1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/ValueTracking.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AssumeBundleQueries.h"
28#include "llvm/Analysis/AssumptionCache.h"
29#include "llvm/Analysis/GuardUtils.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/Loads.h"
32#include "llvm/Analysis/LoopInfo.h"
33#include "llvm/Analysis/OptimizationRemarkEmitter.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/IR/Argument.h"
36#include "llvm/IR/Attributes.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/Constant.h"
39#include "llvm/IR/ConstantRange.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/DiagnosticInfo.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GetElementPtrTypeIterator.h"
46#include "llvm/IR/GlobalAlias.h"
47#include "llvm/IR/GlobalValue.h"
48#include "llvm/IR/GlobalVariable.h"
49#include "llvm/IR/InstrTypes.h"
50#include "llvm/IR/Instruction.h"
51#include "llvm/IR/Instructions.h"
52#include "llvm/IR/IntrinsicInst.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/IntrinsicsAArch64.h"
55#include "llvm/IR/IntrinsicsRISCV.h"
56#include "llvm/IR/IntrinsicsX86.h"
57#include "llvm/IR/LLVMContext.h"
58#include "llvm/IR/Metadata.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/Operator.h"
61#include "llvm/IR/PatternMatch.h"
62#include "llvm/IR/Type.h"
63#include "llvm/IR/User.h"
64#include "llvm/IR/Value.h"
65#include "llvm/Support/Casting.h"
66#include "llvm/Support/CommandLine.h"
67#include "llvm/Support/Compiler.h"
68#include "llvm/Support/ErrorHandling.h"
69#include "llvm/Support/KnownBits.h"
70#include "llvm/Support/MathExtras.h"
71#include <algorithm>
72#include <array>
73#include <cassert>
74#include <cstdint>
75#include <iterator>
76#include <utility>
77
78using namespace llvm;
79using namespace llvm::PatternMatch;
80
81// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                              cl::Hidden, cl::init(20));
85
86/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
88static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
89  if (unsigned BitWidth = Ty->getScalarSizeInBits())
90    return BitWidth;
91
92  return DL.getPointerTypeSizeInBits(Ty);
93}
94
95namespace {
96
97// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
102  const DataLayout &DL;
103  AssumptionCache *AC;
104  const Instruction *CxtI;
105  const DominatorTree *DT;
106
107  // Unlike the other analyses, this may be a nullptr because not all clients
108  // provide it currently.
109  OptimizationRemarkEmitter *ORE;
110
111  /// If true, it is safe to use metadata during simplification.
112  InstrInfoQuery IIQ;
113
114  Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
115        const DominatorTree *DT, bool UseInstrInfo,
116        OptimizationRemarkEmitter *ORE = nullptr)
117      : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
118};
119
120} // end anonymous namespace
121
122// Given the provided Value and, potentially, a context instruction, return
123// the preferred context instruction (if any).
124static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
125  // If we've been provided with a context instruction, then use that (provided
126  // it has been inserted).
127  if (CxtI && CxtI->getParent())
128    return CxtI;
129
130  // If the value is really an already-inserted instruction, then use that.
131  CxtI = dyn_cast<Instruction>(V);
132  if (CxtI && CxtI->getParent())
133    return CxtI;
134
135  return nullptr;
136}
137
138static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
139  // If we've been provided with a context instruction, then use that (provided
140  // it has been inserted).
141  if (CxtI && CxtI->getParent())
142    return CxtI;
143
144  // If the value is really an already-inserted instruction, then use that.
145  CxtI = dyn_cast<Instruction>(V1);
146  if (CxtI && CxtI->getParent())
147    return CxtI;
148
149  CxtI = dyn_cast<Instruction>(V2);
150  if (CxtI && CxtI->getParent())
151    return CxtI;
152
153  return nullptr;
154}
155
156static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
157                                   const APInt &DemandedElts,
158                                   APInt &DemandedLHS, APInt &DemandedRHS) {
159  // The length of scalable vectors is unknown at compile time, thus we
160  // cannot check their values
161  if (isa<ScalableVectorType>(Shuf->getType()))
162    return false;
163
164  int NumElts =
165      cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
166  int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
167  DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
168  if (DemandedElts.isNullValue())
169    return true;
170  // Simple case of a shuffle with zeroinitializer.
171  if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
172    DemandedLHS.setBit(0);
173    return true;
174  }
175  for (int i = 0; i != NumMaskElts; ++i) {
176    if (!DemandedElts[i])
177      continue;
178    int M = Shuf->getMaskValue(i);
179    assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
180
181    // For undef elements, we don't know anything about the common state of
182    // the shuffle result.
183    if (M == -1)
184      return false;
185    if (M < NumElts)
186      DemandedLHS.setBit(M % NumElts);
187    else
188      DemandedRHS.setBit(M % NumElts);
189  }
190
191  return true;
192}
193
194static void computeKnownBits(const Value *V, const APInt &DemandedElts,
195                             KnownBits &Known, unsigned Depth, const Query &Q);
196
197static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
198                             const Query &Q) {
199  // FIXME: We currently have no way to represent the DemandedElts of a scalable
200  // vector
201  if (isa<ScalableVectorType>(V->getType())) {
202    Known.resetAll();
203    return;
204  }
205
206  auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
207  APInt DemandedElts =
208      FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
209  computeKnownBits(V, DemandedElts, Known, Depth, Q);
210}
211
212void llvm::computeKnownBits(const Value *V, KnownBits &Known,
213                            const DataLayout &DL, unsigned Depth,
214                            AssumptionCache *AC, const Instruction *CxtI,
215                            const DominatorTree *DT,
216                            OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
217  ::computeKnownBits(V, Known, Depth,
218                     Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
219}
220
221void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
222                            KnownBits &Known, const DataLayout &DL,
223                            unsigned Depth, AssumptionCache *AC,
224                            const Instruction *CxtI, const DominatorTree *DT,
225                            OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
226  ::computeKnownBits(V, DemandedElts, Known, Depth,
227                     Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
228}
229
230static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
231                                  unsigned Depth, const Query &Q);
232
233static KnownBits computeKnownBits(const Value *V, unsigned Depth,
234                                  const Query &Q);
235
236KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
237                                 unsigned Depth, AssumptionCache *AC,
238                                 const Instruction *CxtI,
239                                 const DominatorTree *DT,
240                                 OptimizationRemarkEmitter *ORE,
241                                 bool UseInstrInfo) {
242  return ::computeKnownBits(
243      V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
244}
245
246KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
247                                 const DataLayout &DL, unsigned Depth,
248                                 AssumptionCache *AC, const Instruction *CxtI,
249                                 const DominatorTree *DT,
250                                 OptimizationRemarkEmitter *ORE,
251                                 bool UseInstrInfo) {
252  return ::computeKnownBits(
253      V, DemandedElts, Depth,
254      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
255}
256
257bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
258                               const DataLayout &DL, AssumptionCache *AC,
259                               const Instruction *CxtI, const DominatorTree *DT,
260                               bool UseInstrInfo) {
261  assert(LHS->getType() == RHS->getType() &&
262         "LHS and RHS should have the same type");
263  assert(LHS->getType()->isIntOrIntVectorTy() &&
264         "LHS and RHS should be integers");
265  // Look for an inverted mask: (X & ~M) op (Y & M).
266  Value *M;
267  if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
268      match(RHS, m_c_And(m_Specific(M), m_Value())))
269    return true;
270  if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
271      match(LHS, m_c_And(m_Specific(M), m_Value())))
272    return true;
273  IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
274  KnownBits LHSKnown(IT->getBitWidth());
275  KnownBits RHSKnown(IT->getBitWidth());
276  computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
277  computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
278  return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
279}
280
281bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
282  for (const User *U : CxtI->users()) {
283    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
284      if (IC->isEquality())
285        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
286          if (C->isNullValue())
287            continue;
288    return false;
289  }
290  return true;
291}
292
293static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
294                                   const Query &Q);
295
296bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
297                                  bool OrZero, unsigned Depth,
298                                  AssumptionCache *AC, const Instruction *CxtI,
299                                  const DominatorTree *DT, bool UseInstrInfo) {
300  return ::isKnownToBeAPowerOfTwo(
301      V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
302}
303
304static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
305                           unsigned Depth, const Query &Q);
306
307static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
308
309bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
310                          AssumptionCache *AC, const Instruction *CxtI,
311                          const DominatorTree *DT, bool UseInstrInfo) {
312  return ::isKnownNonZero(V, Depth,
313                          Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
314}
315
316bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
317                              unsigned Depth, AssumptionCache *AC,
318                              const Instruction *CxtI, const DominatorTree *DT,
319                              bool UseInstrInfo) {
320  KnownBits Known =
321      computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
322  return Known.isNonNegative();
323}
324
325bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
326                           AssumptionCache *AC, const Instruction *CxtI,
327                           const DominatorTree *DT, bool UseInstrInfo) {
328  if (auto *CI = dyn_cast<ConstantInt>(V))
329    return CI->getValue().isStrictlyPositive();
330
331  // TODO: We'd doing two recursive queries here.  We should factor this such
332  // that only a single query is needed.
333  return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
334         isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
335}
336
337bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
338                           AssumptionCache *AC, const Instruction *CxtI,
339                           const DominatorTree *DT, bool UseInstrInfo) {
340  KnownBits Known =
341      computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
342  return Known.isNegative();
343}
344
345static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
346                            const Query &Q);
347
348bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
349                           const DataLayout &DL, AssumptionCache *AC,
350                           const Instruction *CxtI, const DominatorTree *DT,
351                           bool UseInstrInfo) {
352  return ::isKnownNonEqual(V1, V2, 0,
353                           Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
354                                 UseInstrInfo, /*ORE=*/nullptr));
355}
356
357static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
358                              const Query &Q);
359
360bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
361                             const DataLayout &DL, unsigned Depth,
362                             AssumptionCache *AC, const Instruction *CxtI,
363                             const DominatorTree *DT, bool UseInstrInfo) {
364  return ::MaskedValueIsZero(
365      V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
366}
367
368static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
369                                   unsigned Depth, const Query &Q);
370
371static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
372                                   const Query &Q) {
373  // FIXME: We currently have no way to represent the DemandedElts of a scalable
374  // vector
375  if (isa<ScalableVectorType>(V->getType()))
376    return 1;
377
378  auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
379  APInt DemandedElts =
380      FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
381  return ComputeNumSignBits(V, DemandedElts, Depth, Q);
382}
383
384unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
385                                  unsigned Depth, AssumptionCache *AC,
386                                  const Instruction *CxtI,
387                                  const DominatorTree *DT, bool UseInstrInfo) {
388  return ::ComputeNumSignBits(
389      V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
390}
391
392static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
393                                   bool NSW, const APInt &DemandedElts,
394                                   KnownBits &KnownOut, KnownBits &Known2,
395                                   unsigned Depth, const Query &Q) {
396  computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
397
398  // If one operand is unknown and we have no nowrap information,
399  // the result will be unknown independently of the second operand.
400  if (KnownOut.isUnknown() && !NSW)
401    return;
402
403  computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
404  KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
405}
406
407static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
408                                const APInt &DemandedElts, KnownBits &Known,
409                                KnownBits &Known2, unsigned Depth,
410                                const Query &Q) {
411  computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
412  computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
413
414  bool isKnownNegative = false;
415  bool isKnownNonNegative = false;
416  // If the multiplication is known not to overflow, compute the sign bit.
417  if (NSW) {
418    if (Op0 == Op1) {
419      // The product of a number with itself is non-negative.
420      isKnownNonNegative = true;
421    } else {
422      bool isKnownNonNegativeOp1 = Known.isNonNegative();
423      bool isKnownNonNegativeOp0 = Known2.isNonNegative();
424      bool isKnownNegativeOp1 = Known.isNegative();
425      bool isKnownNegativeOp0 = Known2.isNegative();
426      // The product of two numbers with the same sign is non-negative.
427      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
428                           (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
429      // The product of a negative number and a non-negative number is either
430      // negative or zero.
431      if (!isKnownNonNegative)
432        isKnownNegative =
433            (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
434             Known2.isNonZero()) ||
435            (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
436    }
437  }
438
439  Known = KnownBits::mul(Known, Known2);
440
441  // Only make use of no-wrap flags if we failed to compute the sign bit
442  // directly.  This matters if the multiplication always overflows, in
443  // which case we prefer to follow the result of the direct computation,
444  // though as the program is invoking undefined behaviour we can choose
445  // whatever we like here.
446  if (isKnownNonNegative && !Known.isNegative())
447    Known.makeNonNegative();
448  else if (isKnownNegative && !Known.isNonNegative())
449    Known.makeNegative();
450}
451
452void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
453                                             KnownBits &Known) {
454  unsigned BitWidth = Known.getBitWidth();
455  unsigned NumRanges = Ranges.getNumOperands() / 2;
456  assert(NumRanges >= 1);
457
458  Known.Zero.setAllBits();
459  Known.One.setAllBits();
460
461  for (unsigned i = 0; i < NumRanges; ++i) {
462    ConstantInt *Lower =
463        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
464    ConstantInt *Upper =
465        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
466    ConstantRange Range(Lower->getValue(), Upper->getValue());
467
468    // The first CommonPrefixBits of all values in Range are equal.
469    unsigned CommonPrefixBits =
470        (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
471    APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
472    APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
473    Known.One &= UnsignedMax & Mask;
474    Known.Zero &= ~UnsignedMax & Mask;
475  }
476}
477
478static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
479  SmallVector<const Value *, 16> WorkSet(1, I);
480  SmallPtrSet<const Value *, 32> Visited;
481  SmallPtrSet<const Value *, 16> EphValues;
482
483  // The instruction defining an assumption's condition itself is always
484  // considered ephemeral to that assumption (even if it has other
485  // non-ephemeral users). See r246696's test case for an example.
486  if (is_contained(I->operands(), E))
487    return true;
488
489  while (!WorkSet.empty()) {
490    const Value *V = WorkSet.pop_back_val();
491    if (!Visited.insert(V).second)
492      continue;
493
494    // If all uses of this value are ephemeral, then so is this value.
495    if (llvm::all_of(V->users(), [&](const User *U) {
496                                   return EphValues.count(U);
497                                 })) {
498      if (V == E)
499        return true;
500
501      if (V == I || isSafeToSpeculativelyExecute(V)) {
502       EphValues.insert(V);
503       if (const User *U = dyn_cast<User>(V))
504         append_range(WorkSet, U->operands());
505      }
506    }
507  }
508
509  return false;
510}
511
512// Is this an intrinsic that cannot be speculated but also cannot trap?
513bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
514  if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
515    return CI->isAssumeLikeIntrinsic();
516
517  return false;
518}
519
520bool llvm::isValidAssumeForContext(const Instruction *Inv,
521                                   const Instruction *CxtI,
522                                   const DominatorTree *DT) {
523  // There are two restrictions on the use of an assume:
524  //  1. The assume must dominate the context (or the control flow must
525  //     reach the assume whenever it reaches the context).
526  //  2. The context must not be in the assume's set of ephemeral values
527  //     (otherwise we will use the assume to prove that the condition
528  //     feeding the assume is trivially true, thus causing the removal of
529  //     the assume).
530
531  if (Inv->getParent() == CxtI->getParent()) {
532    // If Inv and CtxI are in the same block, check if the assume (Inv) is first
533    // in the BB.
534    if (Inv->comesBefore(CxtI))
535      return true;
536
537    // Don't let an assume affect itself - this would cause the problems
538    // `isEphemeralValueOf` is trying to prevent, and it would also make
539    // the loop below go out of bounds.
540    if (Inv == CxtI)
541      return false;
542
543    // The context comes first, but they're both in the same block.
544    // Make sure there is nothing in between that might interrupt
545    // the control flow, not even CxtI itself.
546    // We limit the scan distance between the assume and its context instruction
547    // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
548    // it can be adjusted if needed (could be turned into a cl::opt).
549    unsigned ScanLimit = 15;
550    for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
551      if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0)
552        return false;
553
554    return !isEphemeralValueOf(Inv, CxtI);
555  }
556
557  // Inv and CxtI are in different blocks.
558  if (DT) {
559    if (DT->dominates(Inv, CxtI))
560      return true;
561  } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
562    // We don't have a DT, but this trivially dominates.
563    return true;
564  }
565
566  return false;
567}
568
569static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
570  // v u> y implies v != 0.
571  if (Pred == ICmpInst::ICMP_UGT)
572    return true;
573
574  // Special-case v != 0 to also handle v != null.
575  if (Pred == ICmpInst::ICMP_NE)
576    return match(RHS, m_Zero());
577
578  // All other predicates - rely on generic ConstantRange handling.
579  const APInt *C;
580  if (!match(RHS, m_APInt(C)))
581    return false;
582
583  ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
584  return !TrueValues.contains(APInt::getNullValue(C->getBitWidth()));
585}
586
587static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
588  // Use of assumptions is context-sensitive. If we don't have a context, we
589  // cannot use them!
590  if (!Q.AC || !Q.CxtI)
591    return false;
592
593  if (Q.CxtI && V->getType()->isPointerTy()) {
594    SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
595    if (!NullPointerIsDefined(Q.CxtI->getFunction(),
596                              V->getType()->getPointerAddressSpace()))
597      AttrKinds.push_back(Attribute::Dereferenceable);
598
599    if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
600      return true;
601  }
602
603  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
604    if (!AssumeVH)
605      continue;
606    CallInst *I = cast<CallInst>(AssumeVH);
607    assert(I->getFunction() == Q.CxtI->getFunction() &&
608           "Got assumption for the wrong function!");
609
610    // Warning: This loop can end up being somewhat performance sensitive.
611    // We're running this loop for once for each value queried resulting in a
612    // runtime of ~O(#assumes * #values).
613
614    assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
615           "must be an assume intrinsic");
616
617    Value *RHS;
618    CmpInst::Predicate Pred;
619    auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
620    if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
621      return false;
622
623    if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
624      return true;
625  }
626
627  return false;
628}
629
630static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
631                                       unsigned Depth, const Query &Q) {
632  // Use of assumptions is context-sensitive. If we don't have a context, we
633  // cannot use them!
634  if (!Q.AC || !Q.CxtI)
635    return;
636
637  unsigned BitWidth = Known.getBitWidth();
638
639  // Refine Known set if the pointer alignment is set by assume bundles.
640  if (V->getType()->isPointerTy()) {
641    if (RetainedKnowledge RK = getKnowledgeValidInContext(
642            V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
643      Known.Zero.setLowBits(Log2_32(RK.ArgValue));
644    }
645  }
646
647  // Note that the patterns below need to be kept in sync with the code
648  // in AssumptionCache::updateAffectedValues.
649
650  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
651    if (!AssumeVH)
652      continue;
653    CallInst *I = cast<CallInst>(AssumeVH);
654    assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
655           "Got assumption for the wrong function!");
656
657    // Warning: This loop can end up being somewhat performance sensitive.
658    // We're running this loop for once for each value queried resulting in a
659    // runtime of ~O(#assumes * #values).
660
661    assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
662           "must be an assume intrinsic");
663
664    Value *Arg = I->getArgOperand(0);
665
666    if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667      assert(BitWidth == 1 && "assume operand is not i1?");
668      Known.setAllOnes();
669      return;
670    }
671    if (match(Arg, m_Not(m_Specific(V))) &&
672        isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
673      assert(BitWidth == 1 && "assume operand is not i1?");
674      Known.setAllZero();
675      return;
676    }
677
678    // The remaining tests are all recursive, so bail out if we hit the limit.
679    if (Depth == MaxAnalysisRecursionDepth)
680      continue;
681
682    ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
683    if (!Cmp)
684      continue;
685
686    // We are attempting to compute known bits for the operands of an assume.
687    // Do not try to use other assumptions for those recursive calls because
688    // that can lead to mutual recursion and a compile-time explosion.
689    // An example of the mutual recursion: computeKnownBits can call
690    // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
691    // and so on.
692    Query QueryNoAC = Q;
693    QueryNoAC.AC = nullptr;
694
695    // Note that ptrtoint may change the bitwidth.
696    Value *A, *B;
697    auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
698
699    CmpInst::Predicate Pred;
700    uint64_t C;
701    switch (Cmp->getPredicate()) {
702    default:
703      break;
704    case ICmpInst::ICMP_EQ:
705      // assume(v = a)
706      if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
707          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
708        KnownBits RHSKnown =
709            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
710        Known.Zero |= RHSKnown.Zero;
711        Known.One  |= RHSKnown.One;
712      // assume(v & b = a)
713      } else if (match(Cmp,
714                       m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
715                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
716        KnownBits RHSKnown =
717            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
718        KnownBits MaskKnown =
719            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
720
721        // For those bits in the mask that are known to be one, we can propagate
722        // known bits from the RHS to V.
723        Known.Zero |= RHSKnown.Zero & MaskKnown.One;
724        Known.One  |= RHSKnown.One  & MaskKnown.One;
725      // assume(~(v & b) = a)
726      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
727                                     m_Value(A))) &&
728                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
729        KnownBits RHSKnown =
730            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
731        KnownBits MaskKnown =
732            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
733
734        // For those bits in the mask that are known to be one, we can propagate
735        // inverted known bits from the RHS to V.
736        Known.Zero |= RHSKnown.One  & MaskKnown.One;
737        Known.One  |= RHSKnown.Zero & MaskKnown.One;
738      // assume(v | b = a)
739      } else if (match(Cmp,
740                       m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
741                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
742        KnownBits RHSKnown =
743            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
744        KnownBits BKnown =
745            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
746
747        // For those bits in B that are known to be zero, we can propagate known
748        // bits from the RHS to V.
749        Known.Zero |= RHSKnown.Zero & BKnown.Zero;
750        Known.One  |= RHSKnown.One  & BKnown.Zero;
751      // assume(~(v | b) = a)
752      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
753                                     m_Value(A))) &&
754                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
755        KnownBits RHSKnown =
756            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
757        KnownBits BKnown =
758            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
759
760        // For those bits in B that are known to be zero, we can propagate
761        // inverted known bits from the RHS to V.
762        Known.Zero |= RHSKnown.One  & BKnown.Zero;
763        Known.One  |= RHSKnown.Zero & BKnown.Zero;
764      // assume(v ^ b = a)
765      } else if (match(Cmp,
766                       m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
767                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768        KnownBits RHSKnown =
769            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
770        KnownBits BKnown =
771            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
772
773        // For those bits in B that are known to be zero, we can propagate known
774        // bits from the RHS to V. For those bits in B that are known to be one,
775        // we can propagate inverted known bits from the RHS to V.
776        Known.Zero |= RHSKnown.Zero & BKnown.Zero;
777        Known.One  |= RHSKnown.One  & BKnown.Zero;
778        Known.Zero |= RHSKnown.One  & BKnown.One;
779        Known.One  |= RHSKnown.Zero & BKnown.One;
780      // assume(~(v ^ b) = a)
781      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
782                                     m_Value(A))) &&
783                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
784        KnownBits RHSKnown =
785            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
786        KnownBits BKnown =
787            computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
788
789        // For those bits in B that are known to be zero, we can propagate
790        // inverted known bits from the RHS to V. For those bits in B that are
791        // known to be one, we can propagate known bits from the RHS to V.
792        Known.Zero |= RHSKnown.One  & BKnown.Zero;
793        Known.One  |= RHSKnown.Zero & BKnown.Zero;
794        Known.Zero |= RHSKnown.Zero & BKnown.One;
795        Known.One  |= RHSKnown.One  & BKnown.One;
796      // assume(v << c = a)
797      } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
798                                     m_Value(A))) &&
799                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
800        KnownBits RHSKnown =
801            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
802
803        // For those bits in RHS that are known, we can propagate them to known
804        // bits in V shifted to the right by C.
805        RHSKnown.Zero.lshrInPlace(C);
806        Known.Zero |= RHSKnown.Zero;
807        RHSKnown.One.lshrInPlace(C);
808        Known.One  |= RHSKnown.One;
809      // assume(~(v << c) = a)
810      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
811                                     m_Value(A))) &&
812                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
813        KnownBits RHSKnown =
814            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
815        // For those bits in RHS that are known, we can propagate them inverted
816        // to known bits in V shifted to the right by C.
817        RHSKnown.One.lshrInPlace(C);
818        Known.Zero |= RHSKnown.One;
819        RHSKnown.Zero.lshrInPlace(C);
820        Known.One  |= RHSKnown.Zero;
821      // assume(v >> c = a)
822      } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
823                                     m_Value(A))) &&
824                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
825        KnownBits RHSKnown =
826            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
827        // For those bits in RHS that are known, we can propagate them to known
828        // bits in V shifted to the right by C.
829        Known.Zero |= RHSKnown.Zero << C;
830        Known.One  |= RHSKnown.One  << C;
831      // assume(~(v >> c) = a)
832      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
833                                     m_Value(A))) &&
834                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
835        KnownBits RHSKnown =
836            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
837        // For those bits in RHS that are known, we can propagate them inverted
838        // to known bits in V shifted to the right by C.
839        Known.Zero |= RHSKnown.One  << C;
840        Known.One  |= RHSKnown.Zero << C;
841      }
842      break;
843    case ICmpInst::ICMP_SGE:
844      // assume(v >=_s c) where c is non-negative
845      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
846          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
847        KnownBits RHSKnown =
848            computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
849
850        if (RHSKnown.isNonNegative()) {
851          // We know that the sign bit is zero.
852          Known.makeNonNegative();
853        }
854      }
855      break;
856    case ICmpInst::ICMP_SGT:
857      // assume(v >_s c) where c is at least -1.
858      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
859          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
860        KnownBits RHSKnown =
861            computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
862
863        if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
864          // We know that the sign bit is zero.
865          Known.makeNonNegative();
866        }
867      }
868      break;
869    case ICmpInst::ICMP_SLE:
870      // assume(v <=_s c) where c is negative
871      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
872          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
873        KnownBits RHSKnown =
874            computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
875
876        if (RHSKnown.isNegative()) {
877          // We know that the sign bit is one.
878          Known.makeNegative();
879        }
880      }
881      break;
882    case ICmpInst::ICMP_SLT:
883      // assume(v <_s c) where c is non-positive
884      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
885          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
886        KnownBits RHSKnown =
887            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
888
889        if (RHSKnown.isZero() || RHSKnown.isNegative()) {
890          // We know that the sign bit is one.
891          Known.makeNegative();
892        }
893      }
894      break;
895    case ICmpInst::ICMP_ULE:
896      // assume(v <=_u c)
897      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
898          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
899        KnownBits RHSKnown =
900            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
901
902        // Whatever high bits in c are zero are known to be zero.
903        Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
904      }
905      break;
906    case ICmpInst::ICMP_ULT:
907      // assume(v <_u c)
908      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
909          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
910        KnownBits RHSKnown =
911            computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
912
913        // If the RHS is known zero, then this assumption must be wrong (nothing
914        // is unsigned less than zero). Signal a conflict and get out of here.
915        if (RHSKnown.isZero()) {
916          Known.Zero.setAllBits();
917          Known.One.setAllBits();
918          break;
919        }
920
921        // Whatever high bits in c are zero are known to be zero (if c is a power
922        // of 2, then one more).
923        if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
924          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
925        else
926          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
927      }
928      break;
929    }
930  }
931
932  // If assumptions conflict with each other or previous known bits, then we
933  // have a logical fallacy. It's possible that the assumption is not reachable,
934  // so this isn't a real bug. On the other hand, the program may have undefined
935  // behavior, or we might have a bug in the compiler. We can't assert/crash, so
936  // clear out the known bits, try to warn the user, and hope for the best.
