1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the generic AliasAnalysis interface, which is used as the
10// common interface used by all clients of alias analysis information, and
11// implemented by all alias analysis implementations.  Mod/Ref information is
12// also captured by this interface.
13//
14// Implementations of this interface must implement the various virtual methods,
15// which automatically provides functionality for the entire suite of client
16// APIs.
17//
18// This API identifies memory regions with the MemoryLocation class. The pointer
19// component specifies the base memory address of the region. The Size specifies
20// the maximum size (in address units) of the memory region, or
21// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22// identifies the "type" of the memory reference; see the
23// TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38#define LLVM_ANALYSIS_ALIASANALYSIS_H
39
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/None.h"
42#include "llvm/ADT/Optional.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/Analysis/MemoryLocation.h"
45#include "llvm/IR/PassManager.h"
46#include "llvm/Pass.h"
47#include <cstdint>
48#include <functional>
49#include <memory>
50#include <vector>
51
52namespace llvm {
53
54class AnalysisUsage;
55class AtomicCmpXchgInst;
56class BasicAAResult;
57class BasicBlock;
58class CatchPadInst;
59class CatchReturnInst;
60class DominatorTree;
61class FenceInst;
62class Function;
63class InvokeInst;
64class PreservedAnalyses;
65class TargetLibraryInfo;
66class Value;
67
68/// The possible results of an alias query.
69///
70/// These results are always computed between two MemoryLocation objects as
71/// a query to some alias analysis.
72///
73/// Note that these are unscoped enumerations because we would like to support
74/// implicitly testing a result for the existence of any possible aliasing with
75/// a conversion to bool, but an "enum class" doesn't support this. The
76/// canonical names from the literature are suffixed and unique anyways, and so
77/// they serve as global constants in LLVM for these results.
78///
79/// See docs/AliasAnalysis.html for more information on the specific meanings
80/// of these values.
81class AliasResult {
82private:
83  static const int OffsetBits = 23;
84  static const int AliasBits = 8;
85  static_assert(AliasBits + 1 + OffsetBits <= 32,
86                "AliasResult size is intended to be 4 bytes!");
87
88  unsigned int Alias : AliasBits;
89  unsigned int HasOffset : 1;
90  signed int Offset : OffsetBits;
91
92public:
93  enum Kind : uint8_t {
94    /// The two locations do not alias at all.
95    ///
96    /// This value is arranged to convert to false, while all other values
97    /// convert to true. This allows a boolean context to convert the result to
98    /// a binary flag indicating whether there is the possibility of aliasing.
99    NoAlias = 0,
100    /// The two locations may or may not alias. This is the least precise
101    /// result.
102    MayAlias,
103    /// The two locations alias, but only due to a partial overlap.
104    PartialAlias,
105    /// The two locations precisely alias each other.
106    MustAlias,
107  };
108  static_assert(MustAlias < (1 << AliasBits),
109                "Not enough bit field size for the enum!");
110
111  explicit AliasResult() = delete;
112  constexpr AliasResult(const Kind &Alias)
113      : Alias(Alias), HasOffset(false), Offset(0) {}
114
115  operator Kind() const { return static_cast<Kind>(Alias); }
116
117  constexpr bool hasOffset() const { return HasOffset; }
118  constexpr int32_t getOffset() const {
119    assert(HasOffset && "No offset!");
120    return Offset;
121  }
122  void setOffset(int32_t NewOffset) {
123    if (isInt<OffsetBits>(NewOffset)) {
124      HasOffset = true;
125      Offset = NewOffset;
126    }
127  }
128
129  /// Helper for processing AliasResult for swapped memory location pairs.
130  void swap(bool DoSwap = true) {
131    if (DoSwap && hasOffset())
132      setOffset(-getOffset());
133  }
134};
135
136static_assert(sizeof(AliasResult) == 4,
137              "AliasResult size is intended to be 4 bytes!");
138
139/// << operator for AliasResult.
140raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
141
142/// Flags indicating whether a memory access modifies or references memory.
143///
144/// This is no access at all, a modification, a reference, or both
145/// a modification and a reference. These are specifically structured such that
146/// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
147/// work with any of the possible values.
148enum class ModRefInfo : uint8_t {
149  /// Must is provided for completeness, but no routines will return only
150  /// Must today. See definition of Must below.
151  Must = 0,
152  /// The access may reference the value stored in memory,
153  /// a mustAlias relation was found, and no mayAlias or partialAlias found.
154  MustRef = 1,
155  /// The access may modify the value stored in memory,
156  /// a mustAlias relation was found, and no mayAlias or partialAlias found.
157  MustMod = 2,
158  /// The access may reference, modify or both the value stored in memory,
159  /// a mustAlias relation was found, and no mayAlias or partialAlias found.
160  MustModRef = MustRef | MustMod,
161  /// The access neither references nor modifies the value stored in memory.
162  NoModRef = 4,
163  /// The access may reference the value stored in memory.
164  Ref = NoModRef | MustRef,
165  /// The access may modify the value stored in memory.
166  Mod = NoModRef | MustMod,
167  /// The access may reference and may modify the value stored in memory.
168  ModRef = Ref | Mod,
169
170  /// About Must:
171  /// Must is set in a best effort manner.
172  /// We usually do not try our best to infer Must, instead it is merely
173  /// another piece of "free" information that is presented when available.
174  /// Must set means there was certainly a MustAlias found. For calls,
175  /// where multiple arguments are checked (argmemonly), this translates to
176  /// only MustAlias or NoAlias was found.
