LegalizerInfo.cpp revision 1.1.1.1
1//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implement an interface to specify and query how an illegal operation on a
10// given type should be expanded.
11//
12// Issues to be resolved:
13//   + Make it fast.
14//   + Support weird types like i3, <7 x i3>, ...
15//   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20#include "llvm/ADT/SmallBitVector.h"
21#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/TargetOpcodes.h"
26#include "llvm/MC/MCInstrDesc.h"
27#include "llvm/MC/MCInstrInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/LowLevelTypeImpl.h"
31#include "llvm/Support/MathExtras.h"
32#include <algorithm>
33#include <map>
34
35using namespace llvm;
36using namespace LegalizeActions;
37
38#define DEBUG_TYPE "legalizer-info"
39
40cl::opt<bool> llvm::DisableGISelLegalityCheck(
41    "disable-gisel-legality-check",
42    cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43    cl::Hidden);
44
45raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46  switch (Action) {
47  case Legal:
48    OS << "Legal";
49    break;
50  case NarrowScalar:
51    OS << "NarrowScalar";
52    break;
53  case WidenScalar:
54    OS << "WidenScalar";
55    break;
56  case FewerElements:
57    OS << "FewerElements";
58    break;
59  case MoreElements:
60    OS << "MoreElements";
61    break;
62  case Lower:
63    OS << "Lower";
64    break;
65  case Libcall:
66    OS << "Libcall";
67    break;
68  case Custom:
69    OS << "Custom";
70    break;
71  case Unsupported:
72    OS << "Unsupported";
73    break;
74  case NotFound:
75    OS << "NotFound";
76    break;
77  case UseLegacyRules:
78    OS << "UseLegacyRules";
79    break;
80  }
81  return OS;
82}
83
84raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85  OS << Opcode << ", Tys={";
86  for (const auto &Type : Types) {
87    OS << Type << ", ";
88  }
89  OS << "}, Opcode=";
90
91  OS << Opcode << ", MMOs={";
92  for (const auto &MMODescr : MMODescrs) {
93    OS << MMODescr.SizeInBits << ", ";
94  }
95  OS << "}";
96
97  return OS;
98}
99
100#ifndef NDEBUG
101// Make sure the rule won't (trivially) loop forever.
102static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103                             const std::pair<unsigned, LLT> &Mutation) {
104  switch (Rule.getAction()) {
105  case Custom:
106  case Lower:
107  case MoreElements:
108  case FewerElements:
109    break;
110  default:
111    return Q.Types[Mutation.first] != Mutation.second;
112  }
113  return true;
114}
115
116// Make sure the returned mutation makes sense for the match type.
117static bool mutationIsSane(const LegalizeRule &Rule,
118                           const LegalityQuery &Q,
119                           std::pair<unsigned, LLT> Mutation) {
120  // If the user wants a custom mutation, then we can't really say much about
121  // it. Return true, and trust that they're doing the right thing.
122  if (Rule.getAction() == Custom)
123    return true;
124
125  const unsigned TypeIdx = Mutation.first;
126  const LLT OldTy = Q.Types[TypeIdx];
127  const LLT NewTy = Mutation.second;
128
129  switch (Rule.getAction()) {
130  case FewerElements:
131  case MoreElements: {
132    if (!OldTy.isVector())
133      return false;
134
135    if (NewTy.isVector()) {
136      if (Rule.getAction() == FewerElements) {
137        // Make sure the element count really decreased.
138        if (NewTy.getNumElements() >= OldTy.getNumElements())
139          return false;
140      } else {
141        // Make sure the element count really increased.
142        if (NewTy.getNumElements() <= OldTy.getNumElements())
143          return false;
144      }
145    }
146
147    // Make sure the element type didn't change.
148    return NewTy.getScalarType() == OldTy.getElementType();
149  }
150  case NarrowScalar:
151  case WidenScalar: {
152    if (OldTy.isVector()) {
153      // Number of elements should not change.
154      if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
155        return false;
156    } else {
157      // Both types must be vectors
158      if (NewTy.isVector())
159        return false;
160    }
161
162    if (Rule.getAction() == NarrowScalar)  {
163      // Make sure the size really decreased.
164      if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
165        return false;
166    } else {
167      // Make sure the size really increased.
