo = MBBInfoMap[&Pre];
2577        if (!MO0.isUndef() && PrInfo.reachable &&
2578            !PrInfo.isLiveOut(MO0.getReg()))
2579          report("PHI operand is not live-out from predecessor", &MO0, I);
2580      }
2581    }
2582
2583    // Did we see all predecessors?
2584    if (MInfo.reachable) {
2585      for (MachineBasicBlock *Pred : MBB.predecessors()) {
2586        if (!seen.count(Pred)) {
2587          report("Missing PHI operand", &Phi);
2588          errs() << printMBBReference(*Pred)
2589                 << " is a predecessor according to the CFG.\n";
2590        }
2591      }
2592    }
2593  }
2594}
2595
2596void MachineVerifier::visitMachineFunctionAfter() {
2597  calcRegsPassed();
2598
2599  for (const MachineBasicBlock &MBB : *MF)
2600    checkPHIOps(MBB);
2601
2602  // Now check liveness info if available
2603  calcRegsRequired();
2604
2605  // Check for killed virtual registers that should be live out.
2606  for (const auto &MBB : *MF) {
2607    BBInfo &MInfo = MBBInfoMap[&MBB];
2608    for (Register VReg : MInfo.vregsRequired)
2609      if (MInfo.regsKilled.count(VReg)) {
2610        report("Virtual register killed in block, but needed live out.", &MBB);
2611        errs() << "Virtual register " << printReg(VReg)
2612               << " is used after the block.\n";
2613      }
2614  }
2615
2616  if (!MF->empty()) {
2617    BBInfo &MInfo = MBBInfoMap[&MF->front()];
2618    for (Register VReg : MInfo.vregsRequired) {
2619      report("Virtual register defs don't dominate all uses.", MF);
2620      report_context_vreg(VReg);
2621    }
2622  }
2623
2624  if (LiveVars)
2625    verifyLiveVariables();
2626  if (LiveInts)
2627    verifyLiveIntervals();
2628
2629  // Check live-in list of each MBB. If a register is live into MBB, check
2630  // that the register is in regsLiveOut of each predecessor block. Since
2631  // this must come from a definition in the predecesssor or its live-in
2632  // list, this will catch a live-through case where the predecessor does not
2633  // have the register in its live-in list.  This currently only checks
2634  // registers that have no aliases, are not allocatable and are not
2635  // reserved, which could mean a condition code register for instance.
2636  if (MRI->tracksLiveness())
2637    for (const auto &MBB : *MF)
2638      for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2639        MCPhysReg LiveInReg = P.PhysReg;
2640        bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2641        if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2642          continue;
2643        for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2644          BBInfo &PInfo = MBBInfoMap[Pred];
2645          if (!PInfo.regsLiveOut.count(LiveInReg)) {
2646            report("Live in register not found to be live out from predecessor.",
2647                   &MBB);
2648            errs() << TRI->getName(LiveInReg)
2649                   << " not found to be live out from "
2650                   << printMBBReference(*Pred) << "\n";
2651          }
2652        }
2653      }
2654
2655  for (auto CSInfo : MF->getCallSitesInfo())
2656    if (!CSInfo.first->isCall())
2657      report("Call site info referencing instruction that is not call", MF);
2658
2659  // If there's debug-info, check that we don't have any duplicate value
2660  // tracking numbers.
2661  if (MF->getFunction().getSubprogram()) {
2662    DenseSet<unsigned> SeenNumbers;
2663    for (auto &MBB : *MF) {
2664      for (auto &MI : MBB) {
2665        if (auto Num = MI.peekDebugInstrNum()) {
2666          auto Result = SeenNumbers.insert((unsigned)Num);
2667          if (!Result.second)
2668            report("Instruction has a duplicated value tracking number", &MI);
2669        }
2670      }
2671    }
2672  }
2673}
2674
2675void MachineVerifier::verifyLiveVariables() {
2676  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2677  for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2678    Register Reg = Register::index2VirtReg(I);
2679    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2680    for (const auto &MBB : *MF) {
2681      BBInfo &MInfo = MBBInfoMap[&MBB];
2682
2683      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2684      if (MInfo.vregsRequired.count(Reg)) {
2685        if (!VI.AliveBlocks.test(MBB.getNumber())) {
2686          report("LiveVariables: Block missing from AliveBlocks", &MBB);
2687          errs() << "Virtual register " << printReg(Reg)
2688                 << " must be live through the block.\n";
2689        }
2690      } else {
2691        if (VI.AliveBlocks.test(MBB.getNumber())) {
2692          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2693          errs() << "Virtual register " << printReg(Reg)
2694                 << " is not needed live through the block.\n";
2695        }
2696      }
2697    }
2698  }
2699}
2700
2701void MachineVerifier::verifyLiveIntervals() {
2702  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2703  for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2704    Register Reg = Register::index2VirtReg(I);
2705
2706    // Spilling and splitting may leave unused registers around. Skip them.