177  /// Must is not set for RAR accesses, even if the two locations must
178  /// alias. The reason is that two read accesses translate to an early return
179  /// of NoModRef. An additional alias check to set Must may be
180  /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
181  /// We refer to Must being *set* when the most significant bit is *cleared*.
182  /// Conversely we *clear* Must information by *setting* the Must bit to 1.
183};
184
185LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
186  return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
187         static_cast<int>(ModRefInfo::Must);
188}
189LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
190  return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
191}
192LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
193  return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
194         static_cast<int>(ModRefInfo::MustModRef);
195}
196LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
197  return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
198}
199LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
200  return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
201}
202LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
203  return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
204}
205
206LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
207  return ModRefInfo(static_cast<int>(MRI) |
208                    static_cast<int>(ModRefInfo::MustMod));
209}
210LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
211  return ModRefInfo(static_cast<int>(MRI) |
212                    static_cast<int>(ModRefInfo::MustRef));
213}
214LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
215  return ModRefInfo(static_cast<int>(MRI) &
216                    static_cast<int>(ModRefInfo::MustModRef));
217}
218LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
219  return ModRefInfo(static_cast<int>(MRI) |
220                    static_cast<int>(ModRefInfo::MustModRef));
221}
222LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
223  return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
224}
225LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
226  return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
227}
228LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
229  return ModRefInfo(static_cast<int>(MRI) |
230                    static_cast<int>(ModRefInfo::NoModRef));
231}
232LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
233                                             const ModRefInfo MRI2) {
234  return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
235}
236LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
237                                                 const ModRefInfo MRI2) {
238  return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
239}
240
241/// The locations at which a function might access memory.
242///
243/// These are primarily used in conjunction with the \c AccessKind bits to
244/// describe both the nature of access and the locations of access for a
245/// function call.
246enum FunctionModRefLocation {
247  /// Base case is no access to memory.
248  FMRL_Nowhere = 0,
249  /// Access to memory via argument pointers.
250  FMRL_ArgumentPointees = 8,
251  /// Memory that is inaccessible via LLVM IR.
252  FMRL_InaccessibleMem = 16,
253  /// Access to any memory.
254  FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
255};
256
257/// Summary of how a function affects memory in the program.
258///
259/// Loads from constant globals are not considered memory accesses for this
260/// interface. Also, functions may freely modify stack space local to their
261/// invocation without having to report it through these interfaces.
262enum FunctionModRefBehavior {
263  /// This function does not perform any non-local loads or stores to memory.
264  ///
265  /// This property corresponds to the GCC 'const' attribute.
266  /// This property corresponds to the LLVM IR 'readnone' attribute.
267  /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
268  FMRB_DoesNotAccessMemory =
269      FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
270
271  /// The only memory references in this function (if it has any) are
272  /// non-volatile loads from objects pointed to by its pointer-typed
273  /// arguments, with arbitrary offsets.
274  ///
275  /// This property corresponds to the combination of the IntrReadMem
276  /// and IntrArgMemOnly LLVM intrinsic flags.
277  FMRB_OnlyReadsArgumentPointees =
278      FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
279
280  /// The only memory references in this function (if it has any) are
281  /// non-volatile stores from objects pointed to by its pointer-typed
282  /// arguments, with arbitrary offsets.
283  ///
284  /// This property corresponds to the combination of the IntrWriteMem
285  /// and IntrArgMemOnly LLVM intrinsic flags.
286  FMRB_OnlyWritesArgumentPointees =
287      FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
288
289  /// The only memory references in this function (if it has any) are
290  /// non-volatile loads and stores from objects pointed to by its
291  /// pointer-typed arguments, with arbitrary offsets.
292  ///
293  /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
294  FMRB_OnlyAccessesArgumentPointees =
295      FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
296
297  /// The only memory references in this function (if it has any) are
298  /// reads of memory that is otherwise inaccessible via LLVM IR.
299  ///
300  /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
301  FMRB_OnlyReadsInaccessibleMem =
302      FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
303
304  /// The only memory references in this function (if it has any) are
305  /// writes to memory that is otherwise inaccessible via LLVM IR.
306  ///
307  /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
308  FMRB_OnlyWritesInaccessibleMem =
309      FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
310
311  /// The only memory references in this function (if it has any) are
312  /// references of memory that is otherwise inaccessible via LLVM IR.
313  ///
314  /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
315  FMRB_OnlyAccessesInaccessibleMem =
316      FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
317
318  /// The function may perform non-volatile loads from objects pointed
319  /// to by its pointer-typed arguments, with arbitrary offsets, and
320  /// it may also perform loads of memory that is otherwise
321  /// inaccessible via LLVM IR.
322  ///
323  /// This property corresponds to the LLVM IR
324  /// inaccessiblemem_or_argmemonly attribute.
325  FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
326                                       FMRL_ArgumentPointees |
327                                       static_cast<int>(ModRefInfo::Ref),
328
329  /// The function may perform non-volatile stores to objects pointed
330  /// to by its pointer-typed arguments, with arbitrary offsets, and
331  /// it may also perform stores of memory that is otherwise
332  /// inaccessible via LLVM IR.
333  ///
334  /// This property corresponds to the LLVM IR
335  /// inaccessiblemem_or_argmemonly attribute.
336  FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
337                                        FMRL_ArgumentPointees |
338                                        static_cast<int>(ModRefInfo::Mod),
339
340  /// The function may perform non-volatile loads and stores of objects
341  /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
342  /// it may also perform loads and stores of memory that is otherwise
343  /// inaccessible via LLVM IR.
344  ///
345  /// This property corresponds to the LLVM IR
346  /// inaccessiblemem_or_argmemonly attribute.