168      if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
169        return false;
170    }
171
172    return true;
173  }
174  default:
175    return true;
176  }
177}
178#endif
179
180LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
181  LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
182             dbgs() << "\n");
183  if (Rules.empty()) {
184    LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
185    return {LegalizeAction::UseLegacyRules, 0, LLT{}};
186  }
187  for (const LegalizeRule &Rule : Rules) {
188    if (Rule.match(Query)) {
189      LLVM_DEBUG(dbgs() << ".. match\n");
190      std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
191      LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
192                        << Mutation.first << ", " << Mutation.second << "\n");
193      assert(mutationIsSane(Rule, Query, Mutation) &&
194             "legality mutation invalid for match");
195      assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
196      return {Rule.getAction(), Mutation.first, Mutation.second};
197    } else
198      LLVM_DEBUG(dbgs() << ".. no match\n");
199  }
200  LLVM_DEBUG(dbgs() << ".. unsupported\n");
201  return {LegalizeAction::Unsupported, 0, LLT{}};
202}
203
204bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
205#ifndef NDEBUG
206  if (Rules.empty()) {
207    LLVM_DEBUG(
208        dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
209    return true;
210  }
211  const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
212  if (FirstUncovered < 0) {
213    LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
214                         " user-defined predicate detected\n");
215    return true;
216  }
217  const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
218  if (NumTypeIdxs > 0)
219    LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
220                      << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
221  return AllCovered;
222#else
223  return true;
224#endif
225}
226
227bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
228#ifndef NDEBUG
229  if (Rules.empty()) {
230    LLVM_DEBUG(
231        dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
232    return true;
233  }
234  const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
235  if (FirstUncovered < 0) {
236    LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
237                         " user-defined predicate detected\n");
238    return true;
239  }
240  const bool AllCovered = (FirstUncovered >= NumImmIdxs);
241  LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
242                    << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
243  return AllCovered;
244#else
245  return true;
246#endif
247}
248
249LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
250  // Set defaults.
251  // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
252  // fundamental load/store Jakob proposed. Once loads & stores are supported.
253  setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
254  setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
255  setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
256  setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
257  setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
258
259  setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
260  setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
261
262  setLegalizeScalarToDifferentSizeStrategy(
263      TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
264  setLegalizeScalarToDifferentSizeStrategy(
265      TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
266  setLegalizeScalarToDifferentSizeStrategy(
267      TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
268  setLegalizeScalarToDifferentSizeStrategy(
269      TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
270  setLegalizeScalarToDifferentSizeStrategy(
271      TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
272
273  setLegalizeScalarToDifferentSizeStrategy(
274      TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
275  setLegalizeScalarToDifferentSizeStrategy(
276      TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
277  setLegalizeScalarToDifferentSizeStrategy(
278      TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
279  setLegalizeScalarToDifferentSizeStrategy(
280      TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
281  setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
282}
283
284void LegalizerInfo::computeTables() {
285  assert(TablesInitialized == false);
286
287  for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
288    const unsigned Opcode = FirstOp + OpcodeIdx;
289    for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
290         ++TypeIdx) {
291      // 0. Collect information specified through the setAction API, i.e.
292      // for specific bit sizes.
293      // For scalar types:
294      SizeAndActionsVec ScalarSpecifiedActions;
295      // For pointer types:
296      std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
297      // For vector types:
298      std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
299      for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
300        const LLT Type = LLT2Action.first;
301        const LegalizeAction Action = LLT2Action.second;
302
303        auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
304        if (Type.isPointer())
305          AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
306              SizeAction);
307        else if (Type.isVector())
308          ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
309              .push_back(SizeAction);
310        else
311          ScalarSpecifiedActions.push_back(SizeAction);
312      }
313
314      // 1. Handle scalar types
315      {
316        // Decide how to handle bit sizes for which no explicit specification
317        // was given.
318        SizeChangeStrategy S = &unsupportedForDifferentSizes;
319        if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
320            ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
321          S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
322        llvm::sort(ScalarSpecifiedActions);
323        checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
324        setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
325      }
326
327      // 2. Handle pointer types
328      for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
329        llvm::sort(PointerSpecifiedActions.second);
330        checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
331        // For pointer types, we assume that there isn't a meaningfull way
332        // to change the number of bits used in the pointer.
333        setPointerAction(
334            Opcode, TypeIdx, PointerSpecifiedActions.first,
335            unsupportedForDifferentSizes(PointerSpecifiedActions.second));
336      }
337
338      // 3. Handle vector types
339      SizeAndActionsVec ElementSizesSeen;
340      for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
341        llvm::sort(VectorSpecifiedActions.second);
342        const uint16_t ElementSize = VectorSpecifiedActions.first;
343        ElementSizesSeen.push_back({ElementSize, Legal});
344        checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
345        // For vector types, we assume that the best way to adapt the number
346        // of elements is to the next larger number of elements type for which
347        // the vector type is legal, unless there is no such type. In that case,
348        // legalize towards a vector type with a smaller number of elements.
