1//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Defines a modeling-checker for modeling STL iterator-like iterators.
10//
11//===----------------------------------------------------------------------===//
12//
13// In the code, iterator can be represented as a:
14// * type-I: typedef-ed pointer. Operations over such iterator, such as
15//           comparisons or increments, are modeled straightforwardly by the
16//           analyzer.
17// * type-II: structure with its method bodies available.  Operations over such
18//            iterator are inlined by the analyzer, and results of modeling
19//            these operations are exposing implementation details of the
20//            iterators, which is not necessarily helping.
21// * type-III: completely opaque structure. Operations over such iterator are
22//             modeled conservatively, producing conjured symbols everywhere.
23//
24// To handle all these types in a common way we introduce a structure called
25// IteratorPosition which is an abstraction of the position the iterator
26// represents using symbolic expressions. The checker handles all the
27// operations on this structure.
28//
29// Additionally, depending on the circumstances, operators of types II and III
30// can be represented as:
31// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32//                        from conservatively evaluated methods such as
33//                        `.begin()`.
34// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35//                        variables or temporaries, when the iterator object is
36//                        currently treated as an lvalue.
37// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38//                        iterator object is treated as an rvalue taken of a
39//                        particular lvalue, eg. a copy of "type-a" iterator
40//                        object, or an iterator that existed before the
41//                        analysis has started.
42//
43// To handle any of these three different representations stored in an SVal we
44// use setter and getters functions which separate the three cases. To store
45// them we use a pointer union of symbol and memory region.
46//
47// The checker works the following way: We record the begin and the
48// past-end iterator for all containers whenever their `.begin()` and `.end()`
49// are called. Since the Constraint Manager cannot handle such SVals we need
50// to take over its role. We post-check equality and non-equality comparisons
51// and record that the two sides are equal if we are in the 'equal' branch
52// (true-branch for `==` and false-branch for `!=`).
53//
54// In case of type-I or type-II iterators we get a concrete integer as a result
55// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56// this latter case we record the symbol and reload it in evalAssume() and do
57// the propagation there. We also handle (maybe double) negated comparisons
58// which are represented in the form of (x == 0 or x != 0) where x is the
59// comparison itself.
60//
61// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62// we only use expressions of the format S, S+n or S-n for iterator positions
63// where S is a conjured symbol and n is an unsigned concrete integer. When
64// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65// a constraint which we later retrieve when doing an actual comparison.
66
67#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
68#include "clang/AST/DeclTemplate.h"
69#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70#include "clang/StaticAnalyzer/Core/Checker.h"
71#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
72#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
73#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
74
75#include "Iterator.h"
76
77#include <utility>
78
79using namespace clang;
80using namespace ento;
81using namespace iterator;
82
83namespace {
84
85class IteratorModeling
86    : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
87                     check::PostStmt<BinaryOperator>,
88                     check::PostStmt<MaterializeTemporaryExpr>,
89                     check::Bind, check::LiveSymbols, check::DeadSymbols> {
90
91  using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
92                                               SVal, SVal, SVal) const;
93
94  void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
95                                OverloadedOperatorKind Op) const;
96  void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
97                                 const Expr *OrigExpr,
98                                 const AdvanceFn *Handler) const;
99
100  void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
101                        const SVal &LVal, const SVal &RVal,
102                        OverloadedOperatorKind Op) const;
103  void processComparison(CheckerContext &C, ProgramStateRef State,
104                         SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
105                         OverloadedOperatorKind Op) const;
106  void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
107                       bool Postfix) const;
108  void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
109                       bool Postfix) const;
110  void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
111                              OverloadedOperatorKind Op, const SVal &RetVal,
112                              const SVal &Iterator, const SVal &Amount) const;
113  void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
114                           OverloadedOperatorKind OK, SVal Offset) const;
115  void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
116                     SVal Amount) const;
117  void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
118                  SVal Amount) const;
119  void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
120                  SVal Amount) const;
121  void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
122                         const MemRegion *Cont) const;
123  bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
124  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
125                  const char *Sep) const override;
126