347  FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
348                                          FMRL_ArgumentPointees |
349                                          static_cast<int>(ModRefInfo::ModRef),
350
351  /// This function does not perform any non-local stores or volatile loads,
352  /// but may read from any memory location.
353  ///
354  /// This property corresponds to the GCC 'pure' attribute.
355  /// This property corresponds to the LLVM IR 'readonly' attribute.
356  /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
357  FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
358
359  // This function does not read from memory anywhere, but may write to any
360  // memory location.
361  //
362  // This property corresponds to the LLVM IR 'writeonly' attribute.
363  // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
364  FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
365
366  /// This indicates that the function could not be classified into one of the
367  /// behaviors above.
368  FMRB_UnknownModRefBehavior =
369      FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
370};
371
372// Wrapper method strips bits significant only in FunctionModRefBehavior,
373// to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
374// ModRefInfo enum changes, the wrapper can be updated to & with the new enum
375// entry with all bits set to 1.
376LLVM_NODISCARD inline ModRefInfo
377createModRefInfo(const FunctionModRefBehavior FMRB) {
378  return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
379}
380
381/// Reduced version of MemoryLocation that only stores a pointer and size.
382/// Used for caching AATags independent BasicAA results.
383struct AACacheLoc {
384  const Value *Ptr;
385  LocationSize Size;
386};
387
388template <> struct DenseMapInfo<AACacheLoc> {
389  static inline AACacheLoc getEmptyKey() {
390    return {DenseMapInfo<const Value *>::getEmptyKey(),
391            DenseMapInfo<LocationSize>::getEmptyKey()};
392  }
393  static inline AACacheLoc getTombstoneKey() {
394    return {DenseMapInfo<const Value *>::getTombstoneKey(),
395            DenseMapInfo<LocationSize>::getTombstoneKey()};
396  }
397  static unsigned getHashValue(const AACacheLoc &Val) {
398    return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
399           DenseMapInfo<LocationSize>::getHashValue(Val.Size);
400  }
401  static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
402    return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
403  }
404};
405
406/// This class stores info we want to provide to or retain within an alias
407/// query. By default, the root query is stateless and starts with a freshly
408/// constructed info object. Specific alias analyses can use this query info to
409/// store per-query state that is important for recursive or nested queries to
410/// avoid recomputing. To enable preserving this state across multiple queries
411/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
412/// The information stored in an `AAQueryInfo` is currently limitted to the
413/// caches used by BasicAA, but can further be extended to fit other AA needs.
414class AAQueryInfo {
415public:
416  using LocPair = std::pair<AACacheLoc, AACacheLoc>;
417  struct CacheEntry {
418    AliasResult Result;
419    /// Number of times a NoAlias assumption has been used.
420    /// 0 for assumptions that have not been used, -1 for definitive results.
421    int NumAssumptionUses;
422    /// Whether this is a definitive (non-assumption) result.
423    bool isDefinitive() const { return NumAssumptionUses < 0; }
424  };
425  using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
426  AliasCacheT AliasCache;
427
428  using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
429  IsCapturedCacheT IsCapturedCache;
430
431  /// Query depth used to distinguish recursive queries.
432  unsigned Depth = 0;
433
434  /// How many active NoAlias assumption uses there are.
435  int NumAssumptionUses = 0;
436
437  /// Location pairs for which an assumption based result is currently stored.
438  /// Used to remove all potentially incorrect results from the cache if an
439  /// assumption is disproven.
440  SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
441
442  AAQueryInfo() : AliasCache(), IsCapturedCache() {}
443
444  /// Create a new AAQueryInfo based on this one, but with the cache cleared.
445  /// This is used for recursive queries across phis, where cache results may
446  /// not be valid.
447  AAQueryInfo withEmptyCache() {
448    AAQueryInfo NewAAQI;
449    NewAAQI.Depth = Depth;
450    return NewAAQI;
451  }
452};
453
454class BatchAAResults;
455
456class AAResults {
457public:
458  // Make these results default constructable and movable. We have to spell
459  // these out because MSVC won't synthesize them.
460  AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
461  AAResults(AAResults &&Arg);
462  ~AAResults();
463
464  /// Register a specific AA result.
465  template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
466    // FIXME: We should use a much lighter weight system than the usual
467    // polymorphic pattern because we don't own AAResult. It should
468    // ideally involve two pointers and no separate allocation.
469    AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
470  }
471
472  /// Register a function analysis ID that the results aggregation depends on.
473  ///
474  /// This is used in the new pass manager to implement the invalidation logic
475  /// where we must invalidate the results aggregation if any of our component
476  /// analyses become invalid.
477  void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
478
479  /// Handle invalidation events in the new pass manager.
480  ///
481  /// The aggregation is invalidated if any of the underlying analyses is
482  /// invalidated.
483  bool invalidate(Function &F, const PreservedAnalyses &PA,
484                  FunctionAnalysisManager::Invalidator &Inv);
485
486  //===--------------------------------------------------------------------===//
487  /// \name Alias Queries
488  /// @{
489
490  /// The main low level interface to the alias analysis implementation.
491  /// Returns an AliasResult indicating whether the two pointers are aliased to
492  /// each other. This is the interface that must be implemented by specific
493  /// alias analysis implementations.
494  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
495
496  /// A convenience wrapper around the primary \c alias interface.
497  AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
498                    LocationSize V2Size) {
499    return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
500  }
501
502  /// A convenience wrapper around the primary \c alias interface.