349        SizeAndActionsVec NumElementsActions;
350        for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
351          assert(BitsizeAndAction.first % ElementSize == 0);
352          const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
353          NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
354        }
355        setVectorNumElementAction(
356            Opcode, TypeIdx, ElementSize,
357            moreToWiderTypesAndLessToWidest(NumElementsActions));
358      }
359      llvm::sort(ElementSizesSeen);
360      SizeChangeStrategy VectorElementSizeChangeStrategy =
361          &unsupportedForDifferentSizes;
362      if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
363          VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
364        VectorElementSizeChangeStrategy =
365            VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
366      setScalarInVectorAction(
367          Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
368    }
369  }
370
371  TablesInitialized = true;
372}
373
374// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
375// probably going to need specialized lookup structures for various types before
376// we have any hope of doing well with something like <13 x i3>. Even the common
377// cases should do better than what we have now.
378std::pair<LegalizeAction, LLT>
379LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
380  assert(TablesInitialized && "backend forgot to call computeTables");
381  // These *have* to be implemented for now, they're the fundamental basis of
382  // how everything else is transformed.
383  if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
384    return findScalarLegalAction(Aspect);
385  assert(Aspect.Type.isVector());
386  return findVectorLegalAction(Aspect);
387}
388
389/// Helper function to get LLT for the given type index.
390static LLT getTypeFromTypeIdx(const MachineInstr &MI,
391                              const MachineRegisterInfo &MRI, unsigned OpIdx,
392                              unsigned TypeIdx) {
393  assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
394  // G_UNMERGE_VALUES has variable number of operands, but there is only
395  // one source type and one destination type as all destinations must be the
396  // same type. So, get the last operand if TypeIdx == 1.
397  if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
398    return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
399  return MRI.getType(MI.getOperand(OpIdx).getReg());
400}
401
402unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
403  assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
404  return Opcode - FirstOp;
405}
406
407unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
408  unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
409  if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
410    LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
411                      << "\n");
412    OpcodeIdx = getOpcodeIdxForOpcode(Alias);
413    assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
414  }
415
416  return OpcodeIdx;
417}
418
419const LegalizeRuleSet &
420LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
421  unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
422  return RulesForOpcode[OpcodeIdx];
423}
424
425LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
426  unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
427  auto &Result = RulesForOpcode[OpcodeIdx];
428  assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
429  return Result;
430}
431
432LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
433    std::initializer_list<unsigned> Opcodes) {
434  unsigned Representative = *Opcodes.begin();
435
436  assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
437         "Initializer list must have at least two opcodes");
438
439  for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
440    aliasActionDefinitions(Representative, *I);
441
442  auto &Return = getActionDefinitionsBuilder(Representative);
443  Return.setIsAliasedByAnother();
444  return Return;
445}
446
447void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
448                                           unsigned OpcodeFrom) {
449  assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
450  assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
451  const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
452  RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
453}
454
455LegalizeActionStep
456LegalizerInfo::getAction(const LegalityQuery &Query) const {
457  LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
458  if (Step.Action != LegalizeAction::UseLegacyRules) {
459    return Step;
460  }
461
462  for (unsigned i = 0; i < Query.Types.size(); ++i) {
463    auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
464    if (Action.first != Legal) {
465      LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
466                        << Action.first << ", " << Action.second << "\n");
467      return {Action.first, i, Action.second};
468    } else
469      LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
470  }
471  LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
472  return {Legal, 0, LLT{}};
473}
474
475LegalizeActionStep
476LegalizerInfo::getAction(const MachineInstr &MI,
477                         const MachineRegisterInfo &MRI) const {
478  SmallVector<LLT, 2> Types;
479  SmallBitVector SeenTypes(8);
480  const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
481  // FIXME: probably we'll need to cache the results here somehow?
482  for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
483    if (!OpInfo[i].isGenericType())
484      continue;
485
486    // We must only record actions once for each TypeIdx; otherwise we'd
487    // try to legalize operands multiple times down the line.