127  // std::advance, std::prev & std::next
128  CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
129      // template<class InputIt, class Distance>
130      // void advance(InputIt& it, Distance n);
131      {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
132
133      // template<class BidirIt>
134      // BidirIt prev(
135      //   BidirIt it,
136      //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
137      {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
138
139      // template<class ForwardIt>
140      // ForwardIt next(
141      //   ForwardIt it,
142      //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
143      {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
144  };
145
146public:
147  IteratorModeling() = default;
148
149  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
150  void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
151  void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
152  void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
153  void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
154  void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
155  void checkPostStmt(const MaterializeTemporaryExpr *MTE,
156                     CheckerContext &C) const;
157  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
158  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
159};
160
161bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
162bool isSimpleComparisonOperator(BinaryOperatorKind OK);
163ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
164ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
165                              SymbolRef Sym2, bool Equal);
166bool isBoundThroughLazyCompoundVal(const Environment &Env,
167                                   const MemRegion *Reg);
168const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
169
170} // namespace
171
172void IteratorModeling::checkPostCall(const CallEvent &Call,
173                                     CheckerContext &C) const {
174  // Record new iterator positions and iterator position changes
175  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
176  if (!Func)
177    return;
178
179  if (Func->isOverloadedOperator()) {
180    const auto Op = Func->getOverloadedOperator();
181    handleOverloadedOperator(C, Call, Op);
182    return;
183  }
184
185  const auto *OrigExpr = Call.getOriginExpr();
186  if (!OrigExpr)
187    return;
188
189  const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
190  if (Handler) {
191    handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
192    return;
193  }
194
195  if (!isIteratorType(Call.getResultType()))
196    return;
197
198  auto State = C.getState();
199
200  // Already bound to container?
201  if (getIteratorPosition(State, Call.getReturnValue()))
202    return;
203
204  // Copy-like and move constructors
205  if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
206    if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
207      State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
208      if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
209        State = removeIteratorPosition(State, Call.getArgSVal(0));
210      }
211      C.addTransition(State);
212      return;
213    }
214  }
215
216  // Assumption: if return value is an iterator which is not yet bound to a
217  //             container, then look for the first iterator argument of the
218  //             same type as the return value and bind the return value to
219  //             the same container. This approach works for STL algorithms.
220  // FIXME: Add a more conservative mode
221  for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
222    if (isIteratorType(Call.getArgExpr(i)->getType()) &&
223        Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
224            C.getASTContext()).getTypePtr() ==
225        Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
226      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
227        assignToContainer(C, OrigExpr, Call.getReturnValue(),
228                          Pos->getContainer());
229        return;
230      }
231    }
232  }
233}
234
235void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
236                                 CheckerContext &C) const {
237  auto State = C.getState();
238  const auto *Pos = getIteratorPosition(State, Val);
239  if (Pos) {
240    State = setIteratorPosition(State, Loc, *Pos);
241    C.addTransition(State);
242  } else {
243    const auto *OldPos = getIteratorPosition(State, Loc);
244    if (OldPos) {
245      State = removeIteratorPosition(State, Loc);
246      C.addTransition(State);
247    }
248  }
249}
250
251void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
252                                     CheckerContext &C) const {
253  UnaryOperatorKind OK = UO->getOpcode();
254  if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
255    return;
256
257  auto &SVB = C.getSValBuilder();
258  handlePtrIncrOrDecr(C, UO->getSubExpr(),
259                      isIncrementOperator(OK) ? OO_Plus : OO_Minus,
260                      SVB.makeArrayIndex(1));
261}
262
263void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
264                                     CheckerContext &C) const {
265  const ProgramStateRef State = C.getState();
266  const BinaryOperatorKind OK = BO->getOpcode();
267  const Expr *const LHS = BO->getLHS();
268  const Expr *const RHS = BO->getRHS();
269  const SVal LVal = State->getSVal(LHS, C.getLocationContext());
270  const SVal RVal = State->getSVal(RHS, C.getLocationContext());
271
272  if (isSimpleComparisonOperator(BO->getOpcode())) {
273    SVal Result = State->getSVal(BO, C.getLocationContext());
274    handleComparison(C, BO, Result, LVal, RVal,
275                     BinaryOperator::getOverloadedOperator(OK));
276  } else if (isRandomIncrOrDecrOperator(OK)) {
277    // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
278    // or on the RHS (eg.: 1 + it). Both cases are modeled.
279    const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
280    const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
281    const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
282
283    // The non-iterator side must have an integral or enumeration type.