2707    if (MRI->reg_nodbg_empty(Reg))
2708      continue;
2709
2710    if (!LiveInts->hasInterval(Reg)) {
2711      report("Missing live interval for virtual register", MF);
2712      errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2713      continue;
2714    }
2715
2716    const LiveInterval &LI = LiveInts->getInterval(Reg);
2717    assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2718    verifyLiveInterval(LI);
2719  }
2720
2721  // Verify all the cached regunit intervals.
2722  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2723    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2724      verifyLiveRange(*LR, i);
2725}
2726
2727void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2728                                           const VNInfo *VNI, Register Reg,
2729                                           LaneBitmask LaneMask) {
2730  if (VNI->isUnused())
2731    return;
2732
2733  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2734
2735  if (!DefVNI) {
2736    report("Value not live at VNInfo def and not marked unused", MF);
2737    report_context(LR, Reg, LaneMask);
2738    report_context(*VNI);
2739    return;
2740  }
2741
2742  if (DefVNI != VNI) {
2743    report("Live segment at def has different VNInfo", MF);
2744    report_context(LR, Reg, LaneMask);
2745    report_context(*VNI);
2746    return;
2747  }
2748
2749  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2750  if (!MBB) {
2751    report("Invalid VNInfo definition index", MF);
2752    report_context(LR, Reg, LaneMask);
2753    report_context(*VNI);
2754    return;
2755  }
2756
2757  if (VNI->isPHIDef()) {
2758    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2759      report("PHIDef VNInfo is not defined at MBB start", MBB);
2760      report_context(LR, Reg, LaneMask);
2761      report_context(*VNI);
2762    }
2763    return;
2764  }
2765
2766  // Non-PHI def.
2767  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2768  if (!MI) {
2769    report("No instruction at VNInfo def index", MBB);
2770    report_context(LR, Reg, LaneMask);
2771    report_context(*VNI);
2772    return;
2773  }
2774
2775  if (Reg != 0) {
2776    bool hasDef = false;
2777    bool isEarlyClobber = false;
2778    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2779      if (!MOI->isReg() || !MOI->isDef())
2780        continue;
2781      if (Register::isVirtualRegister(Reg)) {
2782        if (MOI->getReg() != Reg)
2783          continue;
2784      } else {
2785        if (!Register::isPhysicalRegister(MOI->getReg()) ||
2786            !TRI->hasRegUnit(MOI->getReg(), Reg))
2787          continue;
2788      }
2789      if (LaneMask.any() &&
2790          (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2791        continue;
2792      hasDef = true;
2793      if (MOI->isEarlyClobber())
2794        isEarlyClobber = true;
2795    }
2796
2797    if (!hasDef) {
2798      report("Defining instruction does not modify register", MI);
2799      report_context(LR, Reg, LaneMask);
2800      report_context(*VNI);
2801    }
2802
2803    // Early clobber defs begin at USE slots, but other defs must begin at
2804    // DEF slots.