488    unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
489    if (SeenTypes[TypeIdx])
490      continue;
491
492    SeenTypes.set(TypeIdx);
493
494    LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
495    Types.push_back(Ty);
496  }
497
498  SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
499  for (const auto &MMO : MI.memoperands())
500    MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
501                         8 * MMO->getAlignment(),
502                         MMO->getOrdering()});
503
504  return getAction({MI.getOpcode(), Types, MemDescrs});
505}
506
507bool LegalizerInfo::isLegal(const MachineInstr &MI,
508                            const MachineRegisterInfo &MRI) const {
509  return getAction(MI, MRI).Action == Legal;
510}
511
512bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
513                                    const MachineRegisterInfo &MRI) const {
514  auto Action = getAction(MI, MRI).Action;
515  // If the action is custom, it may not necessarily modify the instruction,
516  // so we have to assume it's legal.
517  return Action == Legal || Action == Custom;
518}
519
520bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
521                                   MachineIRBuilder &MIRBuilder,
522                                   GISelChangeObserver &Observer) const {
523  return false;
524}
525
526LegalizerInfo::SizeAndActionsVec
527LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
528    const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
529    LegalizeAction DecreaseAction) {
530  SizeAndActionsVec result;
531  unsigned LargestSizeSoFar = 0;
532  if (v.size() >= 1 && v[0].first != 1)
533    result.push_back({1, IncreaseAction});
534  for (size_t i = 0; i < v.size(); ++i) {
535    result.push_back(v[i]);
536    LargestSizeSoFar = v[i].first;
537    if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
538      result.push_back({LargestSizeSoFar + 1, IncreaseAction});
539      LargestSizeSoFar = v[i].first + 1;
540    }
541  }
542  result.push_back({LargestSizeSoFar + 1, DecreaseAction});
543  return result;
544}
545
546LegalizerInfo::SizeAndActionsVec
547LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
548    const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
549    LegalizeAction IncreaseAction) {
550  SizeAndActionsVec result;
551  if (v.size() == 0 || v[0].first != 1)
552    result.push_back({1, IncreaseAction});
553  for (size_t i = 0; i < v.size(); ++i) {
554    result.push_back(v[i]);
555    if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
556      result.push_back({v[i].first + 1, DecreaseAction});
557    }
558  }
559  return result;
560}
561
562LegalizerInfo::SizeAndAction
563LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
564  assert(Size >= 1);
565  // Find the last element in Vec that has a bitsize equal to or smaller than
566  // the requested bit size.
567  // That is the element just before the first element that is bigger than Size.
568  auto It = partition_point(
569      Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
570  assert(It != Vec.begin() && "Does Vec not start with size 1?");
571  int VecIdx = It - Vec.begin() - 1;
572
573  LegalizeAction Action = Vec[VecIdx].second;
574  switch (Action) {
575  case Legal:
576  case Lower:
577  case Libcall:
578  case Custom:
579    return {Size, Action};
580  case FewerElements:
581    // FIXME: is this special case still needed and correct?
582    // Special case for scalarization:
583    if (Vec == SizeAndActionsVec({{1, FewerElements}}))
584      return {1, FewerElements};
585    LLVM_FALLTHROUGH;
586  case NarrowScalar: {
587    // The following needs to be a loop, as for now, we do allow needing to
588    // go over "Unsupported" bit sizes before finding a legalizable bit size.
589    // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
590    // we need to iterate over s9, and then to s32 to return (s32, Legal).
591    // If we want to get rid of the below loop, we should have stronger asserts
592    // when building the SizeAndActionsVecs, probably not allowing
593    // "Unsupported" unless at the ends of the vector.
594    for (int i = VecIdx - 1; i >= 0; --i)
595      if (!needsLegalizingToDifferentSize(Vec[i].second) &&
596          Vec[i].second != Unsupported)
597        return {Vec[i].first, Action};
598    llvm_unreachable("");
599  }
600  case WidenScalar:
601  case MoreElements: {
602    // See above, the following needs to be a loop, at least for now.
603    for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
604      if (!needsLegalizingToDifferentSize(Vec[i].second) &&
605          Vec[i].second != Unsupported)
606        return {Vec[i].first, Action};
607    llvm_unreachable("");
608  }
609  case Unsupported:
610    return {Size, Unsupported};
611  case NotFound:
612  case UseLegacyRules:
613    llvm_unreachable("NotFound");
614  }
615  llvm_unreachable("Action has an unknown enum value");
616}
617
618std::pair<LegalizeAction, LLT>
619LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
620  assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
621  if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
622    return {NotFound, LLT()};
623  const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
624  if (Aspect.Type.isPointer() &&
625      AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
626          AddrSpace2PointerActions[OpcodeIdx].end()) {
627    return {NotFound, LLT()};
628  }
629  const SmallVector<SizeAndActionsVec, 1> &Actions =
630      Aspect.Type.isPointer()
631          ? AddrSpace2PointerActions[OpcodeIdx]
632                .find(Aspect.Type.getAddressSpace())
633                ->second
634          : ScalarActions[OpcodeIdx];
635  if (Aspect.Idx >= Actions.size())
636    return {NotFound, LLT()};
637  const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
638  // FIXME: speed up this search, e.g. by using a results cache for repeated
639  // queries?