284    if (!AmountExpr->getType()->isIntegralOrEnumerationType())
285      return;
286    const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
287    handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
288                        AmountVal);
289  }
290}
291
292void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
293                                     CheckerContext &C) const {
294  /* Transfer iterator state to temporary objects */
295  auto State = C.getState();
296  const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
297  if (!Pos)
298    return;
299  State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
300  C.addTransition(State);
301}
302
303void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
304                                        SymbolReaper &SR) const {
305  // Keep symbolic expressions of iterator positions alive
306  auto RegionMap = State->get<IteratorRegionMap>();
307  for (const auto &Reg : RegionMap) {
308    const auto Offset = Reg.second.getOffset();
309    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
310      if (isa<SymbolData>(*i))
311        SR.markLive(*i);
312  }
313
314  auto SymbolMap = State->get<IteratorSymbolMap>();
315  for (const auto &Sym : SymbolMap) {
316    const auto Offset = Sym.second.getOffset();
317    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
318      if (isa<SymbolData>(*i))
319        SR.markLive(*i);
320  }
321
322}
323
324void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
325                                        CheckerContext &C) const {
326  // Cleanup
327  auto State = C.getState();
328
329  auto RegionMap = State->get<IteratorRegionMap>();
330  for (const auto &Reg : RegionMap) {
331    if (!SR.isLiveRegion(Reg.first)) {
332      // The region behind the `LazyCompoundVal` is often cleaned up before
333      // the `LazyCompoundVal` itself. If there are iterator positions keyed
334      // by these regions their cleanup must be deferred.
335      if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
336        State = State->remove<IteratorRegionMap>(Reg.first);
337      }
338    }
339  }
340
341  auto SymbolMap = State->get<IteratorSymbolMap>();
342  for (const auto &Sym : SymbolMap) {
343    if (!SR.isLive(Sym.first)) {
344      State = State->remove<IteratorSymbolMap>(Sym.first);
345    }
346  }
347
348  C.addTransition(State);
349}
350
351void
352IteratorModeling::handleOverloadedOperator(CheckerContext &C,
353                                           const CallEvent &Call,
354                                           OverloadedOperatorKind Op) const {
355    if (isSimpleComparisonOperator(Op)) {
356      const auto *OrigExpr = Call.getOriginExpr();
357      if (!OrigExpr)
358        return;
359
360      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
361        handleComparison(C, OrigExpr, Call.getReturnValue(),
362                         InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
363        return;
364      }
365
366      handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
367                         Call.getArgSVal(1), Op);
368      return;
369    } else if (isRandomIncrOrDecrOperator(Op)) {
370      const auto *OrigExpr = Call.getOriginExpr();
371      if (!OrigExpr)
372        return;
373
374      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
375        if (Call.getNumArgs() >= 1 &&
376              Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
377          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
378                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
379          return;
380        }
381      } else if (Call.getNumArgs() >= 2) {
382        const Expr *FirstArg = Call.getArgExpr(0);
383        const Expr *SecondArg = Call.getArgExpr(1);
384        const QualType FirstType = FirstArg->getType();
385        const QualType SecondType = SecondArg->getType();
386
387        if (FirstType->isIntegralOrEnumerationType() ||
388            SecondType->isIntegralOrEnumerationType()) {
389          // In case of operator+ the iterator can be either on the LHS (eg.:
390          // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
391          const bool IsIterFirst = FirstType->isStructureOrClassType();
392          const SVal FirstArg = Call.getArgSVal(0);
393          const SVal SecondArg = Call.getArgSVal(1);
394          const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
395          const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
396
397          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
398                                 Iterator, Amount);
399          return;
400        }
401      }
402    } else if (isIncrementOperator(Op)) {
403      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
404        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
405                        Call.getNumArgs());
406        return;
407      }
408
409      handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
410                      Call.getNumArgs());
411      return;
412    } else if (isDecrementOperator(Op)) {
413      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
414        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
415                        Call.getNumArgs());
416        return;
417      }
418
419      handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
420                        Call.getNumArgs());
421      return;
422    }
423}
424
425void
426IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
427                                            const CallEvent &Call,
