1//===- LiveInterval.cpp - Live Interval Representation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LiveRange and LiveInterval classes.  Given some
10// numbering of each the machine instructions an interval [i, j) is said to be a
11// live range for register v if there is no instruction with number j' >= j
12// such that v is live at j' and there is no instruction with number i' < i such
13// that v is live at i'. In this implementation ranges can have holes,
14// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15// individual segment is represented as an instance of LiveRange::Segment,
16// and the whole range is represented as an instance of LiveRange.
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/CodeGen/LiveInterval.h"
21#include "LiveRangeUtils.h"
22#include "RegisterCoalescer.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/CodeGen/LiveIntervals.h"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SlotIndexes.h"
34#include "llvm/CodeGen/TargetRegisterInfo.h"
35#include "llvm/Config/llvm-config.h"
36#include "llvm/MC/LaneBitmask.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include <algorithm>
41#include <cassert>
42#include <cstddef>
43#include <iterator>
44#include <utility>
45
46using namespace llvm;
47
48namespace {
49
50//===----------------------------------------------------------------------===//
51// Implementation of various methods necessary for calculation of live ranges.
52// The implementation of the methods abstracts from the concrete type of the
53// segment collection.
54//
55// Implementation of the class follows the Template design pattern. The base
56// class contains generic algorithms that call collection-specific methods,
57// which are provided in concrete subclasses. In order to avoid virtual calls
58// these methods are provided by means of C++ template instantiation.
59// The base class calls the methods of the subclass through method impl(),
60// which casts 'this' pointer to the type of the subclass.
61//
62//===----------------------------------------------------------------------===//
63
64template <typename ImplT, typename IteratorT, typename CollectionT>
65class CalcLiveRangeUtilBase {
66protected:
67  LiveRange *LR;
68
69protected:
70  CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
71
72public:
73  using Segment = LiveRange::Segment;
74  using iterator = IteratorT;
75
76  /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77  /// value defined at @p Def.
78  /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79  /// value will be allocated using @p VNInfoAllocator.
80  /// If @p ForVNI is null, the return value is the value defined at @p Def,
81  /// either a pre-existing one, or the one newly created.
82  /// If @p ForVNI is not null, then @p Def should be the location where
83  /// @p ForVNI is defined. If the range does not have a value defined at
84  /// @p Def, the value @p ForVNI will be used instead of allocating a new
85  /// one. If the range already has a value defined at @p Def, it must be
86  /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
87  VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
88                        VNInfo *ForVNI) {
89    assert(!Def.isDead() && "Cannot define a value at the dead slot");
90    assert((!ForVNI || ForVNI->def == Def) &&
91           "If ForVNI is specified, it must match Def");
92    iterator I = impl().find(Def);
93    if (I == segments().end()) {
94      VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
95      impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
96      return VNI;
97    }
98
99    Segment *S = segmentAt(I);
100    if (SlotIndex::isSameInstr(Def, S->start)) {
101      assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
102      assert(S->valno->def == S->start && "Inconsistent existing value def");
103
104      // It is possible to have both normal and early-clobber defs of the same
105      // register on an instruction. It doesn't make a lot of sense, but it is
106      // possible to specify in inline assembly.
107      //
108      // Just convert everything to early-clobber.
109      Def = std::min(Def, S->start);
110      if (Def != S->start)
111        S->start = S->valno->def = Def;
112      return S->valno;
113    }
114    assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
115    VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
116    segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
117    return VNI;
118  }
119
120  VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
121    if (segments().empty())
122      return nullptr;
123    iterator I =
124      impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
125    if (I == segments().begin())
126      return nullptr;
127    --I;
128    if (I->end <= StartIdx)
129      return nullptr;
130    if (I->end < Use)
131      extendSegmentEndTo(I, Use);
132    return I->valno;
133  }
134
135  std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
136      SlotIndex StartIdx, SlotIndex Use) {
137    if (segments().empty())
138      return std::make_pair(nullptr, false);
139    SlotIndex BeforeUse = Use.getPrevSlot();
140    iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
141    if (I == segments().begin())
142      return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
143    --I;
144    if (I->end <= StartIdx)
145      return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
146    if (I->end < Use) {
147      if (LR->isUndefIn(Undefs, I->end, BeforeUse))
148        return std::make_pair(nullptr, true);
149      extendSegmentEndTo(I, Use);
150    }
151    return std::make_pair(I->valno, false);
152  }
153
154  /// This method is used when we want to extend the segment specified
155  /// by I to end at the specified endpoint. To do this, we should
156  /// merge and eliminate all segments that this will overlap
157  /// with. The iterator is not invalidated.
158  void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
159    assert(I != segments().end() && "Not a valid segment!");
160    Segment *S = segmentAt(I);
161    VNInfo *ValNo = I->valno;
162
163    // Search for the first segment that we can't merge with.
164    iterator MergeTo = std::next(I);
165    for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
166      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
167
168    // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169    S->end = std::max(NewEnd, std::prev(MergeTo)->end);
170
171    // If the newly formed segment now touches the segment after it and if they
172    // have the same value number, merge the two segments into one segment.
173    if (MergeTo != segments().end() && MergeTo->start <= I->end &&
174        MergeTo->valno == ValNo) {
175      S->end = MergeTo->end;
176      ++MergeTo;
177    }
178
179    // Erase any dead segments.
180    segments().erase(std::next(I), MergeTo);
181  }
182
183  /// This method is used when we want to extend the segment specified
184  /// by I to start at the specified endpoint.  To do this, we should
185  /// merge and eliminate all segments that this will overlap with.
186  iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
187    assert(I != segments().end() && "Not a valid segment!");
188    Segment *S = segmentAt(I);
189    VNInfo *ValNo = I->valno;
190
191    // Search for the first segment that we can't merge with.
