1//===- Store.cpp - Interface for maps from Locations to Values ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defined the types Store and StoreManager.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31#include "llvm/ADT/APSInt.h"
32#include "llvm/ADT/Optional.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/ErrorHandling.h"
36#include <cassert>
37#include <cstdint>
38
39using namespace clang;
40using namespace ento;
41
42StoreManager::StoreManager(ProgramStateManager &stateMgr)
43    : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44      MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45
46StoreRef StoreManager::enterStackFrame(Store OldStore,
47                                       const CallEvent &Call,
48                                       const StackFrameContext *LCtx) {
49  StoreRef Store = StoreRef(OldStore, *this);
50
51  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
52  Call.getInitialStackFrameContents(LCtx, InitialBindings);
53
54  for (const auto &I : InitialBindings)
55    Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56
57  return Store;
58}
59
60const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
61                                                     QualType EleTy,
62                                                     uint64_t index) {
63  NonLoc idx = svalBuilder.makeArrayIndex(index);
64  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65}
66
67const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
68                                                        QualType T) {
69  NonLoc idx = svalBuilder.makeZeroArrayIndex();
70  assert(!T.isNull());
71  return MRMgr.getElementRegion(T, idx, R, Ctx);
72}
73
74const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
75  ASTContext &Ctx = StateMgr.getContext();
76
77  // Handle casts to Objective-C objects.
78  if (CastToTy->isObjCObjectPointerType())
79    return R->StripCasts();
80
81  if (CastToTy->isBlockPointerType()) {
82    // FIXME: We may need different solutions, depending on the symbol
83    // involved.  Blocks can be casted to/from 'id', as they can be treated
84    // as Objective-C objects.  This could possibly be handled by enhancing
85    // our reasoning of downcasts of symbolic objects.
86    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87      return R;
88
89    // We don't know what to make of it.  Return a NULL region, which
90    // will be interpreted as UnknownVal.
91    return nullptr;
92  }
93
94  // Now assume we are casting from pointer to pointer. Other cases should
95  // already be handled.
96  QualType PointeeTy = CastToTy->getPointeeType();
97  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98
99  // Handle casts to void*.  We just pass the region through.
100  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101    return R;
102
103  // Handle casts from compatible types.
104  if (R->isBoundable())
105    if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
106      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107      if (CanonPointeeTy == ObjTy)
108        return R;
109    }
110
111  // Process region cast according to the kind of the region being cast.
112  switch (R->getKind()) {
113    case MemRegion::CXXThisRegionKind:
114    case MemRegion::CodeSpaceRegionKind:
115    case MemRegion::StackLocalsSpaceRegionKind:
116    case MemRegion::StackArgumentsSpaceRegionKind:
117    case MemRegion::HeapSpaceRegionKind:
118    case MemRegion::UnknownSpaceRegionKind:
119    case MemRegion::StaticGlobalSpaceRegionKind:
120    case MemRegion::GlobalInternalSpaceRegionKind:
121    case MemRegion::GlobalSystemSpaceRegionKind:
122    case MemRegion::GlobalImmutableSpaceRegionKind: {
123      llvm_unreachable("Invalid region cast");
124    }
125
126    case MemRegion::FunctionCodeRegionKind:
127    case MemRegion::BlockCodeRegionKind:
128    case MemRegion::BlockDataRegionKind:
129    case MemRegion::StringRegionKind:
130      // FIXME: Need to handle arbitrary downcasts.
131    case MemRegion::SymbolicRegionKind:
132    case MemRegion::AllocaRegionKind:
133    case MemRegion::CompoundLiteralRegionKind:
134    case MemRegion::FieldRegionKind:
135    case MemRegion::ObjCIvarRegionKind:
136    case MemRegion::ObjCStringRegionKind:
137    case MemRegion::NonParamVarRegionKind:
138    case MemRegion::ParamVarRegionKind:
139    case MemRegion::CXXTempObjectRegionKind:
140    case MemRegion::CXXBaseObjectRegionKind:
141    case MemRegion::CXXDerivedObjectRegionKind:
142      return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
143
144    case MemRegion::ElementRegionKind: {
145      // If we are casting from an ElementRegion to another type, the
146      // algorithm is as follows:
147      //
148      // (1) Compute the "raw offset" of the ElementRegion from the
149      //     base region.  This is done by calling 'getAsRawOffset()'.
150      //
151      // (2a) If we get a 'RegionRawOffset' after calling
152      //      'getAsRawOffset()', determine if the absolute offset
153      //      can be exactly divided into chunks of the size of the
154      //      casted-pointee type.  If so, create a new ElementRegion with
155      //      the pointee-cast type as the new ElementType and the index
156      //      being the offset divded by the chunk size.  If not, create
157      //      a new ElementRegion at offset 0 off the raw offset region.
158      //
159      // (2b) If we don't a get a 'RegionRawOffset' after calling
160      //      'getAsRawOffset()', it means that we are at offset 0.
161      //
162      // FIXME: Handle symbolic raw offsets.
163
164      const ElementRegion *elementR = cast<ElementRegion>(R);
165      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
166      const MemRegion *baseR = rawOff.getRegion();
167
168      // If we cannot compute a raw offset, throw up our hands and return
169      // a NULL MemRegion*.