428                                            const Expr *OrigExpr,
429                                            const AdvanceFn *Handler) const {
430  if (!C.wasInlined) {
431    (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
432                      Call.getArgSVal(0), Call.getArgSVal(1));
433    return;
434  }
435
436  // If std::advance() was inlined, but a non-standard function it calls inside
437  // was not, then we have to model it explicitly
438  const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
439  if (IdInfo) {
440    if (IdInfo->getName() == "advance") {
441      if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
442        (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
443                          Call.getArgSVal(0), Call.getArgSVal(1));
444      }
445    }
446  }
447}
448
449void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
450                                       SVal RetVal, const SVal &LVal,
451                                       const SVal &RVal,
452                                       OverloadedOperatorKind Op) const {
453  // Record the operands and the operator of the comparison for the next
454  // evalAssume, if the result is a symbolic expression. If it is a concrete
455  // value (only one branch is possible), then transfer the state between
456  // the operands according to the operator and the result
457   auto State = C.getState();
458  const auto *LPos = getIteratorPosition(State, LVal);
459  const auto *RPos = getIteratorPosition(State, RVal);
460  const MemRegion *Cont = nullptr;
461  if (LPos) {
462    Cont = LPos->getContainer();
463  } else if (RPos) {
464    Cont = RPos->getContainer();
465  }
466  if (!Cont)
467    return;
468
469  // At least one of the iterators has recorded positions. If one of them does
470  // not then create a new symbol for the offset.
471  SymbolRef Sym;
472  if (!LPos || !RPos) {
473    auto &SymMgr = C.getSymbolManager();
474    Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
475                               C.getASTContext().LongTy, C.blockCount());
476    State = assumeNoOverflow(State, Sym, 4);
477  }
478
479  if (!LPos) {
480    State = setIteratorPosition(State, LVal,
481                                IteratorPosition::getPosition(Cont, Sym));
482    LPos = getIteratorPosition(State, LVal);
483  } else if (!RPos) {
484    State = setIteratorPosition(State, RVal,
485                                IteratorPosition::getPosition(Cont, Sym));
486    RPos = getIteratorPosition(State, RVal);
487  }
488
489  // If the value for which we just tried to set a new iterator position is
490  // an `SVal`for which no iterator position can be set then the setting was
491  // unsuccessful. We cannot handle the comparison in this case.
492  if (!LPos || !RPos)
493    return;
494
495  // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
496  // instead.
497  if (RetVal.isUnknown()) {
498    auto &SymMgr = C.getSymbolManager();
499    auto *LCtx = C.getLocationContext();
500    RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
501        CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
502    State = State->BindExpr(CE, LCtx, RetVal);
503  }
504
505  processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
506}
507
508void IteratorModeling::processComparison(CheckerContext &C,
509                                         ProgramStateRef State, SymbolRef Sym1,
510                                         SymbolRef Sym2, const SVal &RetVal,
511                                         OverloadedOperatorKind Op) const {
512  if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
513    if ((State = relateSymbols(State, Sym1, Sym2,
514                              (Op == OO_EqualEqual) ==
515                               (TruthVal->getValue() != 0)))) {
516      C.addTransition(State);
517    } else {
518      C.generateSink(State, C.getPredecessor());
519    }
520    return;
521  }
522
523  const auto ConditionVal = RetVal.getAs<DefinedSVal>();
524  if (!ConditionVal)
525    return;
526
527  if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
528    StateTrue = StateTrue->assume(*ConditionVal, true);
529    C.addTransition(StateTrue);
530  }
531
532  if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
533    StateFalse = StateFalse->assume(*ConditionVal, false);
534    C.addTransition(StateFalse);
535  }
536}
537
538void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
539                                       const SVal &Iter, bool Postfix) const {
540  // Increment the symbolic expressions which represents the position of the
541  // iterator
542  auto State = C.getState();
543  auto &BVF = C.getSymbolManager().getBasicVals();
544
545  const auto *Pos = getIteratorPosition(State, Iter);
546  if (!Pos)
547    return;
548
549  auto NewState =
550    advancePosition(State, Iter, OO_Plus,
551                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
552  assert(NewState &&
553         "Advancing position by concrete int should always be successful");
554
555  const auto *NewPos = getIteratorPosition(NewState, Iter);
556  assert(NewPos &&
557         "Iterator should have position after successful advancement");
558
559  State = setIteratorPosition(State, Iter, *NewPos);
560  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
561  C.addTransition(State);
562}
563
564void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
565                                       const SVal &Iter, bool Postfix) const {
566  // Decrement the symbolic expressions which represents the position of the