192    iterator MergeTo = I;
193    do {
194      if (MergeTo == segments().begin()) {
195        S->start = NewStart;
196        segments().erase(MergeTo, I);
197        return I;
198      }
199      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
200      --MergeTo;
201    } while (NewStart <= MergeTo->start);
202
203    // If we start in the middle of another segment, just delete a range and
204    // extend that segment.
205    if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
206      segmentAt(MergeTo)->end = S->end;
207    } else {
208      // Otherwise, extend the segment right after.
209      ++MergeTo;
210      Segment *MergeToSeg = segmentAt(MergeTo);
211      MergeToSeg->start = NewStart;
212      MergeToSeg->end = S->end;
213    }
214
215    segments().erase(std::next(MergeTo), std::next(I));
216    return MergeTo;
217  }
218
219  iterator addSegment(Segment S) {
220    SlotIndex Start = S.start, End = S.end;
221    iterator I = impl().findInsertPos(S);
222
223    // If the inserted segment starts in the middle or right at the end of
224    // another segment, just extend that segment to contain the segment of S.
225    if (I != segments().begin()) {
226      iterator B = std::prev(I);
227      if (S.valno == B->valno) {
228        if (B->start <= Start && B->end >= Start) {
229          extendSegmentEndTo(B, End);
230          return B;
231        }
232      } else {
233        // Check to make sure that we are not overlapping two live segments with
234        // different valno's.
235        assert(B->end <= Start &&
236               "Cannot overlap two segments with differing ValID's"
237               " (did you def the same reg twice in a MachineInstr?)");
238      }
239    }
240
241    // Otherwise, if this segment ends in the middle of, or right next
242    // to, another segment, merge it into that segment.
243    if (I != segments().end()) {
244      if (S.valno == I->valno) {
245        if (I->start <= End) {
246          I = extendSegmentStartTo(I, Start);
247
248          // If S is a complete superset of a segment, we may need to grow its
249          // endpoint as well.
250          if (End > I->end)
251            extendSegmentEndTo(I, End);
252          return I;
253        }
254      } else {
255        // Check to make sure that we are not overlapping two live segments with
256        // different valno's.
257        assert(I->start >= End &&
258               "Cannot overlap two segments with differing ValID's");
259      }
260    }
261
262    // Otherwise, this is just a new segment that doesn't interact with
263    // anything.
264    // Insert it.
265    return segments().insert(I, S);
266  }
267
268private:
269  ImplT &impl() { return *static_cast<ImplT *>(this); }
270
271  CollectionT &segments() { return impl().segmentsColl(); }
272
273  Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
274};
275
276//===----------------------------------------------------------------------===//
277//   Instantiation of the methods for calculation of live ranges
278//   based on a segment vector.
279//===----------------------------------------------------------------------===//
280
281class CalcLiveRangeUtilVector;
282using CalcLiveRangeUtilVectorBase =
283    CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
284                          LiveRange::Segments>;
285
286class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
287public:
288  CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
289
290private:
291  friend CalcLiveRangeUtilVectorBase;
292
293  LiveRange::Segments &segmentsColl() { return LR->segments; }
294
295  void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
296
297  iterator find(SlotIndex Pos) { return LR->find(Pos); }
298
299  iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); }
300};
301
302//===----------------------------------------------------------------------===//
303//   Instantiation of the methods for calculation of live ranges
304//   based on a segment set.
305//===----------------------------------------------------------------------===//
306
307class CalcLiveRangeUtilSet;
308using CalcLiveRangeUtilSetBase =
309    CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
310                          LiveRange::SegmentSet>;
311
312class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
313public:
314  CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
315
316private:
317  friend CalcLiveRangeUtilSetBase;
318
319  LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
320
321  void insertAtEnd(const Segment &S) {
322    LR->segmentSet->insert(LR->segmentSet->end(), S);
323  }
324
325  iterator find(SlotIndex Pos) {
326    iterator I =
327        LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
328    if (I == LR->segmentSet->begin())
329      return I;
330    iterator PrevI = std::prev(I);
331    if (Pos < (*PrevI).end)
332      return PrevI;
333    return I;
334  }
335
336  iterator findInsertPos(Segment S) {
337    iterator I = LR->segmentSet->upper_bound(S);
338    if (I != LR->segmentSet->end() && !(S.start < *I))
339      ++I;
340    return I;
341  }
342};
343
344} // end anonymous namespace
345
346//===----------------------------------------------------------------------===//
347//   LiveRange methods
348//===----------------------------------------------------------------------===//
349
350LiveRange::iterator LiveRange::find(SlotIndex Pos) {
351  // This algorithm is basically std::upper_bound.
352  // Unfortunately, std::upper_bound cannot be used with mixed types until we
353  // adopt C++0x. Many libraries can do it, but not all.
354  if (empty() || Pos >= endIndex())
355    return end();
356  iterator I = begin();
357  size_t Len = size();
358  do {
359    size_t Mid = Len >> 1;
360    if (Pos < I[Mid].end) {
361      Len = Mid;
362    } else {
363      I += Mid + 1;
364      Len -= Mid + 1;
365    }
366  } while (Len);
367  return I;
368}
369
370VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
371  // Use the segment set, if it is available.
372  if (segmentSet != nullptr)
373    return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
374  // Otherwise use the segment vector.
375  return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
376}
377
378VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
379  // Use the segment set, if it is available.
380  if (segmentSet != nullptr)
381    return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
382  // Otherwise use the segment vector.
383  return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
384}
385
386// overlaps - Return true if the intersection of the two live ranges is
387// not empty.
388//
389// An example for overlaps():
390//
391// 0: A = ...