2805    if (isEarlyClobber) {
2806      if (!VNI->def.isEarlyClobber()) {
2807        report("Early clobber def must be at an early-clobber slot", MBB);
2808        report_context(LR, Reg, LaneMask);
2809        report_context(*VNI);
2810      }
2811    } else if (!VNI->def.isRegister()) {
2812      report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2813      report_context(LR, Reg, LaneMask);
2814      report_context(*VNI);
2815    }
2816  }
2817}
2818
2819void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2820                                             const LiveRange::const_iterator I,
2821                                             Register Reg,
2822                                             LaneBitmask LaneMask) {
2823  const LiveRange::Segment &S = *I;
2824  const VNInfo *VNI = S.valno;
2825  assert(VNI && "Live segment has no valno");
2826
2827  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2828    report("Foreign valno in live segment", MF);
2829    report_context(LR, Reg, LaneMask);
2830    report_context(S);
2831    report_context(*VNI);
2832  }
2833
2834  if (VNI->isUnused()) {
2835    report("Live segment valno is marked unused", MF);
2836    report_context(LR, Reg, LaneMask);
2837    report_context(S);
2838  }
2839
2840  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2841  if (!MBB) {
2842    report("Bad start of live segment, no basic block", MF);
2843    report_context(LR, Reg, LaneMask);
2844    report_context(S);
2845    return;
2846  }
2847  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2848  if (S.start != MBBStartIdx && S.start != VNI->def) {
2849    report("Live segment must begin at MBB entry or valno def", MBB);
2850    report_context(LR, Reg, LaneMask);
2851    report_context(S);
2852  }
2853
2854  const MachineBasicBlock *EndMBB =
2855    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2856  if (!EndMBB) {
2857    report("Bad end of live segment, no basic block", MF);
2858    report_context(LR, Reg, LaneMask);
2859    report_context(S);
2860    return;
2861  }
2862
2863  // No more checks for live-out segments.
2864  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2865    return;
2866
2867  // RegUnit intervals are allowed dead phis.
2868  if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2869      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2870    return;
2871
2872  // The live segment is ending inside EndMBB
2873  const MachineInstr *MI =
2874    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2875  if (!MI) {
2876    report("Live segment doesn't end at a valid instruction", EndMBB);
2877    report_context(LR, Reg, LaneMask);
2878    report_context(S);
2879    return;
2880  }
2881
2882  // The block slot must refer to a basic block boundary.
2883  if (S.end.isBlock()) {
2884    report("Live segment ends at B slot of an instruction", EndMBB);
2885    report_context(LR, Reg, LaneMask);
2886    report_context(S);
2887  }
2888
2889  if (S.end.isDead()) {
2890    // Segment ends on the dead slot.
2891    // That means there must be a dead def.
2892    if (!SlotIndex::isSameInstr(S.start, S.end)) {
2893      report("Live segment ending at dead slot spans instructions", EndMBB);
2894      report_context(LR, Reg, LaneMask);
2895      report_context(S);
2896    }
2897  }
2898
2899  // A live segment can only end at an early-clobber slot if it is being
2900  // redefined by an early-clobber def.
2901  if (S.end.isEarlyClobber()) {
2902    if (I+1 == LR.end() || (I+1)->start != S.end) {
2903      report("Live segment ending at early clobber slot must be "
2904             "redefined by an EC def in the same instruction", EndMBB);
2905      report_context(LR, Reg, LaneMask);
2906      report_context(S);
2907    }
2908  }
2909
2910  // The following checks only apply to virtual registers. Physreg liveness
2911  // is too weird to check.
2912  if (Register::isVirtualRegister(Reg)) {
2913    // A live segment can end with either a redefinition, a kill flag on a
2914    // use, or a dead flag on a def.
2915    bool hasRead = false;
2916    bool hasSubRegDef = false;
2917    bool hasDeadDef = false;
2918    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2919      if (!MOI->isReg() || MOI->getReg() != Reg)
2920        continue;
2921      unsigned Sub = MOI->getSubReg();
2922      LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2923                                 : LaneBitmask::getAll();
2924      if (MOI->isDef()) {
2925        if (Sub != 0) {
2926          hasSubRegDef = true;
2927          // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2928          // mask for subregister defs. Read-undef defs will be handled by
2929          // readsReg below.
2930          SLM = ~SLM;
2931        }
2932        if (MOI->isDead())
2933          hasDeadDef = true;
2934      }
2935      if (LaneMask.any() && (LaneMask & SLM).none())
2936        continue;
2937      if (MOI->readsReg())
2938        hasRead = true;
2939    }
2940    if (S.end.isDead()) {
2941      // Make sure that the corresponding machine operand for a "dead" live
2942      // range has the dead flag. We cannot perform this check for subregister
2943      // liveranges as partially dead values are allowed.
2944      if (LaneMask.none() && !hasDeadDef) {
2945        report("Instruction ending live segment on dead slot has no dead flag",
2946               MI);
2947        report_context(LR, Reg, LaneMask);
2948        report_context(S);
2949      }
2950    } else {
2951      if (!hasRead) {
2952        // When tracking subregister liveness, the main range must start new
2953        // values on partial register writes, even if there is no read.