503  AliasResult alias(const Value *V1, const Value *V2) {
504    return alias(MemoryLocation::getBeforeOrAfter(V1),
505                 MemoryLocation::getBeforeOrAfter(V2));
506  }
507
508  /// A trivial helper function to check to see if the specified pointers are
509  /// no-alias.
510  bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
511    return alias(LocA, LocB) == AliasResult::NoAlias;
512  }
513
514  /// A convenience wrapper around the \c isNoAlias helper interface.
515  bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
516                 LocationSize V2Size) {
517    return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
518  }
519
520  /// A convenience wrapper around the \c isNoAlias helper interface.
521  bool isNoAlias(const Value *V1, const Value *V2) {
522    return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
523                     MemoryLocation::getBeforeOrAfter(V2));
524  }
525
526  /// A trivial helper function to check to see if the specified pointers are
527  /// must-alias.
528  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
529    return alias(LocA, LocB) == AliasResult::MustAlias;
530  }
531
532  /// A convenience wrapper around the \c isMustAlias helper interface.
533  bool isMustAlias(const Value *V1, const Value *V2) {
534    return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
535           AliasResult::MustAlias;
536  }
537
538  /// Checks whether the given location points to constant memory, or if
539  /// \p OrLocal is true whether it points to a local alloca.
540  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
541
542  /// A convenience wrapper around the primary \c pointsToConstantMemory
543  /// interface.
544  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
545    return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
546  }
547
548  /// @}
549  //===--------------------------------------------------------------------===//
550  /// \name Simple mod/ref information
551  /// @{
552
553  /// Get the ModRef info associated with a pointer argument of a call. The
554  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
555  /// that these bits do not necessarily account for the overall behavior of
556  /// the function, but rather only provide additional per-argument
557  /// information. This never sets ModRefInfo::Must.
558  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
559
560  /// Return the behavior of the given call site.
561  FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
562
563  /// Return the behavior when calling the given function.
564  FunctionModRefBehavior getModRefBehavior(const Function *F);
565
566  /// Checks if the specified call is known to never read or write memory.
567  ///
568  /// Note that if the call only reads from known-constant memory, it is also
569  /// legal to return true. Also, calls that unwind the stack are legal for
570  /// this predicate.
571  ///
572  /// Many optimizations (such as CSE and LICM) can be performed on such calls
573  /// without worrying about aliasing properties, and many calls have this
574  /// property (e.g. calls to 'sin' and 'cos').
575  ///
576  /// This property corresponds to the GCC 'const' attribute.
577  bool doesNotAccessMemory(const CallBase *Call) {
578    return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
579  }
580
581  /// Checks if the specified function is known to never read or write memory.
582  ///
583  /// Note that if the function only reads from known-constant memory, it is
584  /// also legal to return true. Also, function that unwind the stack are legal
585  /// for this predicate.
586  ///
587  /// Many optimizations (such as CSE and LICM) can be performed on such calls
588  /// to such functions without worrying about aliasing properties, and many
589  /// functions have this property (e.g. 'sin' and 'cos').
590  ///
591  /// This property corresponds to the GCC 'const' attribute.
592  bool doesNotAccessMemory(const Function *F) {
593    return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
594  }
595
596  /// Checks if the specified call is known to only read from non-volatile
597  /// memory (or not access memory at all).
598  ///
599  /// Calls that unwind the stack are legal for this predicate.
600  ///
601  /// This property allows many common optimizations to be performed in the
602  /// absence of interfering store instructions, such as CSE of strlen calls.
603  ///
604  /// This property corresponds to the GCC 'pure' attribute.
605  bool onlyReadsMemory(const CallBase *Call) {
606    return onlyReadsMemory(getModRefBehavior(Call));
607  }
608
609  /// Checks if the specified function is known to only read from non-volatile
610  /// memory (or not access memory at all).
611  ///
612  /// Functions that unwind the stack are legal for this predicate.
613  ///
614  /// This property allows many common optimizations to be performed in the
615  /// absence of interfering store instructions, such as CSE of strlen calls.
616  ///
617  /// This property corresponds to the GCC 'pure' attribute.
618  bool onlyReadsMemory(const Function *F) {
619    return onlyReadsMemory(getModRefBehavior(F));
620  }
621
622  /// Checks if functions with the specified behavior are known to only read
623  /// from non-volatile memory (or not access memory at all).
624  static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
625    return !isModSet(createModRefInfo(MRB));
626  }
627
628  /// Checks if functions with the specified behavior are known to only write
629  /// memory (or not access memory at all).
630  static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
631    return !isRefSet(createModRefInfo(MRB));
632  }
633
634  /// Checks if functions with the specified behavior are known to read and
635  /// write at most from objects pointed to by their pointer-typed arguments
636  /// (with arbitrary offsets).
637  static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
638    return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
639  }
640
641  /// Checks if functions with the specified behavior are known to potentially
642  /// read or write from objects pointed to be their pointer-typed arguments
643  /// (with arbitrary offsets).
644  static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
645    return isModOrRefSet(createModRefInfo(MRB)) &&
646           ((unsigned)MRB & FMRL_ArgumentPointees);
647  }
648
649  /// Checks if functions with the specified behavior are known to read and
650  /// write at most from memory that is inaccessible from LLVM IR.
651  static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
652    return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
653  }
654
655  /// Checks if functions with the specified behavior are known to potentially
656  /// read or write from memory that is inaccessible from LLVM IR.
657  static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
658    return isModOrRefSet(createModRefInfo(MRB)) &&
659             ((unsigned)MRB & FMRL_InaccessibleMem);
660  }
661
662  /// Checks if functions with the specified behavior are known to read and
663  /// write at most from memory that is inaccessible from LLVM IR or objects
664  /// pointed to by their pointer-typed arguments (with arbitrary offsets).