392// 4: B = ...
393// 8: C = A + B ;; last use of A
394//
395// The live ranges should look like:
396//
397// A = [3, 11)
398// B = [7, x)
399// C = [11, y)
400//
401// A->overlaps(C) should return false since we want to be able to join
402// A and C.
403//
404bool LiveRange::overlapsFrom(const LiveRange& other,
405                             const_iterator StartPos) const {
406  assert(!empty() && "empty range");
407  const_iterator i = begin();
408  const_iterator ie = end();
409  const_iterator j = StartPos;
410  const_iterator je = other.end();
411
412  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
413         StartPos != other.end() && "Bogus start position hint!");
414
415  if (i->start < j->start) {
416    i = std::upper_bound(i, ie, j->start);
417    if (i != begin()) --i;
418  } else if (j->start < i->start) {
419    ++StartPos;
420    if (StartPos != other.end() && StartPos->start <= i->start) {
421      assert(StartPos < other.end() && i < end());
422      j = std::upper_bound(j, je, i->start);
423      if (j != other.begin()) --j;
424    }
425  } else {
426    return true;
427  }
428
429  if (j == je) return false;
430
431  while (i != ie) {
432    if (i->start > j->start) {
433      std::swap(i, j);
434      std::swap(ie, je);
435    }
436
437    if (i->end > j->start)
438      return true;
439    ++i;
440  }
441
442  return false;
443}
444
445bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
446                         const SlotIndexes &Indexes) const {
447  assert(!empty() && "empty range");
448  if (Other.empty())
449    return false;
450
451  // Use binary searches to find initial positions.
452  const_iterator I = find(Other.beginIndex());
453  const_iterator IE = end();
454  if (I == IE)
455    return false;
456  const_iterator J = Other.find(I->start);
457  const_iterator JE = Other.end();
458  if (J == JE)
459    return false;
460
461  while (true) {
462    // J has just been advanced to satisfy:
463    assert(J->end >= I->start);
464    // Check for an overlap.
465    if (J->start < I->end) {
466      // I and J are overlapping. Find the later start.
467      SlotIndex Def = std::max(I->start, J->start);
468      // Allow the overlap if Def is a coalescable copy.
469      if (Def.isBlock() ||
470          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
471        return true;
472    }
473    // Advance the iterator that ends first to check for more overlaps.
474    if (J->end > I->end) {
475      std::swap(I, J);
476      std::swap(IE, JE);
477    }
478    // Advance J until J->end >= I->start.
479    do
480      if (++J == JE)
481        return false;
482    while (J->end < I->start);
483  }
484}
485
486/// overlaps - Return true if the live range overlaps an interval specified
487/// by [Start, End).
488bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
489  assert(Start < End && "Invalid range");
490  const_iterator I = lower_bound(*this, End);
491  return I != begin() && (--I)->end > Start;
492}
493
494bool LiveRange::covers(const LiveRange &Other) const {
495  if (empty())
496    return Other.empty();
497
498  const_iterator I = begin();
499  for (const Segment &O : Other.segments) {
500    I = advanceTo(I, O.start);
501    if (I == end() || I->start > O.start)
502      return false;
503
504    // Check adjacent live segments and see if we can get behind O.end.
505    while (I->end < O.end) {
506      const_iterator Last = I;
507      // Get next segment and abort if it was not adjacent.
508      ++I;
509      if (I == end() || Last->end != I->start)
510        return false;
511    }
512  }
513  return true;
514}
515
516/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
517/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
518/// it can be nuked later.
519void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
520  if (ValNo->id == getNumValNums()-1) {
521    do {
522      valnos.pop_back();
523    } while (!valnos.empty() && valnos.back()->isUnused());
524  } else {
525    ValNo->markUnused();
526  }
527}
528
529/// RenumberValues - Renumber all values in order of appearance and delete the
530/// remaining unused values.
531void LiveRange::RenumberValues() {
532  SmallPtrSet<VNInfo*, 8> Seen;
533  valnos.clear();
534  for (const Segment &S : segments) {
535    VNInfo *VNI = S.valno;
536    if (!Seen.insert(VNI).second)
537      continue;
538    assert(!VNI->isUnused() && "Unused valno used by live segment");
539    VNI->id = (unsigned)valnos.size();
540    valnos.push_back(VNI);
541  }
542}
543
544void LiveRange::addSegmentToSet(Segment S) {
545  CalcLiveRangeUtilSet(this).addSegment(S);
546}
547
548LiveRange::iterator LiveRange::addSegment(Segment S) {
549  // Use the segment set, if it is available.
550  if (segmentSet != nullptr) {
551    addSegmentToSet(S);
552    return end();
553  }
554  // Otherwise use the segment vector.
555  return CalcLiveRangeUtilVector(this).addSegment(S);
556}
557
558void LiveRange::append(const Segment S) {
559  // Check that the segment belongs to the back of the list.
560  assert(segments.empty() || segments.back().end <= S.start);
561  segments.push_back(S);
562}
563
564std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
565    SlotIndex StartIdx, SlotIndex Kill) {
566  // Use the segment set, if it is available.
567  if (segmentSet != nullptr)
568    return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
569  // Otherwise use the segment vector.
570  return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
571}
572
573VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
574  // Use the segment set, if it is available.
575  if (segmentSet != nullptr)
576    return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
577  // Otherwise use the segment vector.
578  return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
579}
580
581/// Remove the specified segment from this range.  Note that the segment must
582/// be in a single Segment in its entirety.
583void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
584                              bool RemoveDeadValNo) {
585  // Find the Segment containing this span.
586  iterator I = find(Start);
587  assert(I != end() && "Segment is not in range!");
588  assert(I->containsInterval(Start, End)
589         && "Segment is not entirely in range!");
590
591  // If the span we are removing is at the start of the Segment, adjust it.