567  // iterator
568  auto State = C.getState();
569  auto &BVF = C.getSymbolManager().getBasicVals();
570
571  const auto *Pos = getIteratorPosition(State, Iter);
572  if (!Pos)
573    return;
574
575  auto NewState =
576    advancePosition(State, Iter, OO_Minus,
577                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
578  assert(NewState &&
579         "Advancing position by concrete int should always be successful");
580
581  const auto *NewPos = getIteratorPosition(NewState, Iter);
582  assert(NewPos &&
583         "Iterator should have position after successful advancement");
584
585  State = setIteratorPosition(State, Iter, *NewPos);
586  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
587  C.addTransition(State);
588}
589
590void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
591                                              OverloadedOperatorKind Op,
592                                              const SVal &RetVal,
593                                              const SVal &Iterator,
594                                              const SVal &Amount) const {
595  // Increment or decrement the symbolic expressions which represents the
596  // position of the iterator
597  auto State = C.getState();
598
599  const auto *Pos = getIteratorPosition(State, Iterator);
600  if (!Pos)
601    return;
602
603  const auto *Value = &Amount;
604  SVal Val;
605  if (auto LocAmount = Amount.getAs<Loc>()) {
606    Val = State->getRawSVal(*LocAmount);
607    Value = &Val;
608  }
609
610  const auto &TgtVal =
611      (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
612
613  // `AdvancedState` is a state where the position of `LHS` is advanced. We
614  // only need this state to retrieve the new position, but we do not want
615  // to change the position of `LHS` (in every case).
616  auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
617  if (AdvancedState) {
618    const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
619    assert(NewPos &&
620           "Iterator should have position after successful advancement");
621
622    State = setIteratorPosition(State, TgtVal, *NewPos);
623    C.addTransition(State);
624  } else {
625    assignToContainer(C, CE, TgtVal, Pos->getContainer());
626  }
627}
628
629void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
630                                           const Expr *Iterator,
631                                           OverloadedOperatorKind OK,
632                                           SVal Offset) const {
633  if (!Offset.getAs<DefinedSVal>())
634    return;
635
636  QualType PtrType = Iterator->getType();
637  if (!PtrType->isPointerType())
638    return;
639  QualType ElementType = PtrType->getPointeeType();
640
641  ProgramStateRef State = C.getState();
642  SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
643
644  const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
645  if (!OldPos)
646    return;
647
648  SVal NewVal;
649  if (OK == OO_Plus || OK == OO_PlusEqual) {
650    NewVal = State->getLValue(ElementType, Offset, OldVal);
651  } else {
652    auto &SVB = C.getSValBuilder();
653    SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
654    NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
655  }
656
657  // `AdvancedState` is a state where the position of `Old` is advanced. We
658  // only need this state to retrieve the new position, but we do not want
659  // ever to change the position of `OldVal`.
660  auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
661  if (AdvancedState) {
662    const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
663    assert(NewPos &&
664           "Iterator should have position after successful advancement");
665
666    ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
667    C.addTransition(NewState);
668  } else {
669    assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
670  }
671}
672
673void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
674                                     SVal RetVal, SVal Iter,
675                                     SVal Amount) const {
676  handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
677}
678
679void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
680                                  SVal RetVal, SVal Iter, SVal Amount) const {
681  handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
682}
683
684void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
685                                  SVal RetVal, SVal Iter, SVal Amount) const {
686  handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
687}
688
689void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
690                                         const SVal &RetVal,
691                                         const MemRegion *Cont) const {
692  Cont = Cont->getMostDerivedObjectRegion();
693
694  auto State = C.getState();
695  const auto *LCtx = C.getLocationContext();
696  State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
697
698  C.addTransition(State);
699}
700
701bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
702                                         const Expr *CE) const {
703  // Compare the iterator position before and after the call. (To be called
704  // from `checkPostCall()`.)
705  const auto StateAfter = C.getState();
706
707  const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
708  // If we have no position after the call of `std::advance`, then we are not
709  // interested. (Modeling of an inlined `std::advance()` should not remove the
710  // position in any case.)