937  if (Known.Zero.intersects(Known.One)) {
938    Known.resetAll();
939
940    if (Q.ORE)
941      Q.ORE->emit([&]() {
942        auto *CxtI = const_cast<Instruction *>(Q.CxtI);
943        return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
944                                          CxtI)
945               << "Detected conflicting code assumptions. Program may "
946                  "have undefined behavior, or compiler may have "
947                  "internal error.";
948      });
949  }
950}
951
952/// Compute known bits from a shift operator, including those with a
953/// non-constant shift amount. Known is the output of this function. Known2 is a
954/// pre-allocated temporary with the same bit width as Known and on return
955/// contains the known bit of the shift value source. KF is an
956/// operator-specific function that, given the known-bits and a shift amount,
957/// compute the implied known-bits of the shift operator's result respectively
958/// for that shift amount. The results from calling KF are conservatively
959/// combined for all permitted shift amounts.
960static void computeKnownBitsFromShiftOperator(
961    const Operator *I, const APInt &DemandedElts, KnownBits &Known,
962    KnownBits &Known2, unsigned Depth, const Query &Q,
963    function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
964  unsigned BitWidth = Known.getBitWidth();
965  computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
966  computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
967
968  // Note: We cannot use Known.Zero.getLimitedValue() here, because if
969  // BitWidth > 64 and any upper bits are known, we'll end up returning the
970  // limit value (which implies all bits are known).
971  uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
972  uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
973  bool ShiftAmtIsConstant = Known.isConstant();
974  bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
975
976  if (ShiftAmtIsConstant) {
977    Known = KF(Known2, Known);
978
979    // If the known bits conflict, this must be an overflowing left shift, so
980    // the shift result is poison. We can return anything we want. Choose 0 for
981    // the best folding opportunity.
982    if (Known.hasConflict())
983      Known.setAllZero();
984
985    return;
986  }
987
988  // If the shift amount could be greater than or equal to the bit-width of the
989  // LHS, the value could be poison, but bail out because the check below is
990  // expensive.
991  // TODO: Should we just carry on?
992  if (MaxShiftAmtIsOutOfRange) {
993    Known.resetAll();
994    return;
995  }
996
997  // It would be more-clearly correct to use the two temporaries for this
998  // calculation. Reusing the APInts here to prevent unnecessary allocations.
999  Known.resetAll();
1000
1001  // If we know the shifter operand is nonzero, we can sometimes infer more
1002  // known bits. However this is expensive to compute, so be lazy about it and
1003  // only compute it when absolutely necessary.
1004  Optional<bool> ShifterOperandIsNonZero;
1005
1006  // Early exit if we can't constrain any well-defined shift amount.
1007  if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1008      !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1009    ShifterOperandIsNonZero =
1010        isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1011    if (!*ShifterOperandIsNonZero)
1012      return;
1013  }
1014
1015  Known.Zero.setAllBits();
1016  Known.One.setAllBits();
1017  for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1018    // Combine the shifted known input bits only for those shift amounts
1019    // compatible with its known constraints.
1020    if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1021      continue;
1022    if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1023      continue;
1024    // If we know the shifter is nonzero, we may be able to infer more known
1025    // bits. This check is sunk down as far as possible to avoid the expensive
1026    // call to isKnownNonZero if the cheaper checks above fail.
1027    if (ShiftAmt == 0) {
1028      if (!ShifterOperandIsNonZero.hasValue())
1029        ShifterOperandIsNonZero =
1030            isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1031      if (*ShifterOperandIsNonZero)
1032        continue;
1033    }
1034
1035    Known = KnownBits::commonBits(
1036        Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1037  }
1038
1039  // If the known bits conflict, the result is poison. Return a 0 and hope the
1040  // caller can further optimize that.
1041  if (Known.hasConflict())
1042    Known.setAllZero();
1043}
1044
1045static void computeKnownBitsFromOperator(const Operator *I,
1046                                         const APInt &DemandedElts,
1047                                         KnownBits &Known, unsigned Depth,
1048                                         const Query &Q) {
1049  unsigned BitWidth = Known.getBitWidth();
1050
1051  KnownBits Known2(BitWidth);
1052  switch (I->getOpcode()) {
1053  default: break;
1054  case Instruction::Load:
1055    if (MDNode *MD =
1056            Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1057      computeKnownBitsFromRangeMetadata(*MD, Known);
1058    break;
1059  case Instruction::And: {
1060    // If either the LHS or the RHS are Zero, the result is zero.
1061    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1062    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1063
1064    Known &= Known2;
1065
1066    // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1067    // here we handle the more general case of adding any odd number by
1068    // matching the form add(x, add(x, y)) where y is odd.
1069    // TODO: This could be generalized to clearing any bit set in y where the
1070    // following bit is known to be unset in y.
1071    Value *X = nullptr, *Y = nullptr;
1072    if (!Known.Zero[0] && !Known.One[0] &&
1073        match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1074      Known2.resetAll();
1075      computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1076      if (Known2.countMinTrailingOnes() > 0)
1077        Known.Zero.setBit(0);
1078    }
1079    break;
1080  }
1081  case Instruction::Or:
1082    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1083    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1084
1085    Known |= Known2;
1086    break;
1087  case Instruction::Xor:
1088    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1089    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1090
1091    Known ^= Known2;
1092    break;
1093  case Instruction::Mul: {
1094    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1095    computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1096                        Known, Known2, Depth, Q);
1097    break;
1098  }
1099  case Instruction::UDiv: {
1100    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1101    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1102    Known = KnownBits::udiv(Known, Known2);
1103    break;
1104  }
1105  case Instruction::Select: {
1106    const Value *LHS = nullptr, *RHS = nullptr;
1107    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1108    if (SelectPatternResult::isMinOrMax(SPF)) {
1109      computeKnownBits(RHS, Known, Depth + 1, Q);
1110      computeKnownBits(LHS, Known2, Depth + 1, Q);
1111      switch (SPF) {
1112      default:
1113        llvm_unreachable("Unhandled select pattern flavor!");
1114      case SPF_SMAX:
1115        Known = KnownBits::smax(Known, Known2);
1116        break;
1117      case SPF_SMIN:
1118        Known = KnownBits::smin(Known, Known2);
1119        break;
1120      case SPF_UMAX:
1121        Known = KnownBits::umax(Known, Known2);
1122        break;
1123      case SPF_UMIN:
1124        Known = KnownBits::umin(Known, Known2);
1125        break;
1126      }
1127      break;
1128    }
1129
1130    computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1131    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1132
1133    // Only known if known in both the LHS and RHS.
1134    Known = KnownBits::commonBits(Known, Known2);
1135
1136    if (SPF == SPF_ABS) {
1137      // RHS from matchSelectPattern returns the negation part of abs pattern.
1138      // If the negate has an NSW flag we can assume the sign bit of the result
1139      // will be 0 because that makes abs(INT_MIN) undefined.
1140      if (match(RHS, m_Neg(m_Specific(LHS))) &&
1141          Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1142        Known.Zero.setSignBit();
1143    }
1144
1145    break;
1146  }
1147  case Instruction::FPTrunc:
1148  case Instruction::FPExt:
1149  case Instruction::FPToUI:
1150  case Instruction::FPToSI:
1151  case Instruction::SIToFP:
1152  case Instruction::UIToFP:
1153    break; // Can't work with floating point.
1154  case Instruction::PtrToInt:
1155  case Instruction::IntToPtr:
1156    // Fall through and handle them the same as zext/trunc.
1157    LLVM_FALLTHROUGH;
1158  case Instruction::ZExt:
1159  case Instruction::Trunc: {
1160    Type *SrcTy = I->getOperand(0)->getType();
1161
1162    unsigned SrcBitWidth;
1163    // Note that we handle pointer operands here because of inttoptr/ptrtoint
1164    // which fall through here.
1165    Type *ScalarTy = SrcTy->getScalarType();
1166    SrcBitWidth = ScalarTy->isPointerTy() ?
1167      Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1168      Q.DL.getTypeSizeInBits(ScalarTy);
1169
1170    assert(SrcBitWidth && "SrcBitWidth can't be zero");
1171    Known = Known.anyextOrTrunc(SrcBitWidth);
1172    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1173    Known = Known.zextOrTrunc(BitWidth);
1174    break;
1175  }
1176  case Instruction::BitCast: {
1177    Type *SrcTy = I->getOperand(0)->getType();
1178    if (SrcTy->isIntOrPtrTy() &&
1179        // TODO: For now, not handling conversions like:
1180        // (bitcast i64 %x to <2 x i32>)
1181        !I->getType()->isVectorTy()) {
1182      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1183      break;
1184    }
1185    break;
1186  }
1187  case Instruction::SExt: {
1188    // Compute the bits in the result that are not present in the input.
1189    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1190
1191    Known = Known.trunc(SrcBitWidth);
1192    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1193    // If the sign bit of the input is known set or clear, then we know the
1194    // top bits of the result.
1195    Known = Known.sext(BitWidth);
1196    break;
1197  }
1198  case Instruction::Shl: {
1199    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1200    auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1201      KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1202      // If this shift has "nsw" keyword, then the result is either a poison
1203      // value or has the same sign bit as the first operand.
1204      if (NSW) {
1205        if (KnownVal.Zero.isSignBitSet())
1206          Result.Zero.setSignBit();
1207        if (KnownVal.One.isSignBitSet())
1208          Result.One.setSignBit();
1209      }
1210      return Result;
1211    };
1212    computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1213                                      KF);
1214    // Trailing zeros of a right-shifted constant never decrease.
1215    const APInt *C;
1216    if (match(I->getOperand(0), m_APInt(C)))
1217      Known.Zero.setLowBits(C->countTrailingZeros());
1218    break;
1219  }
1220  case Instruction::LShr: {
1221    auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1222      return KnownBits::lshr(KnownVal, KnownAmt);
1223    };
1224    computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1225                                      KF);
1226    // Leading zeros of a left-shifted constant never decrease.
1227    const APInt *C;
1228    if (match(I->getOperand(0), m_APInt(C)))
1229      Known.Zero.setHighBits(C->countLeadingZeros());
1230    break;
1231  }
1232  case Instruction::AShr: {
1233    auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1234      return KnownBits::ashr(KnownVal, KnownAmt);
1235    };
1236    computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1237                                      KF);
1238    break;
1239  }
1240  case Instruction::Sub: {
1241    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1242    computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1243                           DemandedElts, Known, Known2, Depth, Q);
1244    break;
1245  }
1246  case Instruction::Add: {
1247    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1248    computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1249                           DemandedElts, Known, Known2, Depth, Q);
1250    break;
1251  }
1252  case Instruction::SRem:
1253    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1254    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1255    Known = KnownBits::srem(Known, Known2);
1256    break;
1257
1258  case Instruction::URem:
1259    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1260    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1261    Known = KnownBits::urem(Known, Known2);
1262    break;
1263  case Instruction::Alloca:
1264    Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1265    break;
1266  case Instruction::GetElementPtr: {
1267    // Analyze all of the subscripts of this getelementptr instruction
1268    // to determine if we can prove known low zero bits.
1269    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1270    // Accumulate the constant indices in a separate variable
1271    // to minimize the number of calls to computeForAddSub.
1272    APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1273
1274    gep_type_iterator GTI = gep_type_begin(I);
1275    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1276      // TrailZ can only become smaller, short-circuit if we hit zero.
1277      if (Known.isUnknown())
1278        break;
1279
1280      Value *Index = I->getOperand(i);
1281
1282      // Handle case when index is zero.
1283      Constant *CIndex = dyn_cast<Constant>(Index);
1284      if (CIndex && CIndex->isZeroValue())
1285        continue;
1286
1287      if (StructType *STy = GTI.getStructTypeOrNull()) {
1288        // Handle struct member offset arithmetic.
1289
1290        assert(CIndex &&
1291               "Access to structure field must be known at compile time");
1292
1293        if (CIndex->getType()->isVectorTy())
1294          Index = CIndex->getSplatValue();
1295
1296        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1297        const StructLayout *SL = Q.DL.getStructLayout(STy);
1298        uint64_t Offset = SL->getElementOffset(Idx);
1299        AccConstIndices += Offset;
1300        continue;
1301      }
1302
1303      // Handle array index arithmetic.
1304      Type *IndexedTy = GTI.getIndexedType();
1305      if (!IndexedTy->isSized()) {
1306        Known.resetAll();
1307        break;
1308      }
1309
1310      unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1311      KnownBits IndexBits(IndexBitWidth);
1312      computeKnownBits(Index, IndexBits, Depth + 1, Q);
1313      TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1314      uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1315      KnownBits ScalingFactor(IndexBitWidth);
1316      // Multiply by current sizeof type.
1317      // &A[i] == A + i * sizeof(*A[i]).
1318      if (IndexTypeSize.isScalable()) {
1319        // For scalable types the only thing we know about sizeof is
1320        // that this is a multiple of the minimum size.
1321        ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1322      } else if (IndexBits.isConstant()) {
1323        APInt IndexConst = IndexBits.getConstant();
1324        APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1325        IndexConst *= ScalingFactor;
1326        AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1327        continue;
1328      } else {
1329        ScalingFactor =
1330            KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1331      }
1332      IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1333
1334      // If the offsets have a different width from the pointer, according
1335      // to the language reference we need to sign-extend or truncate them
1336      // to the width of the pointer.
1337      IndexBits = IndexBits.sextOrTrunc(BitWidth);
1338
1339      // Note that inbounds does *not* guarantee nsw for the addition, as only
1340      // the offset is signed, while the base address is unsigned.
1341      Known = KnownBits::computeForAddSub(
1342          /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1343    }
1344    if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1345      KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1346      Known = KnownBits::computeForAddSub(
1347          /*Add=*/true, /*NSW=*/false, Known, Index);
1348    }
1349    break;
1350  }
1351  case Instruction::PHI: {
1352    const PHINode *P = cast<PHINode>(I);
1353    BinaryOperator *BO = nullptr;
1354    Value *R = nullptr, *L = nullptr;
1355    if (matchSimpleRecurrence(P, BO, R, L)) {
1356      // Handle the case of a simple two-predecessor recurrence PHI.
1357      // There's a lot more that could theoretically be done here, but
1358      // this is sufficient to catch some interesting cases.
1359      unsigned Opcode = BO->getOpcode();
1360
1361      // If this is a shift recurrence, we know the bits being shifted in.
1362      // We can combine that with information about the start value of the
1363      // recurrence to conclude facts about the result.
1364      if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1365           Opcode == Instruction::Shl) &&
1366          BO->getOperand(0) == I) {
1367
1368        // We have matched a recurrence of the form:
1369        // %iv = [R, %entry], [%iv.next, %backedge]
1370        // %iv.next = shift_op %iv, L
1371
1372        // Recurse with the phi context to avoid concern about whether facts
1373        // inferred hold at original context instruction.  TODO: It may be
1374        // correct to use the original context.  IF warranted, explore and
1375        // add sufficient tests to cover.
1376        Query RecQ = Q;
1377        RecQ.CxtI = P;
1378        computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1379        switch (Opcode) {
1380        case Instruction::Shl:
1381          // A shl recurrence will only increase the tailing zeros
1382          Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1383          break;
1384        case Instruction::LShr:
1385          // A lshr recurrence will preserve the leading zeros of the
1386          // start value
1387          Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1388          break;
1389        case Instruction::AShr:
1390          // An ashr recurrence will extend the initial sign bit
1391          Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1392          Known.One.setHighBits(Known2.countMinLeadingOnes());
1393          break;
1394        };
1395      }
1396
1397      // Check for operations that have the property that if
1398      // both their operands have low zero bits, the result
1399      // will have low zero bits.
1400      if (Opcode == Instruction::Add ||
1401          Opcode == Instruction::Sub ||
1402          Opcode == Instruction::And ||
1403          Opcode == Instruction::Or ||
1404          Opcode == Instruction::Mul) {
1405        // Change the context instruction to the "edge" that flows into the
1406        // phi. This is important because that is where the value is actually
1407        // "evaluated" even though it is used later somewhere else. (see also
1408        // D69571).
1409        Query RecQ = Q;
1410
1411        unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1412        Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1413        Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1414
1415        // Ok, we have a PHI of the form L op= R. Check for low
1416        // zero bits.
1417        RecQ.CxtI = RInst;
1418        computeKnownBits(R, Known2, Depth + 1, RecQ);
1419
1420        // We need to take the minimum number of known bits
1421        KnownBits Known3(BitWidth);
1422        RecQ.CxtI = LInst;
1423        computeKnownBits(L, Known3, Depth + 1, RecQ);
1424
1425        Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1426                                       Known3.countMinTrailingZeros()));
1427
1428        auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1429        if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1430          // If initial value of recurrence is nonnegative, and we are adding
1431          // a nonnegative number with nsw, the result can only be nonnegative
1432          // or poison value regardless of the number of times we execute the
1433          // add in phi recurrence. If initial value is negative and we are
1434          // adding a negative number with nsw, the result can only be
1435          // negative or poison value. Similar arguments apply to sub and mul.
1436          //
1437          // (add non-negative, non-negative) --> non-negative
1438          // (add negative, negative) --> negative
1439          if (Opcode == Instruction::Add) {
1440            if (Known2.isNonNegative() && Known3.isNonNegative())
1441              Known.makeNonNegative();
1442            else if (Known2.isNegative() && Known3.isNegative())
1443              Known.makeNegative();
1444          }
1445
1446          // (sub nsw non-negative, negative) --> non-negative
1447          // (sub nsw negative, non-negative) --> negative
1448          else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1449            if (Known2.isNonNegative() && Known3.isNegative())
1450              Known.makeNonNegative();
1451            else if (Known2.isNegative() && Known3.isNonNegative())
1452              Known.makeNegative();
1453          }
1454
1455          // (mul nsw non-negative, non-negative) --> non-negative
1456          else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1457                   Known3.isNonNegative())
1458            Known.makeNonNegative();
1459        }
1460
1461        break;
1462      }
1463    }
1464
1465    // Unreachable blocks may have zero-operand PHI nodes.
1466    if (P->getNumIncomingValues() == 0)
1467      break;
1468
1469    // Otherwise take the unions of the known bit sets of the operands,
1470    // taking conservative care to avoid excessive recursion.
1471    if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1472      // Skip if every incoming value references to ourself.
1473      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1474        break;
1475
1476      Known.Zero.setAllBits();
1477      Known.One.setAllBits();
1478      for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1479        Value *IncValue = P->getIncomingValue(u);
1480        // Skip direct self references.
1481        if (IncValue == P) continue;
1482
1483        // Change the context instruction to the "edge" that flows into the
1484        // phi. This is important because that is where the value is actually
1485        // "evaluated" even though it is used later somewhere else. (see also
1486        // D69571).
1487        Query RecQ = Q;
1488        RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1489
1490        Known2 = KnownBits(BitWidth);
1491        // Recurse, but cap the recursion to one level, because we don't
1492        // want to waste time spinning around in loops.
1493        computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1494        Known = KnownBits::commonBits(Known, Known2);
1495        // If all bits have been ruled out, there's no need to check
1496        // more operands.
1497        if (Known.isUnknown())
1498          break;
1499      }
1500    }
1501    break;
1502  }
1503  case Instruction::Call:
1504  case Instruction::Invoke:
1505    // If range metadata is attached to this call, set known bits from that,
1506    // and then intersect with known bits based on other properties of the
1507    // function.
1508    if (MDNode *MD =
1509            Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1510      computeKnownBitsFromRangeMetadata(*MD, Known);
1511    if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1512      computeKnownBits(RV, Known2, Depth + 1, Q);
1513      Known.Zero |= Known2.Zero;
1514      Known.One |= Known2.One;
1515    }
1516    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1517      switch (II->getIntrinsicID()) {
1518      default: break;
1519      case Intrinsic::abs: {
1520        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1521        bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1522        Known = Known2.abs(IntMinIsPoison);
1523        break;
1524      }
1525      case Intrinsic::bitreverse:
1526        computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1527        Known.Zero |= Known2.Zero.reverseBits();
1528        Known.One |= Known2.One.reverseBits();
1529        break;
1530      case Intrinsic::bswap:
1531        computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1532        Known.Zero |= Known2.Zero.byteSwap();
1533        Known.One |= Known2.One.byteSwap();
1534        break;
1535      case Intrinsic::ctlz: {
1536        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1537        // If we have a known 1, its position is our upper bound.
1538        unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1539        // If this call is undefined for 0, the result will be less than 2^n.
1540        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1541          PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1542        unsigned LowBits = Log2_32(PossibleLZ)+1;
1543        Known.Zero.setBitsFrom(LowBits);
1544        break;
1545      }
1546      case Intrinsic::cttz: {
1547        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1548        // If we have a known 1, its position is our upper bound.
1549        unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1550        // If this call is undefined for 0, the result will be less than 2^n.
1551        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1552          PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1553        unsigned LowBits = Log2_32(PossibleTZ)+1;
1554        Known.Zero.setBitsFrom(LowBits);
1555        break;
1556      }
1557      case Intrinsic::ctpop: {
1558        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1559        // We can bound the space the count needs.  Also, bits known to be zero
1560        // can't contribute to the population.
1561        unsigned BitsPossiblySet = Known2.countMaxPopulation();
1562        unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1563        Known.Zero.setBitsFrom(LowBits);
1564        // TODO: we could bound KnownOne using the lower bound on the number
1565        // of bits which might be set provided by popcnt KnownOne2.
1566        break;
1567      }
1568      case Intrinsic::fshr:
1569      case Intrinsic::fshl: {
1570        const APInt *SA;
1571        if (!match(I->getOperand(2), m_APInt(SA)))
1572          break;
1573
1574        // Normalize to funnel shift left.
1575        uint64_t ShiftAmt = SA->urem(BitWidth);
1576        if (II->getIntrinsicID() == Intrinsic::fshr)
1577          ShiftAmt = BitWidth - ShiftAmt;
1578
1579        KnownBits Known3(BitWidth);
1580        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1581        computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1582
1583        Known.Zero =
1584            Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1585        Known.One =
1586            Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1587        break;
1588      }
1589      case Intrinsic::uadd_sat:
1590      case Intrinsic::usub_sat: {
1591        bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1592        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1593        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1594
1595        // Add: Leading ones of either operand are preserved.
1596        // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1597        // as leading zeros in the result.
1598        unsigned LeadingKnown;
1599        if (IsAdd)
1600          LeadingKnown = std::max(Known.countMinLeadingOnes(),
1601                                  Known2.countMinLeadingOnes());
1602        else
1603          LeadingKnown = std::max(Known.countMinLeadingZeros(),
1604                                  Known2.countMinLeadingOnes());
1605
1606        Known = KnownBits::computeForAddSub(
1607            IsAdd, /* NSW */ false, Known, Known2);
1608
1609        // We select between the operation result and all-ones/zero
1610        // respectively, so we can preserve known ones/zeros.
1611        if (IsAdd) {
1612          Known.One.setHighBits(LeadingKnown);
1613          Known.Zero.clearAllBits();
1614        } else {
1615          Known.Zero.setHighBits(LeadingKnown);
1616          Known.One.clearAllBits();
1617        }
1618        break;
1619      }
1620      case Intrinsic::umin:
1621        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1622        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1623        Known = KnownBits::umin(Known, Known2);
1624        break;
1625      case Intrinsic::umax:
1626        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1627        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1628        Known = KnownBits::umax(Known, Known2);
1629        break;
1630      case Intrinsic::smin:
1631        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1632        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1633        Known = KnownBits::smin(Known, Known2);
1634        break;
1635      case Intrinsic::smax:
1636        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1637        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1638        Known = KnownBits::smax(Known, Known2);
1639        break;
1640      case Intrinsic::x86_sse42_crc32_64_64:
1641        Known.Zero.setBitsFrom(32);
1642        break;
1643      case Intrinsic::riscv_vsetvli:
1644      case Intrinsic::riscv_vsetvlimax:
1645        // Assume that VL output is positive and would fit in an int32_t.
1646        // TODO: VLEN might be capped at 16 bits in a future V spec update.
1647        if (BitWidth >= 32)
1648          Known.Zero.setBitsFrom(31);
1649        break;
1650      }
1651    }
1652    break;
1653  case Instruction::ShuffleVector: {
1654    auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1655    // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1656    if (!Shuf) {
1657      Known.resetAll();
1658      return;
1659    }
1660    // For undef elements, we don't know anything about the common state of
1661    // the shuffle result.
1662    APInt DemandedLHS, DemandedRHS;
1663    if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1664      Known.resetAll();
1665      return;
1666    }
1667    Known.One.setAllBits();
1668    Known.Zero.setAllBits();
1669    if (!!DemandedLHS) {
1670      const Value *LHS = Shuf->getOperand(0);
1671      computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1672      // If we don't know any bits, early out.
1673      if (Known.isUnknown())
1674        break;
1675    }
1676    if (!!DemandedRHS) {
1677      const Value *RHS = Shuf->getOperand(1);
1678      computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1679      Known = KnownBits::commonBits(Known, Known2);
1680    }
1681    break;
1682  }
1683  case Instruction::InsertElement: {
1684    const Value *Vec = I->getOperand(0);
1685    const Value *Elt = I->getOperand(1);
1686    auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1687    // Early out if the index is non-constant or out-of-range.
1688    unsigned NumElts = DemandedElts.getBitWidth();
1689    if (!CIdx || CIdx->getValue().uge(NumElts)) {
1690      Known.resetAll();
1691      return;
1692    }
1693    Known.One.setAllBits();
1694    Known.Zero.setAllBits();
1695    unsigned EltIdx = CIdx->getZExtValue();
1696    // Do we demand the inserted element?
1697    if (DemandedElts[EltIdx]) {
1698      computeKnownBits(Elt, Known, Depth + 1, Q);
1699      // If we don't know any bits, early out.
1700      if (Known.isUnknown())
1701        break;
1702    }
1703    // We don't need the base vector element that has been inserted.
1704    APInt DemandedVecElts = DemandedElts;
1705    DemandedVecElts.clearBit(EltIdx);
1706    if (!!DemandedVecElts) {
1707      computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1708      Known = KnownBits::commonBits(Known, Known2);
1709    }
1710    break;
1711  }
1712  case Instruction::ExtractElement: {
1713    // Look through extract element. If the index is non-constant or
1714    // out-of-range demand all elements, otherwise just the extracted element.
1715    const Value *Vec = I->getOperand(0);
1716    const Value *Idx = I->getOperand(1);
1717    auto *CIdx = dyn_cast<ConstantInt>(Idx);
1718    if (isa<ScalableVectorType>(Vec->getType())) {
1719      // FIXME: there's probably *something* we can do with scalable vectors
1720      Known.resetAll();
1721      break;
1722    }
1723    unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1724    APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1725    if (CIdx && CIdx->getValue().ult(NumElts))
1726      DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1727    computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1728    break;
1729  }
1730  case Instruction::ExtractValue:
1731    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1732      const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1733      if (EVI->getNumIndices() != 1) break;
1734      if (EVI->getIndices()[0] == 0) {
1735        switch (II->getIntrinsicID()) {
1736        default: break;
1737        case Intrinsic::uadd_with_overflow:
1738        case Intrinsic::sadd_with_overflow:
1739          computeKnownBitsAddSub(true, II->getArgOperand(0),
1740                                 II->getArgOperand(1), false, DemandedElts,
1741                                 Known, Known2, Depth, Q);
1742          break;
1743        case Intrinsic::usub_with_overflow:
1744        case Intrinsic::ssub_with_overflow:
1745          computeKnownBitsAddSub(false, II->getArgOperand(0),
1746                                 II->getArgOperand(1), false, DemandedElts,
1747                                 Known, Known2, Depth, Q);
1748          break;
1749        case Intrinsic::umul_with_overflow:
1750        case Intrinsic::smul_with_overflow:
1751          computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1752                              DemandedElts, Known, Known2, Depth, Q);
1753          break;
1754        }
1755      }
1756    }
1757    break;
1758  case Instruction::Freeze:
1759    if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1760                                  Depth + 1))
1761      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1762    break;
1763  }
1764}
1765
1766/// Determine which bits of V are known to be either zero or one and return
1767/// them.
1768KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1769                           unsigned Depth, const Query &Q) {
1770  KnownBits Known(getBitWidth(V->getType(), Q.DL));
1771  computeKnownBits(V, DemandedElts, Known, Depth, Q);
1772  return Known;
1773}
1774
1775/// Determine which bits of V are known to be either zero or one and return
1776/// them.