592  VNInfo *ValNo = I->valno;
593  if (I->start == Start) {
594    if (I->end == End) {
595      if (RemoveDeadValNo) {
596        // Check if val# is dead.
597        bool isDead = true;
598        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
599          if (II != I && II->valno == ValNo) {
600            isDead = false;
601            break;
602          }
603        if (isDead) {
604          // Now that ValNo is dead, remove it.
605          markValNoForDeletion(ValNo);
606        }
607      }
608
609      segments.erase(I);  // Removed the whole Segment.
610    } else
611      I->start = End;
612    return;
613  }
614
615  // Otherwise if the span we are removing is at the end of the Segment,
616  // adjust the other way.
617  if (I->end == End) {
618    I->end = Start;
619    return;
620  }
621
622  // Otherwise, we are splitting the Segment into two pieces.
623  SlotIndex OldEnd = I->end;
624  I->end = Start;   // Trim the old segment.
625
626  // Insert the new one.
627  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
628}
629
630/// removeValNo - Remove all the segments defined by the specified value#.
631/// Also remove the value# from value# list.
632void LiveRange::removeValNo(VNInfo *ValNo) {
633  if (empty()) return;
634  segments.erase(remove_if(*this, [ValNo](const Segment &S) {
635    return S.valno == ValNo;
636  }), end());
637  // Now that ValNo is dead, remove it.
638  markValNoForDeletion(ValNo);
639}
640
641void LiveRange::join(LiveRange &Other,
642                     const int *LHSValNoAssignments,
643                     const int *RHSValNoAssignments,
644                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
645  verify();
646
647  // Determine if any of our values are mapped.  This is uncommon, so we want
648  // to avoid the range scan if not.
649  bool MustMapCurValNos = false;
650  unsigned NumVals = getNumValNums();
651  unsigned NumNewVals = NewVNInfo.size();
652  for (unsigned i = 0; i != NumVals; ++i) {
653    unsigned LHSValID = LHSValNoAssignments[i];
654    if (i != LHSValID ||
655        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
656      MustMapCurValNos = true;
657      break;
658    }
659  }
660
661  // If we have to apply a mapping to our base range assignment, rewrite it now.
662  if (MustMapCurValNos && !empty()) {
663    // Map the first live range.
664
665    iterator OutIt = begin();
666    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
667    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
668      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
669      assert(nextValNo && "Huh?");
670
671      // If this live range has the same value # as its immediate predecessor,
672      // and if they are neighbors, remove one Segment.  This happens when we
673      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
674      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
675        OutIt->end = I->end;
676      } else {
677        // Didn't merge. Move OutIt to the next segment,
678        ++OutIt;
679        OutIt->valno = nextValNo;
680        if (OutIt != I) {
681          OutIt->start = I->start;
682          OutIt->end = I->end;
683        }
684      }
685    }
686    // If we merge some segments, chop off the end.
687    ++OutIt;
688    segments.erase(OutIt, end());
689  }
690
691  // Rewrite Other values before changing the VNInfo ids.
692  // This can leave Other in an invalid state because we're not coalescing
693  // touching segments that now have identical values. That's OK since Other is
694  // not supposed to be valid after calling join();
695  for (Segment &S : Other.segments)
696    S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
697
698  // Update val# info. Renumber them and make sure they all belong to this
699  // LiveRange now. Also remove dead val#'s.
700  unsigned NumValNos = 0;
701  for (unsigned i = 0; i < NumNewVals; ++i) {
702    VNInfo *VNI = NewVNInfo[i];
703    if (VNI) {
704      if (NumValNos >= NumVals)
705        valnos.push_back(VNI);
706      else
707        valnos[NumValNos] = VNI;
708      VNI->id = NumValNos++;  // Renumber val#.
709    }
710  }
711  if (NumNewVals < NumVals)
712    valnos.resize(NumNewVals);  // shrinkify
713
714  // Okay, now insert the RHS live segments into the LHS.
715  LiveRangeUpdater Updater(this);
716  for (Segment &S : Other.segments)
717    Updater.add(S);
718}
719
720/// Merge all of the segments in RHS into this live range as the specified
721/// value number.  The segments in RHS are allowed to overlap with segments in
722/// the current range, but only if the overlapping segments have the
723/// specified value number.
724void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
725                                       VNInfo *LHSValNo) {
726  LiveRangeUpdater Updater(this);
727  for (const Segment &S : RHS.segments)
728    Updater.add(S.start, S.end, LHSValNo);
729}
730
731/// MergeValueInAsValue - Merge all of the live segments of a specific val#
732/// in RHS into this live range as the specified value number.
733/// The segments in RHS are allowed to overlap with segments in the
734/// current range, it will replace the value numbers of the overlaped
735/// segments with the specified value number.
736void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
737                                    const VNInfo *RHSValNo,
738                                    VNInfo *LHSValNo) {
739  LiveRangeUpdater Updater(this);
740  for (const Segment &S : RHS.segments)
741    if (S.valno == RHSValNo)
742      Updater.add(S.start, S.end, LHSValNo);
743}
744
745/// MergeValueNumberInto - This method is called when two value nubmers
746/// are found to be equivalent.  This eliminates V1, replacing all
747/// segments with the V1 value number with the V2 value number.  This can
748/// cause merging of V1/V2 values numbers and compaction of the value space.
749VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
750  assert(V1 != V2 && "Identical value#'s are always equivalent!");
751
752  // This code actually merges the (numerically) larger value number into the
753  // smaller value number, which is likely to allow us to compactify the value
754  // space.  The only thing we have to be careful of is to preserve the
755  // instruction that defines the result value.