711  if (!PosAfter)
712    return false;
713
714  const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
715  assert(N && "Any call should have a `CallEnter` node.");
716
717  const auto StateBefore = N->getState();
718  const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
719  // FIXME: `std::advance()` should not create a new iterator position but
720  //        change existing ones. However, in case of iterators implemented as
721  //        pointers the handling of parameters in `std::advance()`-like
722  //        functions is still incomplete which may result in cases where
723  //        the new position is assigned to the wrong pointer. This causes
724  //        crash if we use an assertion here.
725  if (!PosBefore)
726    return false;
727
728  return PosBefore->getOffset() == PosAfter->getOffset();
729}
730
731void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
732                                  const char *NL, const char *Sep) const {
733  auto SymbolMap = State->get<IteratorSymbolMap>();
734  auto RegionMap = State->get<IteratorRegionMap>();
735  // Use a counter to add newlines before every line except the first one.
736  unsigned Count = 0;
737
738  if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
739    Out << Sep << "Iterator Positions :" << NL;
740    for (const auto &Sym : SymbolMap) {
741      if (Count++)
742        Out << NL;
743
744      Sym.first->dumpToStream(Out);
745      Out << " : ";
746      const auto Pos = Sym.second;
747      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
748      Pos.getContainer()->dumpToStream(Out);
749      Out<<" ; Offset == ";
750      Pos.getOffset()->dumpToStream(Out);
751    }
752
753    for (const auto &Reg : RegionMap) {
754      if (Count++)
755        Out << NL;
756
757      Reg.first->dumpToStream(Out);
758      Out << " : ";
759      const auto Pos = Reg.second;
760      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
761      Pos.getContainer()->dumpToStream(Out);
762      Out<<" ; Offset == ";
763      Pos.getOffset()->dumpToStream(Out);
764    }
765  }
766}
767
768namespace {
769
770bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
771  return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
772}
773
774bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
775  return OK == BO_EQ || OK == BO_NE;
776}
777
778ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
779  if (auto Reg = Val.getAsRegion()) {
780    Reg = Reg->getMostDerivedObjectRegion();
781    return State->remove<IteratorRegionMap>(Reg);
782  } else if (const auto Sym = Val.getAsSymbol()) {
783    return State->remove<IteratorSymbolMap>(Sym);
784  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
785    return State->remove<IteratorRegionMap>(LCVal->getRegion());
786  }
787  return nullptr;
788}
789
790ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
791                              SymbolRef Sym2, bool Equal) {
792  auto &SVB = State->getStateManager().getSValBuilder();
793
794  // FIXME: This code should be reworked as follows:
795  // 1. Subtract the operands using evalBinOp().
796  // 2. Assume that the result doesn't overflow.
797  // 3. Compare the result to 0.
798  // 4. Assume the result of the comparison.
799  const auto comparison =
800    SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
801                  nonloc::SymbolVal(Sym2), SVB.getConditionType());
802
803  assert(comparison.getAs<DefinedSVal>() &&
804    "Symbol comparison must be a `DefinedSVal`");
805
806  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
807  if (!NewState)
808    return nullptr;
809
810  if (const auto CompSym = comparison.getAsSymbol()) {
811    assert(isa<SymIntExpr>(CompSym) &&
812           "Symbol comparison must be a `SymIntExpr`");
813    assert(BinaryOperator::isComparisonOp(
814               cast<SymIntExpr>(CompSym)->getOpcode()) &&
815           "Symbol comparison must be a comparison");
816    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
817  }
818
819  return NewState;
820}
821
822bool isBoundThroughLazyCompoundVal(const Environment &Env,
823                                   const MemRegion *Reg) {
824  for (const auto &Binding : Env) {
825    if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
826      if (LCVal->getRegion() == Reg)
827        return true;
828    }
829  }
830
831  return false;
832}
833
834const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
835  while (Node) {
836    ProgramPoint PP = Node->getLocation();
837    if (auto Enter = PP.getAs<CallEnter>()) {
838      if (Enter->getCallExpr() == Call)
839        break;
840    }
841
842    Node = Node->getFirstPred();
843  }
844
845  return Node;
846}
847
848} // namespace
849
850void ento::registerIteratorModeling(CheckerManager &mgr) {
851  mgr.registerChecker<IteratorModeling>();
852}
853
854bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
855  return true;
856}
857