1777KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1778  KnownBits Known(getBitWidth(V->getType(), Q.DL));
1779  computeKnownBits(V, Known, Depth, Q);
1780  return Known;
1781}
1782
1783/// Determine which bits of V are known to be either zero or one and return
1784/// them in the Known bit set.
1785///
1786/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1787/// we cannot optimize based on the assumption that it is zero without changing
1788/// it to be an explicit zero.  If we don't change it to zero, other code could
1789/// optimized based on the contradictory assumption that it is non-zero.
1790/// Because instcombine aggressively folds operations with undef args anyway,
1791/// this won't lose us code quality.
1792///
1793/// This function is defined on values with integer type, values with pointer
1794/// type, and vectors of integers.  In the case
1795/// where V is a vector, known zero, and known one values are the
1796/// same width as the vector element, and the bit is set only if it is true
1797/// for all of the demanded elements in the vector specified by DemandedElts.
1798void computeKnownBits(const Value *V, const APInt &DemandedElts,
1799                      KnownBits &Known, unsigned Depth, const Query &Q) {
1800  if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1801    // No demanded elts or V is a scalable vector, better to assume we don't
1802    // know anything.
1803    Known.resetAll();
1804    return;
1805  }
1806
1807  assert(V && "No Value?");
1808  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1809
1810#ifndef NDEBUG
1811  Type *Ty = V->getType();
1812  unsigned BitWidth = Known.getBitWidth();
1813
1814  assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1815         "Not integer or pointer type!");
1816
1817  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1818    assert(
1819        FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1820        "DemandedElt width should equal the fixed vector number of elements");
1821  } else {
1822    assert(DemandedElts == APInt(1, 1) &&
1823           "DemandedElt width should be 1 for scalars");
1824  }
1825
1826  Type *ScalarTy = Ty->getScalarType();
1827  if (ScalarTy->isPointerTy()) {
1828    assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1829           "V and Known should have same BitWidth");
1830  } else {
1831    assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1832           "V and Known should have same BitWidth");
1833  }
1834#endif
1835
1836  const APInt *C;
1837  if (match(V, m_APInt(C))) {
1838    // We know all of the bits for a scalar constant or a splat vector constant!
1839    Known = KnownBits::makeConstant(*C);
1840    return;
1841  }
1842  // Null and aggregate-zero are all-zeros.
1843  if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1844    Known.setAllZero();
1845    return;
1846  }
1847  // Handle a constant vector by taking the intersection of the known bits of
1848  // each element.
1849  if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1850    // We know that CDV must be a vector of integers. Take the intersection of
1851    // each element.
1852    Known.Zero.setAllBits(); Known.One.setAllBits();
1853    for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1854      if (!DemandedElts[i])
1855        continue;
1856      APInt Elt = CDV->getElementAsAPInt(i);
1857      Known.Zero &= ~Elt;
1858      Known.One &= Elt;
1859    }
1860    return;
1861  }
1862
1863  if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1864    // We know that CV must be a vector of integers. Take the intersection of
1865    // each element.
1866    Known.Zero.setAllBits(); Known.One.setAllBits();
1867    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1868      if (!DemandedElts[i])
1869        continue;
1870      Constant *Element = CV->getAggregateElement(i);
1871      auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1872      if (!ElementCI) {
1873        Known.resetAll();
1874        return;
1875      }
1876      const APInt &Elt = ElementCI->getValue();
1877      Known.Zero &= ~Elt;
1878      Known.One &= Elt;
1879    }
1880    return;
1881  }
1882
1883  // Start out not knowing anything.
1884  Known.resetAll();
1885
1886  // We can't imply anything about undefs.
1887  if (isa<UndefValue>(V))
1888    return;
1889
1890  // There's no point in looking through other users of ConstantData for
1891  // assumptions.  Confirm that we've handled them all.
1892  assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1893
1894  // All recursive calls that increase depth must come after this.
1895  if (Depth == MaxAnalysisRecursionDepth)
1896    return;
1897
1898  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1899  // the bits of its aliasee.
1900  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1901    if (!GA->isInterposable())
1902      computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1903    return;
1904  }
1905
1906  if (const Operator *I = dyn_cast<Operator>(V))
1907    computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1908
1909  // Aligned pointers have trailing zeros - refine Known.Zero set
1910  if (isa<PointerType>(V->getType())) {
1911    Align Alignment = V->getPointerAlignment(Q.DL);
1912    Known.Zero.setLowBits(Log2(Alignment));
1913  }
1914
1915  // computeKnownBitsFromAssume strictly refines Known.
1916  // Therefore, we run them after computeKnownBitsFromOperator.
1917
1918  // Check whether a nearby assume intrinsic can determine some known bits.
1919  computeKnownBitsFromAssume(V, Known, Depth, Q);
1920
1921  assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1922}
1923
1924/// Return true if the given value is known to have exactly one
1925/// bit set when defined. For vectors return true if every element is known to
1926/// be a power of two when defined. Supports values with integer or pointer
1927/// types and vectors of integers.
1928bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1929                            const Query &Q) {
1930  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1931
1932  // Attempt to match against constants.
1933  if (OrZero && match(V, m_Power2OrZero()))
1934      return true;
1935  if (match(V, m_Power2()))
1936      return true;
1937
1938  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1939  // it is shifted off the end then the result is undefined.
1940  if (match(V, m_Shl(m_One(), m_Value())))
1941    return true;
1942
1943  // (signmask) >>l X is clearly a power of two if the one is not shifted off
1944  // the bottom.  If it is shifted off the bottom then the result is undefined.
1945  if (match(V, m_LShr(m_SignMask(), m_Value())))
1946    return true;
1947
1948  // The remaining tests are all recursive, so bail out if we hit the limit.
1949  if (Depth++ == MaxAnalysisRecursionDepth)
1950    return false;
1951
1952  Value *X = nullptr, *Y = nullptr;
1953  // A shift left or a logical shift right of a power of two is a power of two
1954  // or zero.
1955  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1956                 match(V, m_LShr(m_Value(X), m_Value()))))
1957    return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1958
1959  if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1960    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1961
1962  if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1963    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1964           isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1965
1966  // Peek through min/max.
1967  if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
1968    return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
1969           isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
1970  }
1971
1972  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1973    // A power of two and'd with anything is a power of two or zero.
1974    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1975        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1976      return true;
1977    // X & (-X) is always a power of two or zero.
1978    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1979      return true;
1980    return false;
1981  }
1982
1983  // Adding a power-of-two or zero to the same power-of-two or zero yields
1984  // either the original power-of-two, a larger power-of-two or zero.
1985  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1986    const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1987    if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1988        Q.IIQ.hasNoSignedWrap(VOBO)) {
1989      if (match(X, m_And(m_Specific(Y), m_Value())) ||
1990          match(X, m_And(m_Value(), m_Specific(Y))))
1991        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1992          return true;
1993      if (match(Y, m_And(m_Specific(X), m_Value())) ||
1994          match(Y, m_And(m_Value(), m_Specific(X))))
1995        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1996          return true;
1997
1998      unsigned BitWidth = V->getType()->getScalarSizeInBits();
1999      KnownBits LHSBits(BitWidth);
2000      computeKnownBits(X, LHSBits, Depth, Q);
2001
2002      KnownBits RHSBits(BitWidth);
2003      computeKnownBits(Y, RHSBits, Depth, Q);
2004      // If i8 V is a power of two or zero:
2005      //  ZeroBits: 1 1 1 0 1 1 1 1
2006      // ~ZeroBits: 0 0 0 1 0 0 0 0
2007      if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2008        // If OrZero isn't set, we cannot give back a zero result.
2009        // Make sure either the LHS or RHS has a bit set.
2010        if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2011          return true;
2012    }
2013  }
2014
2015  // An exact divide or right shift can only shift off zero bits, so the result
2016  // is a power of two only if the first operand is a power of two and not
2017  // copying a sign bit (sdiv int_min, 2).
2018  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2019      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2020    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2021                                  Depth, Q);
2022  }
2023
2024  return false;
2025}
2026
2027/// Test whether a GEP's result is known to be non-null.
2028///
2029/// Uses properties inherent in a GEP to try to determine whether it is known
2030/// to be non-null.
2031///
2032/// Currently this routine does not support vector GEPs.
2033static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2034                              const Query &Q) {
2035  const Function *F = nullptr;
2036  if (const Instruction *I = dyn_cast<Instruction>(GEP))
2037    F = I->getFunction();
2038
2039  if (!GEP->isInBounds() ||
2040      NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2041    return false;
2042
2043  // FIXME: Support vector-GEPs.
2044  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2045
2046  // If the base pointer is non-null, we cannot walk to a null address with an
2047  // inbounds GEP in address space zero.
2048  if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2049    return true;
2050
2051  // Walk the GEP operands and see if any operand introduces a non-zero offset.
2052  // If so, then the GEP cannot produce a null pointer, as doing so would
2053  // inherently violate the inbounds contract within address space zero.
2054  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2055       GTI != GTE; ++GTI) {
2056    // Struct types are easy -- they must always be indexed by a constant.
2057    if (StructType *STy = GTI.getStructTypeOrNull()) {
2058      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2059      unsigned ElementIdx = OpC->getZExtValue();
2060      const StructLayout *SL = Q.DL.getStructLayout(STy);
2061      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2062      if (ElementOffset > 0)
2063        return true;
2064      continue;
2065    }
2066
2067    // If we have a zero-sized type, the index doesn't matter. Keep looping.
2068    if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2069      continue;
2070
2071    // Fast path the constant operand case both for efficiency and so we don't
2072    // increment Depth when just zipping down an all-constant GEP.
2073    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2074      if (!OpC->isZero())
2075        return true;
2076      continue;
2077    }
2078
2079    // We post-increment Depth here because while isKnownNonZero increments it
2080    // as well, when we pop back up that increment won't persist. We don't want
2081    // to recurse 10k times just because we have 10k GEP operands. We don't
2082    // bail completely out because we want to handle constant GEPs regardless
2083    // of depth.
2084    if (Depth++ >= MaxAnalysisRecursionDepth)
2085      continue;
2086
2087    if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2088      return true;
2089  }
2090
2091  return false;
2092}
2093
2094static bool isKnownNonNullFromDominatingCondition(const Value *V,
2095                                                  const Instruction *CtxI,
2096                                                  const DominatorTree *DT) {
2097  if (isa<Constant>(V))
2098    return false;
2099
2100  if (!CtxI || !DT)
2101    return false;
2102
2103  unsigned NumUsesExplored = 0;
2104  for (auto *U : V->users()) {
2105    // Avoid massive lists
2106    if (NumUsesExplored >= DomConditionsMaxUses)
2107      break;
2108    NumUsesExplored++;
2109
2110    // If the value is used as an argument to a call or invoke, then argument
2111    // attributes may provide an answer about null-ness.
2112    if (const auto *CB = dyn_cast<CallBase>(U))
2113      if (auto *CalledFunc = CB->getCalledFunction())
2114        for (const Argument &Arg : CalledFunc->args())
2115          if (CB->getArgOperand(Arg.getArgNo()) == V &&
2116              Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2117              DT->dominates(CB, CtxI))
2118            return true;
2119
2120    // If the value is used as a load/store, then the pointer must be non null.
2121    if (V == getLoadStorePointerOperand(U)) {
2122      const Instruction *I = cast<Instruction>(U);
2123      if (!NullPointerIsDefined(I->getFunction(),
2124                                V->getType()->getPointerAddressSpace()) &&
2125          DT->dominates(I, CtxI))
2126        return true;
2127    }
2128
2129    // Consider only compare instructions uniquely controlling a branch
2130    Value *RHS;
2131    CmpInst::Predicate Pred;
2132    if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2133      continue;
2134
2135    bool NonNullIfTrue;
2136    if (cmpExcludesZero(Pred, RHS))
2137      NonNullIfTrue = true;
2138    else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2139      NonNullIfTrue = false;
2140    else
2141      continue;
2142
2143    SmallVector<const User *, 4> WorkList;
2144    SmallPtrSet<const User *, 4> Visited;
2145    for (auto *CmpU : U->users()) {
2146      assert(WorkList.empty() && "Should be!");
2147      if (Visited.insert(CmpU).second)
2148        WorkList.push_back(CmpU);
2149
2150      while (!WorkList.empty()) {
2151        auto *Curr = WorkList.pop_back_val();
2152
2153        // If a user is an AND, add all its users to the work list. We only
2154        // propagate "pred != null" condition through AND because it is only
2155        // correct to assume that all conditions of AND are met in true branch.
2156        // TODO: Support similar logic of OR and EQ predicate?
2157        if (NonNullIfTrue)
2158          if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2159            for (auto *CurrU : Curr->users())
2160              if (Visited.insert(CurrU).second)
2161                WorkList.push_back(CurrU);
2162            continue;
2163          }
2164
2165        if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2166          assert(BI->isConditional() && "uses a comparison!");
2167
2168          BasicBlock *NonNullSuccessor =
2169              BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2170          BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2171          if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2172            return true;
2173        } else if (NonNullIfTrue && isGuard(Curr) &&
2174                   DT->dominates(cast<Instruction>(Curr), CtxI)) {
2175          return true;
2176        }
2177      }
2178    }
2179  }
2180
2181  return false;
2182}
2183
2184/// Does the 'Range' metadata (which must be a valid MD_range operand list)
2185/// ensure that the value it's attached to is never Value?  'RangeType' is
2186/// is the type of the value described by the range.
2187static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2188  const unsigned NumRanges = Ranges->getNumOperands() / 2;
2189  assert(NumRanges >= 1);
2190  for (unsigned i = 0; i < NumRanges; ++i) {
2191    ConstantInt *Lower =
2192        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2193    ConstantInt *Upper =
2194        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2195    ConstantRange Range(Lower->getValue(), Upper->getValue());
2196    if (Range.contains(Value))
2197      return false;
2198  }
2199  return true;
2200}
2201
2202/// Try to detect a recurrence that monotonically increases/decreases from a
2203/// non-zero starting value. These are common as induction variables.
2204static bool isNonZeroRecurrence(const PHINode *PN) {
2205  BinaryOperator *BO = nullptr;
2206  Value *Start = nullptr, *Step = nullptr;
2207  const APInt *StartC, *StepC;
2208  if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2209      !match(Start, m_APInt(StartC)) || StartC->isNullValue())
2210    return false;
2211
2212  switch (BO->getOpcode()) {
2213  case Instruction::Add:
2214    // Starting from non-zero and stepping away from zero can never wrap back
2215    // to zero.
2216    return BO->hasNoUnsignedWrap() ||
2217           (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2218            StartC->isNegative() == StepC->isNegative());
2219  case Instruction::Mul:
2220    return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2221           match(Step, m_APInt(StepC)) && !StepC->isNullValue();
2222  case Instruction::Shl:
2223    return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2224  case Instruction::AShr:
2225  case Instruction::LShr:
2226    return BO->isExact();
2227  default:
2228    return false;
2229  }
2230}
2231
2232/// Return true if the given value is known to be non-zero when defined. For
2233/// vectors, return true if every demanded element is known to be non-zero when
2234/// defined. For pointers, if the context instruction and dominator tree are
2235/// specified, perform context-sensitive analysis and return true if the
2236/// pointer couldn't possibly be null at the specified instruction.
2237/// Supports values with integer or pointer type and vectors of integers.
2238bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2239                    const Query &Q) {
2240  // FIXME: We currently have no way to represent the DemandedElts of a scalable
2241  // vector
2242  if (isa<ScalableVectorType>(V->getType()))
2243    return false;
2244
2245  if (auto *C = dyn_cast<Constant>(V)) {
2246    if (C->isNullValue())
2247      return false;
2248    if (isa<ConstantInt>(C))
2249      // Must be non-zero due to null test above.
2250      return true;
2251
2252    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2253      // See the comment for IntToPtr/PtrToInt instructions below.
2254      if (CE->getOpcode() == Instruction::IntToPtr ||
2255          CE->getOpcode() == Instruction::PtrToInt)
2256        if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2257                .getFixedSize() <=
2258            Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2259          return isKnownNonZero(CE->getOperand(0), Depth, Q);
2260    }
2261
2262    // For constant vectors, check that all elements are undefined or known
2263    // non-zero to determine that the whole vector is known non-zero.
2264    if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2265      for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2266        if (!DemandedElts[i])
2267          continue;
2268        Constant *Elt = C->getAggregateElement(i);
2269        if (!Elt || Elt->isNullValue())
2270          return false;
2271        if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2272          return false;
2273      }
2274      return true;
2275    }
2276
2277    // A global variable in address space 0 is non null unless extern weak
2278    // or an absolute symbol reference. Other address spaces may have null as a
2279    // valid address for a global, so we can't assume anything.
2280    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2281      if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2282          GV->getType()->getAddressSpace() == 0)
2283        return true;
2284    } else
2285      return false;
2286  }
2287
2288  if (auto *I = dyn_cast<Instruction>(V)) {
2289    if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2290      // If the possible ranges don't contain zero, then the value is
2291      // definitely non-zero.
2292      if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2293        const APInt ZeroValue(Ty->getBitWidth(), 0);
2294        if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2295          return true;
2296      }
2297    }
2298  }
2299
2300  if (isKnownNonZeroFromAssume(V, Q))
2301    return true;
2302
2303  // Some of the tests below are recursive, so bail out if we hit the limit.
2304  if (Depth++ >= MaxAnalysisRecursionDepth)
2305    return false;
2306
2307  // Check for pointer simplifications.
2308
2309  if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2310    // Alloca never returns null, malloc might.
2311    if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2312      return true;
2313
2314    // A byval, inalloca may not be null in a non-default addres space. A
2315    // nonnull argument is assumed never 0.
2316    if (const Argument *A = dyn_cast<Argument>(V)) {
2317      if (((A->hasPassPointeeByValueCopyAttr() &&
2318            !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2319           A->hasNonNullAttr()))
2320        return true;
2321    }
2322
2323    // A Load tagged with nonnull metadata is never null.
2324    if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2325      if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2326        return true;
2327
2328    if (const auto *Call = dyn_cast<CallBase>(V)) {
2329      if (Call->isReturnNonNull())
2330        return true;
2331      if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2332        return isKnownNonZero(RP, Depth, Q);
2333    }
2334  }
2335
2336  if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2337    return true;
2338
2339  // Check for recursive pointer simplifications.
2340  if (V->getType()->isPointerTy()) {
2341    // Look through bitcast operations, GEPs, and int2ptr instructions as they
2342    // do not alter the value, or at least not the nullness property of the
2343    // value, e.g., int2ptr is allowed to zero/sign extend the value.
2344    //
2345    // Note that we have to take special care to avoid looking through
2346    // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2347    // as casts that can alter the value, e.g., AddrSpaceCasts.
2348    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2349      return isGEPKnownNonNull(GEP, Depth, Q);
2350
2351    if (auto *BCO = dyn_cast<BitCastOperator>(V))
2352      return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2353
2354    if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2355      if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2356          Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2357        return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2358  }
2359
2360  // Similar to int2ptr above, we can look through ptr2int here if the cast
2361  // is a no-op or an extend and not a truncate.
2362  if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2363    if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2364        Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2365      return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2366
2367  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2368
2369  // X | Y != 0 if X != 0 or Y != 0.
2370  Value *X = nullptr, *Y = nullptr;
2371  if (match(V, m_Or(m_Value(X), m_Value(Y))))
2372    return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2373           isKnownNonZero(Y, DemandedElts, Depth, Q);
2374
2375  // ext X != 0 if X != 0.
2376  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2377    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2378
2379  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2380  // if the lowest bit is shifted off the end.
2381  if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2382    // shl nuw can't remove any non-zero bits.
2383    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2384    if (Q.IIQ.hasNoUnsignedWrap(BO))
2385      return isKnownNonZero(X, Depth, Q);
2386
2387    KnownBits Known(BitWidth);
2388    computeKnownBits(X, DemandedElts, Known, Depth, Q);
2389    if (Known.One[0])
2390      return true;
2391  }
2392  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2393  // defined if the sign bit is shifted off the end.
2394  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2395    // shr exact can only shift out zero bits.
2396    const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2397    if (BO->isExact())
2398      return isKnownNonZero(X, Depth, Q);
2399
2400    KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2401    if (Known.isNegative())
2402      return true;
2403
2404    // If the shifter operand is a constant, and all of the bits shifted
2405    // out are known to be zero, and X is known non-zero then at least one
2406    // non-zero bit must remain.
2407    if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2408      auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2409      // Is there a known one in the portion not shifted out?
2410      if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2411        return true;
2412      // Are all the bits to be shifted out known zero?
2413      if (Known.countMinTrailingZeros() >= ShiftVal)
2414        return isKnownNonZero(X, DemandedElts, Depth, Q);
2415    }
2416  }
2417  // div exact can only produce a zero if the dividend is zero.
2418  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2419    return isKnownNonZero(X, DemandedElts, Depth, Q);
2420  }
2421  // X + Y.
2422  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2423    KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2424    KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2425
2426    // If X and Y are both non-negative (as signed values) then their sum is not
2427    // zero unless both X and Y are zero.
2428    if (XKnown.isNonNegative() && YKnown.isNonNegative())
2429      if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2430          isKnownNonZero(Y, DemandedElts, Depth, Q))
2431        return true;
2432
2433    // If X and Y are both negative (as signed values) then their sum is not
2434    // zero unless both X and Y equal INT_MIN.
2435    if (XKnown.isNegative() && YKnown.isNegative()) {
2436      APInt Mask = APInt::getSignedMaxValue(BitWidth);
2437      // The sign bit of X is set.  If some other bit is set then X is not equal
2438      // to INT_MIN.
2439      if (XKnown.One.intersects(Mask))
2440        return true;
2441      // The sign bit of Y is set.  If some other bit is set then Y is not equal
2442      // to INT_MIN.
2443      if (YKnown.One.intersects(Mask))
2444        return true;
2445    }
2446
2447    // The sum of a non-negative number and a power of two is not zero.
2448    if (XKnown.isNonNegative() &&
2449        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2450      return true;
2451    if (YKnown.isNonNegative() &&
2452        isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2453      return true;
2454  }
2455  // X * Y.
2456  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2457    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2458    // If X and Y are non-zero then so is X * Y as long as the multiplication
2459    // does not overflow.
2460    if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2461        isKnownNonZero(X, DemandedElts, Depth, Q) &&
2462        isKnownNonZero(Y, DemandedElts, Depth, Q))
2463      return true;
2464  }
2465  // (C ? X : Y) != 0 if X != 0 and Y != 0.
2466  else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2467    if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2468        isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2469      return true;
2470  }
2471  // PHI
2472  else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2473    if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2474      return true;
2475
2476    // Check if all incoming values are non-zero using recursion.
2477    Query RecQ = Q;
2478    unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2479    return llvm::all_of(PN->operands(), [&](const Use &U) {
2480      if (U.get() == PN)
2481        return true;
2482      RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2483      return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2484    });
2485  }
2486  // ExtractElement
2487  else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2488    const Value *Vec = EEI->getVectorOperand();
2489    const Value *Idx = EEI->getIndexOperand();
2490    auto *CIdx = dyn_cast<ConstantInt>(Idx);
2491    if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2492      unsigned NumElts = VecTy->getNumElements();
2493      APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2494      if (CIdx && CIdx->getValue().ult(NumElts))
2495        DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2496      return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2497    }
2498  }
2499  // Freeze
2500  else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2501    auto *Op = FI->getOperand(0);
2502    if (isKnownNonZero(Op, Depth, Q) &&
2503        isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2504      return true;
2505  }
2506
2507  KnownBits Known(BitWidth);
2508  computeKnownBits(V, DemandedElts, Known, Depth, Q);
2509  return Known.One != 0;
2510}
2511
2512bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2513  // FIXME: We currently have no way to represent the DemandedElts of a scalable
2514  // vector
2515  if (isa<ScalableVectorType>(V->getType()))
2516    return false;
2517
2518  auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2519  APInt DemandedElts =
2520      FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2521  return isKnownNonZero(V, DemandedElts, Depth, Q);
2522}
2523
2524/// If the pair of operators are the same invertible function, return the
2525/// the operands of the function corresponding to each input. Otherwise,
2526/// return None.  An invertible function is one that is 1-to-1 and maps
2527/// every input value to exactly one output value.  This is equivalent to
2528/// saying that Op1 and Op2 are equal exactly when the specified pair of
2529/// operands are equal, (except that Op1 and Op2 may be poison more often.)
2530static Optional<std::pair<Value*, Value*>>
2531getInvertibleOperands(const Operator *Op1,
2532                      const Operator *Op2) {
2533  if (Op1->getOpcode() != Op2->getOpcode())
2534    return None;
2535
2536  auto getOperands = [&](unsigned OpNum) -> auto {
2537    return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2538  };
2539
2540  switch (Op1->getOpcode()) {
2541  default:
2542    break;
2543  case Instruction::Add:
2544  case Instruction::Sub:
2545    if (Op1->getOperand(0) == Op2->getOperand(0))
2546      return getOperands(1);
2547    if (Op1->getOperand(1) == Op2->getOperand(1))
2548      return getOperands(0);
2549    break;
2550  case Instruction::Mul: {
2551    // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2552    // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2553    // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2554    auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2555    auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2556    if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2557        (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2558      break;
2559
2560    // Assume operand order has been canonicalized
2561    if (Op1->getOperand(1) == Op2->getOperand(1) &&
2562        isa<ConstantInt>(Op1->getOperand(1)) &&
2563        !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2564      return getOperands(0);
2565    break;
2566  }
2567  case Instruction::Shl: {
2568    // Same as multiplies, with the difference that we don't need to check
2569    // for a non-zero multiply. Shifts always multiply by non-zero.
2570    auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2571    auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2572    if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2573        (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2574      break;
2575
2576    if (Op1->getOperand(1) == Op2->getOperand(1))
2577      return getOperands(0);
2578    break;
2579  }
2580  case Instruction::AShr:
2581  case Instruction::LShr: {
2582    auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2583    auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2584    if (!PEO1->isExact() || !PEO2->isExact())
2585      break;
2586
2587    if (Op1->getOperand(1) == Op2->getOperand(1))
2588      return getOperands(0);
2589    break;
2590  }
2591  case Instruction::SExt:
2592  case Instruction::ZExt:
2593    if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2594      return getOperands(0);
2595    break;
2596  case Instruction::PHI: {
2597    const PHINode *PN1 = cast<PHINode>(Op1);
2598    const PHINode *PN2 = cast<PHINode>(Op2);
2599
2600    // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2601    // are a single invertible function of the start values? Note that repeated
2602    // application of an invertible function is also invertible
2603    BinaryOperator *BO1 = nullptr;
2604    Value *Start1 = nullptr, *Step1 = nullptr;
2605    BinaryOperator *BO2 = nullptr;
2606    Value *Start2 = nullptr, *Step2 = nullptr;
2607    if (PN1->getParent() != PN2->getParent() ||
2608        !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2609        !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2610      break;
2611
2612    auto Values = getInvertibleOperands(cast<Operator>(BO1),
2613                                        cast<Operator>(BO2));
2614    if (!Values)
2615       break;
2616
2617    // We have to be careful of mutually defined recurrences here.  Ex:
2618    // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2619    // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2620    // The invertibility of these is complicated, and not worth reasoning
2621    // about (yet?).
2622    if (Values->first != PN1 || Values->second != PN2)
2623      break;
2624
2625    return std::make_pair(Start1, Start2);
2626  }
2627  }
2628  return None;
2629}
2630
2631/// Return true if V2 == V1 + X, where X is known non-zero.
2632static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2633                           const Query &Q) {
2634  const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2635  if (!BO || BO->getOpcode() != Instruction::Add)
2636    return false;
2637  Value *Op = nullptr;
2638  if (V2 == BO->getOperand(0))
2639    Op = BO->getOperand(1);
2640  else if (V2 == BO->getOperand(1))
2641    Op = BO->getOperand(0);
2642  else
2643    return false;
2644  return isKnownNonZero(Op, Depth + 1, Q);
2645}
2646
2647/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2648/// the multiplication is nuw or nsw.