756
757  // Make sure V2 is smaller than V1.
758  if (V1->id < V2->id) {
759    V1->copyFrom(*V2);
760    std::swap(V1, V2);
761  }
762
763  // Merge V1 segments into V2.
764  for (iterator I = begin(); I != end(); ) {
765    iterator S = I++;
766    if (S->valno != V1) continue;  // Not a V1 Segment.
767
768    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
769    // range, extend it.
770    if (S != begin()) {
771      iterator Prev = S-1;
772      if (Prev->valno == V2 && Prev->end == S->start) {
773        Prev->end = S->end;
774
775        // Erase this live-range.
776        segments.erase(S);
777        I = Prev+1;
778        S = Prev;
779      }
780    }
781
782    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
783    // Ensure that it is a V2 live-range.
784    S->valno = V2;
785
786    // If we can merge it into later V2 segments, do so now.  We ignore any
787    // following V1 segments, as they will be merged in subsequent iterations
788    // of the loop.
789    if (I != end()) {
790      if (I->start == S->end && I->valno == V2) {
791        S->end = I->end;
792        segments.erase(I);
793        I = S+1;
794      }
795    }
796  }
797
798  // Now that V1 is dead, remove it.
799  markValNoForDeletion(V1);
800
801  return V2;
802}
803
804void LiveRange::flushSegmentSet() {
805  assert(segmentSet != nullptr && "segment set must have been created");
806  assert(
807      segments.empty() &&
808      "segment set can be used only initially before switching to the array");
809  segments.append(segmentSet->begin(), segmentSet->end());
810  segmentSet = nullptr;
811  verify();
812}
813
814bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
815  ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
816  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
817
818  // If there are no regmask slots, we have nothing to search.
819  if (SlotI == SlotE)
820    return false;
821
822  // Start our search at the first segment that ends after the first slot.
823  const_iterator SegmentI = find(*SlotI);
824  const_iterator SegmentE = end();
825
826  // If there are no segments that end after the first slot, we're done.
827  if (SegmentI == SegmentE)
828    return false;
829
830  // Look for each slot in the live range.
831  for ( ; SlotI != SlotE; ++SlotI) {
832    // Go to the next segment that ends after the current slot.
833    // The slot may be within a hole in the range.
834    SegmentI = advanceTo(SegmentI, *SlotI);
835    if (SegmentI == SegmentE)
836      return false;
837
838    // If this segment contains the slot, we're done.
839    if (SegmentI->contains(*SlotI))
840      return true;
841    // Otherwise, look for the next slot.
842  }
843
844  // We didn't find a segment containing any of the slots.
845  return false;
846}
847
848void LiveInterval::freeSubRange(SubRange *S) {
849  S->~SubRange();
850  // Memory was allocated with BumpPtr allocator and is not freed here.
851}
852
853void LiveInterval::removeEmptySubRanges() {
854  SubRange **NextPtr = &SubRanges;
855  SubRange *I = *NextPtr;
856  while (I != nullptr) {
857    if (!I->empty()) {
858      NextPtr = &I->Next;
859      I = *NextPtr;
860      continue;
861    }
862    // Skip empty subranges until we find the first nonempty one.
863    do {
864      SubRange *Next = I->Next;
865      freeSubRange(I);
866      I = Next;
867    } while (I != nullptr && I->empty());
868    *NextPtr = I;
869  }
870}
871
872void LiveInterval::clearSubRanges() {
873  for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
874    Next = I->Next;
875    freeSubRange(I);
876  }
877  SubRanges = nullptr;
878}
879
880/// For each VNI in \p SR, check whether or not that value defines part
881/// of the mask describe by \p LaneMask and if not, remove that value
882/// from \p SR.
883static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
884                                       LaneBitmask LaneMask,
885                                       const SlotIndexes &Indexes,
886                                       const TargetRegisterInfo &TRI,
887                                       unsigned ComposeSubRegIdx) {
888  // Phys reg should not be tracked at subreg level.
889  // Same for noreg (Reg == 0).
890  if (!Register::isVirtualRegister(Reg) || !Reg)
891    return;
892  // Remove the values that don't define those lanes.
893  SmallVector<VNInfo *, 8> ToBeRemoved;
894  for (VNInfo *VNI : SR.valnos) {
895    if (VNI->isUnused())
896      continue;
897    // PHI definitions don't have MI attached, so there is nothing
898    // we can use to strip the VNI.
899    if (VNI->isPHIDef())
900      continue;
901    const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
902    assert(MI && "Cannot find the definition of a value");
903    bool hasDef = false;
904    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
905      if (!MOI->isReg() || !MOI->isDef())
906        continue;
907      if (MOI->getReg() != Reg)
908        continue;
909      LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg());
910      LaneBitmask ExpectedDefMask =
911          ComposeSubRegIdx
912              ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask)
913              : OrigMask;
914      if ((ExpectedDefMask & LaneMask).none())
915        continue;
916      hasDef = true;
917      break;
918    }
919
920    if (!hasDef)
921      ToBeRemoved.push_back(VNI);
922  }
923  for (VNInfo *VNI : ToBeRemoved)
924    SR.removeValNo(VNI);
925
926  // If the subrange is empty at this point, the MIR is invalid. Do not assert
927  // and let the verifier catch this case.
928}
929
930void LiveInterval::refineSubRanges(
931    BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
932    std::function<void(LiveInterval::SubRange &)> Apply,
933    const SlotIndexes &Indexes, const TargetRegisterInfo &TRI,
934    unsigned ComposeSubRegIdx) {
935  LaneBitmask ToApply = LaneMask;
936  for (SubRange &SR : subranges()) {
937    LaneBitmask SRMask = SR.LaneMask;
938    LaneBitmask Matching = SRMask & LaneMask;
939    if (Matching.none())
940      continue;
941
942    SubRange *MatchingRange;
943    if (SRMask == Matching) {
944      // The subrange fits (it does not cover bits outside \p LaneMask).