2954        if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2955            !hasSubRegDef) {
2956          report("Instruction ending live segment doesn't read the register",
2957                 MI);
2958          report_context(LR, Reg, LaneMask);
2959          report_context(S);
2960        }
2961      }
2962    }
2963  }
2964
2965  // Now check all the basic blocks in this live segment.
2966  MachineFunction::const_iterator MFI = MBB->getIterator();
2967  // Is this live segment the beginning of a non-PHIDef VN?
2968  if (S.start == VNI->def && !VNI->isPHIDef()) {
2969    // Not live-in to any blocks.
2970    if (MBB == EndMBB)
2971      return;
2972    // Skip this block.
2973    ++MFI;
2974  }
2975
2976  SmallVector<SlotIndex, 4> Undefs;
2977  if (LaneMask.any()) {
2978    LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2979    OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2980  }
2981
2982  while (true) {
2983    assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2984    // We don't know how to track physregs into a landing pad.
2985    if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2986      if (&*MFI == EndMBB)
2987        break;
2988      ++MFI;
2989      continue;
2990    }
2991
2992    // Is VNI a PHI-def in the current block?
2993    bool IsPHI = VNI->isPHIDef() &&
2994      VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2995
2996    // Check that VNI is live-out of all predecessors.
2997    for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2998      SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2999      // Predecessor of landing pad live-out on last call.
3000      if (MFI->isEHPad()) {
3001        for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3002          if (I->isCall()) {
3003            PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3004            break;
3005          }
3006        }
3007      }
3008      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3009
3010      // All predecessors must have a live-out value. However for a phi
3011      // instruction with subregister intervals
3012      // only one of the subregisters (not necessarily the current one) needs to
3013      // be defined.
3014      if (!PVNI && (LaneMask.none() || !IsPHI)) {
3015        if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3016          continue;
3017        report("Register not marked live out of predecessor", Pred);
3018        report_context(LR, Reg, LaneMask);
3019        report_context(*VNI);
3020        errs() << " live into " << printMBBReference(*MFI) << '@'
3021               << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3022               << PEnd << '\n';
3023        continue;
3024      }
3025
3026      // Only PHI-defs can take different predecessor values.
3027      if (!IsPHI && PVNI != VNI) {
3028        report("Different value live out of predecessor", Pred);
3029        report_context(LR, Reg, LaneMask);
3030        errs() << "Valno #" << PVNI->id << " live out of "
3031               << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3032               << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3033               << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3034      }
3035    }
3036    if (&*MFI == EndMBB)
3037      break;
3038    ++MFI;
3039  }
3040}
3041
3042void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3043                                      LaneBitmask LaneMask) {
3044  for (const VNInfo *VNI : LR.valnos)
3045    verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3046
3047  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3048    verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3049}
3050
3051void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3052  Register Reg = LI.reg();
3053  assert(Register::isVirtualRegister(Reg));
3054  verifyLiveRange(LI, Reg);
3055
3056  LaneBitmask Mask;
3057  LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3058  for (const LiveInterval::SubRange &SR : LI.subranges()) {
3059    if ((Mask & SR.LaneMask).any()) {
3060      report("Lane masks of sub ranges overlap in live interval", MF);
3061      report_context(LI);
3062    }
3063    if ((SR.LaneMask & ~MaxMask).any()) {
3064      report("Subrange lanemask is invalid", MF);
3065      report_context(LI);
3066    }
3067    if (SR.empty()) {
3068      report("Subrange must not be empty", MF);
3069      report_context(SR, LI.reg(), SR.LaneMask);
3070    }
3071    Mask |= SR.LaneMask;
3072    verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3073    if (!LI.covers(SR)) {
3074      report("A Subrange is not covered by the main range", MF);
3075      report_context(LI);
3076    }
3077  }
3078
3079  // Check the LI only has one connected component.
3080  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3081  unsigned NumComp = ConEQ.Classify(LI);
3082  if (NumComp > 1) {
3083    report("Multiple connected components in live interval", MF);
3084    report_context(LI);
3085    for (unsigned comp = 0; comp != NumComp; ++comp) {
3086      errs() << comp << ": valnos";
3087      for (const VNInfo *I : LI.valnos)
3088        if (comp == ConEQ.getEqClass(I))
3089          errs() << ' ' << I->id;
3090      errs() << '\n';
3091    }
3092  }
3093}
3094
3095namespace {
3096
3097  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3098  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3099  // value is zero.