2649static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2650                          const Query &Q) {
2651  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2652    const APInt *C;
2653    return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2654           (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2655           !C->isNullValue() && !C->isOneValue() &&
2656           isKnownNonZero(V1, Depth + 1, Q);
2657  }
2658  return false;
2659}
2660
2661/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2662/// the shift is nuw or nsw.
2663static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2664                          const Query &Q) {
2665  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2666    const APInt *C;
2667    return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2668           (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2669           !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q);
2670  }
2671  return false;
2672}
2673
2674static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2675                           unsigned Depth, const Query &Q) {
2676  // Check two PHIs are in same block.
2677  if (PN1->getParent() != PN2->getParent())
2678    return false;
2679
2680  SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2681  bool UsedFullRecursion = false;
2682  for (const BasicBlock *IncomBB : PN1->blocks()) {
2683    if (!VisitedBBs.insert(IncomBB).second)
2684      continue; // Don't reprocess blocks that we have dealt with already.
2685    const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2686    const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2687    const APInt *C1, *C2;
2688    if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2689      continue;
2690
2691    // Only one pair of phi operands is allowed for full recursion.
2692    if (UsedFullRecursion)
2693      return false;
2694
2695    Query RecQ = Q;
2696    RecQ.CxtI = IncomBB->getTerminator();
2697    if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2698      return false;
2699    UsedFullRecursion = true;
2700  }
2701  return true;
2702}
2703
2704/// Return true if it is known that V1 != V2.
2705static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2706                            const Query &Q) {
2707  if (V1 == V2)
2708    return false;
2709  if (V1->getType() != V2->getType())
2710    // We can't look through casts yet.
2711    return false;
2712
2713  if (Depth >= MaxAnalysisRecursionDepth)
2714    return false;
2715
2716  // See if we can recurse through (exactly one of) our operands.  This
2717  // requires our operation be 1-to-1 and map every input value to exactly
2718  // one output value.  Such an operation is invertible.
2719  auto *O1 = dyn_cast<Operator>(V1);
2720  auto *O2 = dyn_cast<Operator>(V2);
2721  if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2722    if (auto Values = getInvertibleOperands(O1, O2))
2723      return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2724
2725    if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2726      const PHINode *PN2 = cast<PHINode>(V2);
2727      // FIXME: This is missing a generalization to handle the case where one is
2728      // a PHI and another one isn't.
2729      if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2730        return true;
2731    };
2732  }
2733
2734  if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2735    return true;
2736
2737  if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2738    return true;
2739
2740  if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2741    return true;
2742
2743  if (V1->getType()->isIntOrIntVectorTy()) {
2744    // Are any known bits in V1 contradictory to known bits in V2? If V1
2745    // has a known zero where V2 has a known one, they must not be equal.
2746    KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2747    KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2748
2749    if (Known1.Zero.intersects(Known2.One) ||
2750        Known2.Zero.intersects(Known1.One))
2751      return true;
2752  }
2753  return false;
2754}
2755
2756/// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2757/// simplify operations downstream. Mask is known to be zero for bits that V
2758/// cannot have.
2759///
2760/// This function is defined on values with integer type, values with pointer
2761/// type, and vectors of integers.  In the case
2762/// where V is a vector, the mask, known zero, and known one values are the
2763/// same width as the vector element, and the bit is set only if it is true
2764/// for all of the elements in the vector.
2765bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2766                       const Query &Q) {
2767  KnownBits Known(Mask.getBitWidth());
2768  computeKnownBits(V, Known, Depth, Q);
2769  return Mask.isSubsetOf(Known.Zero);
2770}
2771
2772// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2773// Returns the input and lower/upper bounds.
2774static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2775                                const APInt *&CLow, const APInt *&CHigh) {
2776  assert(isa<Operator>(Select) &&
2777         cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2778         "Input should be a Select!");
2779
2780  const Value *LHS = nullptr, *RHS = nullptr;
2781  SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2782  if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2783    return false;
2784
2785  if (!match(RHS, m_APInt(CLow)))
2786    return false;
2787
2788  const Value *LHS2 = nullptr, *RHS2 = nullptr;
2789  SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2790  if (getInverseMinMaxFlavor(SPF) != SPF2)
2791    return false;
2792
2793  if (!match(RHS2, m_APInt(CHigh)))
2794    return false;
2795
2796  if (SPF == SPF_SMIN)
2797    std::swap(CLow, CHigh);
2798
2799  In = LHS2;
2800  return CLow->sle(*CHigh);
2801}
2802
2803/// For vector constants, loop over the elements and find the constant with the
2804/// minimum number of sign bits. Return 0 if the value is not a vector constant
2805/// or if any element was not analyzed; otherwise, return the count for the
2806/// element with the minimum number of sign bits.
2807static unsigned computeNumSignBitsVectorConstant(const Value *V,
2808                                                 const APInt &DemandedElts,
2809                                                 unsigned TyBits) {
2810  const auto *CV = dyn_cast<Constant>(V);
2811  if (!CV || !isa<FixedVectorType>(CV->getType()))
2812    return 0;
2813
2814  unsigned MinSignBits = TyBits;
2815  unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2816  for (unsigned i = 0; i != NumElts; ++i) {
2817    if (!DemandedElts[i])
2818      continue;
2819    // If we find a non-ConstantInt, bail out.
2820    auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2821    if (!Elt)
2822      return 0;
2823
2824    MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2825  }
2826
2827  return MinSignBits;
2828}
2829
2830static unsigned ComputeNumSignBitsImpl(const Value *V,
2831                                       const APInt &DemandedElts,
2832                                       unsigned Depth, const Query &Q);
2833
2834static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2835                                   unsigned Depth, const Query &Q) {
2836  unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2837  assert(Result > 0 && "At least one sign bit needs to be present!");
2838  return Result;
2839}
2840
2841/// Return the number of times the sign bit of the register is replicated into
2842/// the other bits. We know that at least 1 bit is always equal to the sign bit
2843/// (itself), but other cases can give us information. For example, immediately
2844/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2845/// other, so we return 3. For vectors, return the number of sign bits for the
2846/// vector element with the minimum number of known sign bits of the demanded
2847/// elements in the vector specified by DemandedElts.
2848static unsigned ComputeNumSignBitsImpl(const Value *V,
2849                                       const APInt &DemandedElts,
2850                                       unsigned Depth, const Query &Q) {
2851  Type *Ty = V->getType();
2852
2853  // FIXME: We currently have no way to represent the DemandedElts of a scalable
2854  // vector
2855  if (isa<ScalableVectorType>(Ty))
2856    return 1;
2857
2858#ifndef NDEBUG
2859  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2860
2861  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2862    assert(
2863        FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2864        "DemandedElt width should equal the fixed vector number of elements");
2865  } else {
2866    assert(DemandedElts == APInt(1, 1) &&
2867           "DemandedElt width should be 1 for scalars");
2868  }
2869#endif
2870
2871  // We return the minimum number of sign bits that are guaranteed to be present
2872  // in V, so for undef we have to conservatively return 1.  We don't have the
2873  // same behavior for poison though -- that's a FIXME today.
2874
2875  Type *ScalarTy = Ty->getScalarType();
2876  unsigned TyBits = ScalarTy->isPointerTy() ?
2877    Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2878    Q.DL.getTypeSizeInBits(ScalarTy);
2879
2880  unsigned Tmp, Tmp2;
2881  unsigned FirstAnswer = 1;
2882
2883  // Note that ConstantInt is handled by the general computeKnownBits case
2884  // below.
2885
2886  if (Depth == MaxAnalysisRecursionDepth)
2887    return 1;
2888
2889  if (auto *U = dyn_cast<Operator>(V)) {
2890    switch (Operator::getOpcode(V)) {
2891    default: break;
2892    case Instruction::SExt:
2893      Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2894      return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2895
2896    case Instruction::SDiv: {
2897      const APInt *Denominator;
2898      // sdiv X, C -> adds log(C) sign bits.
2899      if (match(U->getOperand(1), m_APInt(Denominator))) {
2900
2901        // Ignore non-positive denominator.
2902        if (!Denominator->isStrictlyPositive())
2903          break;
2904
2905        // Calculate the incoming numerator bits.
2906        unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2907
2908        // Add floor(log(C)) bits to the numerator bits.
2909        return std::min(TyBits, NumBits + Denominator->logBase2());
2910      }
2911      break;
2912    }
2913
2914    case Instruction::SRem: {
2915      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2916
2917      const APInt *Denominator;
2918      // srem X, C -> we know that the result is within [-C+1,C) when C is a
2919      // positive constant.  This let us put a lower bound on the number of sign
2920      // bits.
2921      if (match(U->getOperand(1), m_APInt(Denominator))) {
2922
2923        // Ignore non-positive denominator.
2924        if (Denominator->isStrictlyPositive()) {
2925          // Calculate the leading sign bit constraints by examining the
2926          // denominator.  Given that the denominator is positive, there are two
2927          // cases:
2928          //
2929          //  1. The numerator is positive. The result range is [0,C) and
2930          //     [0,C) u< (1 << ceilLogBase2(C)).
2931          //
2932          //  2. The numerator is negative. Then the result range is (-C,0] and
2933          //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2934          //
2935          // Thus a lower bound on the number of sign bits is `TyBits -
2936          // ceilLogBase2(C)`.
2937
2938          unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2939          Tmp = std::max(Tmp, ResBits);
2940        }
2941      }
2942      return Tmp;
2943    }
2944
2945    case Instruction::AShr: {
2946      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2947      // ashr X, C   -> adds C sign bits.  Vectors too.
2948      const APInt *ShAmt;
2949      if (match(U->getOperand(1), m_APInt(ShAmt))) {
2950        if (ShAmt->uge(TyBits))
2951          break; // Bad shift.
2952        unsigned ShAmtLimited = ShAmt->getZExtValue();
2953        Tmp += ShAmtLimited;
2954        if (Tmp > TyBits) Tmp = TyBits;
2955      }
2956      return Tmp;
2957    }
2958    case Instruction::Shl: {
2959      const APInt *ShAmt;
2960      if (match(U->getOperand(1), m_APInt(ShAmt))) {
2961        // shl destroys sign bits.
2962        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2963        if (ShAmt->uge(TyBits) ||   // Bad shift.
2964            ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2965        Tmp2 = ShAmt->getZExtValue();
2966        return Tmp - Tmp2;
2967      }
2968      break;
2969    }
2970    case Instruction::And:
2971    case Instruction::Or:
2972    case Instruction::Xor: // NOT is handled here.
2973      // Logical binary ops preserve the number of sign bits at the worst.
2974      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2975      if (Tmp != 1) {
2976        Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2977        FirstAnswer = std::min(Tmp, Tmp2);
2978        // We computed what we know about the sign bits as our first
2979        // answer. Now proceed to the generic code that uses
2980        // computeKnownBits, and pick whichever answer is better.
2981      }
2982      break;
2983
2984    case Instruction::Select: {
2985      // If we have a clamp pattern, we know that the number of sign bits will
2986      // be the minimum of the clamp min/max range.
2987      const Value *X;
2988      const APInt *CLow, *CHigh;
2989      if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2990        return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2991
2992      Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2993      if (Tmp == 1) break;
2994      Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2995      return std::min(Tmp, Tmp2);
2996    }
2997
2998    case Instruction::Add:
2999      // Add can have at most one carry bit.  Thus we know that the output
3000      // is, at worst, one more bit than the inputs.
3001      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3002      if (Tmp == 1) break;
3003
3004      // Special case decrementing a value (ADD X, -1):
3005      if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3006        if (CRHS->isAllOnesValue()) {
3007          KnownBits Known(TyBits);
3008          computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3009
3010          // If the input is known to be 0 or 1, the output is 0/-1, which is
3011          // all sign bits set.
3012          if ((Known.Zero | 1).isAllOnesValue())
3013            return TyBits;
3014
3015          // If we are subtracting one from a positive number, there is no carry
3016          // out of the result.
3017          if (Known.isNonNegative())
3018            return Tmp;
3019        }
3020
3021      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3022      if (Tmp2 == 1) break;
3023      return std::min(Tmp, Tmp2) - 1;
3024
3025    case Instruction::Sub:
3026      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3027      if (Tmp2 == 1) break;
3028
3029      // Handle NEG.
3030      if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3031        if (CLHS->isNullValue()) {
3032          KnownBits Known(TyBits);
3033          computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3034          // If the input is known to be 0 or 1, the output is 0/-1, which is
3035          // all sign bits set.
3036          if ((Known.Zero | 1).isAllOnesValue())
3037            return TyBits;
3038
3039          // If the input is known to be positive (the sign bit is known clear),
3040          // the output of the NEG has the same number of sign bits as the
3041          // input.
3042          if (Known.isNonNegative())
3043            return Tmp2;
3044
3045          // Otherwise, we treat this like a SUB.
3046        }
3047
3048      // Sub can have at most one carry bit.  Thus we know that the output
3049      // is, at worst, one more bit than the inputs.
3050      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3051      if (Tmp == 1) break;
3052      return std::min(Tmp, Tmp2) - 1;
3053
3054    case Instruction::Mul: {
3055      // The output of the Mul can be at most twice the valid bits in the
3056      // inputs.
3057      unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3058      if (SignBitsOp0 == 1) break;
3059      unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3060      if (SignBitsOp1 == 1) break;
3061      unsigned OutValidBits =
3062          (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3063      return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3064    }
3065
3066    case Instruction::PHI: {
3067      const PHINode *PN = cast<PHINode>(U);
3068      unsigned NumIncomingValues = PN->getNumIncomingValues();
3069      // Don't analyze large in-degree PHIs.
3070      if (NumIncomingValues > 4) break;
3071      // Unreachable blocks may have zero-operand PHI nodes.
3072      if (NumIncomingValues == 0) break;
3073
3074      // Take the minimum of all incoming values.  This can't infinitely loop
3075      // because of our depth threshold.
3076      Query RecQ = Q;
3077      Tmp = TyBits;
3078      for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3079        if (Tmp == 1) return Tmp;
3080        RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3081        Tmp = std::min(
3082            Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3083      }
3084      return Tmp;
3085    }
3086
3087    case Instruction::Trunc:
3088      // FIXME: it's tricky to do anything useful for this, but it is an
3089      // important case for targets like X86.
3090      break;
3091
3092    case Instruction::ExtractElement:
3093      // Look through extract element. At the moment we keep this simple and
3094      // skip tracking the specific element. But at least we might find
3095      // information valid for all elements of the vector (for example if vector
3096      // is sign extended, shifted, etc).
3097      return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3098
3099    case Instruction::ShuffleVector: {
3100      // Collect the minimum number of sign bits that are shared by every vector
3101      // element referenced by the shuffle.
3102      auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3103      if (!Shuf) {
3104        // FIXME: Add support for shufflevector constant expressions.
3105        return 1;
3106      }
3107      APInt DemandedLHS, DemandedRHS;
3108      // For undef elements, we don't know anything about the common state of
3109      // the shuffle result.
3110      if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3111        return 1;
3112      Tmp = std::numeric_limits<unsigned>::max();
3113      if (!!DemandedLHS) {
3114        const Value *LHS = Shuf->getOperand(0);
3115        Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3116      }
3117      // If we don't know anything, early out and try computeKnownBits
3118      // fall-back.
3119      if (Tmp == 1)
3120        break;
3121      if (!!DemandedRHS) {
3122        const Value *RHS = Shuf->getOperand(1);
3123        Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3124        Tmp = std::min(Tmp, Tmp2);
3125      }
3126      // If we don't know anything, early out and try computeKnownBits
3127      // fall-back.
3128      if (Tmp == 1)
3129        break;
3130      assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3131      return Tmp;
3132    }
3133    case Instruction::Call: {
3134      if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3135        switch (II->getIntrinsicID()) {
3136        default: break;
3137        case Intrinsic::abs:
3138          Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3139          if (Tmp == 1) break;
3140
3141          // Absolute value reduces number of sign bits by at most 1.
3142          return Tmp - 1;
3143        }
3144      }
3145    }
3146    }
3147  }
3148
3149  // Finally, if we can prove that the top bits of the result are 0's or 1's,
3150  // use this information.
3151
3152  // If we can examine all elements of a vector constant successfully, we're
3153  // done (we can't do any better than that). If not, keep trying.
3154  if (unsigned VecSignBits =
3155          computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3156    return VecSignBits;
3157
3158  KnownBits Known(TyBits);
3159  computeKnownBits(V, DemandedElts, Known, Depth, Q);
3160
3161  // If we know that the sign bit is either zero or one, determine the number of
3162  // identical bits in the top of the input value.
3163  return std::max(FirstAnswer, Known.countMinSignBits());
3164}
3165
3166/// This function computes the integer multiple of Base that equals V.
3167/// If successful, it returns true and returns the multiple in
3168/// Multiple. If unsuccessful, it returns false. It looks
3169/// through SExt instructions only if LookThroughSExt is true.
3170bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3171                           bool LookThroughSExt, unsigned Depth) {
3172  assert(V && "No Value?");
3173  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3174  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3175
3176  Type *T = V->getType();
3177
3178  ConstantInt *CI = dyn_cast<ConstantInt>(V);
3179
3180  if (Base == 0)
3181    return false;
3182
3183  if (Base == 1) {
3184    Multiple = V;
3185    return true;
3186  }
3187
3188  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3189  Constant *BaseVal = ConstantInt::get(T, Base);
3190  if (CO && CO == BaseVal) {
3191    // Multiple is 1.
3192    Multiple = ConstantInt::get(T, 1);
3193    return true;
3194  }
3195
3196  if (CI && CI->getZExtValue() % Base == 0) {
3197    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3198    return true;
3199  }
3200
3201  if (Depth == MaxAnalysisRecursionDepth) return false;
3202
3203  Operator *I = dyn_cast<Operator>(V);
3204  if (!I) return false;
3205
3206  switch (I->getOpcode()) {
3207  default: break;
3208  case Instruction::SExt:
3209    if (!LookThroughSExt) return false;
3210    // otherwise fall through to ZExt
3211    LLVM_FALLTHROUGH;
3212  case Instruction::ZExt:
3213    return ComputeMultiple(I->getOperand(0), Base, Multiple,
3214                           LookThroughSExt, Depth+1);
3215  case Instruction::Shl:
3216  case Instruction::Mul: {
3217    Value *Op0 = I->getOperand(0);
3218    Value *Op1 = I->getOperand(1);
3219
3220    if (I->getOpcode() == Instruction::Shl) {
3221      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3222      if (!Op1CI) return false;
3223      // Turn Op0 << Op1 into Op0 * 2^Op1
3224      APInt Op1Int = Op1CI->getValue();
3225      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3226      APInt API(Op1Int.getBitWidth(), 0);
3227      API.setBit(BitToSet);
3228      Op1 = ConstantInt::get(V->getContext(), API);
3229    }
3230
3231    Value *Mul0 = nullptr;
3232    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3233      if (Constant *Op1C = dyn_cast<Constant>(Op1))
3234        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3235          if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3236              MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3237            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3238          if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3239              MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3240            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3241
3242          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3243          Multiple = ConstantExpr::getMul(MulC, Op1C);
3244          return true;
3245        }
3246
3247      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3248        if (Mul0CI->getValue() == 1) {
3249          // V == Base * Op1, so return Op1
3250          Multiple = Op1;
3251          return true;
3252        }
3253    }
3254
3255    Value *Mul1 = nullptr;
3256    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3257      if (Constant *Op0C = dyn_cast<Constant>(Op0))
3258        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3259          if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3260              MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3261            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3262          if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3263              MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3264            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3265
3266          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3267          Multiple = ConstantExpr::getMul(MulC, Op0C);
3268          return true;
3269        }
3270
3271      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3272        if (Mul1CI->getValue() == 1) {
3273          // V == Base * Op0, so return Op0
3274          Multiple = Op0;
3275          return true;
3276        }
3277    }
3278  }
3279  }
3280
3281  // We could not determine if V is a multiple of Base.
3282  return false;
3283}
3284
3285Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3286                                            const TargetLibraryInfo *TLI) {
3287  const Function *F = CB.getCalledFunction();
3288  if (!F)
3289    return Intrinsic::not_intrinsic;
3290
3291  if (F->isIntrinsic())
3292    return F->getIntrinsicID();
3293
3294  // We are going to infer semantics of a library function based on mapping it
3295  // to an LLVM intrinsic. Check that the library function is available from
3296  // this callbase and in this environment.
3297  LibFunc Func;
3298  if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3299      !CB.onlyReadsMemory())
3300    return Intrinsic::not_intrinsic;
3301
3302  switch (Func) {
3303  default:
3304    break;
3305  case LibFunc_sin:
3306  case LibFunc_sinf:
3307  case LibFunc_sinl:
3308    return Intrinsic::sin;
3309  case LibFunc_cos:
3310  case LibFunc_cosf:
3311  case LibFunc_cosl:
3312    return Intrinsic::cos;
3313  case LibFunc_exp:
3314  case LibFunc_expf:
3315  case LibFunc_expl:
3316    return Intrinsic::exp;
3317  case LibFunc_exp2:
3318  case LibFunc_exp2f:
3319  case LibFunc_exp2l:
3320    return Intrinsic::exp2;
3321  case LibFunc_log:
3322  case LibFunc_logf:
3323  case LibFunc_logl:
3324    return Intrinsic::log;
3325  case LibFunc_log10:
3326  case LibFunc_log10f:
3327  case LibFunc_log10l:
3328    return Intrinsic::log10;
3329  case LibFunc_log2:
3330  case LibFunc_log2f:
3331  case LibFunc_log2l:
3332    return Intrinsic::log2;
3333  case LibFunc_fabs:
3334  case LibFunc_fabsf:
3335  case LibFunc_fabsl:
3336    return Intrinsic::fabs;
3337  case LibFunc_fmin:
3338  case LibFunc_fminf:
3339  case LibFunc_fminl:
3340    return Intrinsic::minnum;
3341  case LibFunc_fmax:
3342  case LibFunc_fmaxf:
3343  case LibFunc_fmaxl:
3344    return Intrinsic::maxnum;
3345  case LibFunc_copysign:
3346  case LibFunc_copysignf:
3347  case LibFunc_copysignl:
3348    return Intrinsic::copysign;
3349  case LibFunc_floor:
3350  case LibFunc_floorf:
3351  case LibFunc_floorl:
3352    return Intrinsic::floor;
3353  case LibFunc_ceil:
3354  case LibFunc_ceilf:
3355  case LibFunc_ceill:
3356    return Intrinsic::ceil;
3357  case LibFunc_trunc:
3358  case LibFunc_truncf:
3359  case LibFunc_truncl:
3360    return Intrinsic::trunc;
3361  case LibFunc_rint:
3362  case LibFunc_rintf:
3363  case LibFunc_rintl:
3364    return Intrinsic::rint;
3365  case LibFunc_nearbyint:
3366  case LibFunc_nearbyintf:
3367  case LibFunc_nearbyintl:
3368    return Intrinsic::nearbyint;
3369  case LibFunc_round:
3370  case LibFunc_roundf:
3371  case LibFunc_roundl:
3372    return Intrinsic::round;
3373  case LibFunc_roundeven:
3374  case LibFunc_roundevenf:
3375  case LibFunc_roundevenl:
3376    return Intrinsic::roundeven;
3377  case LibFunc_pow:
3378  case LibFunc_powf:
3379  case LibFunc_powl:
3380    return Intrinsic::pow;
3381  case LibFunc_sqrt:
3382  case LibFunc_sqrtf:
3383  case LibFunc_sqrtl:
3384    return Intrinsic::sqrt;
3385  }
3386
3387  return Intrinsic::not_intrinsic;
3388}
3389
3390/// Return true if we can prove that the specified FP value is never equal to
3391/// -0.0.
3392/// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3393///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3394///       the same as +0.0 in floating-point ops.
3395///
3396/// NOTE: this function will need to be revisited when we support non-default
3397/// rounding modes!
3398bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3399                                unsigned Depth) {
3400  if (auto *CFP = dyn_cast<ConstantFP>(V))
3401    return !CFP->getValueAPF().isNegZero();
3402
3403  if (Depth == MaxAnalysisRecursionDepth)
3404    return false;
3405
3406  auto *Op = dyn_cast<Operator>(V);
3407  if (!Op)
3408    return false;
3409
3410  // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3411  if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3412    return true;
3413
3414  // sitofp and uitofp turn into +0.0 for zero.
3415  if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3416    return true;
3417
3418  if (auto *Call = dyn_cast<CallInst>(Op)) {
3419    Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3420    switch (IID) {
3421    default:
3422      break;
3423    // sqrt(-0.0) = -0.0, no other negative results are possible.
3424    case Intrinsic::sqrt:
3425    case Intrinsic::canonicalize:
3426      return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3427    // fabs(x) != -0.0
3428    case Intrinsic::fabs:
3429      return true;
3430    }
3431  }
3432
3433  return false;
3434}
3435
3436/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3437/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3438/// bit despite comparing equal.
3439static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3440                                            const TargetLibraryInfo *TLI,
3441                                            bool SignBitOnly,
3442                                            unsigned Depth) {
3443  // TODO: This function does not do the right thing when SignBitOnly is true
3444  // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3445  // which flips the sign bits of NaNs.  See
3446  // https://llvm.org/bugs/show_bug.cgi?id=31702.
3447
3448  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3449    return !CFP->getValueAPF().isNegative() ||
3450           (!SignBitOnly && CFP->getValueAPF().isZero());
3451  }
3452
3453  // Handle vector of constants.
3454  if (auto *CV = dyn_cast<Constant>(V)) {
3455    if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3456      unsigned NumElts = CVFVTy->getNumElements();
3457      for (unsigned i = 0; i != NumElts; ++i) {
3458        auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3459        if (!CFP)
3460          return false;
3461        if (CFP->getValueAPF().isNegative() &&
3462            (SignBitOnly || !CFP->getValueAPF().isZero()))
3463          return false;
3464      }
3465
3466      // All non-negative ConstantFPs.
3467      return true;
3468    }
3469  }
3470
3471  if (Depth == MaxAnalysisRecursionDepth)
3472    return false;
3473
3474  const Operator *I = dyn_cast<Operator>(V);
3475  if (!I)
3476    return false;
3477
3478  switch (I->getOpcode()) {
3479  default:
3480    break;
3481  // Unsigned integers are always nonnegative.
3482  case Instruction::UIToFP:
3483    return true;
3484  case Instruction::FMul:
3485  case Instruction::FDiv:
3486    // X * X is always non-negative or a NaN.
3487    // X / X is always exactly 1.0 or a NaN.
3488    if (I->getOperand(0) == I->getOperand(1) &&
3489        (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3490      return true;
3491
3492    LLVM_FALLTHROUGH;
3493  case Instruction::FAdd:
3494  case Instruction::FRem:
3495    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3496                                           Depth + 1) &&
3497           cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3498                                           Depth + 1);
3499  case Instruction::Select:
3500    return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3501                                           Depth + 1) &&
3502           cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3503                                           Depth + 1);
3504  case Instruction::FPExt:
3505  case Instruction::FPTrunc:
3506    // Widening/narrowing never change sign.
3507    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3508                                           Depth + 1);
3509  case Instruction::ExtractElement:
3510    // Look through extract element. At the moment we keep this simple and skip
3511    // tracking the specific element. But at least we might find information
3512    // valid for all elements of the vector.
3513    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3514                                           Depth + 1);
3515  case Instruction::Call:
3516    const auto *CI = cast<CallInst>(I);
3517    Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3518    switch (IID) {
3519    default:
3520      break;
3521    case Intrinsic::maxnum: {
3522      Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3523      auto isPositiveNum = [&](Value *V) {
3524        if (SignBitOnly) {
3525          // With SignBitOnly, this is tricky because the result of
3526          // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3527          // a constant strictly greater than 0.0.