170      if (!baseR)
171        return nullptr;
172
173      CharUnits off = rawOff.getOffset();
174
175      if (off.isZero()) {
176        // Edge case: we are at 0 bytes off the beginning of baseR.  We
177        // check to see if type we are casting to is the same as the base
178        // region.  If so, just return the base region.
179        if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
180          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
181          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
182          if (CanonPointeeTy == ObjTy)
183            return baseR;
184        }
185
186        // Otherwise, create a new ElementRegion at offset 0.
187        return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
188      }
189
190      // We have a non-zero offset from the base region.  We want to determine
191      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
192      // we create an ElementRegion whose index is that value.  Otherwise, we
193      // create two ElementRegions, one that reflects a raw offset and the other
194      // that reflects the cast.
195
196      // Compute the index for the new ElementRegion.
197      int64_t newIndex = 0;
198      const MemRegion *newSuperR = nullptr;
199
200      // We can only compute sizeof(PointeeTy) if it is a complete type.
201      if (!PointeeTy->isIncompleteType()) {
202        // Compute the size in **bytes**.
203        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
204        if (!pointeeTySize.isZero()) {
205          // Is the offset a multiple of the size?  If so, we can layer the
206          // ElementRegion (with elementType == PointeeTy) directly on top of
207          // the base region.
208          if (off % pointeeTySize == 0) {
209            newIndex = off / pointeeTySize;
210            newSuperR = baseR;
211          }
212        }
213      }
214
215      if (!newSuperR) {
216        // Create an intermediate ElementRegion to represent the raw byte.
217        // This will be the super region of the final ElementRegion.
218        newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
219                                      off.getQuantity());
220      }
221
222      return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
223    }
224  }
225
226  llvm_unreachable("unreachable");
227}
228
229static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
230  const MemRegion *MR = V.getAsRegion();
231  if (!MR)
232    return true;
233
234  const auto *TVR = dyn_cast<TypedValueRegion>(MR);
235  if (!TVR)
236    return true;
237
238  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
239  if (!RD)
240    return true;
241
242  const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
243  if (!Expected)
244    Expected = Ty->getAsCXXRecordDecl();
245
246  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
247}
248
249SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
250  // Sanity check to avoid doing the wrong thing in the face of
251  // reinterpret_cast.
252  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
253    return UnknownVal();
254
255  // Walk through the cast path to create nested CXXBaseRegions.
256  SVal Result = Derived;
257  for (CastExpr::path_const_iterator I = Cast->path_begin(),
258                                     E = Cast->path_end();
259       I != E; ++I) {
260    Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
261  }
262  return Result;
263}
264
265SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
266  // Walk through the path to create nested CXXBaseRegions.
267  SVal Result = Derived;
268  for (const auto &I : Path)
269    Result = evalDerivedToBase(Result, I.Base->getType(),
270                               I.Base->isVirtual());
271  return Result;
272}
273
274SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
275                                     bool IsVirtual) {
276  const MemRegion *DerivedReg = Derived.getAsRegion();
277  if (!DerivedReg)
278    return Derived;
279
280  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
281  if (!BaseDecl)
282    BaseDecl = BaseType->getAsCXXRecordDecl();
283  assert(BaseDecl && "not a C++ object?");
284
285  if (const auto *AlreadyDerivedReg =
286          dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
287    if (const auto *SR =
288            dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
289      if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
290        return loc::MemRegionVal(SR);
291
292    DerivedReg = AlreadyDerivedReg->getSuperRegion();
293  }
294
295  const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
296      BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
297
298  return loc::MemRegionVal(BaseReg);
299}
300
301/// Returns the static type of the given region, if it represents a C++ class
302/// object.
303///
304/// This handles both fully-typed regions, where the dynamic type is known, and
305/// symbolic regions, where the dynamic type is merely bounded (and even then,
306/// only ostensibly!), but does not take advantage of any dynamic type info.
307static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
308  if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
309    return TVR->getValueType()->getAsCXXRecordDecl();
310  if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
311    return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
312  return nullptr;
313}
314
315SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
316                                   bool &Failed) {
317  Failed = false;
318
319  const MemRegion *MR = Base.getAsRegion();
320  if (!MR)
321    return UnknownVal();
322
323  // Assume the derived class is a pointer or a reference to a CXX record.
324  TargetType = TargetType->getPointeeType();
325  assert(!TargetType.isNull());
326  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
327  if (!TargetClass && !TargetType->isVoidType())
328    return UnknownVal();
329
330  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
331  // derived to base).
332  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
333    // If found the derived class, the cast succeeds.
334    if (MRClass == TargetClass)
335      return loc::MemRegionVal(MR);
336
337    // We skip over incomplete types. They must be the result of an earlier
338    // reinterpret_cast, as one can only dynamic_cast between types in the same
339    // class hierarchy.
340    if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
341      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
342      // only happen when multiple or virtual inheritance is involved.
343      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
344                         /*DetectVirtual=*/false);
345      if (MRClass->isDerivedFrom(TargetClass, Paths))
346        return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
347    }
348
349    if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
350      // Drill down the chain to get the derived classes.