945      MatchingRange = &SR;
946    } else {
947      // We have to split the subrange into a matching and non-matching part.
948      // Reduce lanemask of existing lane to non-matching part.
949      SR.LaneMask = SRMask & ~Matching;
950      // Create a new subrange for the matching part
951      MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
952      // Now that the subrange is split in half, make sure we
953      // only keep in the subranges the VNIs that touch the related half.
954      stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI,
955                                 ComposeSubRegIdx);
956      stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI,
957                                 ComposeSubRegIdx);
958    }
959    Apply(*MatchingRange);
960    ToApply &= ~Matching;
961  }
962  // Create a new subrange if there are uncovered bits left.
963  if (ToApply.any()) {
964    SubRange *NewRange = createSubRange(Allocator, ToApply);
965    Apply(*NewRange);
966  }
967}
968
969unsigned LiveInterval::getSize() const {
970  unsigned Sum = 0;
971  for (const Segment &S : segments)
972    Sum += S.start.distance(S.end);
973  return Sum;
974}
975
976void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
977                                         LaneBitmask LaneMask,
978                                         const MachineRegisterInfo &MRI,
979                                         const SlotIndexes &Indexes) const {
980  assert(Register::isVirtualRegister(reg()));
981  LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg());
982  assert((VRegMask & LaneMask).any());
983  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
984  for (const MachineOperand &MO : MRI.def_operands(reg())) {
985    if (!MO.isUndef())
986      continue;
987    unsigned SubReg = MO.getSubReg();
988    assert(SubReg != 0 && "Undef should only be set on subreg defs");
989    LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
990    LaneBitmask UndefMask = VRegMask & ~DefMask;
991    if ((UndefMask & LaneMask).any()) {
992      const MachineInstr &MI = *MO.getParent();
993      bool EarlyClobber = MO.isEarlyClobber();
994      SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
995      Undefs.push_back(Pos);
996    }
997  }
998}
999
1000raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
1001  return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
1002}
1003
1004#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1005LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
1006  dbgs() << *this << '\n';
1007}
1008#endif
1009
1010void LiveRange::print(raw_ostream &OS) const {
1011  if (empty())
1012    OS << "EMPTY";
1013  else {
1014    for (const Segment &S : segments) {
1015      OS << S;
1016      assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1017    }
1018  }
1019
1020  // Print value number info.
1021  if (getNumValNums()) {
1022    OS << "  ";
1023    unsigned vnum = 0;
1024    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1025         ++i, ++vnum) {
1026      const VNInfo *vni = *i;
1027      if (vnum) OS << ' ';
1028      OS << vnum << '@';
1029      if (vni->isUnused()) {
1030        OS << 'x';
1031      } else {
1032        OS << vni->def;
1033        if (vni->isPHIDef())
1034          OS << "-phi";
1035      }
1036    }
1037  }
1038}
1039
1040void LiveInterval::SubRange::print(raw_ostream &OS) const {
1041  OS << " L" << PrintLaneMask(LaneMask) << ' '
1042     << static_cast<const LiveRange&>(*this);
1043}
1044
1045void LiveInterval::print(raw_ostream &OS) const {
1046  OS << printReg(reg()) << ' ';
1047  super::print(OS);
1048  // Print subranges
1049  for (const SubRange &SR : subranges())
1050    OS << SR;
1051  OS << " weight:" << Weight;
1052}
1053
1054#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1055LLVM_DUMP_METHOD void LiveRange::dump() const {
1056  dbgs() << *this << '\n';
1057}
1058
1059LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1060  dbgs() << *this << '\n';
1061}
1062
1063LLVM_DUMP_METHOD void LiveInterval::dump() const {
1064  dbgs() << *this << '\n';
1065}
1066#endif
1067
1068#ifndef NDEBUG
1069void LiveRange::verify() const {
1070  for (const_iterator I = begin(), E = end(); I != E; ++I) {
1071    assert(I->start.isValid());
1072    assert(I->end.isValid());
1073    assert(I->start < I->end);
1074    assert(I->valno != nullptr);
1075    assert(I->valno->id < valnos.size());
1076    assert(I->valno == valnos[I->valno->id]);
1077    if (std::next(I) != E) {
1078      assert(I->end <= std::next(I)->start);
1079      if (I->end == std::next(I)->start)
1080        assert(I->valno != std::next(I)->valno);
1081    }
1082  }
1083}
1084
1085void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1086  super::verify();
1087
1088  // Make sure SubRanges are fine and LaneMasks are disjunct.
1089  LaneBitmask Mask;
1090  LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg())
1091                                       : LaneBitmask::getAll();
1092  for (const SubRange &SR : subranges()) {
1093    // Subrange lanemask should be disjunct to any previous subrange masks.
1094    assert((Mask & SR.LaneMask).none());
1095    Mask |= SR.LaneMask;
1096
1097    // subrange mask should not contained in maximum lane mask for the vreg.
1098    assert((Mask & ~MaxMask).none());
1099    // empty subranges must be removed.
1100    assert(!SR.empty());
1101
1102    SR.verify();
1103    // Main liverange should cover subrange.
1104    assert(covers(SR));
1105  }
1106}
1107#endif
1108
1109//===----------------------------------------------------------------------===//
1110//                           LiveRangeUpdater class
1111//===----------------------------------------------------------------------===//
1112//
1113// The LiveRangeUpdater class always maintains these invariants:
1114//
1115// - When LastStart is invalid, Spills is empty and the iterators are invalid.