3528          const APFloat *C;
3529          return match(V, m_APFloat(C)) &&
3530                 *C > APFloat::getZero(C->getSemantics());
3531        }
3532
3533        // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3534        // maxnum can't be ordered-less-than-zero.
3535        return isKnownNeverNaN(V, TLI) &&
3536               cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3537      };
3538
3539      // TODO: This could be improved. We could also check that neither operand
3540      //       has its sign bit set (and at least 1 is not-NAN?).
3541      return isPositiveNum(V0) || isPositiveNum(V1);
3542    }
3543
3544    case Intrinsic::maximum:
3545      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3546                                             Depth + 1) ||
3547             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3548                                             Depth + 1);
3549    case Intrinsic::minnum:
3550    case Intrinsic::minimum:
3551      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3552                                             Depth + 1) &&
3553             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3554                                             Depth + 1);
3555    case Intrinsic::exp:
3556    case Intrinsic::exp2:
3557    case Intrinsic::fabs:
3558      return true;
3559
3560    case Intrinsic::sqrt:
3561      // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3562      if (!SignBitOnly)
3563        return true;
3564      return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3565                                 CannotBeNegativeZero(CI->getOperand(0), TLI));
3566
3567    case Intrinsic::powi:
3568      if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3569        // powi(x,n) is non-negative if n is even.
3570        if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3571          return true;
3572      }
3573      // TODO: This is not correct.  Given that exp is an integer, here are the
3574      // ways that pow can return a negative value:
3575      //
3576      //   pow(x, exp)    --> negative if exp is odd and x is negative.
3577      //   pow(-0, exp)   --> -inf if exp is negative odd.
3578      //   pow(-0, exp)   --> -0 if exp is positive odd.
3579      //   pow(-inf, exp) --> -0 if exp is negative odd.
3580      //   pow(-inf, exp) --> -inf if exp is positive odd.
3581      //
3582      // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3583      // but we must return false if x == -0.  Unfortunately we do not currently
3584      // have a way of expressing this constraint.  See details in
3585      // https://llvm.org/bugs/show_bug.cgi?id=31702.
3586      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3587                                             Depth + 1);
3588
3589    case Intrinsic::fma:
3590    case Intrinsic::fmuladd:
3591      // x*x+y is non-negative if y is non-negative.
3592      return I->getOperand(0) == I->getOperand(1) &&
3593             (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3594             cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3595                                             Depth + 1);
3596    }
3597    break;
3598  }
3599  return false;
3600}
3601
3602bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3603                                       const TargetLibraryInfo *TLI) {
3604  return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3605}
3606
3607bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3608  return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3609}
3610
3611bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3612                                unsigned Depth) {
3613  assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3614
3615  // If we're told that infinities won't happen, assume they won't.
3616  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3617    if (FPMathOp->hasNoInfs())
3618      return true;
3619
3620  // Handle scalar constants.
3621  if (auto *CFP = dyn_cast<ConstantFP>(V))
3622    return !CFP->isInfinity();
3623
3624  if (Depth == MaxAnalysisRecursionDepth)
3625    return false;
3626
3627  if (auto *Inst = dyn_cast<Instruction>(V)) {
3628    switch (Inst->getOpcode()) {
3629    case Instruction::Select: {
3630      return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3631             isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3632    }
3633    case Instruction::SIToFP:
3634    case Instruction::UIToFP: {
3635      // Get width of largest magnitude integer (remove a bit if signed).
3636      // This still works for a signed minimum value because the largest FP
3637      // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3638      int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3639      if (Inst->getOpcode() == Instruction::SIToFP)
3640        --IntSize;
3641
3642      // If the exponent of the largest finite FP value can hold the largest
3643      // integer, the result of the cast must be finite.
3644      Type *FPTy = Inst->getType()->getScalarType();
3645      return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3646    }
3647    default:
3648      break;
3649    }
3650  }
3651
3652  // try to handle fixed width vector constants
3653  auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3654  if (VFVTy && isa<Constant>(V)) {
3655    // For vectors, verify that each element is not infinity.
3656    unsigned NumElts = VFVTy->getNumElements();
3657    for (unsigned i = 0; i != NumElts; ++i) {
3658      Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3659      if (!Elt)
3660        return false;
3661      if (isa<UndefValue>(Elt))
3662        continue;
3663      auto *CElt = dyn_cast<ConstantFP>(Elt);
3664      if (!CElt || CElt->isInfinity())
3665        return false;
3666    }
3667    // All elements were confirmed non-infinity or undefined.
3668    return true;
3669  }
3670
3671  // was not able to prove that V never contains infinity
3672  return false;
3673}
3674
3675bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3676                           unsigned Depth) {
3677  assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3678
3679  // If we're told that NaNs won't happen, assume they won't.
3680  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3681    if (FPMathOp->hasNoNaNs())
3682      return true;
3683
3684  // Handle scalar constants.
3685  if (auto *CFP = dyn_cast<ConstantFP>(V))
3686    return !CFP->isNaN();
3687
3688  if (Depth == MaxAnalysisRecursionDepth)
3689    return false;
3690
3691  if (auto *Inst = dyn_cast<Instruction>(V)) {
3692    switch (Inst->getOpcode()) {
3693    case Instruction::FAdd:
3694    case Instruction::FSub:
3695      // Adding positive and negative infinity produces NaN.
3696      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3697             isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3698             (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3699              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3700
3701    case Instruction::FMul:
3702      // Zero multiplied with infinity produces NaN.
3703      // FIXME: If neither side can be zero fmul never produces NaN.
3704      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3705             isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3706             isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3707             isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3708
3709    case Instruction::FDiv:
3710    case Instruction::FRem:
3711      // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3712      return false;
3713
3714    case Instruction::Select: {
3715      return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3716             isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3717    }
3718    case Instruction::SIToFP:
3719    case Instruction::UIToFP:
3720      return true;
3721    case Instruction::FPTrunc:
3722    case Instruction::FPExt:
3723      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3724    default:
3725      break;
3726    }
3727  }
3728
3729  if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3730    switch (II->getIntrinsicID()) {
3731    case Intrinsic::canonicalize:
3732    case Intrinsic::fabs:
3733    case Intrinsic::copysign:
3734    case Intrinsic::exp:
3735    case Intrinsic::exp2:
3736    case Intrinsic::floor:
3737    case Intrinsic::ceil:
3738    case Intrinsic::trunc:
3739    case Intrinsic::rint:
3740    case Intrinsic::nearbyint:
3741    case Intrinsic::round:
3742    case Intrinsic::roundeven:
3743      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3744    case Intrinsic::sqrt:
3745      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3746             CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3747    case Intrinsic::minnum:
3748    case Intrinsic::maxnum:
3749      // If either operand is not NaN, the result is not NaN.
3750      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3751             isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3752    default:
3753      return false;
3754    }
3755  }
3756
3757  // Try to handle fixed width vector constants
3758  auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3759  if (VFVTy && isa<Constant>(V)) {
3760    // For vectors, verify that each element is not NaN.
3761    unsigned NumElts = VFVTy->getNumElements();
3762    for (unsigned i = 0; i != NumElts; ++i) {
3763      Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3764      if (!Elt)
3765        return false;
3766      if (isa<UndefValue>(Elt))
3767        continue;
3768      auto *CElt = dyn_cast<ConstantFP>(Elt);
3769      if (!CElt || CElt->isNaN())
3770        return false;
3771    }
3772    // All elements were confirmed not-NaN or undefined.
3773    return true;
3774  }
3775
3776  // Was not able to prove that V never contains NaN
3777  return false;
3778}
3779
3780Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3781
3782  // All byte-wide stores are splatable, even of arbitrary variables.
3783  if (V->getType()->isIntegerTy(8))
3784    return V;
3785
3786  LLVMContext &Ctx = V->getContext();
3787
3788  // Undef don't care.
3789  auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3790  if (isa<UndefValue>(V))
3791    return UndefInt8;
3792
3793  // Return Undef for zero-sized type.
3794  if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3795    return UndefInt8;
3796
3797  Constant *C = dyn_cast<Constant>(V);
3798  if (!C) {
3799    // Conceptually, we could handle things like:
3800    //   %a = zext i8 %X to i16
3801    //   %b = shl i16 %a, 8
3802    //   %c = or i16 %a, %b
3803    // but until there is an example that actually needs this, it doesn't seem
3804    // worth worrying about.
3805    return nullptr;
3806  }
3807
3808  // Handle 'null' ConstantArrayZero etc.
3809  if (C->isNullValue())
3810    return Constant::getNullValue(Type::getInt8Ty(Ctx));
3811
3812  // Constant floating-point values can be handled as integer values if the
3813  // corresponding integer value is "byteable".  An important case is 0.0.
3814  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3815    Type *Ty = nullptr;
3816    if (CFP->getType()->isHalfTy())
3817      Ty = Type::getInt16Ty(Ctx);
3818    else if (CFP->getType()->isFloatTy())
3819      Ty = Type::getInt32Ty(Ctx);
3820    else if (CFP->getType()->isDoubleTy())
3821      Ty = Type::getInt64Ty(Ctx);
3822    // Don't handle long double formats, which have strange constraints.
3823    return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3824              : nullptr;
3825  }
3826
3827  // We can handle constant integers that are multiple of 8 bits.
3828  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3829    if (CI->getBitWidth() % 8 == 0) {
3830      assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3831      if (!CI->getValue().isSplat(8))
3832        return nullptr;
3833      return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3834    }
3835  }
3836
3837  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3838    if (CE->getOpcode() == Instruction::IntToPtr) {
3839      if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3840        unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3841        return isBytewiseValue(
3842            ConstantExpr::getIntegerCast(CE->getOperand(0),
3843                                         Type::getIntNTy(Ctx, BitWidth), false),
3844            DL);
3845      }
3846    }
3847  }
3848
3849  auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3850    if (LHS == RHS)
3851      return LHS;
3852    if (!LHS || !RHS)
3853      return nullptr;
3854    if (LHS == UndefInt8)
3855      return RHS;
3856    if (RHS == UndefInt8)
3857      return LHS;
3858    return nullptr;
3859  };
3860
3861  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3862    Value *Val = UndefInt8;
3863    for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3864      if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3865        return nullptr;
3866    return Val;
3867  }
3868
3869  if (isa<ConstantAggregate>(C)) {
3870    Value *Val = UndefInt8;
3871    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3872      if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3873        return nullptr;
3874    return Val;
3875  }
3876
3877  // Don't try to handle the handful of other constants.
3878  return nullptr;
3879}
3880
3881// This is the recursive version of BuildSubAggregate. It takes a few different
3882// arguments. Idxs is the index within the nested struct From that we are
3883// looking at now (which is of type IndexedType). IdxSkip is the number of
3884// indices from Idxs that should be left out when inserting into the resulting
3885// struct. To is the result struct built so far, new insertvalue instructions
3886// build on that.
3887static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3888                                SmallVectorImpl<unsigned> &Idxs,
3889                                unsigned IdxSkip,
3890                                Instruction *InsertBefore) {
3891  StructType *STy = dyn_cast<StructType>(IndexedType);
3892  if (STy) {
3893    // Save the original To argument so we can modify it
3894    Value *OrigTo = To;
3895    // General case, the type indexed by Idxs is a struct
3896    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3897      // Process each struct element recursively
3898      Idxs.push_back(i);
3899      Value *PrevTo = To;
3900      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3901                             InsertBefore);
3902      Idxs.pop_back();
3903      if (!To) {
3904        // Couldn't find any inserted value for this index? Cleanup
3905        while (PrevTo != OrigTo) {
3906          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3907          PrevTo = Del->getAggregateOperand();
3908          Del->eraseFromParent();
3909        }
3910        // Stop processing elements
3911        break;
3912      }
3913    }
3914    // If we successfully found a value for each of our subaggregates
3915    if (To)
3916      return To;
3917  }
3918  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3919  // the struct's elements had a value that was inserted directly. In the latter
3920  // case, perhaps we can't determine each of the subelements individually, but
3921  // we might be able to find the complete struct somewhere.
3922
3923  // Find the value that is at that particular spot
3924  Value *V = FindInsertedValue(From, Idxs);
3925
3926  if (!V)
3927    return nullptr;
3928
3929  // Insert the value in the new (sub) aggregate
3930  return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3931                                 "tmp", InsertBefore);
3932}
3933
3934// This helper takes a nested struct and extracts a part of it (which is again a
3935// struct) into a new value. For example, given the struct:
3936// { a, { b, { c, d }, e } }
3937// and the indices "1, 1" this returns
3938// { c, d }.
3939//
3940// It does this by inserting an insertvalue for each element in the resulting
3941// struct, as opposed to just inserting a single struct. This will only work if
3942// each of the elements of the substruct are known (ie, inserted into From by an
3943// insertvalue instruction somewhere).
3944//
3945// All inserted insertvalue instructions are inserted before InsertBefore
3946static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3947                                Instruction *InsertBefore) {
3948  assert(InsertBefore && "Must have someplace to insert!");
3949  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3950                                                             idx_range);
3951  Value *To = UndefValue::get(IndexedType);
3952  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3953  unsigned IdxSkip = Idxs.size();
3954
3955  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3956}
3957
3958/// Given an aggregate and a sequence of indices, see if the scalar value
3959/// indexed is already around as a register, for example if it was inserted
3960/// directly into the aggregate.
3961///
3962/// If InsertBefore is not null, this function will duplicate (modified)
3963/// insertvalues when a part of a nested struct is extracted.
3964Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3965                               Instruction *InsertBefore) {
3966  // Nothing to index? Just return V then (this is useful at the end of our
3967  // recursion).
3968  if (idx_range.empty())
3969    return V;
3970  // We have indices, so V should have an indexable type.
3971  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3972         "Not looking at a struct or array?");
3973  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3974         "Invalid indices for type?");
3975
3976  if (Constant *C = dyn_cast<Constant>(V)) {
3977    C = C->getAggregateElement(idx_range[0]);
3978    if (!C) return nullptr;
3979    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3980  }
3981
3982  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3983    // Loop the indices for the insertvalue instruction in parallel with the
3984    // requested indices
3985    const unsigned *req_idx = idx_range.begin();
3986    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3987         i != e; ++i, ++req_idx) {
3988      if (req_idx == idx_range.end()) {
3989        // We can't handle this without inserting insertvalues
3990        if (!InsertBefore)
3991          return nullptr;
3992
3993        // The requested index identifies a part of a nested aggregate. Handle
3994        // this specially. For example,
3995        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3996        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3997        // %C = extractvalue {i32, { i32, i32 } } %B, 1
3998        // This can be changed into
3999        // %A = insertvalue {i32, i32 } undef, i32 10, 0
4000        // %C = insertvalue {i32, i32 } %A, i32 11, 1
4001        // which allows the unused 0,0 element from the nested struct to be
4002        // removed.
4003        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4004                                 InsertBefore);
4005      }
4006
4007      // This insert value inserts something else than what we are looking for.
4008      // See if the (aggregate) value inserted into has the value we are
4009      // looking for, then.
4010      if (*req_idx != *i)
4011        return FindInsertedValue(I->getAggregateOperand(), idx_range,
4012                                 InsertBefore);
4013    }
4014    // If we end up here, the indices of the insertvalue match with those
4015    // requested (though possibly only partially). Now we recursively look at
4016    // the inserted value, passing any remaining indices.
4017    return FindInsertedValue(I->getInsertedValueOperand(),
4018                             makeArrayRef(req_idx, idx_range.end()),
4019                             InsertBefore);
4020  }
4021
4022  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4023    // If we're extracting a value from an aggregate that was extracted from
4024    // something else, we can extract from that something else directly instead.
4025    // However, we will need to chain I's indices with the requested indices.
4026
4027    // Calculate the number of indices required
4028    unsigned size = I->getNumIndices() + idx_range.size();
4029    // Allocate some space to put the new indices in
4030    SmallVector<unsigned, 5> Idxs;
4031    Idxs.reserve(size);
4032    // Add indices from the extract value instruction
4033    Idxs.append(I->idx_begin(), I->idx_end());
4034
4035    // Add requested indices
4036    Idxs.append(idx_range.begin(), idx_range.end());
4037
4038    assert(Idxs.size() == size
4039           && "Number of indices added not correct?");
4040
4041    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4042  }
4043  // Otherwise, we don't know (such as, extracting from a function return value
4044  // or load instruction)
4045  return nullptr;
4046}
4047
4048bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4049                                       unsigned CharSize) {
4050  // Make sure the GEP has exactly three arguments.
4051  if (GEP->getNumOperands() != 3)
4052    return false;
4053
4054  // Make sure the index-ee is a pointer to array of \p CharSize integers.
4055  // CharSize.
4056  ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4057  if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4058    return false;
4059
4060  // Check to make sure that the first operand of the GEP is an integer and
4061  // has value 0 so that we are sure we're indexing into the initializer.
4062  const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4063  if (!FirstIdx || !FirstIdx->isZero())
4064    return false;
4065
4066  return true;
4067}
4068
4069bool llvm::getConstantDataArrayInfo(const Value *V,
4070                                    ConstantDataArraySlice &Slice,
4071                                    unsigned ElementSize, uint64_t Offset) {
4072  assert(V);
4073
4074  // Look through bitcast instructions and geps.
4075  V = V->stripPointerCasts();
4076
4077  // If the value is a GEP instruction or constant expression, treat it as an
4078  // offset.
4079  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4080    // The GEP operator should be based on a pointer to string constant, and is
4081    // indexing into the string constant.
4082    if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4083      return false;
4084
4085    // If the second index isn't a ConstantInt, then this is a variable index
4086    // into the array.  If this occurs, we can't say anything meaningful about
4087    // the string.
4088    uint64_t StartIdx = 0;
4089    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4090      StartIdx = CI->getZExtValue();
4091    else
4092      return false;
4093    return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4094                                    StartIdx + Offset);
4095  }
4096
4097  // The GEP instruction, constant or instruction, must reference a global
4098  // variable that is a constant and is initialized. The referenced constant
4099  // initializer is the array that we'll use for optimization.
4100  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4101  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4102    return false;
4103
4104  const ConstantDataArray *Array;
4105  ArrayType *ArrayTy;
4106  if (GV->getInitializer()->isNullValue()) {
4107    Type *GVTy = GV->getValueType();
4108    if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4109      // A zeroinitializer for the array; there is no ConstantDataArray.
4110      Array = nullptr;
4111    } else {
4112      const DataLayout &DL = GV->getParent()->getDataLayout();
4113      uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4114      uint64_t Length = SizeInBytes / (ElementSize / 8);
4115      if (Length <= Offset)
4116        return false;
4117
4118      Slice.Array = nullptr;
4119      Slice.Offset = 0;
4120      Slice.Length = Length - Offset;
4121      return true;
4122    }
4123  } else {
4124    // This must be a ConstantDataArray.
4125    Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4126    if (!Array)
4127      return false;
4128    ArrayTy = Array->getType();
4129  }
4130  if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4131    return false;
4132
4133  uint64_t NumElts = ArrayTy->getArrayNumElements();
4134  if (Offset > NumElts)
4135    return false;
4136
4137  Slice.Array = Array;
4138  Slice.Offset = Offset;
4139  Slice.Length = NumElts - Offset;
4140  return true;
4141}
4142
4143/// This function computes the length of a null-terminated C string pointed to
4144/// by V. If successful, it returns true and returns the string in Str.
4145/// If unsuccessful, it returns false.
4146bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4147                                 uint64_t Offset, bool TrimAtNul) {
4148  ConstantDataArraySlice Slice;
4149  if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4150    return false;
4151
4152  if (Slice.Array == nullptr) {
4153    if (TrimAtNul) {
4154      Str = StringRef();
4155      return true;
4156    }
4157    if (Slice.Length == 1) {
4158      Str = StringRef("", 1);
4159      return true;
4160    }
4161    // We cannot instantiate a StringRef as we do not have an appropriate string
4162    // of 0s at hand.
4163    return false;
4164  }
4165
4166  // Start out with the entire array in the StringRef.
4167  Str = Slice.Array->getAsString();
4168  // Skip over 'offset' bytes.
4169  Str = Str.substr(Slice.Offset);
4170
4171  if (TrimAtNul) {
4172    // Trim off the \0 and anything after it.  If the array is not nul
4173    // terminated, we just return the whole end of string.  The client may know
4174    // some other way that the string is length-bound.
4175    Str = Str.substr(0, Str.find('\0'));
4176  }
4177  return true;
4178}
4179
4180// These next two are very similar to the above, but also look through PHI
4181// nodes.
4182// TODO: See if we can integrate these two together.
4183
4184/// If we can compute the length of the string pointed to by
4185/// the specified pointer, return 'len+1'.  If we can't, return 0.
4186static uint64_t GetStringLengthH(const Value *V,
4187                                 SmallPtrSetImpl<const PHINode*> &PHIs,
4188                                 unsigned CharSize) {
4189  // Look through noop bitcast instructions.
4190  V = V->stripPointerCasts();
4191
4192  // If this is a PHI node, there are two cases: either we have already seen it
4193  // or we haven't.
4194  if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4195    if (!PHIs.insert(PN).second)
4196      return ~0ULL;  // already in the set.
4197
4198    // If it was new, see if all the input strings are the same length.
4199    uint64_t LenSoFar = ~0ULL;
4200    for (Value *IncValue : PN->incoming_values()) {
4201      uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4202      if (Len == 0) return 0; // Unknown length -> unknown.
4203
4204      if (Len == ~0ULL) continue;
4205
4206      if (Len != LenSoFar && LenSoFar != ~0ULL)
4207        return 0;    // Disagree -> unknown.
4208      LenSoFar = Len;
4209    }
4210
4211    // Success, all agree.
4212    return LenSoFar;
4213  }
4214
4215  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4216  if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4217    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4218    if (Len1 == 0) return 0;
4219    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4220    if (Len2 == 0) return 0;
4221    if (Len1 == ~0ULL) return Len2;
4222    if (Len2 == ~0ULL) return Len1;
4223    if (Len1 != Len2) return 0;
4224    return Len1;
4225  }
4226
4227  // Otherwise, see if we can read the string.
4228  ConstantDataArraySlice Slice;
4229  if (!getConstantDataArrayInfo(V, Slice, CharSize))
4230    return 0;
4231
4232  if (Slice.Array == nullptr)
4233    return 1;
4234
4235  // Search for nul characters
4236  unsigned NullIndex = 0;
4237  for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4238    if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4239      break;
4240  }
4241
4242  return NullIndex + 1;
4243}
4244
4245/// If we can compute the length of the string pointed to by
4246/// the specified pointer, return 'len+1'.  If we can't, return 0.
4247uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4248  if (!V->getType()->isPointerTy())
4249    return 0;
4250
4251  SmallPtrSet<const PHINode*, 32> PHIs;
4252  uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4253  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4254  // an empty string as a length.
4255  return Len == ~0ULL ? 1 : Len;
4256}
4257
4258const Value *
4259llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4260                                           bool MustPreserveNullness) {
4261  assert(Call &&
4262         "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4263  if (const Value *RV = Call->getReturnedArgOperand())
4264    return RV;
4265  // This can be used only as a aliasing property.
4266  if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4267          Call, MustPreserveNullness))
4268    return Call->getArgOperand(0);
4269  return nullptr;
4270}
4271
4272bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4273    const CallBase *Call, bool MustPreserveNullness) {
4274  switch (Call->getIntrinsicID()) {
4275  case Intrinsic::launder_invariant_group:
4276  case Intrinsic::strip_invariant_group:
4277  case Intrinsic::aarch64_irg:
4278  case Intrinsic::aarch64_tagp:
4279    return true;
4280  case Intrinsic::ptrmask:
4281    return !MustPreserveNullness;
4282  default:
4283    return false;
4284  }
4285}
4286
4287/// \p PN defines a loop-variant pointer to an object.  Check if the
4288/// previous iteration of the loop was referring to the same object as \p PN.
4289static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4290                                         const LoopInfo *LI) {
4291  // Find the loop-defined value.
4292  Loop *L = LI->getLoopFor(PN->getParent());
4293  if (PN->getNumIncomingValues() != 2)
4294    return true;
4295
4296  // Find the value from previous iteration.
4297  auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4298  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4299    PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4300  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4301    return true;
4302
4303  // If a new pointer is loaded in the loop, the pointer references a different
4304  // object in every iteration.  E.g.:
4305  //    for (i)
4306  //       int *p = a[i];
4307  //       ...
4308  if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4309    if (!L->isLoopInvariant(Load->getPointerOperand()))
4310      return false;
4311  return true;
4312}
4313
4314const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4315  if (!V->getType()->isPointerTy())
4316    return V;
4317  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4318    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4319      V = GEP->getPointerOperand();
4320    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4321               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4322      V = cast<Operator>(V)->getOperand(0);
4323      if (!V->getType()->isPointerTy())
4324        return V;
4325    } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4326      if (GA->isInterposable())
4327        return V;
4328      V = GA->getAliasee();
4329    } else {
4330      if (auto *PHI = dyn_cast<PHINode>(V)) {
4331        // Look through single-arg phi nodes created by LCSSA.
4332        if (PHI->getNumIncomingValues() == 1) {
4333          V = PHI->getIncomingValue(0);
4334          continue;
4335        }
4336      } else if (auto *Call = dyn_cast<CallBase>(V)) {
4337        // CaptureTracking can know about special capturing properties of some
4338        // intrinsics like launder.invariant.group, that can't be expressed with
4339        // the attributes, but have properties like returning aliasing pointer.
4340        // Because some analysis may assume that nocaptured pointer is not
4341        // returned from some special intrinsic (because function would have to
4342        // be marked with returns attribute), it is crucial to use this function
4343        // because it should be in sync with CaptureTracking. Not using it may
4344        // cause weird miscompilations where 2 aliasing pointers are assumed to
4345        // noalias.
4346        if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4347          V = RP;
4348          continue;
4349        }
4350      }
4351
4352      return V;
4353    }
4354    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4355  }
4356  return V;
4357}
4358
4359void llvm::getUnderlyingObjects(const Value *V,
4360                                SmallVectorImpl<const Value *> &Objects,
4361                                LoopInfo *LI, unsigned MaxLookup) {
4362  SmallPtrSet<const Value *, 4> Visited;
4363  SmallVector<const Value *, 4> Worklist;
4364  Worklist.push_back(V);
4365  do {
4366    const Value *P = Worklist.pop_back_val();
4367    P = getUnderlyingObject(P, MaxLookup);
4368
4369    if (!Visited.insert(P).second)
4370      continue;
4371
4372    if (auto *SI = dyn_cast<SelectInst>(P)) {
4373      Worklist.push_back(SI->getTrueValue());
4374      Worklist.push_back(SI->getFalseValue());
4375      continue;
4376    }
4377
4378    if (auto *PN = dyn_cast<PHINode>(P)) {
4379      // If this PHI changes the underlying object in every iteration of the
4380      // loop, don't look through it.  Consider:
4381      //   int **A;
4382      //   for (i) {
4383      //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4384      //     Curr = A[i];
4385      //     *Prev, *Curr;
4386      //
4387      // Prev is tracking Curr one iteration behind so they refer to different
4388      // underlying objects.
4389      if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4390          isSameUnderlyingObjectInLoop(PN, LI))
4391        append_range(Worklist, PN->incoming_values());
4392      continue;
4393    }
4394
4395    Objects.push_back(P);
4396  } while (!Worklist.empty());
4397}
4398
4399/// This is the function that does the work of looking through basic
4400/// ptrtoint+arithmetic+inttoptr sequences.
4401static const Value *getUnderlyingObjectFromInt(const Value *V) {
4402  do {
4403    if (const Operator *U = dyn_cast<Operator>(V)) {
4404      // If we find a ptrtoint, we can transfer control back to the
4405      // regular getUnderlyingObjectFromInt.
4406      if (U->getOpcode() == Instruction::PtrToInt)
4407        return U->getOperand(0);
4408      // If we find an add of a constant, a multiplied value, or a phi, it's
4409      // likely that the other operand will lead us to the base
4410      // object. We don't have to worry about the case where the
4411      // object address is somehow being computed by the multiply,
4412      // because our callers only care when the result is an
4413      // identifiable object.