351      MR = BaseR->getSuperRegion();
352      continue;
353    }
354
355    // If this is a cast to void*, return the region.
356    if (TargetType->isVoidType())
357      return loc::MemRegionVal(MR);
358
359    // Strange use of reinterpret_cast can give us paths we don't reason
360    // about well, by putting in ElementRegions where we'd expect
361    // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
362    // derived class has a zero offset from the base class), then it's safe
363    // to strip the cast; if it's invalid, -Wreinterpret-base-class should
364    // catch it. In the interest of performance, the analyzer will silently
365    // do the wrong thing in the invalid case (because offsets for subregions
366    // will be wrong).
367    const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
368    if (Uncasted == MR) {
369      // We reached the bottom of the hierarchy and did not find the derived
370      // class. We must be casting the base to derived, so the cast should
371      // fail.
372      break;
373    }
374
375    MR = Uncasted;
376  }
377
378  // If we're casting a symbolic base pointer to a derived class, use
379  // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
380  // unrelated type, it must be a weird reinterpret_cast and we have to
381  // be fine with ElementRegion. TODO: Should we instead make
382  // Derived{TargetClass, Element{SourceClass, SR}}?
383  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
384    QualType T = SR->getSymbol()->getType();
385    const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
386    if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
387      return loc::MemRegionVal(
388          MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
389    return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
390  }
391
392  // We failed if the region we ended up with has perfect type info.
393  Failed = isa<TypedValueRegion>(MR);
394  return UnknownVal();
395}
396
397SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
398  if (Base.isUnknownOrUndef())
399    return Base;
400
401  Loc BaseL = Base.castAs<Loc>();
402  const SubRegion* BaseR = nullptr;
403
404  switch (BaseL.getSubKind()) {
405  case loc::MemRegionValKind:
406    BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
407    break;
408
409  case loc::GotoLabelKind:
410    // These are anormal cases. Flag an undefined value.
411    return UndefinedVal();
412
413  case loc::ConcreteIntKind:
414    // While these seem funny, this can happen through casts.
415    // FIXME: What we should return is the field offset, not base. For example,
416    //  add the field offset to the integer value.  That way things
417    //  like this work properly:  &(((struct foo *) 0xa)->f)
418    //  However, that's not easy to fix without reducing our abilities
419    //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
420    //  is a null dereference even though we're dereferencing offset of f
421    //  rather than null. Coming up with an approach that computes offsets
422    //  over null pointers properly while still being able to catch null
423    //  dereferences might be worth it.
424    return Base;
425
426  default:
427    llvm_unreachable("Unhandled Base.");
428  }
429
430  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
431  // of FieldDecl.
432  if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
433    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
434
435  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
436}
437
438SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
439  return getLValueFieldOrIvar(decl, base);
440}
441
442SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
443                                    SVal Base) {
444  // If the base is an unknown or undefined value, just return it back.
445  // FIXME: For absolute pointer addresses, we just return that value back as
446  //  well, although in reality we should return the offset added to that
447  //  value. See also the similar FIXME in getLValueFieldOrIvar().
448  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
449    return Base;
450
451  if (Base.getAs<loc::GotoLabel>())
452    return UnknownVal();
453
454  const SubRegion *BaseRegion =
455      Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
456
457  // Pointer of any type can be cast and used as array base.
458  const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
459
460  // Convert the offset to the appropriate size and signedness.
461  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
462
463  if (!ElemR) {
464    // If the base region is not an ElementRegion, create one.
465    // This can happen in the following example:
466    //
467    //   char *p = __builtin_alloc(10);
468    //   p[1] = 8;
469    //
470    //  Observe that 'p' binds to an AllocaRegion.
471    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
472                                                    BaseRegion, Ctx));
473  }
474
475  SVal BaseIdx = ElemR->getIndex();
476
477  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
478    return UnknownVal();
479
480  const llvm::APSInt &BaseIdxI =
481      BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
482
483  // Only allow non-integer offsets if the base region has no offset itself.
484  // FIXME: This is a somewhat arbitrary restriction. We should be using
485  // SValBuilder here to add the two offsets without checking their types.
486  if (!Offset.getAs<nonloc::ConcreteInt>()) {
487    if (isa<ElementRegion>(BaseRegion->StripCasts()))
488      return UnknownVal();
489
490    return loc::MemRegionVal(MRMgr.getElementRegion(
491        elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
492  }
493
494  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
495  assert(BaseIdxI.isSigned());
496
497  // Compute the new index.
498  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
499                                                                    OffI));
500
501  // Construct the new ElementRegion.
502  const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
503  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
504                                                  Ctx));
505}
506
507StoreManager::BindingsHandler::~BindingsHandler() = default;
508
509bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
510                                                    Store store,
511                                                    const MemRegion* R,
512                                                    SVal val) {
513  SymbolRef SymV = val.getAsLocSymbol();
514  if (!SymV || SymV != Sym)
515    return true;
516
517  if (Binding) {
518    First = false;
519    return false;
520  }
521  else
522    Binding = R;
523
524  return true;
525}
526