1116//   This is the initial state, and the state created by flush().
1117//   In this state, isDirty() returns false.
1118//
1119// Otherwise, segments are kept in three separate areas:
1120//
1121// 1. [begin; WriteI) at the front of LR.
1122// 2. [ReadI; end) at the back of LR.
1123// 3. Spills.
1124//
1125// - LR.begin() <= WriteI <= ReadI <= LR.end().
1126// - Segments in all three areas are fully ordered and coalesced.
1127// - Segments in area 1 precede and can't coalesce with segments in area 2.
1128// - Segments in Spills precede and can't coalesce with segments in area 2.
1129// - No coalescing is possible between segments in Spills and segments in area
1130//   1, and there are no overlapping segments.
1131//
1132// The segments in Spills are not ordered with respect to the segments in area
1133// 1. They need to be merged.
1134//
1135// When they exist, Spills.back().start <= LastStart,
1136//                 and WriteI[-1].start <= LastStart.
1137
1138#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1139void LiveRangeUpdater::print(raw_ostream &OS) const {
1140  if (!isDirty()) {
1141    if (LR)
1142      OS << "Clean updater: " << *LR << '\n';
1143    else
1144      OS << "Null updater.\n";
1145    return;
1146  }
1147  assert(LR && "Can't have null LR in dirty updater.");
1148  OS << " updater with gap = " << (ReadI - WriteI)
1149     << ", last start = " << LastStart
1150     << ":\n  Area 1:";
1151  for (const auto &S : make_range(LR->begin(), WriteI))
1152    OS << ' ' << S;
1153  OS << "\n  Spills:";
1154  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1155    OS << ' ' << Spills[I];
1156  OS << "\n  Area 2:";
1157  for (const auto &S : make_range(ReadI, LR->end()))
1158    OS << ' ' << S;
1159  OS << '\n';
1160}
1161
1162LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1163  print(errs());
1164}
1165#endif
1166
1167// Determine if A and B should be coalesced.
1168static inline bool coalescable(const LiveRange::Segment &A,
1169                               const LiveRange::Segment &B) {
1170  assert(A.start <= B.start && "Unordered live segments.");
1171  if (A.end == B.start)
1172    return A.valno == B.valno;
1173  if (A.end < B.start)
1174    return false;
1175  assert(A.valno == B.valno && "Cannot overlap different values");
1176  return true;
1177}
1178
1179void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1180  assert(LR && "Cannot add to a null destination");
1181
1182  // Fall back to the regular add method if the live range
1183  // is using the segment set instead of the segment vector.
1184  if (LR->segmentSet != nullptr) {
1185    LR->addSegmentToSet(Seg);
1186    return;
1187  }
1188
1189  // Flush the state if Start moves backwards.
1190  if (!LastStart.isValid() || LastStart > Seg.start) {
1191    if (isDirty())
1192      flush();
1193    // This brings us to an uninitialized state. Reinitialize.
1194    assert(Spills.empty() && "Leftover spilled segments");
1195    WriteI = ReadI = LR->begin();
1196  }
1197
1198  // Remember start for next time.
1199  LastStart = Seg.start;
1200
1201  // Advance ReadI until it ends after Seg.start.
1202  LiveRange::iterator E = LR->end();
1203  if (ReadI != E && ReadI->end <= Seg.start) {
1204    // First try to close the gap between WriteI and ReadI with spills.
1205    if (ReadI != WriteI)
1206      mergeSpills();
1207    // Then advance ReadI.
1208    if (ReadI == WriteI)
1209      ReadI = WriteI = LR->find(Seg.start);
1210    else
1211      while (ReadI != E && ReadI->end <= Seg.start)
1212        *WriteI++ = *ReadI++;
1213  }
1214
1215  assert(ReadI == E || ReadI->end > Seg.start);
1216
1217  // Check if the ReadI segment begins early.
1218  if (ReadI != E && ReadI->start <= Seg.start) {
1219    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1220    // Bail if Seg is completely contained in ReadI.
1221    if (ReadI->end >= Seg.end)
1222      return;
1223    // Coalesce into Seg.
1224    Seg.start = ReadI->start;
1225    ++ReadI;
1226  }
1227
1228  // Coalesce as much as possible from ReadI into Seg.
1229  while (ReadI != E && coalescable(Seg, *ReadI)) {
1230    Seg.end = std::max(Seg.end, ReadI->end);
1231    ++ReadI;
1232  }
1233
1234  // Try coalescing Spills.back() into Seg.
1235  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1236    Seg.start = Spills.back().start;
1237    Seg.end = std::max(Spills.back().end, Seg.end);
1238    Spills.pop_back();
1239  }
1240
1241  // Try coalescing Seg into WriteI[-1].
1242  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1243    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1244    return;
1245  }
1246
1247  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1248  if (WriteI != ReadI) {
1249    *WriteI++ = Seg;
1250    return;
1251  }
1252
1253  // Finally, append to LR or Spills.
1254  if (WriteI == E) {
1255    LR->segments.push_back(Seg);
1256    WriteI = ReadI = LR->end();
1257  } else
1258    Spills.push_back(Seg);
1259}
1260
1261// Merge as many spilled segments as possible into the gap between WriteI
1262// and ReadI. Advance WriteI to reflect the inserted instructions.
1263void LiveRangeUpdater::mergeSpills() {
1264  // Perform a backwards merge of Spills and [SpillI;WriteI).
1265  size_t GapSize = ReadI - WriteI;
1266  size_t NumMoved = std::min(Spills.size(), GapSize);
1267  LiveRange::iterator Src = WriteI;
1268  LiveRange::iterator Dst = Src + NumMoved;
1269  LiveRange::iterator SpillSrc = Spills.end();
1270  LiveRange::iterator B = LR->begin();
1271
1272  // This is the new WriteI position after merging spills.