665  static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
666    return !((unsigned)MRB & FMRL_Anywhere &
667             ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
668  }
669
670  /// getModRefInfo (for call sites) - Return information about whether
671  /// a particular call site modifies or reads the specified memory location.
672  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
673
674  /// getModRefInfo (for call sites) - A convenience wrapper.
675  ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
676                           LocationSize Size) {
677    return getModRefInfo(Call, MemoryLocation(P, Size));
678  }
679
680  /// getModRefInfo (for loads) - Return information about whether
681  /// a particular load modifies or reads the specified memory location.
682  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
683
684  /// getModRefInfo (for loads) - A convenience wrapper.
685  ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
686                           LocationSize Size) {
687    return getModRefInfo(L, MemoryLocation(P, Size));
688  }
689
690  /// getModRefInfo (for stores) - Return information about whether
691  /// a particular store modifies or reads the specified memory location.
692  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
693
694  /// getModRefInfo (for stores) - A convenience wrapper.
695  ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
696                           LocationSize Size) {
697    return getModRefInfo(S, MemoryLocation(P, Size));
698  }
699
700  /// getModRefInfo (for fences) - Return information about whether
701  /// a particular store modifies or reads the specified memory location.
702  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
703
704  /// getModRefInfo (for fences) - A convenience wrapper.
705  ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
706                           LocationSize Size) {
707    return getModRefInfo(S, MemoryLocation(P, Size));
708  }
709
710  /// getModRefInfo (for cmpxchges) - Return information about whether
711  /// a particular cmpxchg modifies or reads the specified memory location.
712  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
713                           const MemoryLocation &Loc);
714
715  /// getModRefInfo (for cmpxchges) - A convenience wrapper.
716  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
717                           LocationSize Size) {
718    return getModRefInfo(CX, MemoryLocation(P, Size));
719  }
720
721  /// getModRefInfo (for atomicrmws) - Return information about whether
722  /// a particular atomicrmw modifies or reads the specified memory location.
723  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
724
725  /// getModRefInfo (for atomicrmws) - A convenience wrapper.
726  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
727                           LocationSize Size) {
728    return getModRefInfo(RMW, MemoryLocation(P, Size));
729  }
730
731  /// getModRefInfo (for va_args) - Return information about whether
732  /// a particular va_arg modifies or reads the specified memory location.
733  ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
734
735  /// getModRefInfo (for va_args) - A convenience wrapper.
736  ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
737                           LocationSize Size) {
738    return getModRefInfo(I, MemoryLocation(P, Size));
739  }
740
741  /// getModRefInfo (for catchpads) - Return information about whether
742  /// a particular catchpad modifies or reads the specified memory location.
743  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
744
745  /// getModRefInfo (for catchpads) - A convenience wrapper.
746  ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
747                           LocationSize Size) {
748    return getModRefInfo(I, MemoryLocation(P, Size));
749  }
750
751  /// getModRefInfo (for catchrets) - Return information about whether
752  /// a particular catchret modifies or reads the specified memory location.
753  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
754
755  /// getModRefInfo (for catchrets) - A convenience wrapper.
756  ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
757                           LocationSize Size) {
758    return getModRefInfo(I, MemoryLocation(P, Size));
759  }
760
761  /// Check whether or not an instruction may read or write the optionally
762  /// specified memory location.
763  ///
764  ///
765  /// An instruction that doesn't read or write memory may be trivially LICM'd
766  /// for example.
767  ///
768  /// For function calls, this delegates to the alias-analysis specific
769  /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
770  /// helpers above.
771  ModRefInfo getModRefInfo(const Instruction *I,
772                           const Optional<MemoryLocation> &OptLoc) {
773    AAQueryInfo AAQIP;
774    return getModRefInfo(I, OptLoc, AAQIP);
775  }
776
777  /// A convenience wrapper for constructing the memory location.
778  ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
779                           LocationSize Size) {
780    return getModRefInfo(I, MemoryLocation(P, Size));
781  }
782
783  /// Return information about whether a call and an instruction may refer to
784  /// the same memory locations.
785  ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
786
787  /// Return information about whether two call sites may refer to the same set
788  /// of memory locations. See the AA documentation for details:
789  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
790  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
791
792  /// Return information about whether a particular call site modifies
793  /// or reads the specified memory location \p MemLoc before instruction \p I
794  /// in a BasicBlock.
795  /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
796  /// set.
797  ModRefInfo callCapturesBefore(const Instruction *I,
798                                const MemoryLocation &MemLoc,
799                                DominatorTree *DT) {
800    AAQueryInfo AAQIP;
801    return callCapturesBefore(I, MemLoc, DT, AAQIP);
802  }
803
804  /// A convenience wrapper to synthesize a memory location.
805  ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
806                                LocationSize Size, DominatorTree *DT) {
807    return callCapturesBefore(I, MemoryLocation(P, Size), DT);
808  }
809
810  /// @}
811  //===--------------------------------------------------------------------===//
812  /// \name Higher level methods for querying mod/ref information.
813  /// @{
814
815  /// Check if it is possible for execution of the specified basic block to
816  /// modify the location Loc.
817  bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
818
819  /// A convenience wrapper synthesizing a memory location.
820  bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
821                           LocationSize Size) {
822    return canBasicBlockModify(BB, MemoryLocation(P, Size));
823  }
824
825  /// Check if it is possible for the execution of the specified instructions
826  /// to mod\ref (according to the mode) the location Loc.