4414      if (U->getOpcode() != Instruction::Add ||
4415          (!isa<ConstantInt>(U->getOperand(1)) &&
4416           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4417           !isa<PHINode>(U->getOperand(1))))
4418        return V;
4419      V = U->getOperand(0);
4420    } else {
4421      return V;
4422    }
4423    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4424  } while (true);
4425}
4426
4427/// This is a wrapper around getUnderlyingObjects and adds support for basic
4428/// ptrtoint+arithmetic+inttoptr sequences.
4429/// It returns false if unidentified object is found in getUnderlyingObjects.
4430bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4431                                          SmallVectorImpl<Value *> &Objects) {
4432  SmallPtrSet<const Value *, 16> Visited;
4433  SmallVector<const Value *, 4> Working(1, V);
4434  do {
4435    V = Working.pop_back_val();
4436
4437    SmallVector<const Value *, 4> Objs;
4438    getUnderlyingObjects(V, Objs);
4439
4440    for (const Value *V : Objs) {
4441      if (!Visited.insert(V).second)
4442        continue;
4443      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4444        const Value *O =
4445          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4446        if (O->getType()->isPointerTy()) {
4447          Working.push_back(O);
4448          continue;
4449        }
4450      }
4451      // If getUnderlyingObjects fails to find an identifiable object,
4452      // getUnderlyingObjectsForCodeGen also fails for safety.
4453      if (!isIdentifiedObject(V)) {
4454        Objects.clear();
4455        return false;
4456      }
4457      Objects.push_back(const_cast<Value *>(V));
4458    }
4459  } while (!Working.empty());
4460  return true;
4461}
4462
4463AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4464  AllocaInst *Result = nullptr;
4465  SmallPtrSet<Value *, 4> Visited;
4466  SmallVector<Value *, 4> Worklist;
4467
4468  auto AddWork = [&](Value *V) {
4469    if (Visited.insert(V).second)
4470      Worklist.push_back(V);
4471  };
4472
4473  AddWork(V);
4474  do {
4475    V = Worklist.pop_back_val();
4476    assert(Visited.count(V));
4477
4478    if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4479      if (Result && Result != AI)
4480        return nullptr;
4481      Result = AI;
4482    } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4483      AddWork(CI->getOperand(0));
4484    } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4485      for (Value *IncValue : PN->incoming_values())
4486        AddWork(IncValue);
4487    } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4488      AddWork(SI->getTrueValue());
4489      AddWork(SI->getFalseValue());
4490    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4491      if (OffsetZero && !GEP->hasAllZeroIndices())
4492        return nullptr;
4493      AddWork(GEP->getPointerOperand());
4494    } else {
4495      return nullptr;
4496    }
4497  } while (!Worklist.empty());
4498
4499  return Result;
4500}
4501
4502static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4503    const Value *V, bool AllowLifetime, bool AllowDroppable) {
4504  for (const User *U : V->users()) {
4505    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4506    if (!II)
4507      return false;
4508
4509    if (AllowLifetime && II->isLifetimeStartOrEnd())
4510      continue;
4511
4512    if (AllowDroppable && II->isDroppable())
4513      continue;
4514
4515    return false;
4516  }
4517  return true;
4518}
4519
4520bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4521  return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4522      V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4523}
4524bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4525  return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4526      V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4527}
4528
4529bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4530  if (!LI.isUnordered())
4531    return true;
4532  const Function &F = *LI.getFunction();
4533  // Speculative load may create a race that did not exist in the source.
4534  return F.hasFnAttribute(Attribute::SanitizeThread) ||
4535    // Speculative load may load data from dirty regions.
4536    F.hasFnAttribute(Attribute::SanitizeAddress) ||
4537    F.hasFnAttribute(Attribute::SanitizeHWAddress);
4538}
4539
4540
4541bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4542                                        const Instruction *CtxI,
4543                                        const DominatorTree *DT,
4544                                        const TargetLibraryInfo *TLI) {
4545  const Operator *Inst = dyn_cast<Operator>(V);
4546  if (!Inst)
4547    return false;
4548
4549  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4550    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4551      if (C->canTrap())
4552        return false;
4553
4554  switch (Inst->getOpcode()) {
4555  default:
4556    return true;
4557  case Instruction::UDiv:
4558  case Instruction::URem: {
4559    // x / y is undefined if y == 0.
4560    const APInt *V;
4561    if (match(Inst->getOperand(1), m_APInt(V)))
4562      return *V != 0;
4563    return false;
4564  }
4565  case Instruction::SDiv:
4566  case Instruction::SRem: {
4567    // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4568    const APInt *Numerator, *Denominator;
4569    if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4570      return false;
4571    // We cannot hoist this division if the denominator is 0.
4572    if (*Denominator == 0)
4573      return false;
4574    // It's safe to hoist if the denominator is not 0 or -1.
4575    if (!Denominator->isAllOnesValue())
4576      return true;
4577    // At this point we know that the denominator is -1.  It is safe to hoist as
4578    // long we know that the numerator is not INT_MIN.
4579    if (match(Inst->getOperand(0), m_APInt(Numerator)))
4580      return !Numerator->isMinSignedValue();
4581    // The numerator *might* be MinSignedValue.
4582    return false;
4583  }
4584  case Instruction::Load: {
4585    const LoadInst *LI = cast<LoadInst>(Inst);
4586    if (mustSuppressSpeculation(*LI))
4587      return false;
4588    const DataLayout &DL = LI->getModule()->getDataLayout();
4589    return isDereferenceableAndAlignedPointer(
4590        LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4591        DL, CtxI, DT, TLI);
4592  }
4593  case Instruction::Call: {
4594    auto *CI = cast<const CallInst>(Inst);
4595    const Function *Callee = CI->getCalledFunction();
4596
4597    // The called function could have undefined behavior or side-effects, even
4598    // if marked readnone nounwind.
4599    return Callee && Callee->isSpeculatable();
4600  }
4601  case Instruction::VAArg:
4602  case Instruction::Alloca:
4603  case Instruction::Invoke:
4604  case Instruction::CallBr:
4605  case Instruction::PHI:
4606  case Instruction::Store:
4607  case Instruction::Ret:
4608  case Instruction::Br:
4609  case Instruction::IndirectBr:
4610  case Instruction::Switch:
4611  case Instruction::Unreachable:
4612  case Instruction::Fence:
4613  case Instruction::AtomicRMW:
4614  case Instruction::AtomicCmpXchg:
4615  case Instruction::LandingPad:
4616  case Instruction::Resume:
4617  case Instruction::CatchSwitch:
4618  case Instruction::CatchPad:
4619  case Instruction::CatchRet:
4620  case Instruction::CleanupPad:
4621  case Instruction::CleanupRet:
4622    return false; // Misc instructions which have effects
4623  }
4624}
4625
4626bool llvm::mayBeMemoryDependent(const Instruction &I) {
4627  return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4628}
4629
4630/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4631static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4632  switch (OR) {
4633    case ConstantRange::OverflowResult::MayOverflow:
4634      return OverflowResult::MayOverflow;
4635    case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4636      return OverflowResult::AlwaysOverflowsLow;
4637    case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4638      return OverflowResult::AlwaysOverflowsHigh;
4639    case ConstantRange::OverflowResult::NeverOverflows:
4640      return OverflowResult::NeverOverflows;
4641  }
4642  llvm_unreachable("Unknown OverflowResult");
4643}
4644
4645/// Combine constant ranges from computeConstantRange() and computeKnownBits().
4646static ConstantRange computeConstantRangeIncludingKnownBits(
4647    const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4648    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4649    OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4650  KnownBits Known = computeKnownBits(
4651      V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4652  ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4653  ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4654  ConstantRange::PreferredRangeType RangeType =
4655      ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4656  return CR1.intersectWith(CR2, RangeType);
4657}
4658
4659OverflowResult llvm::computeOverflowForUnsignedMul(
4660    const Value *LHS, const Value *RHS, const DataLayout &DL,
4661    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4662    bool UseInstrInfo) {
4663  KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4664                                        nullptr, UseInstrInfo);
4665  KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4666                                        nullptr, UseInstrInfo);
4667  ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4668  ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4669  return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4670}
4671
4672OverflowResult
4673llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4674                                  const DataLayout &DL, AssumptionCache *AC,
4675                                  const Instruction *CxtI,
4676                                  const DominatorTree *DT, bool UseInstrInfo) {
4677  // Multiplying n * m significant bits yields a result of n + m significant
4678  // bits. If the total number of significant bits does not exceed the
4679  // result bit width (minus 1), there is no overflow.
4680  // This means if we have enough leading sign bits in the operands
4681  // we can guarantee that the result does not overflow.
4682  // Ref: "Hacker's Delight" by Henry Warren
4683  unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4684
4685  // Note that underestimating the number of sign bits gives a more
4686  // conservative answer.
4687  unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4688                      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4689
4690  // First handle the easy case: if we have enough sign bits there's
4691  // definitely no overflow.
4692  if (SignBits > BitWidth + 1)
4693    return OverflowResult::NeverOverflows;
4694
4695  // There are two ambiguous cases where there can be no overflow:
4696  //   SignBits == BitWidth + 1    and
4697  //   SignBits == BitWidth
4698  // The second case is difficult to check, therefore we only handle the
4699  // first case.
4700  if (SignBits == BitWidth + 1) {
4701    // It overflows only when both arguments are negative and the true
4702    // product is exactly the minimum negative number.
4703    // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4704    // For simplicity we just check if at least one side is not negative.
4705    KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4706                                          nullptr, UseInstrInfo);
4707    KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4708                                          nullptr, UseInstrInfo);
4709    if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4710      return OverflowResult::NeverOverflows;
4711  }
4712  return OverflowResult::MayOverflow;
4713}
4714
4715OverflowResult llvm::computeOverflowForUnsignedAdd(
4716    const Value *LHS, const Value *RHS, const DataLayout &DL,
4717    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4718    bool UseInstrInfo) {
4719  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4720      LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4721      nullptr, UseInstrInfo);
4722  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4723      RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4724      nullptr, UseInstrInfo);
4725  return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4726}
4727
4728static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4729                                                  const Value *RHS,
4730                                                  const AddOperator *Add,
4731                                                  const DataLayout &DL,
4732                                                  AssumptionCache *AC,
4733                                                  const Instruction *CxtI,
4734                                                  const DominatorTree *DT) {
4735  if (Add && Add->hasNoSignedWrap()) {
4736    return OverflowResult::NeverOverflows;
4737  }
4738
4739  // If LHS and RHS each have at least two sign bits, the addition will look
4740  // like
4741  //
4742  // XX..... +
4743  // YY.....
4744  //
4745  // If the carry into the most significant position is 0, X and Y can't both
4746  // be 1 and therefore the carry out of the addition is also 0.
4747  //
4748  // If the carry into the most significant position is 1, X and Y can't both
4749  // be 0 and therefore the carry out of the addition is also 1.
4750  //
4751  // Since the carry into the most significant position is always equal to
4752  // the carry out of the addition, there is no signed overflow.
4753  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4754      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4755    return OverflowResult::NeverOverflows;
4756
4757  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4758      LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4759  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4760      RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4761  OverflowResult OR =
4762      mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4763  if (OR != OverflowResult::MayOverflow)
4764    return OR;
4765
4766  // The remaining code needs Add to be available. Early returns if not so.
4767  if (!Add)
4768    return OverflowResult::MayOverflow;
4769
4770  // If the sign of Add is the same as at least one of the operands, this add
4771  // CANNOT overflow. If this can be determined from the known bits of the
4772  // operands the above signedAddMayOverflow() check will have already done so.
4773  // The only other way to improve on the known bits is from an assumption, so
4774  // call computeKnownBitsFromAssume() directly.
4775  bool LHSOrRHSKnownNonNegative =
4776      (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4777  bool LHSOrRHSKnownNegative =
4778      (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4779  if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4780    KnownBits AddKnown(LHSRange.getBitWidth());
4781    computeKnownBitsFromAssume(
4782        Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4783    if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4784        (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4785      return OverflowResult::NeverOverflows;
4786  }
4787
4788  return OverflowResult::MayOverflow;
4789}
4790
4791OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4792                                                   const Value *RHS,
4793                                                   const DataLayout &DL,
4794                                                   AssumptionCache *AC,
4795                                                   const Instruction *CxtI,
4796                                                   const DominatorTree *DT) {
4797  // Checking for conditions implied by dominating conditions may be expensive.
4798  // Limit it to usub_with_overflow calls for now.
4799  if (match(CxtI,
4800            m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4801    if (auto C =
4802            isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4803      if (*C)
4804        return OverflowResult::NeverOverflows;
4805      return OverflowResult::AlwaysOverflowsLow;
4806    }
4807  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4808      LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4809  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4810      RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4811  return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4812}
4813
4814OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4815                                                 const Value *RHS,
4816                                                 const DataLayout &DL,
4817                                                 AssumptionCache *AC,
4818                                                 const Instruction *CxtI,
4819                                                 const DominatorTree *DT) {
4820  // If LHS and RHS each have at least two sign bits, the subtraction
4821  // cannot overflow.
4822  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4823      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4824    return OverflowResult::NeverOverflows;
4825
4826  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4827      LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4828  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4829      RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4830  return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4831}
4832
4833bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4834                                     const DominatorTree &DT) {
4835  SmallVector<const BranchInst *, 2> GuardingBranches;
4836  SmallVector<const ExtractValueInst *, 2> Results;
4837
4838  for (const User *U : WO->users()) {
4839    if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4840      assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4841
4842      if (EVI->getIndices()[0] == 0)
4843        Results.push_back(EVI);
4844      else {
4845        assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4846
4847        for (const auto *U : EVI->users())
4848          if (const auto *B = dyn_cast<BranchInst>(U)) {
4849            assert(B->isConditional() && "How else is it using an i1?");
4850            GuardingBranches.push_back(B);
4851          }
4852      }
4853    } else {
4854      // We are using the aggregate directly in a way we don't want to analyze
4855      // here (storing it to a global, say).
4856      return false;
4857    }
4858  }
4859
4860  auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4861    BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4862    if (!NoWrapEdge.isSingleEdge())
4863      return false;
4864
4865    // Check if all users of the add are provably no-wrap.
4866    for (const auto *Result : Results) {
4867      // If the extractvalue itself is not executed on overflow, the we don't
4868      // need to check each use separately, since domination is transitive.
4869      if (DT.dominates(NoWrapEdge, Result->getParent()))
4870        continue;
4871
4872      for (auto &RU : Result->uses())
4873        if (!DT.dominates(NoWrapEdge, RU))
4874          return false;
4875    }
4876
4877    return true;
4878  };
4879
4880  return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4881}
4882
4883static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4884  // See whether I has flags that may create poison
4885  if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4886    if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4887      return true;
4888  }
4889  if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4890    if (ExactOp->isExact())
4891      return true;
4892  if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4893    auto FMF = FP->getFastMathFlags();
4894    if (FMF.noNaNs() || FMF.noInfs())
4895      return true;
4896  }
4897
4898  unsigned Opcode = Op->getOpcode();
4899
4900  // Check whether opcode is a poison/undef-generating operation
4901  switch (Opcode) {
4902  case Instruction::Shl:
4903  case Instruction::AShr:
4904  case Instruction::LShr: {
4905    // Shifts return poison if shiftwidth is larger than the bitwidth.
4906    if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4907      SmallVector<Constant *, 4> ShiftAmounts;
4908      if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4909        unsigned NumElts = FVTy->getNumElements();
4910        for (unsigned i = 0; i < NumElts; ++i)
4911          ShiftAmounts.push_back(C->getAggregateElement(i));
4912      } else if (isa<ScalableVectorType>(C->getType()))
4913        return true; // Can't tell, just return true to be safe
4914      else
4915        ShiftAmounts.push_back(C);
4916
4917      bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4918        auto *CI = dyn_cast_or_null<ConstantInt>(C);
4919        return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4920      });
4921      return !Safe;
4922    }
4923    return true;
4924  }
4925  case Instruction::FPToSI:
4926  case Instruction::FPToUI:
4927    // fptosi/ui yields poison if the resulting value does not fit in the
4928    // destination type.
4929    return true;
4930  case Instruction::Call:
4931    if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4932      switch (II->getIntrinsicID()) {
4933      // TODO: Add more intrinsics.
4934      case Intrinsic::ctpop:
4935      case Intrinsic::sadd_with_overflow:
4936      case Intrinsic::ssub_with_overflow:
4937      case Intrinsic::smul_with_overflow:
4938      case Intrinsic::uadd_with_overflow:
4939      case Intrinsic::usub_with_overflow:
4940      case Intrinsic::umul_with_overflow:
4941        return false;
4942      }
4943    }
4944    LLVM_FALLTHROUGH;
4945  case Instruction::CallBr:
4946  case Instruction::Invoke: {
4947    const auto *CB = cast<CallBase>(Op);
4948    return !CB->hasRetAttr(Attribute::NoUndef);
4949  }
4950  case Instruction::InsertElement:
4951  case Instruction::ExtractElement: {
4952    // If index exceeds the length of the vector, it returns poison
4953    auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4954    unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4955    auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4956    if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4957      return true;
4958    return false;
4959  }
4960  case Instruction::ShuffleVector: {
4961    // shufflevector may return undef.
4962    if (PoisonOnly)
4963      return false;
4964    ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4965                             ? cast<ConstantExpr>(Op)->getShuffleMask()
4966                             : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4967    return is_contained(Mask, UndefMaskElem);
4968  }
4969  case Instruction::FNeg:
4970  case Instruction::PHI:
4971  case Instruction::Select:
4972  case Instruction::URem:
4973  case Instruction::SRem:
4974  case Instruction::ExtractValue:
4975  case Instruction::InsertValue:
4976  case Instruction::Freeze:
4977  case Instruction::ICmp:
4978  case Instruction::FCmp:
4979    return false;
4980  case Instruction::GetElementPtr: {
4981    const auto *GEP = cast<GEPOperator>(Op);
4982    return GEP->isInBounds();
4983  }
4984  default: {
4985    const auto *CE = dyn_cast<ConstantExpr>(Op);
4986    if (isa<CastInst>(Op) || (CE && CE->isCast()))
4987      return false;
4988    else if (Instruction::isBinaryOp(Opcode))
4989      return false;
4990    // Be conservative and return true.
4991    return true;
4992  }
4993  }
4994}
4995
4996bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4997  return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4998}
4999
5000bool llvm::canCreatePoison(const Operator *Op) {
5001  return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
5002}
5003
5004static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5005                                  const Value *V, unsigned Depth) {
5006  if (ValAssumedPoison == V)
5007    return true;
5008
5009  const unsigned MaxDepth = 2;
5010  if (Depth >= MaxDepth)
5011    return false;
5012
5013  if (const auto *I = dyn_cast<Instruction>(V)) {
5014    if (propagatesPoison(cast<Operator>(I)))
5015      return any_of(I->operands(), [=](const Value *Op) {
5016        return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5017      });
5018
5019    // 'select ValAssumedPoison, _, _' is poison.
5020    if (const auto *SI = dyn_cast<SelectInst>(I))
5021      return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5022                                   Depth + 1);
5023    // V  = extractvalue V0, idx
5024    // V2 = extractvalue V0, idx2
5025    // V0's elements are all poison or not. (e.g., add_with_overflow)
5026    const WithOverflowInst *II;
5027    if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5028        (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5029         llvm::is_contained(II->arg_operands(), ValAssumedPoison)))
5030      return true;
5031  }
5032  return false;
5033}
5034
5035static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5036                          unsigned Depth) {
5037  if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5038    return true;
5039
5040  if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5041    return true;
5042
5043  const unsigned MaxDepth = 2;
5044  if (Depth >= MaxDepth)
5045    return false;
5046
5047  const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5048  if (I && !canCreatePoison(cast<Operator>(I))) {
5049    return all_of(I->operands(), [=](const Value *Op) {
5050      return impliesPoison(Op, V, Depth + 1);
5051    });
5052  }
5053  return false;
5054}
5055
5056bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5057  return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5058}
5059
5060static bool programUndefinedIfUndefOrPoison(const Value *V,
5061                                            bool PoisonOnly);
5062
5063static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5064                                             AssumptionCache *AC,
5065                                             const Instruction *CtxI,
5066                                             const DominatorTree *DT,
5067                                             unsigned Depth, bool PoisonOnly) {
5068  if (Depth >= MaxAnalysisRecursionDepth)
5069    return false;
5070
5071  if (isa<MetadataAsValue>(V))
5072    return false;
5073
5074  if (const auto *A = dyn_cast<Argument>(V)) {
5075    if (A->hasAttribute(Attribute::NoUndef))
5076      return true;
5077  }
5078
5079  if (auto *C = dyn_cast<Constant>(V)) {
5080    if (isa<UndefValue>(C))
5081      return PoisonOnly && !isa<PoisonValue>(C);
5082
5083    if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5084        isa<ConstantPointerNull>(C) || isa<Function>(C))
5085      return true;
5086
5087    if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5088      return (PoisonOnly ? !C->containsPoisonElement()
5089                         : !C->containsUndefOrPoisonElement()) &&
5090             !C->containsConstantExpression();
5091  }
5092
5093  // Strip cast operations from a pointer value.
5094  // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5095  // inbounds with zero offset. To guarantee that the result isn't poison, the
5096  // stripped pointer is checked as it has to be pointing into an allocated
5097  // object or be null `null` to ensure `inbounds` getelement pointers with a
5098  // zero offset could not produce poison.
5099  // It can strip off addrspacecast that do not change bit representation as
5100  // well. We believe that such addrspacecast is equivalent to no-op.
5101  auto *StrippedV = V->stripPointerCastsSameRepresentation();
5102  if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5103      isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5104    return true;
5105
5106  auto OpCheck = [&](const Value *V) {
5107    return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5108                                            PoisonOnly);
5109  };
5110
5111  if (auto *Opr = dyn_cast<Operator>(V)) {
5112    // If the value is a freeze instruction, then it can never
5113    // be undef or poison.
5114    if (isa<FreezeInst>(V))
5115      return true;
5116
5117    if (const auto *CB = dyn_cast<CallBase>(V)) {
5118      if (CB->hasRetAttr(Attribute::NoUndef))
5119        return true;
5120    }
5121
5122    if (const auto *PN = dyn_cast<PHINode>(V)) {
5123      unsigned Num = PN->getNumIncomingValues();
5124      bool IsWellDefined = true;
5125      for (unsigned i = 0; i < Num; ++i) {
5126        auto *TI = PN->getIncomingBlock(i)->getTerminator();
5127        if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5128                                              DT, Depth + 1, PoisonOnly)) {
5129          IsWellDefined = false;
5130          break;
5131        }
5132      }
5133      if (IsWellDefined)
5134        return true;
5135    } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5136      return true;
5137  }
5138
5139  if (auto *I = dyn_cast<LoadInst>(V))
5140    if (I->getMetadata(LLVMContext::MD_noundef))
5141      return true;
5142
5143  if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5144    return true;
5145
5146  // CxtI may be null or a cloned instruction.
5147  if (!CtxI || !CtxI->getParent() || !DT)
5148    return false;
5149
5150  auto *DNode = DT->getNode(CtxI->getParent());
5151  if (!DNode)
5152    // Unreachable block
5153    return false;
5154
5155  // If V is used as a branch condition before reaching CtxI, V cannot be
5156  // undef or poison.
5157  //   br V, BB1, BB2
5158  // BB1:
5159  //   CtxI ; V cannot be undef or poison here
5160  auto *Dominator = DNode->getIDom();
5161  while (Dominator) {
5162    auto *TI = Dominator->getBlock()->getTerminator();
5163
5164    Value *Cond = nullptr;
5165    if (auto BI = dyn_cast<BranchInst>(TI)) {
5166      if (BI->isConditional())
5167        Cond = BI->getCondition();
5168    } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5169      Cond = SI->getCondition();
5170    }
5171
5172    if (Cond) {
5173      if (Cond == V)
5174        return true;
5175      else if (PoisonOnly && isa<Operator>(Cond)) {
5176        // For poison, we can analyze further
5177        auto *Opr = cast<Operator>(Cond);
5178        if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5179          return true;
5180      }
5181    }
5182
5183    Dominator = Dominator->getIDom();
5184  }
5185
5186  SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
5187  if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
5188    return true;
5189
5190  return false;
5191}
5192
5193bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5194                                            const Instruction *CtxI,
5195                                            const DominatorTree *DT,
5196                                            unsigned Depth) {
5197  return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5198}
5199
5200bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5201                                     const Instruction *CtxI,
5202                                     const DominatorTree *DT, unsigned Depth) {
5203  return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5204}
5205
5206OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5207                                                 const DataLayout &DL,
5208                                                 AssumptionCache *AC,
5209                                                 const Instruction *CxtI,
5210                                                 const DominatorTree *DT) {
5211  return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5212                                       Add, DL, AC, CxtI, DT);
5213}
5214
5215OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5216                                                 const Value *RHS,
5217                                                 const DataLayout &DL,
5218                                                 AssumptionCache *AC,
5219                                                 const Instruction *CxtI,
5220                                                 const DominatorTree *DT) {
5221  return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5222}
5223
5224bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5225  // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5226  // of time because it's possible for another thread to interfere with it for an
5227  // arbitrary length of time, but programs aren't allowed to rely on that.
5228
5229  // If there is no successor, then execution can't transfer to it.
5230  if (isa<ReturnInst>(I))
5231    return false;
5232  if (isa<UnreachableInst>(I))
5233    return false;
5234
5235  // An instruction that returns without throwing must transfer control flow
5236  // to a successor.
5237  return !I->mayThrow() && I->willReturn();
5238}
5239
5240bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5241  // TODO: This is slightly conservative for invoke instruction since exiting
5242  // via an exception *is* normal control for them.
5243  for (const Instruction &I : *BB)
5244    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5245      return false;
5246  return true;
5247}
5248
5249bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5250                                                  const Loop *L) {
5251  // The loop header is guaranteed to be executed for every iteration.
5252  //
5253  // FIXME: Relax this constraint to cover all basic blocks that are
5254  // guaranteed to be executed at every iteration.
5255  if (I->getParent() != L->getHeader()) return false;
5256
5257  for (const Instruction &LI : *L->getHeader()) {
5258    if (&LI == I) return true;
5259    if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5260  }
5261  llvm_unreachable("Instruction not contained in its own parent basic block.");
5262}
5263
5264bool llvm::propagatesPoison(const Operator *I) {
5265  switch (I->getOpcode()) {
5266  case Instruction::Freeze:
5267  case Instruction::Select:
5268  case Instruction::PHI:
5269  case Instruction::Invoke:
5270    return false;
5271  case Instruction::Call:
5272    if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5273      switch (II->getIntrinsicID()) {
5274      // TODO: Add more intrinsics.
5275      case Intrinsic::sadd_with_overflow:
5276      case Intrinsic::ssub_with_overflow:
5277      case Intrinsic::smul_with_overflow:
5278      case Intrinsic::uadd_with_overflow:
5279      case Intrinsic::usub_with_overflow:
5280      case Intrinsic::umul_with_overflow:
5281        // If an input is a vector containing a poison element, the
5282        // two output vectors (calculated results, overflow bits)'
5283        // corresponding lanes are poison.
5284        return true;
5285      case Intrinsic::ctpop:
5286        return true;
5287      }
5288    }
5289    return false;
5290  case Instruction::ICmp:
5291  case Instruction::FCmp:
5292  case Instruction::GetElementPtr:
5293    return true;
5294  default:
5295    if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5296      return true;
5297
5298    // Be conservative and return false.