3100  // We use a bool plus an integer to capture the stack state.
3101  struct StackStateOfBB {
3102    StackStateOfBB() = default;
3103    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3104      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3105      ExitIsSetup(ExitSetup) {}
3106
3107    // Can be negative, which means we are setting up a frame.
3108    int EntryValue = 0;
3109    int ExitValue = 0;
3110    bool EntryIsSetup = false;
3111    bool ExitIsSetup = false;
3112  };
3113
3114} // end anonymous namespace
3115
3116/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3117/// by a FrameDestroy <n>, stack adjustments are identical on all
3118/// CFG edges to a merge point, and frame is destroyed at end of a return block.
3119void MachineVerifier::verifyStackFrame() {
3120  unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3121  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3122  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3123    return;
3124
3125  SmallVector<StackStateOfBB, 8> SPState;
3126  SPState.resize(MF->getNumBlockIDs());
3127  df_iterator_default_set<const MachineBasicBlock*> Reachable;
3128
3129  // Visit the MBBs in DFS order.
3130  for (df_ext_iterator<const MachineFunction *,
3131                       df_iterator_default_set<const MachineBasicBlock *>>
3132       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3133       DFI != DFE; ++DFI) {
3134    const MachineBasicBlock *MBB = *DFI;
3135
3136    StackStateOfBB BBState;
3137    // Check the exit state of the DFS stack predecessor.
3138    if (DFI.getPathLength() >= 2) {
3139      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3140      assert(Reachable.count(StackPred) &&
3141             "DFS stack predecessor is already visited.\n");
3142      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3143      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3144      BBState.ExitValue = BBState.EntryValue;
3145      BBState.ExitIsSetup = BBState.EntryIsSetup;
3146    }
3147
3148    // Update stack state by checking contents of MBB.
3149    for (const auto &I : *MBB) {
3150      if (I.getOpcode() == FrameSetupOpcode) {
3151        if (BBState.ExitIsSetup)
3152          report("FrameSetup is after another FrameSetup", &I);
3153        BBState.ExitValue -= TII->getFrameTotalSize(I);
3154        BBState.ExitIsSetup = true;
3155      }
3156
3157      if (I.getOpcode() == FrameDestroyOpcode) {
3158        int Size = TII->getFrameTotalSize(I);
3159        if (!BBState.ExitIsSetup)
3160          report("FrameDestroy is not after a FrameSetup", &I);
3161        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3162                                               BBState.ExitValue;
3163        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3164          report("FrameDestroy <n> is after FrameSetup <m>", &I);
3165          errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3166              << AbsSPAdj << ">.\n";
3167        }
3168        BBState.ExitValue += Size;
3169        BBState.ExitIsSetup = false;
3170      }
3171    }
3172    SPState[MBB->getNumber()] = BBState;
3173
3174    // Make sure the exit state of any predecessor is consistent with the entry
3175    // state.
3176    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3177      if (Reachable.count(Pred) &&
3178          (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3179           SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3180        report("The exit stack state of a predecessor is inconsistent.", MBB);
3181        errs() << "Predecessor " << printMBBReference(*Pred)
3182               << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3183               << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3184               << printMBBReference(*MBB) << " has entry state ("
3185               << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3186      }
3187    }
3188
3189    // Make sure the entry state of any successor is consistent with the exit
3190    // state.
3191    for (const MachineBasicBlock *Succ : MBB->successors()) {
3192      if (Reachable.count(Succ) &&
3193          (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3194           SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3195        report("The entry stack state of a successor is inconsistent.", MBB);
3196        errs() << "Successor " << printMBBReference(*Succ)
3197               << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3198               << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3199               << printMBBReference(*MBB) << " has exit state ("
3200               << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3201      }
3202    }
3203
3204    // Make sure a basic block with return ends with zero stack adjustment.
3205    if (!MBB->empty() && MBB->back().isReturn()) {
3206      if (BBState.ExitIsSetup)
3207        report("A return block ends with a FrameSetup.", MBB);
3208      if (BBState.ExitValue)
3209        report("A return block ends with a nonzero stack adjustment.", MBB);
3210    }
3211  }
3212}
3213