827  ///
828  /// The instructions to consider are all of the instructions in the range of
829  /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
830  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
831                                 const MemoryLocation &Loc,
832                                 const ModRefInfo Mode);
833
834  /// A convenience wrapper synthesizing a memory location.
835  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
836                                 const Value *Ptr, LocationSize Size,
837                                 const ModRefInfo Mode) {
838    return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
839  }
840
841private:
842  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
843                    AAQueryInfo &AAQI);
844  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
845                              bool OrLocal = false);
846  ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
847                           AAQueryInfo &AAQIP);
848  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
849                           AAQueryInfo &AAQI);
850  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
851                           AAQueryInfo &AAQI);
852  ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
853                           AAQueryInfo &AAQI);
854  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
855                           AAQueryInfo &AAQI);
856  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
857                           AAQueryInfo &AAQI);
858  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
859                           AAQueryInfo &AAQI);
860  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
861                           const MemoryLocation &Loc, AAQueryInfo &AAQI);
862  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
863                           AAQueryInfo &AAQI);
864  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
865                           AAQueryInfo &AAQI);
866  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
867                           AAQueryInfo &AAQI);
868  ModRefInfo getModRefInfo(const Instruction *I,
869                           const Optional<MemoryLocation> &OptLoc,
870                           AAQueryInfo &AAQIP);
871  ModRefInfo callCapturesBefore(const Instruction *I,
872                                const MemoryLocation &MemLoc, DominatorTree *DT,
873                                AAQueryInfo &AAQIP);
874
875  class Concept;
876
877  template <typename T> class Model;
878
879  template <typename T> friend class AAResultBase;
880
881  const TargetLibraryInfo &TLI;
882
883  std::vector<std::unique_ptr<Concept>> AAs;
884
885  std::vector<AnalysisKey *> AADeps;
886
887  friend class BatchAAResults;
888};
889
890/// This class is a wrapper over an AAResults, and it is intended to be used
891/// only when there are no IR changes inbetween queries. BatchAAResults is
892/// reusing the same `AAQueryInfo` to preserve the state across queries,
893/// esentially making AA work in "batch mode". The internal state cannot be
894/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
895/// or create a new BatchAAResults.
896class BatchAAResults {
897  AAResults &AA;
898  AAQueryInfo AAQI;
899
900public:
901  BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
902  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
903    return AA.alias(LocA, LocB, AAQI);
904  }
905  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
906    return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
907  }
908  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
909    return AA.getModRefInfo(Call, Loc, AAQI);
910  }
911  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
912    return AA.getModRefInfo(Call1, Call2, AAQI);
913  }
914  ModRefInfo getModRefInfo(const Instruction *I,
915                           const Optional<MemoryLocation> &OptLoc) {
916    return AA.getModRefInfo(I, OptLoc, AAQI);
917  }
918  ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
919    return AA.getModRefInfo(I, Call2, AAQI);
920  }
921  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
922    return AA.getArgModRefInfo(Call, ArgIdx);
923  }
924  FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
925    return AA.getModRefBehavior(Call);
926  }
927  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
928    return alias(LocA, LocB) == AliasResult::MustAlias;
929  }
930  bool isMustAlias(const Value *V1, const Value *V2) {
931    return alias(MemoryLocation(V1, LocationSize::precise(1)),
932                 MemoryLocation(V2, LocationSize::precise(1))) ==
933           AliasResult::MustAlias;
934  }
935  ModRefInfo callCapturesBefore(const Instruction *I,
936                                const MemoryLocation &MemLoc,
937                                DominatorTree *DT) {
938    return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
939  }
940};
941
942/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
943/// pointer or reference.
944using AliasAnalysis = AAResults;
945
946/// A private abstract base class describing the concept of an individual alias
947/// analysis implementation.
948///
949/// This interface is implemented by any \c Model instantiation. It is also the
950/// interface which a type used to instantiate the model must provide.
951///
952/// All of these methods model methods by the same name in the \c
953/// AAResults class. Only differences and specifics to how the
954/// implementations are called are documented here.
955class AAResults::Concept {
956public:
957  virtual ~Concept() = 0;
958
959  /// An update API used internally by the AAResults to provide
960  /// a handle back to the top level aggregation.
961  virtual void setAAResults(AAResults *NewAAR) = 0;
962
963  //===--------------------------------------------------------------------===//
964  /// \name Alias Queries
965  /// @{
966
967  /// The main low level interface to the alias analysis implementation.
968  /// Returns an AliasResult indicating whether the two pointers are aliased to
969  /// each other. This is the interface that must be implemented by specific
970  /// alias analysis implementations.
971  virtual AliasResult alias(const MemoryLocation &LocA,
972                            const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
973
974  /// Checks whether the given location points to constant memory, or if
975  /// \p OrLocal is true whether it points to a local alloca.
976  virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
977                                      AAQueryInfo &AAQI, bool OrLocal) = 0;
978
979  /// @}
980  //===--------------------------------------------------------------------===//
981  /// \name Simple mod/ref information
982  /// @{
983
984  /// Get the ModRef info associated with a pointer argument of a callsite. The
985  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
986  /// that these bits do not necessarily account for the overall behavior of
987  /// the function, but rather only provide additional per-argument
988  /// information.
989  virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
990                                      unsigned ArgIdx) = 0;
991
992  /// Return the behavior of the given call site.
993  virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
994
995  /// Return the behavior when calling the given function.
996  virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
997
998  /// getModRefInfo (for call sites) - Return information about whether
999  /// a particular call site modifies or reads the specified memory location.