5299    return false;
5300  }
5301}
5302
5303void llvm::getGuaranteedWellDefinedOps(
5304    const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5305  switch (I->getOpcode()) {
5306    case Instruction::Store:
5307      Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5308      break;
5309
5310    case Instruction::Load:
5311      Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5312      break;
5313
5314    // Since dereferenceable attribute imply noundef, atomic operations
5315    // also implicitly have noundef pointers too
5316    case Instruction::AtomicCmpXchg:
5317      Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5318      break;
5319
5320    case Instruction::AtomicRMW:
5321      Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5322      break;
5323
5324    case Instruction::Call:
5325    case Instruction::Invoke: {
5326      const CallBase *CB = cast<CallBase>(I);
5327      if (CB->isIndirectCall())
5328        Operands.insert(CB->getCalledOperand());
5329      for (unsigned i = 0; i < CB->arg_size(); ++i) {
5330        if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5331            CB->paramHasAttr(i, Attribute::Dereferenceable))
5332          Operands.insert(CB->getArgOperand(i));
5333      }
5334      break;
5335    }
5336
5337    default:
5338      break;
5339  }
5340}
5341
5342void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5343                                     SmallPtrSetImpl<const Value *> &Operands) {
5344  getGuaranteedWellDefinedOps(I, Operands);
5345  switch (I->getOpcode()) {
5346  // Divisors of these operations are allowed to be partially undef.
5347  case Instruction::UDiv:
5348  case Instruction::SDiv:
5349  case Instruction::URem:
5350  case Instruction::SRem:
5351    Operands.insert(I->getOperand(1));
5352    break;
5353
5354  default:
5355    break;
5356  }
5357}
5358
5359bool llvm::mustTriggerUB(const Instruction *I,
5360                         const SmallSet<const Value *, 16>& KnownPoison) {
5361  SmallPtrSet<const Value *, 4> NonPoisonOps;
5362  getGuaranteedNonPoisonOps(I, NonPoisonOps);
5363
5364  for (const auto *V : NonPoisonOps)
5365    if (KnownPoison.count(V))
5366      return true;
5367
5368  return false;
5369}
5370
5371static bool programUndefinedIfUndefOrPoison(const Value *V,
5372                                            bool PoisonOnly) {
5373  // We currently only look for uses of values within the same basic
5374  // block, as that makes it easier to guarantee that the uses will be
5375  // executed given that Inst is executed.
5376  //
5377  // FIXME: Expand this to consider uses beyond the same basic block. To do
5378  // this, look out for the distinction between post-dominance and strong
5379  // post-dominance.
5380  const BasicBlock *BB = nullptr;
5381  BasicBlock::const_iterator Begin;
5382  if (const auto *Inst = dyn_cast<Instruction>(V)) {
5383    BB = Inst->getParent();
5384    Begin = Inst->getIterator();
5385    Begin++;
5386  } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5387    BB = &Arg->getParent()->getEntryBlock();
5388    Begin = BB->begin();
5389  } else {
5390    return false;
5391  }
5392
5393  // Limit number of instructions we look at, to avoid scanning through large
5394  // blocks. The current limit is chosen arbitrarily.
5395  unsigned ScanLimit = 32;
5396  BasicBlock::const_iterator End = BB->end();
5397
5398  if (!PoisonOnly) {
5399    // Since undef does not propagate eagerly, be conservative & just check
5400    // whether a value is directly passed to an instruction that must take
5401    // well-defined operands.
5402
5403    for (auto &I : make_range(Begin, End)) {
5404      if (isa<DbgInfoIntrinsic>(I))
5405        continue;
5406      if (--ScanLimit == 0)
5407        break;
5408
5409      SmallPtrSet<const Value *, 4> WellDefinedOps;
5410      getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5411      if (WellDefinedOps.contains(V))
5412        return true;
5413
5414      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5415        break;
5416    }
5417    return false;
5418  }
5419
5420  // Set of instructions that we have proved will yield poison if Inst
5421  // does.
5422  SmallSet<const Value *, 16> YieldsPoison;
5423  SmallSet<const BasicBlock *, 4> Visited;
5424
5425  YieldsPoison.insert(V);
5426  auto Propagate = [&](const User *User) {
5427    if (propagatesPoison(cast<Operator>(User)))
5428      YieldsPoison.insert(User);
5429  };
5430  for_each(V->users(), Propagate);
5431  Visited.insert(BB);
5432
5433  while (true) {
5434    for (auto &I : make_range(Begin, End)) {
5435      if (isa<DbgInfoIntrinsic>(I))
5436        continue;
5437      if (--ScanLimit == 0)
5438        return false;
5439      if (mustTriggerUB(&I, YieldsPoison))
5440        return true;
5441      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5442        return false;
5443
5444      // Mark poison that propagates from I through uses of I.
5445      if (YieldsPoison.count(&I))
5446        for_each(I.users(), Propagate);
5447    }
5448
5449    BB = BB->getSingleSuccessor();
5450    if (!BB || !Visited.insert(BB).second)
5451      break;
5452
5453    Begin = BB->getFirstNonPHI()->getIterator();
5454    End = BB->end();
5455  }
5456  return false;
5457}
5458
5459bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5460  return ::programUndefinedIfUndefOrPoison(Inst, false);
5461}
5462
5463bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5464  return ::programUndefinedIfUndefOrPoison(Inst, true);
5465}
5466
5467static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5468  if (FMF.noNaNs())
5469    return true;
5470
5471  if (auto *C = dyn_cast<ConstantFP>(V))
5472    return !C->isNaN();
5473
5474  if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5475    if (!C->getElementType()->isFloatingPointTy())
5476      return false;
5477    for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5478      if (C->getElementAsAPFloat(I).isNaN())
5479        return false;
5480    }
5481    return true;
5482  }
5483
5484  if (isa<ConstantAggregateZero>(V))
5485    return true;
5486
5487  return false;
5488}
5489
5490static bool isKnownNonZero(const Value *V) {
5491  if (auto *C = dyn_cast<ConstantFP>(V))
5492    return !C->isZero();
5493
5494  if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5495    if (!C->getElementType()->isFloatingPointTy())
5496      return false;
5497    for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5498      if (C->getElementAsAPFloat(I).isZero())
5499        return false;
5500    }
5501    return true;
5502  }
5503
5504  return false;
5505}
5506
5507/// Match clamp pattern for float types without care about NaNs or signed zeros.
5508/// Given non-min/max outer cmp/select from the clamp pattern this
5509/// function recognizes if it can be substitued by a "canonical" min/max
5510/// pattern.
5511static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5512                                               Value *CmpLHS, Value *CmpRHS,
5513                                               Value *TrueVal, Value *FalseVal,
5514                                               Value *&LHS, Value *&RHS) {
5515  // Try to match
5516  //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5517  //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5518  // and return description of the outer Max/Min.
5519
5520  // First, check if select has inverse order:
5521  if (CmpRHS == FalseVal) {
5522    std::swap(TrueVal, FalseVal);
5523    Pred = CmpInst::getInversePredicate(Pred);
5524  }
5525
5526  // Assume success now. If there's no match, callers should not use these anyway.
5527  LHS = TrueVal;
5528  RHS = FalseVal;
5529
5530  const APFloat *FC1;
5531  if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5532    return {SPF_UNKNOWN, SPNB_NA, false};
5533
5534  const APFloat *FC2;
5535  switch (Pred) {
5536  case CmpInst::FCMP_OLT:
5537  case CmpInst::FCMP_OLE:
5538  case CmpInst::FCMP_ULT:
5539  case CmpInst::FCMP_ULE:
5540    if (match(FalseVal,
5541              m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5542                          m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5543        *FC1 < *FC2)
5544      return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5545    break;
5546  case CmpInst::FCMP_OGT:
5547  case CmpInst::FCMP_OGE:
5548  case CmpInst::FCMP_UGT:
5549  case CmpInst::FCMP_UGE:
5550    if (match(FalseVal,
5551              m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5552                          m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5553        *FC1 > *FC2)
5554      return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5555    break;
5556  default:
5557    break;
5558  }
5559
5560  return {SPF_UNKNOWN, SPNB_NA, false};
5561}
5562
5563/// Recognize variations of:
5564///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5565static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5566                                      Value *CmpLHS, Value *CmpRHS,
5567                                      Value *TrueVal, Value *FalseVal) {
5568  // Swap the select operands and predicate to match the patterns below.
5569  if (CmpRHS != TrueVal) {
5570    Pred = ICmpInst::getSwappedPredicate(Pred);
5571    std::swap(TrueVal, FalseVal);
5572  }
5573  const APInt *C1;
5574  if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5575    const APInt *C2;
5576    // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5577    if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5578        C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5579      return {SPF_SMAX, SPNB_NA, false};
5580
5581    // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5582    if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5583        C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5584      return {SPF_SMIN, SPNB_NA, false};
5585
5586    // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5587    if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5588        C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5589      return {SPF_UMAX, SPNB_NA, false};
5590
5591    // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5592    if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5593        C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5594      return {SPF_UMIN, SPNB_NA, false};
5595  }
5596  return {SPF_UNKNOWN, SPNB_NA, false};
5597}
5598
5599/// Recognize variations of:
5600///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5601static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5602                                               Value *CmpLHS, Value *CmpRHS,
5603                                               Value *TVal, Value *FVal,
5604                                               unsigned Depth) {
5605  // TODO: Allow FP min/max with nnan/nsz.
5606  assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5607
5608  Value *A = nullptr, *B = nullptr;
5609  SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5610  if (!SelectPatternResult::isMinOrMax(L.Flavor))
5611    return {SPF_UNKNOWN, SPNB_NA, false};
5612
5613  Value *C = nullptr, *D = nullptr;
5614  SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5615  if (L.Flavor != R.Flavor)
5616    return {SPF_UNKNOWN, SPNB_NA, false};
5617
5618  // We have something like: x Pred y ? min(a, b) : min(c, d).
5619  // Try to match the compare to the min/max operations of the select operands.
5620  // First, make sure we have the right compare predicate.
5621  switch (L.Flavor) {
5622  case SPF_SMIN:
5623    if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5624      Pred = ICmpInst::getSwappedPredicate(Pred);
5625      std::swap(CmpLHS, CmpRHS);
5626    }
5627    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5628      break;
5629    return {SPF_UNKNOWN, SPNB_NA, false};
5630  case SPF_SMAX:
5631    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5632      Pred = ICmpInst::getSwappedPredicate(Pred);
5633      std::swap(CmpLHS, CmpRHS);
5634    }
5635    if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5636      break;
5637    return {SPF_UNKNOWN, SPNB_NA, false};
5638  case SPF_UMIN:
5639    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5640      Pred = ICmpInst::getSwappedPredicate(Pred);
5641      std::swap(CmpLHS, CmpRHS);
5642    }
5643    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5644      break;
5645    return {SPF_UNKNOWN, SPNB_NA, false};
5646  case SPF_UMAX:
5647    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5648      Pred = ICmpInst::getSwappedPredicate(Pred);
5649      std::swap(CmpLHS, CmpRHS);
5650    }
5651    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5652      break;
5653    return {SPF_UNKNOWN, SPNB_NA, false};
5654  default:
5655    return {SPF_UNKNOWN, SPNB_NA, false};
5656  }
5657
5658  // If there is a common operand in the already matched min/max and the other
5659  // min/max operands match the compare operands (either directly or inverted),
5660  // then this is min/max of the same flavor.
5661
5662  // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5663  // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5664  if (D == B) {
5665    if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5666                                         match(A, m_Not(m_Specific(CmpRHS)))))
5667      return {L.Flavor, SPNB_NA, false};
5668  }
5669  // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5670  // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5671  if (C == B) {
5672    if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5673                                         match(A, m_Not(m_Specific(CmpRHS)))))
5674      return {L.Flavor, SPNB_NA, false};
5675  }
5676  // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5677  // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5678  if (D == A) {
5679    if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5680                                         match(B, m_Not(m_Specific(CmpRHS)))))
5681      return {L.Flavor, SPNB_NA, false};
5682  }
5683  // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5684  // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5685  if (C == A) {
5686    if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5687                                         match(B, m_Not(m_Specific(CmpRHS)))))
5688      return {L.Flavor, SPNB_NA, false};
5689  }
5690
5691  return {SPF_UNKNOWN, SPNB_NA, false};
5692}
5693
5694/// If the input value is the result of a 'not' op, constant integer, or vector
5695/// splat of a constant integer, return the bitwise-not source value.
5696/// TODO: This could be extended to handle non-splat vector integer constants.
5697static Value *getNotValue(Value *V) {
5698  Value *NotV;
5699  if (match(V, m_Not(m_Value(NotV))))
5700    return NotV;
5701
5702  const APInt *C;
5703  if (match(V, m_APInt(C)))
5704    return ConstantInt::get(V->getType(), ~(*C));
5705
5706  return nullptr;
5707}
5708
5709/// Match non-obvious integer minimum and maximum sequences.
5710static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5711                                       Value *CmpLHS, Value *CmpRHS,
5712                                       Value *TrueVal, Value *FalseVal,
5713                                       Value *&LHS, Value *&RHS,
5714                                       unsigned Depth) {
5715  // Assume success. If there's no match, callers should not use these anyway.
5716  LHS = TrueVal;
5717  RHS = FalseVal;
5718
5719  SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5720  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5721    return SPR;
5722
5723  SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5724  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5725    return SPR;
5726
5727  // Look through 'not' ops to find disguised min/max.
5728  // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5729  // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5730  if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5731    switch (Pred) {
5732    case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5733    case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5734    case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5735    case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5736    default: break;
5737    }
5738  }
5739
5740  // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5741  // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5742  if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5743    switch (Pred) {
5744    case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5745    case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5746    case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5747    case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5748    default: break;
5749    }
5750  }
5751
5752  if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5753    return {SPF_UNKNOWN, SPNB_NA, false};
5754
5755  // Z = X -nsw Y
5756  // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5757  // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5758  if (match(TrueVal, m_Zero()) &&
5759      match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5760    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5761
5762  // Z = X -nsw Y
5763  // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5764  // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5765  if (match(FalseVal, m_Zero()) &&
5766      match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5767    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5768
5769  const APInt *C1;
5770  if (!match(CmpRHS, m_APInt(C1)))
5771    return {SPF_UNKNOWN, SPNB_NA, false};
5772
5773  // An unsigned min/max can be written with a signed compare.
5774  const APInt *C2;
5775  if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5776      (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5777    // Is the sign bit set?
5778    // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5779    // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5780    if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5781        C2->isMaxSignedValue())
5782      return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5783
5784    // Is the sign bit clear?
5785    // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5786    // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5787    if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5788        C2->isMinSignedValue())
5789      return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5790  }
5791
5792  return {SPF_UNKNOWN, SPNB_NA, false};
5793}
5794
5795bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5796  assert(X && Y && "Invalid operand");
5797
5798  // X = sub (0, Y) || X = sub nsw (0, Y)
5799  if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5800      (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5801    return true;
5802
5803  // Y = sub (0, X) || Y = sub nsw (0, X)
5804  if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5805      (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5806    return true;
5807
5808  // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5809  Value *A, *B;
5810  return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5811                        match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5812         (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5813                       match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5814}
5815
5816static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5817                                              FastMathFlags FMF,
5818                                              Value *CmpLHS, Value *CmpRHS,
5819                                              Value *TrueVal, Value *FalseVal,
5820                                              Value *&LHS, Value *&RHS,
5821                                              unsigned Depth) {
5822  if (CmpInst::isFPPredicate(Pred)) {
5823    // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5824    // 0.0 operand, set the compare's 0.0 operands to that same value for the
5825    // purpose of identifying min/max. Disregard vector constants with undefined
5826    // elements because those can not be back-propagated for analysis.
5827    Value *OutputZeroVal = nullptr;
5828    if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5829        !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5830      OutputZeroVal = TrueVal;
5831    else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5832             !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5833      OutputZeroVal = FalseVal;
5834
5835    if (OutputZeroVal) {
5836      if (match(CmpLHS, m_AnyZeroFP()))
5837        CmpLHS = OutputZeroVal;
5838      if (match(CmpRHS, m_AnyZeroFP()))
5839        CmpRHS = OutputZeroVal;
5840    }
5841  }
5842
5843  LHS = CmpLHS;
5844  RHS = CmpRHS;
5845
5846  // Signed zero may return inconsistent results between implementations.
5847  //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5848  //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5849  // Therefore, we behave conservatively and only proceed if at least one of the
5850  // operands is known to not be zero or if we don't care about signed zero.
5851  switch (Pred) {
5852  default: break;
5853  // FIXME: Include OGT/OLT/UGT/ULT.
5854  case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5855  case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5856    if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5857        !isKnownNonZero(CmpRHS))
5858      return {SPF_UNKNOWN, SPNB_NA, false};
5859  }
5860
5861  SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5862  bool Ordered = false;
5863
5864  // When given one NaN and one non-NaN input:
5865  //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5866  //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5867  //     ordered comparison fails), which could be NaN or non-NaN.
5868  // so here we discover exactly what NaN behavior is required/accepted.
5869  if (CmpInst::isFPPredicate(Pred)) {
5870    bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5871    bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5872
5873    if (LHSSafe && RHSSafe) {
5874      // Both operands are known non-NaN.
5875      NaNBehavior = SPNB_RETURNS_ANY;
5876    } else if (CmpInst::isOrdered(Pred)) {
5877      // An ordered comparison will return false when given a NaN, so it
5878      // returns the RHS.
5879      Ordered = true;
5880      if (LHSSafe)
5881        // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5882        NaNBehavior = SPNB_RETURNS_NAN;
5883      else if (RHSSafe)
5884        NaNBehavior = SPNB_RETURNS_OTHER;
5885      else
5886        // Completely unsafe.
5887        return {SPF_UNKNOWN, SPNB_NA, false};
5888    } else {
5889      Ordered = false;
5890      // An unordered comparison will return true when given a NaN, so it
5891      // returns the LHS.
5892      if (LHSSafe)
5893        // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5894        NaNBehavior = SPNB_RETURNS_OTHER;
5895      else if (RHSSafe)
5896        NaNBehavior = SPNB_RETURNS_NAN;
5897      else
5898        // Completely unsafe.
5899        return {SPF_UNKNOWN, SPNB_NA, false};
5900    }
5901  }
5902
5903  if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5904    std::swap(CmpLHS, CmpRHS);
5905    Pred = CmpInst::getSwappedPredicate(Pred);
5906    if (NaNBehavior == SPNB_RETURNS_NAN)
5907      NaNBehavior = SPNB_RETURNS_OTHER;
5908    else if (NaNBehavior == SPNB_RETURNS_OTHER)
5909      NaNBehavior = SPNB_RETURNS_NAN;
5910    Ordered = !Ordered;
5911  }
5912
5913  // ([if]cmp X, Y) ? X : Y
5914  if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5915    switch (Pred) {
5916    default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5917    case ICmpInst::ICMP_UGT:
5918    case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5919    case ICmpInst::ICMP_SGT:
5920    case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5921    case ICmpInst::ICMP_ULT:
5922    case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5923    case ICmpInst::ICMP_SLT:
5924    case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5925    case FCmpInst::FCMP_UGT:
5926    case FCmpInst::FCMP_UGE:
5927    case FCmpInst::FCMP_OGT:
5928    case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5929    case FCmpInst::FCMP_ULT:
5930    case FCmpInst::FCMP_ULE:
5931    case FCmpInst::FCMP_OLT:
5932    case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5933    }
5934  }
5935
5936  if (isKnownNegation(TrueVal, FalseVal)) {
5937    // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5938    // match against either LHS or sext(LHS).
5939    auto MaybeSExtCmpLHS =
5940        m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5941    auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5942    auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5943    if (match(TrueVal, MaybeSExtCmpLHS)) {
5944      // Set the return values. If the compare uses the negated value (-X >s 0),
5945      // swap the return values because the negated value is always 'RHS'.
5946      LHS = TrueVal;
5947      RHS = FalseVal;
5948      if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5949        std::swap(LHS, RHS);
5950
5951      // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5952      // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5953      if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5954        return {SPF_ABS, SPNB_NA, false};
5955
5956      // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5957      if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5958        return {SPF_ABS, SPNB_NA, false};
5959
5960      // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5961      // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5962      if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5963        return {SPF_NABS, SPNB_NA, false};
5964    }
5965    else if (match(FalseVal, MaybeSExtCmpLHS)) {
5966      // Set the return values. If the compare uses the negated value (-X >s 0),
5967      // swap the return values because the negated value is always 'RHS'.
5968      LHS = FalseVal;
5969      RHS = TrueVal;
5970      if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5971        std::swap(LHS, RHS);
5972
5973      // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5974      // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5975      if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5976        return {SPF_NABS, SPNB_NA, false};
5977
5978      // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5979      // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5980      if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5981        return {SPF_ABS, SPNB_NA, false};
5982    }
5983  }
5984
5985  if (CmpInst::isIntPredicate(Pred))
5986    return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5987
5988  // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5989  // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5990  // semantics than minNum. Be conservative in such case.
5991  if (NaNBehavior != SPNB_RETURNS_ANY ||
5992      (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5993       !isKnownNonZero(CmpRHS)))
5994    return {SPF_UNKNOWN, SPNB_NA, false};
5995
5996  return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5997}
5998
5999/// Helps to match a select pattern in case of a type mismatch.
6000///
6001/// The function processes the case when type of true and false values of a
6002/// select instruction differs from type of the cmp instruction operands because
6003/// of a cast instruction. The function checks if it is legal to move the cast
6004/// operation after "select". If yes, it returns the new second value of
6005/// "select" (with the assumption that cast is moved):
6006/// 1. As operand of cast instruction when both values of "select" are same cast
6007/// instructions.
6008/// 2. As restored constant (by applying reverse cast operation) when the first
6009/// value of the "select" is a cast operation and the second value is a
6010/// constant.
6011/// NOTE: We return only the new second value because the first value could be
6012/// accessed as operand of cast instruction.
6013static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6014                              Instruction::CastOps *CastOp) {
6015  auto *Cast1 = dyn_cast<CastInst>(V1);
6016  if (!Cast1)
6017    return nullptr;
6018
6019  *CastOp = Cast1->getOpcode();
6020  Type *SrcTy = Cast1->getSrcTy();
6021  if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6022    // If V1 and V2 are both the same cast from the same type, look through V1.
6023    if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6024      return Cast2->getOperand(0);
6025    return nullptr;
6026  }
6027
6028  auto *C = dyn_cast<Constant>(V2);
6029  if (!C)
6030    return nullptr;
6031
6032  Constant *CastedTo = nullptr;
6033  switch (*CastOp) {
6034  case Instruction::ZExt:
6035    if (CmpI->isUnsigned())
6036      CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6037    break;
6038  case Instruction::SExt:
6039    if (CmpI->isSigned())
6040      CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6041    break;
6042  case Instruction::Trunc:
6043    Constant *CmpConst;
6044    if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6045        CmpConst->getType() == SrcTy) {
6046      // Here we have the following case:
6047      //
6048      //   %cond = cmp iN %x, CmpConst
6049      //   %tr = trunc iN %x to iK
6050      //   %narrowsel = select i1 %cond, iK %t, iK C
6051      //
6052      // We can always move trunc after select operation:
6053      //
6054      //   %cond = cmp iN %x, CmpConst
6055      //   %widesel = select i1 %cond, iN %x, iN CmpConst
6056      //   %tr = trunc iN %widesel to iK
6057      //
6058      // Note that C could be extended in any way because we don't care about
6059      // upper bits after truncation. It can't be abs pattern, because it would
6060      // look like:
6061      //
6062      //   select i1 %cond, x, -x.
6063      //
6064      // So only min/max pattern could be matched. Such match requires widened C
6065      // == CmpConst. That is why set widened C = CmpConst, condition trunc
6066      // CmpConst == C is checked below.
6067      CastedTo = CmpConst;
6068    } else {
6069      CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6070    }
6071    break;
6072  case Instruction::FPTrunc:
6073    CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6074    break;
6075  case Instruction::FPExt:
6076    CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6077    break;
6078  case Instruction::FPToUI:
6079    CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6080    break;
6081  case Instruction::FPToSI:
6082    CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6083    break;
6084  case Instruction::UIToFP:
6085    CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6086    break;
6087  case Instruction::SIToFP:
6088    CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6089    break;
6090  default:
6091    break;
6092  }
6093
6094  if (!CastedTo)
6095    return nullptr;
6096
6097  // Make sure the cast doesn't lose any information.
6098  Constant *CastedBack =
6099      ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6100  if (CastedBack != C)
6101    return nullptr;
6102
6103  return CastedTo;
6104}
6105
6106SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6107                                             Instruction::CastOps *CastOp,
6108                                             unsigned Depth) {
6109  if (Depth >= MaxAnalysisRecursionDepth)
6110    return {SPF_UNKNOWN, SPNB_NA, false};
6111
6112  SelectInst *SI = dyn_cast<SelectInst>(V);
6113  if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6114
6115  CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6116  if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6117
6118  Value *TrueVal = SI->getTrueValue();
6119  Value *FalseVal = SI->getFalseValue();
6120
6121  return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6122                                            CastOp, Depth);
6123}
6124
6125SelectPatternResult llvm::matchDecomposedSelectPattern(
6126    CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6127    Instruction::CastOps *CastOp, unsigned Depth) {
6128  CmpInst::Predicate Pred = CmpI->getPredicate();
6129  Value *CmpLHS = CmpI->getOperand(0);
6130  Value *CmpRHS = CmpI->getOperand(1);
6131  FastMathFlags FMF;
6132  if (isa<FPMathOperator>(CmpI))
6133    FMF = CmpI->getFastMathFlags();
6134
6135  // Bail out early.
6136  if (CmpI->isEquality())
6137    return {SPF_UNKNOWN, SPNB_NA, false};
6138
6139  // Deal with type mismatches.
6140  if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6141    if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6142      // If this is a potential fmin/fmax with a cast to integer, then ignore
6143      // -0.0 because there is no corresponding integer value.
6144      if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6145        FMF.setNoSignedZeros();
6146      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6147                                  cast<CastInst>(TrueVal)->getOperand(0), C,
6148                                  LHS, RHS, Depth);
6149    }
6150    if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6151      // If this is a potential fmin/fmax with a cast to integer, then ignore
6152      // -0.0 because there is no corresponding integer value.
6153      if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6154        FMF.setNoSignedZeros();
6155      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6156                                  C, cast<CastInst>(FalseVal)->getOperand(0),
6157                                  LHS, RHS, Depth);
6158    }
6159  }
6160  return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6161                              LHS, RHS, Depth);
6162}
6163
6164CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6165  if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6166  if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6167  if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6168  if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6169  if (SPF == SPF_FMINNUM)
6170    return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6171  if (SPF == SPF_FMAXNUM)
6172    return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6173  llvm_unreachable("unhandled!");
6174}
6175
6176SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6177  if (SPF == SPF_SMIN) return SPF_SMAX;
6178  if (SPF == SPF_UMIN) return SPF_UMAX;
6179  if (SPF == SPF_SMAX) return SPF_SMIN;
6180  if (SPF == SPF_UMAX) return SPF_UMIN;
6181  llvm_unreachable("unhandled!");
6182}
6183
6184Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6185  switch (MinMaxID) {
6186  case Intrinsic::smax: return Intrinsic::smin;
6187  case Intrinsic::smin: return Intrinsic::smax;
6188  case Intrinsic::umax: return Intrinsic::umin;
6189  case Intrinsic::umin: return Intrinsic::umax;
6190  default: llvm_unreachable("Unexpected intrinsic");
6191  }
6192}
6193
6194CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6195  return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6196}
6197
6198std::pair<Intrinsic::ID, bool>
6199llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6200  // Check if VL contains select instructions that can be folded into a min/max
6201  // vector intrinsic and return the intrinsic if it is possible.
6202  // TODO: Support floating point min/max.