640  auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
641  return {SizeAndAction.second,
642          Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
643                                 : LLT::pointer(Aspect.Type.getAddressSpace(),
644                                                SizeAndAction.first)};
645}
646
647std::pair<LegalizeAction, LLT>
648LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
649  assert(Aspect.Type.isVector());
650  // First legalize the vector element size, then legalize the number of
651  // lanes in the vector.
652  if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
653    return {NotFound, Aspect.Type};
654  const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
655  const unsigned TypeIdx = Aspect.Idx;
656  if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
657    return {NotFound, Aspect.Type};
658  const SizeAndActionsVec &ElemSizeVec =
659      ScalarInVectorActions[OpcodeIdx][TypeIdx];
660
661  LLT IntermediateType;
662  auto ElementSizeAndAction =
663      findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
664  IntermediateType =
665      LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
666  if (ElementSizeAndAction.second != Legal)
667    return {ElementSizeAndAction.second, IntermediateType};
668
669  auto i = NumElements2Actions[OpcodeIdx].find(
670      IntermediateType.getScalarSizeInBits());
671  if (i == NumElements2Actions[OpcodeIdx].end()) {
672    return {NotFound, IntermediateType};
673  }
674  const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
675  auto NumElementsAndAction =
676      findAction(NumElementsVec, IntermediateType.getNumElements());
677  return {NumElementsAndAction.second,
678          LLT::vector(NumElementsAndAction.first,
679                      IntermediateType.getScalarSizeInBits())};
680}
681
682bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
683                                      MachineRegisterInfo &MRI,
684                                      MachineIRBuilder &MIRBuilder) const {
685  return true;
686}
687
688/// \pre Type indices of every opcode form a dense set starting from 0.
689void LegalizerInfo::verify(const MCInstrInfo &MII) const {
690#ifndef NDEBUG
691  std::vector<unsigned> FailedOpcodes;
692  for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
693    const MCInstrDesc &MCID = MII.get(Opcode);
694    const unsigned NumTypeIdxs = std::accumulate(
695        MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
696        [](unsigned Acc, const MCOperandInfo &OpInfo) {
697          return OpInfo.isGenericType()
698                     ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
699                     : Acc;
700        });
701    const unsigned NumImmIdxs = std::accumulate(
702        MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
703        [](unsigned Acc, const MCOperandInfo &OpInfo) {
704          return OpInfo.isGenericImm()
705                     ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
706                     : Acc;
707        });
708    LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
709                      << "): " << NumTypeIdxs << " type ind"
710                      << (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
711                      << NumImmIdxs << " imm ind"
712                      << (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
713    const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
714    if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
715      FailedOpcodes.push_back(Opcode);
716    else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
717      FailedOpcodes.push_back(Opcode);
718  }
719  if (!FailedOpcodes.empty()) {
720    errs() << "The following opcodes have ill-defined legalization rules:";
721    for (unsigned Opcode : FailedOpcodes)
722      errs() << " " << MII.getName(Opcode);
723    errs() << "\n";
724
725    report_fatal_error("ill-defined LegalizerInfo"
726                       ", try -debug-only=legalizer-info for details");
727  }
728#endif
729}
730
731#ifndef NDEBUG
732// FIXME: This should be in the MachineVerifier, but it can't use the
733// LegalizerInfo as it's currently in the separate GlobalISel library.
734// Note that RegBankSelected property already checked in the verifier
735// has the same layering problem, but we only use inline methods so
736// end up not needing to link against the GlobalISel library.
737const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
738  if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
739    const MachineRegisterInfo &MRI = MF.getRegInfo();
740    for (const MachineBasicBlock &MBB : MF)
741      for (const MachineInstr &MI : MBB)
742        if (isPreISelGenericOpcode(MI.getOpcode()) &&
743            !MLI->isLegalOrCustom(MI, MRI))
744          return &MI;
745  }
746  return nullptr;
747}
748#endif
749