1000  virtual ModRefInfo getModRefInfo(const CallBase *Call,
1001                                   const MemoryLocation &Loc,
1002                                   AAQueryInfo &AAQI) = 0;
1003
1004  /// Return information about whether two call sites may refer to the same set
1005  /// of memory locations. See the AA documentation for details:
1006  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
1007  virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1008                                   AAQueryInfo &AAQI) = 0;
1009
1010  /// @}
1011};
1012
1013/// A private class template which derives from \c Concept and wraps some other
1014/// type.
1015///
1016/// This models the concept by directly forwarding each interface point to the
1017/// wrapped type which must implement a compatible interface. This provides
1018/// a type erased binding.
1019template <typename AAResultT> class AAResults::Model final : public Concept {
1020  AAResultT &Result;
1021
1022public:
1023  explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
1024    Result.setAAResults(&AAR);
1025  }
1026  ~Model() override = default;
1027
1028  void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
1029
1030  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1031                    AAQueryInfo &AAQI) override {
1032    return Result.alias(LocA, LocB, AAQI);
1033  }
1034
1035  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1036                              bool OrLocal) override {
1037    return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
1038  }
1039
1040  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
1041    return Result.getArgModRefInfo(Call, ArgIdx);
1042  }
1043
1044  FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
1045    return Result.getModRefBehavior(Call);
1046  }
1047
1048  FunctionModRefBehavior getModRefBehavior(const Function *F) override {
1049    return Result.getModRefBehavior(F);
1050  }
1051
1052  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1053                           AAQueryInfo &AAQI) override {
1054    return Result.getModRefInfo(Call, Loc, AAQI);
1055  }
1056
1057  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1058                           AAQueryInfo &AAQI) override {
1059    return Result.getModRefInfo(Call1, Call2, AAQI);
1060  }
1061};
1062
1063/// A CRTP-driven "mixin" base class to help implement the function alias
1064/// analysis results concept.
1065///
1066/// Because of the nature of many alias analysis implementations, they often
1067/// only implement a subset of the interface. This base class will attempt to
1068/// implement the remaining portions of the interface in terms of simpler forms
1069/// of the interface where possible, and otherwise provide conservatively
1070/// correct fallback implementations.
1071///
1072/// Implementors of an alias analysis should derive from this CRTP, and then
1073/// override specific methods that they wish to customize. There is no need to
1074/// use virtual anywhere, the CRTP base class does static dispatch to the
1075/// derived type passed into it.
1076template <typename DerivedT> class AAResultBase {
1077  // Expose some parts of the interface only to the AAResults::Model
1078  // for wrapping. Specifically, this allows the model to call our
1079  // setAAResults method without exposing it as a fully public API.
1080  friend class AAResults::Model<DerivedT>;
1081
1082  /// A pointer to the AAResults object that this AAResult is
1083  /// aggregated within. May be null if not aggregated.
1084  AAResults *AAR = nullptr;
1085
1086  /// Helper to dispatch calls back through the derived type.
1087  DerivedT &derived() { return static_cast<DerivedT &>(*this); }
1088
1089  /// A setter for the AAResults pointer, which is used to satisfy the
1090  /// AAResults::Model contract.
1091  void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1092
1093protected:
1094  /// This proxy class models a common pattern where we delegate to either the
1095  /// top-level \c AAResults aggregation if one is registered, or to the
1096  /// current result if none are registered.
1097  class AAResultsProxy {
1098    AAResults *AAR;
1099    DerivedT &CurrentResult;
1100
1101  public:
1102    AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1103        : AAR(AAR), CurrentResult(CurrentResult) {}
1104
1105    AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1106                      AAQueryInfo &AAQI) {
1107      return AAR ? AAR->alias(LocA, LocB, AAQI)
1108                 : CurrentResult.alias(LocA, LocB, AAQI);
1109    }
1110
1111    bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1112                                bool OrLocal) {
1113      return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1114                 : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1115    }
1116
1117    ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1118      return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1119                 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1120    }
1121
1122    FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1123      return AAR ? AAR->getModRefBehavior(Call)
1124                 : CurrentResult.getModRefBehavior(Call);
1125    }
1126
1127    FunctionModRefBehavior getModRefBehavior(const Function *F) {
1128      return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1129    }
1130
1131    ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1132                             AAQueryInfo &AAQI) {
1133      return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1134                 : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1135    }
1136
1137    ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1138                             AAQueryInfo &AAQI) {
1139      return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1140                 : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1141    }
1142  };
1143
1144  explicit AAResultBase() = default;
1145
1146  // Provide all the copy and move constructors so that derived types aren't
1147  // constrained.
1148  AAResultBase(const AAResultBase &Arg) {}
1149  AAResultBase(AAResultBase &&Arg) {}
1150
1151  /// Get a proxy for the best AA result set to query at this time.
1152  ///
1153  /// When this result is part of a larger aggregation, this will proxy to that
1154  /// aggregation. When this result is used in isolation, it will just delegate
1155  /// back to the derived class's implementation.
1156  ///
1157  /// Note that callers of this need to take considerable care to not cause
1158  /// performance problems when they use this routine, in the case of a large
1159  /// number of alias analyses being aggregated, it can be expensive to walk
1160  /// back across the chain.