6203  bool AllCmpSingleUse = true;
6204  SelectPatternResult SelectPattern;
6205  SelectPattern.Flavor = SPF_UNKNOWN;
6206  if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6207        Value *LHS, *RHS;
6208        auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6209        if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6210            CurrentPattern.Flavor == SPF_FMINNUM ||
6211            CurrentPattern.Flavor == SPF_FMAXNUM ||
6212            !I->getType()->isIntOrIntVectorTy())
6213          return false;
6214        if (SelectPattern.Flavor != SPF_UNKNOWN &&
6215            SelectPattern.Flavor != CurrentPattern.Flavor)
6216          return false;
6217        SelectPattern = CurrentPattern;
6218        AllCmpSingleUse &=
6219            match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6220        return true;
6221      })) {
6222    switch (SelectPattern.Flavor) {
6223    case SPF_SMIN:
6224      return {Intrinsic::smin, AllCmpSingleUse};
6225    case SPF_UMIN:
6226      return {Intrinsic::umin, AllCmpSingleUse};
6227    case SPF_SMAX:
6228      return {Intrinsic::smax, AllCmpSingleUse};
6229    case SPF_UMAX:
6230      return {Intrinsic::umax, AllCmpSingleUse};
6231    default:
6232      llvm_unreachable("unexpected select pattern flavor");
6233    }
6234  }
6235  return {Intrinsic::not_intrinsic, false};
6236}
6237
6238bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6239                                 Value *&Start, Value *&Step) {
6240  // Handle the case of a simple two-predecessor recurrence PHI.
6241  // There's a lot more that could theoretically be done here, but
6242  // this is sufficient to catch some interesting cases.
6243  if (P->getNumIncomingValues() != 2)
6244    return false;
6245
6246  for (unsigned i = 0; i != 2; ++i) {
6247    Value *L = P->getIncomingValue(i);
6248    Value *R = P->getIncomingValue(!i);
6249    Operator *LU = dyn_cast<Operator>(L);
6250    if (!LU)
6251      continue;
6252    unsigned Opcode = LU->getOpcode();
6253
6254    switch (Opcode) {
6255    default:
6256      continue;
6257    // TODO: Expand list -- xor, div, gep, uaddo, etc..
6258    case Instruction::LShr:
6259    case Instruction::AShr:
6260    case Instruction::Shl:
6261    case Instruction::Add:
6262    case Instruction::Sub:
6263    case Instruction::And:
6264    case Instruction::Or:
6265    case Instruction::Mul: {
6266      Value *LL = LU->getOperand(0);
6267      Value *LR = LU->getOperand(1);
6268      // Find a recurrence.
6269      if (LL == P)
6270        L = LR;
6271      else if (LR == P)
6272        L = LL;
6273      else
6274        continue; // Check for recurrence with L and R flipped.
6275
6276      break; // Match!
6277    }
6278    };
6279
6280    // We have matched a recurrence of the form:
6281    //   %iv = [R, %entry], [%iv.next, %backedge]
6282    //   %iv.next = binop %iv, L
6283    // OR
6284    //   %iv = [R, %entry], [%iv.next, %backedge]
6285    //   %iv.next = binop L, %iv
6286    BO = cast<BinaryOperator>(LU);
6287    Start = R;
6288    Step = L;
6289    return true;
6290  }
6291  return false;
6292}
6293
6294bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6295                                 Value *&Start, Value *&Step) {
6296  BinaryOperator *BO = nullptr;
6297  P = dyn_cast<PHINode>(I->getOperand(0));
6298  if (!P)
6299    P = dyn_cast<PHINode>(I->getOperand(1));
6300  return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6301}
6302
6303/// Return true if "icmp Pred LHS RHS" is always true.
6304static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6305                            const Value *RHS, const DataLayout &DL,
6306                            unsigned Depth) {
6307  assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6308  if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6309    return true;
6310
6311  switch (Pred) {
6312  default:
6313    return false;
6314
6315  case CmpInst::ICMP_SLE: {
6316    const APInt *C;
6317
6318    // LHS s<= LHS +_{nsw} C   if C >= 0
6319    if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6320      return !C->isNegative();
6321    return false;
6322  }
6323
6324  case CmpInst::ICMP_ULE: {
6325    const APInt *C;
6326
6327    // LHS u<= LHS +_{nuw} C   for any C
6328    if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6329      return true;
6330
6331    // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6332    auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6333                                       const Value *&X,
6334                                       const APInt *&CA, const APInt *&CB) {
6335      if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6336          match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6337        return true;
6338
6339      // If X & C == 0 then (X | C) == X +_{nuw} C
6340      if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6341          match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6342        KnownBits Known(CA->getBitWidth());
6343        computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6344                         /*CxtI*/ nullptr, /*DT*/ nullptr);
6345        if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6346          return true;
6347      }
6348
6349      return false;
6350    };
6351
6352    const Value *X;
6353    const APInt *CLHS, *CRHS;
6354    if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6355      return CLHS->ule(*CRHS);
6356
6357    return false;
6358  }
6359  }
6360}
6361
6362/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6363/// ALHS ARHS" is true.  Otherwise, return None.
6364static Optional<bool>
6365isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6366                      const Value *ARHS, const Value *BLHS, const Value *BRHS,
6367                      const DataLayout &DL, unsigned Depth) {
6368  switch (Pred) {
6369  default:
6370    return None;
6371
6372  case CmpInst::ICMP_SLT:
6373  case CmpInst::ICMP_SLE:
6374    if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6375        isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6376      return true;
6377    return None;
6378
6379  case CmpInst::ICMP_ULT:
6380  case CmpInst::ICMP_ULE:
6381    if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6382        isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6383      return true;
6384    return None;
6385  }
6386}
6387
6388/// Return true if the operands of the two compares match.  IsSwappedOps is true
6389/// when the operands match, but are swapped.
6390static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6391                          const Value *BLHS, const Value *BRHS,
6392                          bool &IsSwappedOps) {
6393
6394  bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6395  IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6396  return IsMatchingOps || IsSwappedOps;
6397}
6398
6399/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6400/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6401/// Otherwise, return None if we can't infer anything.
6402static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6403                                                    CmpInst::Predicate BPred,
6404                                                    bool AreSwappedOps) {
6405  // Canonicalize the predicate as if the operands were not commuted.
6406  if (AreSwappedOps)
6407    BPred = ICmpInst::getSwappedPredicate(BPred);
6408
6409  if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6410    return true;
6411  if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6412    return false;
6413
6414  return None;
6415}
6416
6417/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6418/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6419/// Otherwise, return None if we can't infer anything.
6420static Optional<bool>
6421isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6422                                 const ConstantInt *C1,
6423                                 CmpInst::Predicate BPred,
6424                                 const ConstantInt *C2) {
6425  ConstantRange DomCR =
6426      ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6427  ConstantRange CR =
6428      ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6429  ConstantRange Intersection = DomCR.intersectWith(CR);
6430  ConstantRange Difference = DomCR.difference(CR);
6431  if (Intersection.isEmptySet())
6432    return false;
6433  if (Difference.isEmptySet())
6434    return true;
6435  return None;
6436}
6437
6438/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6439/// false.  Otherwise, return None if we can't infer anything.
6440static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6441                                         CmpInst::Predicate BPred,
6442                                         const Value *BLHS, const Value *BRHS,
6443                                         const DataLayout &DL, bool LHSIsTrue,
6444                                         unsigned Depth) {
6445  Value *ALHS = LHS->getOperand(0);
6446  Value *ARHS = LHS->getOperand(1);
6447
6448  // The rest of the logic assumes the LHS condition is true.  If that's not the
6449  // case, invert the predicate to make it so.
6450  CmpInst::Predicate APred =
6451      LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6452
6453  // Can we infer anything when the two compares have matching operands?
6454  bool AreSwappedOps;
6455  if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6456    if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6457            APred, BPred, AreSwappedOps))
6458      return Implication;
6459    // No amount of additional analysis will infer the second condition, so
6460    // early exit.
6461    return None;
6462  }
6463
6464  // Can we infer anything when the LHS operands match and the RHS operands are
6465  // constants (not necessarily matching)?
6466  if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6467    if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6468            APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6469      return Implication;
6470    // No amount of additional analysis will infer the second condition, so
6471    // early exit.
6472    return None;
6473  }
6474
6475  if (APred == BPred)
6476    return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6477  return None;
6478}
6479
6480/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6481/// false.  Otherwise, return None if we can't infer anything.  We expect the
6482/// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6483static Optional<bool>
6484isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6485                   const Value *RHSOp0, const Value *RHSOp1,
6486                   const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6487  // The LHS must be an 'or', 'and', or a 'select' instruction.
6488  assert((LHS->getOpcode() == Instruction::And ||
6489          LHS->getOpcode() == Instruction::Or ||
6490          LHS->getOpcode() == Instruction::Select) &&
6491         "Expected LHS to be 'and', 'or', or 'select'.");
6492
6493  assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6494
6495  // If the result of an 'or' is false, then we know both legs of the 'or' are
6496  // false.  Similarly, if the result of an 'and' is true, then we know both
6497  // legs of the 'and' are true.
6498  const Value *ALHS, *ARHS;
6499  if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6500      (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6501    // FIXME: Make this non-recursion.
6502    if (Optional<bool> Implication = isImpliedCondition(
6503            ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6504      return Implication;
6505    if (Optional<bool> Implication = isImpliedCondition(
6506            ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6507      return Implication;
6508    return None;
6509  }
6510  return None;
6511}
6512
6513Optional<bool>
6514llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6515                         const Value *RHSOp0, const Value *RHSOp1,
6516                         const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6517  // Bail out when we hit the limit.
6518  if (Depth == MaxAnalysisRecursionDepth)
6519    return None;
6520
6521  // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6522  // example.
6523  if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6524    return None;
6525
6526  Type *OpTy = LHS->getType();
6527  assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6528
6529  // FIXME: Extending the code below to handle vectors.
6530  if (OpTy->isVectorTy())
6531    return None;
6532
6533  assert(OpTy->isIntegerTy(1) && "implied by above");
6534
6535  // Both LHS and RHS are icmps.
6536  const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6537  if (LHSCmp)
6538    return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6539                              Depth);
6540
6541  /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6542  /// the RHS to be an icmp.
6543  /// FIXME: Add support for and/or/select on the RHS.
6544  if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6545    if ((LHSI->getOpcode() == Instruction::And ||
6546         LHSI->getOpcode() == Instruction::Or ||
6547         LHSI->getOpcode() == Instruction::Select))
6548      return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6549                                Depth);
6550  }
6551  return None;
6552}
6553
6554Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6555                                        const DataLayout &DL, bool LHSIsTrue,
6556                                        unsigned Depth) {
6557  // LHS ==> RHS by definition
6558  if (LHS == RHS)
6559    return LHSIsTrue;
6560
6561  const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6562  if (RHSCmp)
6563    return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6564                              RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6565                              LHSIsTrue, Depth);
6566  return None;
6567}
6568
6569// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6570// condition dominating ContextI or nullptr, if no condition is found.
6571static std::pair<Value *, bool>
6572getDomPredecessorCondition(const Instruction *ContextI) {
6573  if (!ContextI || !ContextI->getParent())
6574    return {nullptr, false};
6575
6576  // TODO: This is a poor/cheap way to determine dominance. Should we use a
6577  // dominator tree (eg, from a SimplifyQuery) instead?
6578  const BasicBlock *ContextBB = ContextI->getParent();
6579  const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6580  if (!PredBB)
6581    return {nullptr, false};
6582
6583  // We need a conditional branch in the predecessor.
6584  Value *PredCond;
6585  BasicBlock *TrueBB, *FalseBB;
6586  if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6587    return {nullptr, false};
6588
6589  // The branch should get simplified. Don't bother simplifying this condition.
6590  if (TrueBB == FalseBB)
6591    return {nullptr, false};
6592
6593  assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6594         "Predecessor block does not point to successor?");
6595
6596  // Is this condition implied by the predecessor condition?
6597  return {PredCond, TrueBB == ContextBB};
6598}
6599
6600Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6601                                             const Instruction *ContextI,
6602                                             const DataLayout &DL) {
6603  assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6604  auto PredCond = getDomPredecessorCondition(ContextI);
6605  if (PredCond.first)
6606    return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6607  return None;
6608}
6609
6610Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6611                                             const Value *LHS, const Value *RHS,
6612                                             const Instruction *ContextI,
6613                                             const DataLayout &DL) {
6614  auto PredCond = getDomPredecessorCondition(ContextI);
6615  if (PredCond.first)
6616    return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6617                              PredCond.second);
6618  return None;
6619}
6620
6621static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6622                              APInt &Upper, const InstrInfoQuery &IIQ) {
6623  unsigned Width = Lower.getBitWidth();
6624  const APInt *C;
6625  switch (BO.getOpcode()) {
6626  case Instruction::Add:
6627    if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6628      // FIXME: If we have both nuw and nsw, we should reduce the range further.
6629      if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6630        // 'add nuw x, C' produces [C, UINT_MAX].
6631        Lower = *C;
6632      } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6633        if (C->isNegative()) {
6634          // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6635          Lower = APInt::getSignedMinValue(Width);
6636          Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6637        } else {
6638          // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6639          Lower = APInt::getSignedMinValue(Width) + *C;
6640          Upper = APInt::getSignedMaxValue(Width) + 1;
6641        }
6642      }
6643    }
6644    break;
6645
6646  case Instruction::And:
6647    if (match(BO.getOperand(1), m_APInt(C)))
6648      // 'and x, C' produces [0, C].
6649      Upper = *C + 1;
6650    break;
6651
6652  case Instruction::Or:
6653    if (match(BO.getOperand(1), m_APInt(C)))
6654      // 'or x, C' produces [C, UINT_MAX].
6655      Lower = *C;
6656    break;
6657
6658  case Instruction::AShr:
6659    if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6660      // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6661      Lower = APInt::getSignedMinValue(Width).ashr(*C);
6662      Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6663    } else if (match(BO.getOperand(0), m_APInt(C))) {
6664      unsigned ShiftAmount = Width - 1;
6665      if (!C->isNullValue() && IIQ.isExact(&BO))
6666        ShiftAmount = C->countTrailingZeros();
6667      if (C->isNegative()) {
6668        // 'ashr C, x' produces [C, C >> (Width-1)]
6669        Lower = *C;
6670        Upper = C->ashr(ShiftAmount) + 1;
6671      } else {
6672        // 'ashr C, x' produces [C >> (Width-1), C]
6673        Lower = C->ashr(ShiftAmount);
6674        Upper = *C + 1;
6675      }
6676    }
6677    break;
6678
6679  case Instruction::LShr:
6680    if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6681      // 'lshr x, C' produces [0, UINT_MAX >> C].
6682      Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6683    } else if (match(BO.getOperand(0), m_APInt(C))) {
6684      // 'lshr C, x' produces [C >> (Width-1), C].
6685      unsigned ShiftAmount = Width - 1;
6686      if (!C->isNullValue() && IIQ.isExact(&BO))
6687        ShiftAmount = C->countTrailingZeros();
6688      Lower = C->lshr(ShiftAmount);
6689      Upper = *C + 1;
6690    }
6691    break;
6692
6693  case Instruction::Shl:
6694    if (match(BO.getOperand(0), m_APInt(C))) {
6695      if (IIQ.hasNoUnsignedWrap(&BO)) {
6696        // 'shl nuw C, x' produces [C, C << CLZ(C)]
6697        Lower = *C;
6698        Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6699      } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6700        if (C->isNegative()) {
6701          // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6702          unsigned ShiftAmount = C->countLeadingOnes() - 1;
6703          Lower = C->shl(ShiftAmount);
6704          Upper = *C + 1;
6705        } else {
6706          // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6707          unsigned ShiftAmount = C->countLeadingZeros() - 1;
6708          Lower = *C;
6709          Upper = C->shl(ShiftAmount) + 1;
6710        }
6711      }
6712    }
6713    break;
6714
6715  case Instruction::SDiv:
6716    if (match(BO.getOperand(1), m_APInt(C))) {
6717      APInt IntMin = APInt::getSignedMinValue(Width);
6718      APInt IntMax = APInt::getSignedMaxValue(Width);
6719      if (C->isAllOnesValue()) {
6720        // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6721        //    where C != -1 and C != 0 and C != 1
6722        Lower = IntMin + 1;
6723        Upper = IntMax + 1;
6724      } else if (C->countLeadingZeros() < Width - 1) {
6725        // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6726        //    where C != -1 and C != 0 and C != 1
6727        Lower = IntMin.sdiv(*C);
6728        Upper = IntMax.sdiv(*C);
6729        if (Lower.sgt(Upper))
6730          std::swap(Lower, Upper);
6731        Upper = Upper + 1;
6732        assert(Upper != Lower && "Upper part of range has wrapped!");
6733      }
6734    } else if (match(BO.getOperand(0), m_APInt(C))) {
6735      if (C->isMinSignedValue()) {
6736        // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6737        Lower = *C;
6738        Upper = Lower.lshr(1) + 1;
6739      } else {
6740        // 'sdiv C, x' produces [-|C|, |C|].
6741        Upper = C->abs() + 1;
6742        Lower = (-Upper) + 1;
6743      }
6744    }
6745    break;
6746
6747  case Instruction::UDiv:
6748    if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6749      // 'udiv x, C' produces [0, UINT_MAX / C].
6750      Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6751    } else if (match(BO.getOperand(0), m_APInt(C))) {
6752      // 'udiv C, x' produces [0, C].
6753      Upper = *C + 1;
6754    }
6755    break;
6756
6757  case Instruction::SRem:
6758    if (match(BO.getOperand(1), m_APInt(C))) {
6759      // 'srem x, C' produces (-|C|, |C|).
6760      Upper = C->abs();
6761      Lower = (-Upper) + 1;
6762    }
6763    break;
6764
6765  case Instruction::URem:
6766    if (match(BO.getOperand(1), m_APInt(C)))
6767      // 'urem x, C' produces [0, C).
6768      Upper = *C;
6769    break;
6770
6771  default:
6772    break;
6773  }
6774}
6775
6776static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6777                                  APInt &Upper) {
6778  unsigned Width = Lower.getBitWidth();
6779  const APInt *C;
6780  switch (II.getIntrinsicID()) {
6781  case Intrinsic::ctpop:
6782  case Intrinsic::ctlz:
6783  case Intrinsic::cttz:
6784    // Maximum of set/clear bits is the bit width.
6785    assert(Lower == 0 && "Expected lower bound to be zero");
6786    Upper = Width + 1;
6787    break;
6788  case Intrinsic::uadd_sat:
6789    // uadd.sat(x, C) produces [C, UINT_MAX].
6790    if (match(II.getOperand(0), m_APInt(C)) ||
6791        match(II.getOperand(1), m_APInt(C)))
6792      Lower = *C;
6793    break;
6794  case Intrinsic::sadd_sat:
6795    if (match(II.getOperand(0), m_APInt(C)) ||
6796        match(II.getOperand(1), m_APInt(C))) {
6797      if (C->isNegative()) {
6798        // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6799        Lower = APInt::getSignedMinValue(Width);
6800        Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6801      } else {
6802        // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6803        Lower = APInt::getSignedMinValue(Width) + *C;
6804        Upper = APInt::getSignedMaxValue(Width) + 1;
6805      }
6806    }
6807    break;
6808  case Intrinsic::usub_sat:
6809    // usub.sat(C, x) produces [0, C].
6810    if (match(II.getOperand(0), m_APInt(C)))
6811      Upper = *C + 1;
6812    // usub.sat(x, C) produces [0, UINT_MAX - C].
6813    else if (match(II.getOperand(1), m_APInt(C)))
6814      Upper = APInt::getMaxValue(Width) - *C + 1;
6815    break;
6816  case Intrinsic::ssub_sat:
6817    if (match(II.getOperand(0), m_APInt(C))) {
6818      if (C->isNegative()) {
6819        // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6820        Lower = APInt::getSignedMinValue(Width);
6821        Upper = *C - APInt::getSignedMinValue(Width) + 1;
6822      } else {
6823        // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6824        Lower = *C - APInt::getSignedMaxValue(Width);
6825        Upper = APInt::getSignedMaxValue(Width) + 1;
6826      }
6827    } else if (match(II.getOperand(1), m_APInt(C))) {
6828      if (C->isNegative()) {
6829        // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6830        Lower = APInt::getSignedMinValue(Width) - *C;
6831        Upper = APInt::getSignedMaxValue(Width) + 1;
6832      } else {
6833        // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6834        Lower = APInt::getSignedMinValue(Width);
6835        Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6836      }
6837    }
6838    break;
6839  case Intrinsic::umin:
6840  case Intrinsic::umax:
6841  case Intrinsic::smin:
6842  case Intrinsic::smax:
6843    if (!match(II.getOperand(0), m_APInt(C)) &&
6844        !match(II.getOperand(1), m_APInt(C)))
6845      break;
6846
6847    switch (II.getIntrinsicID()) {
6848    case Intrinsic::umin:
6849      Upper = *C + 1;
6850      break;
6851    case Intrinsic::umax:
6852      Lower = *C;
6853      break;
6854    case Intrinsic::smin:
6855      Lower = APInt::getSignedMinValue(Width);
6856      Upper = *C + 1;
6857      break;
6858    case Intrinsic::smax:
6859      Lower = *C;
6860      Upper = APInt::getSignedMaxValue(Width) + 1;
6861      break;
6862    default:
6863      llvm_unreachable("Must be min/max intrinsic");
6864    }
6865    break;
6866  case Intrinsic::abs:
6867    // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6868    // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6869    if (match(II.getOperand(1), m_One()))
6870      Upper = APInt::getSignedMaxValue(Width) + 1;
6871    else
6872      Upper = APInt::getSignedMinValue(Width) + 1;
6873    break;
6874  default:
6875    break;
6876  }
6877}
6878
6879static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6880                                      APInt &Upper, const InstrInfoQuery &IIQ) {
6881  const Value *LHS = nullptr, *RHS = nullptr;
6882  SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6883  if (R.Flavor == SPF_UNKNOWN)
6884    return;
6885
6886  unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6887
6888  if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6889    // If the negation part of the abs (in RHS) has the NSW flag,
6890    // then the result of abs(X) is [0..SIGNED_MAX],
6891    // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6892    Lower = APInt::getNullValue(BitWidth);
6893    if (match(RHS, m_Neg(m_Specific(LHS))) &&
6894        IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6895      Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6896    else
6897      Upper = APInt::getSignedMinValue(BitWidth) + 1;
6898    return;
6899  }
6900
6901  if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6902    // The result of -abs(X) is <= 0.
6903    Lower = APInt::getSignedMinValue(BitWidth);
6904    Upper = APInt(BitWidth, 1);
6905    return;
6906  }
6907
6908  const APInt *C;
6909  if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6910    return;
6911
6912  switch (R.Flavor) {
6913    case SPF_UMIN:
6914      Upper = *C + 1;
6915      break;
6916    case SPF_UMAX:
6917      Lower = *C;
6918      break;
6919    case SPF_SMIN:
6920      Lower = APInt::getSignedMinValue(BitWidth);
6921      Upper = *C + 1;
6922      break;
6923    case SPF_SMAX:
6924      Lower = *C;
6925      Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6926      break;
6927    default:
6928      break;
6929  }
6930}
6931
6932ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6933                                         AssumptionCache *AC,
6934                                         const Instruction *CtxI,
6935                                         unsigned Depth) {
6936  assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6937
6938  if (Depth == MaxAnalysisRecursionDepth)
6939    return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6940
6941  const APInt *C;
6942  if (match(V, m_APInt(C)))
6943    return ConstantRange(*C);
6944
6945  InstrInfoQuery IIQ(UseInstrInfo);
6946  unsigned BitWidth = V->getType()->getScalarSizeInBits();
6947  APInt Lower = APInt(BitWidth, 0);
6948  APInt Upper = APInt(BitWidth, 0);
6949  if (auto *BO = dyn_cast<BinaryOperator>(V))
6950    setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6951  else if (auto *II = dyn_cast<IntrinsicInst>(V))
6952    setLimitsForIntrinsic(*II, Lower, Upper);
6953  else if (auto *SI = dyn_cast<SelectInst>(V))
6954    setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6955
6956  ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6957
6958  if (auto *I = dyn_cast<Instruction>(V))
6959    if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6960      CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6961
6962  if (CtxI && AC) {
6963    // Try to restrict the range based on information from assumptions.
6964    for (auto &AssumeVH : AC->assumptionsFor(V)) {
6965      if (!AssumeVH)
6966        continue;
6967      CallInst *I = cast<CallInst>(AssumeVH);
6968      assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6969             "Got assumption for the wrong function!");
6970      assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6971             "must be an assume intrinsic");
6972
6973      if (!isValidAssumeForContext(I, CtxI, nullptr))
6974        continue;
6975      Value *Arg = I->getArgOperand(0);
6976      ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6977      // Currently we just use information from comparisons.
6978      if (!Cmp || Cmp->getOperand(0) != V)
6979        continue;
6980      ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6981                                               AC, I, Depth + 1);
6982      CR = CR.intersectWith(
6983          ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6984    }
6985  }
6986
6987  return CR;
6988}
6989
6990static Optional<int64_t>
6991getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6992  // Skip over the first indices.
6993  gep_type_iterator GTI = gep_type_begin(GEP);
6994  for (unsigned i = 1; i != Idx; ++i, ++GTI)
6995    /*skip along*/;
6996
6997  // Compute the offset implied by the rest of the indices.
6998  int64_t Offset = 0;
6999  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7000    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7001    if (!OpC)
7002      return None;
7003    if (OpC->isZero())
7004      continue; // No offset.
7005
7006    // Handle struct indices, which add their field offset to the pointer.
7007    if (StructType *STy = GTI.getStructTypeOrNull()) {
7008      Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7009      continue;
7010    }
7011
7012    // Otherwise, we have a sequential type like an array or fixed-length
7013    // vector. Multiply the index by the ElementSize.
7014    TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7015    if (Size.isScalable())
7016      return None;
7017    Offset += Size.getFixedSize() * OpC->getSExtValue();
7018  }
7019
7020  return Offset;
7021}
7022
7023Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7024                                        const DataLayout &DL) {
7025  Ptr1 = Ptr1->stripPointerCasts();
7026  Ptr2 = Ptr2->stripPointerCasts();
7027
7028  // Handle the trivial case first.
7029  if (Ptr1 == Ptr2) {
7030    return 0;
7031  }
7032
7033  const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7034  const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7035
7036  // If one pointer is a GEP see if the GEP is a constant offset from the base,
7037  // as in "P" and "gep P, 1".
7038  // Also do this iteratively to handle the the following case:
7039  //   Ptr_t1 = GEP Ptr1, c1
7040  //   Ptr_t2 = GEP Ptr_t1, c2
7041  //   Ptr2 = GEP Ptr_t2, c3
7042  // where we will return c1+c2+c3.
7043  // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
7044  // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
7045  // are the same, and return the difference between offsets.
7046  auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
7047                                 const Value *Ptr) -> Optional<int64_t> {
7048    const GEPOperator *GEP_T = GEP;
7049    int64_t OffsetVal = 0;
7050    bool HasSameBase = false;
7051    while (GEP_T) {
7052      auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
7053      if (!Offset)
7054        return None;
7055      OffsetVal += *Offset;
7056      auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
7057      if (Op0 == Ptr) {
7058        HasSameBase = true;
7059        break;
7060      }
7061      GEP_T = dyn_cast<GEPOperator>(Op0);
7062    }
7063    if (!HasSameBase)
7064      return None;
7065    return OffsetVal;
7066  };
7067
7068  if (GEP1) {
7069    auto Offset = getOffsetFromBase(GEP1, Ptr2);
7070    if (Offset)
7071      return -*Offset;
7072  }
7073  if (GEP2) {
7074    auto Offset = getOffsetFromBase(GEP2, Ptr1);
7075    if (Offset)
7076      return Offset;
7077  }
7078
7079  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7080  // base.  After that base, they may have some number of common (and
7081  // potentially variable) indices.  After that they handle some constant
7082  // offset, which determines their offset from each other.  At this point, we
7083  // handle no other case.
7084  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7085    return None;
7086
7087  // Skip any common indices and track the GEP types.
7088  unsigned Idx = 1;
7089  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7090    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7091      break;
7092
7093  auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7094  auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7095  if (!Offset1 || !Offset2)
7096    return None;
7097  return *Offset2 - *Offset1;
7098}
7099