1273  WriteI = Dst;
1274
1275  // Now merge Src and Spills backwards.
1276  while (Src != Dst) {
1277    if (Src != B && Src[-1].start > SpillSrc[-1].start)
1278      *--Dst = *--Src;
1279    else
1280      *--Dst = *--SpillSrc;
1281  }
1282  assert(NumMoved == size_t(Spills.end() - SpillSrc));
1283  Spills.erase(SpillSrc, Spills.end());
1284}
1285
1286void LiveRangeUpdater::flush() {
1287  if (!isDirty())
1288    return;
1289  // Clear the dirty state.
1290  LastStart = SlotIndex();
1291
1292  assert(LR && "Cannot add to a null destination");
1293
1294  // Nothing to merge?
1295  if (Spills.empty()) {
1296    LR->segments.erase(WriteI, ReadI);
1297    LR->verify();
1298    return;
1299  }
1300
1301  // Resize the WriteI - ReadI gap to match Spills.
1302  size_t GapSize = ReadI - WriteI;
1303  if (GapSize < Spills.size()) {
1304    // The gap is too small. Make some room.
1305    size_t WritePos = WriteI - LR->begin();
1306    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1307    // This also invalidated ReadI, but it is recomputed below.
1308    WriteI = LR->begin() + WritePos;
1309  } else {
1310    // Shrink the gap if necessary.
1311    LR->segments.erase(WriteI + Spills.size(), ReadI);
1312  }
1313  ReadI = WriteI + Spills.size();
1314  mergeSpills();
1315  LR->verify();
1316}
1317
1318unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1319  // Create initial equivalence classes.
1320  EqClass.clear();
1321  EqClass.grow(LR.getNumValNums());
1322
1323  const VNInfo *used = nullptr, *unused = nullptr;
1324
1325  // Determine connections.
1326  for (const VNInfo *VNI : LR.valnos) {
1327    // Group all unused values into one class.
1328    if (VNI->isUnused()) {
1329      if (unused)
1330        EqClass.join(unused->id, VNI->id);
1331      unused = VNI;
1332      continue;
1333    }
1334    used = VNI;
1335    if (VNI->isPHIDef()) {
1336      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1337      assert(MBB && "Phi-def has no defining MBB");
1338      // Connect to values live out of predecessors.
1339      for (MachineBasicBlock *Pred : MBB->predecessors())
1340        if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred)))
1341          EqClass.join(VNI->id, PVNI->id);
1342    } else {
1343      // Normal value defined by an instruction. Check for two-addr redef.
1344      // FIXME: This could be coincidental. Should we really check for a tied
1345      // operand constraint?
1346      // Note that VNI->def may be a use slot for an early clobber def.
1347      if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1348        EqClass.join(VNI->id, UVNI->id);
1349    }
1350  }
1351
1352  // Lump all the unused values in with the last used value.
1353  if (used && unused)
1354    EqClass.join(used->id, unused->id);
1355
1356  EqClass.compress();
1357  return EqClass.getNumClasses();
1358}
1359
1360void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1361                                          MachineRegisterInfo &MRI) {
1362  // Rewrite instructions.
1363  for (MachineOperand &MO :
1364       llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) {
1365    MachineInstr *MI = MO.getParent();
1366    const VNInfo *VNI;
1367    if (MI->isDebugValue()) {
1368      // DBG_VALUE instructions don't have slot indexes, so get the index of
1369      // the instruction before them. The value is defined there too.
1370      SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1371      VNI = LI.Query(Idx).valueOut();
1372    } else {
1373      SlotIndex Idx = LIS.getInstructionIndex(*MI);
1374      LiveQueryResult LRQ = LI.Query(Idx);
1375      VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1376    }
1377    // In the case of an <undef> use that isn't tied to any def, VNI will be
1378    // NULL. If the use is tied to a def, VNI will be the defined value.
1379    if (!VNI)
1380      continue;
1381    if (unsigned EqClass = getEqClass(VNI))
1382      MO.setReg(LIV[EqClass - 1]->reg());
1383  }
1384
1385  // Distribute subregister liveranges.
1386  if (LI.hasSubRanges()) {
1387    unsigned NumComponents = EqClass.getNumClasses();
1388    SmallVector<unsigned, 8> VNIMapping;
1389    SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1390    BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1391    for (LiveInterval::SubRange &SR : LI.subranges()) {
1392      // Create new subranges in the split intervals and construct a mapping
1393      // for the VNInfos in the subrange.
1394      unsigned NumValNos = SR.valnos.size();
1395      VNIMapping.clear();
1396      VNIMapping.reserve(NumValNos);
1397      SubRanges.clear();
1398      SubRanges.resize(NumComponents-1, nullptr);
1399      for (unsigned I = 0; I < NumValNos; ++I) {
1400        const VNInfo &VNI = *SR.valnos[I];
1401        unsigned ComponentNum;
1402        if (VNI.isUnused()) {
1403          ComponentNum = 0;
1404        } else {
1405          const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1406          assert(MainRangeVNI != nullptr
1407                 && "SubRange def must have corresponding main range def");
1408          ComponentNum = getEqClass(MainRangeVNI);
1409          if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1410            SubRanges[ComponentNum-1]
1411              = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1412          }
1413        }
1414        VNIMapping.push_back(ComponentNum);
1415      }
1416      DistributeRange(SR, SubRanges.data(), VNIMapping);
1417    }
1418    LI.removeEmptySubRanges();
1419  }
1420
1421  // Distribute main liverange.
1422  DistributeRange(LI, LIV, EqClass);
1423}
1424