1161  AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1162
1163public:
1164  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1165                    AAQueryInfo &AAQI) {
1166    return AliasResult::MayAlias;
1167  }
1168
1169  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1170                              bool OrLocal) {
1171    return false;
1172  }
1173
1174  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1175    return ModRefInfo::ModRef;
1176  }
1177
1178  FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1179    return FMRB_UnknownModRefBehavior;
1180  }
1181
1182  FunctionModRefBehavior getModRefBehavior(const Function *F) {
1183    return FMRB_UnknownModRefBehavior;
1184  }
1185
1186  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1187                           AAQueryInfo &AAQI) {
1188    return ModRefInfo::ModRef;
1189  }
1190
1191  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1192                           AAQueryInfo &AAQI) {
1193    return ModRefInfo::ModRef;
1194  }
1195};
1196
1197/// Return true if this pointer is returned by a noalias function.
1198bool isNoAliasCall(const Value *V);
1199
1200/// Return true if this pointer refers to a distinct and identifiable object.
1201/// This returns true for:
1202///    Global Variables and Functions (but not Global Aliases)
1203///    Allocas
1204///    ByVal and NoAlias Arguments
1205///    NoAlias returns (e.g. calls to malloc)
1206///
1207bool isIdentifiedObject(const Value *V);
1208
1209/// Return true if V is umabigously identified at the function-level.
1210/// Different IdentifiedFunctionLocals can't alias.
1211/// Further, an IdentifiedFunctionLocal can not alias with any function
1212/// arguments other than itself, which is not necessarily true for
1213/// IdentifiedObjects.
1214bool isIdentifiedFunctionLocal(const Value *V);
1215
1216/// A manager for alias analyses.
1217///
1218/// This class can have analyses registered with it and when run, it will run
1219/// all of them and aggregate their results into single AA results interface
1220/// that dispatches across all of the alias analysis results available.
1221///
1222/// Note that the order in which analyses are registered is very significant.
1223/// That is the order in which the results will be aggregated and queried.
1224///
1225/// This manager effectively wraps the AnalysisManager for registering alias
1226/// analyses. When you register your alias analysis with this manager, it will
1227/// ensure the analysis itself is registered with its AnalysisManager.
1228///
1229/// The result of this analysis is only invalidated if one of the particular
1230/// aggregated AA results end up being invalidated. This removes the need to
1231/// explicitly preserve the results of `AAManager`. Note that analyses should no
1232/// longer be registered once the `AAManager` is run.
1233class AAManager : public AnalysisInfoMixin<AAManager> {
1234public:
1235  using Result = AAResults;
1236
1237  /// Register a specific AA result.
1238  template <typename AnalysisT> void registerFunctionAnalysis() {
1239    ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1240  }
1241
1242  /// Register a specific AA result.
1243  template <typename AnalysisT> void registerModuleAnalysis() {
1244    ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1245  }
1246
1247  Result run(Function &F, FunctionAnalysisManager &AM);
1248
1249private:
1250  friend AnalysisInfoMixin<AAManager>;
1251
1252  static AnalysisKey Key;
1253
1254  SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1255                       AAResults &AAResults),
1256              4> ResultGetters;
1257
1258  template <typename AnalysisT>
1259  static void getFunctionAAResultImpl(Function &F,
1260                                      FunctionAnalysisManager &AM,
1261                                      AAResults &AAResults) {
1262    AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1263    AAResults.addAADependencyID(AnalysisT::ID());
1264  }
1265
1266  template <typename AnalysisT>
1267  static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1268                                    AAResults &AAResults) {
1269    auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1270    if (auto *R =
1271            MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1272      AAResults.addAAResult(*R);
1273      MAMProxy
1274          .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1275    }
1276  }
1277};
1278
1279/// A wrapper pass to provide the legacy pass manager access to a suitably
1280/// prepared AAResults object.
1281class AAResultsWrapperPass : public FunctionPass {
1282  std::unique_ptr<AAResults> AAR;
1283
1284public:
1285  static char ID;
1286
1287  AAResultsWrapperPass();
1288
1289  AAResults &getAAResults() { return *AAR; }
1290  const AAResults &getAAResults() const { return *AAR; }
1291
1292  bool runOnFunction(Function &F) override;
1293
1294  void getAnalysisUsage(AnalysisUsage &AU) const override;
1295};
1296
1297/// A wrapper pass for external alias analyses. This just squirrels away the
1298/// callback used to run any analyses and register their results.
1299struct ExternalAAWrapperPass : ImmutablePass {
1300  using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1301
1302  CallbackT CB;
1303
1304  static char ID;
1305
1306  ExternalAAWrapperPass();
1307
1308  explicit ExternalAAWrapperPass(CallbackT CB);
1309
1310  void getAnalysisUsage(AnalysisUsage &AU) const override {
1311    AU.setPreservesAll();
1312  }
1313};
1314
1315FunctionPass *createAAResultsWrapperPass();
1316
1317/// A wrapper pass around a callback which can be used to populate the
1318/// AAResults in the AAResultsWrapperPass from an external AA.
1319///
1320/// The callback provided here will be used each time we prepare an AAResults
1321/// object, and will receive a reference to the function wrapper pass, the
1322/// function, and the AAResults object to populate. This should be used when
1323/// setting up a custom pass pipeline to inject a hook into the AA results.
1324ImmutablePass *createExternalAAWrapperPass(
1325    std::function<void(Pass &, Function &, AAResults &)> Callback);
1326
1327/// A helper for the legacy pass manager to create a \c AAResults
1328/// object populated to the best of our ability for a particular function when
1329/// inside of a \c ModulePass or a \c CallGraphSCCPass.
1330///
1331/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1332/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1333/// getAnalysisUsage.
1334AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1335
1336/// A helper for the legacy pass manager to populate \p AU to add uses to make
1337/// sure the analyses required by \p createLegacyPMAAResults are available.
1338void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1339
1340} // end namespace llvm
1341
1342#endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1343