1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements name lookup for C, C++, Objective-C, and
10//  Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50#include "OpenCLBuiltins.inc"
51
52using namespace clang;
53using namespace sema;
54
55namespace {
56  class UnqualUsingEntry {
57    const DeclContext *Nominated;
58    const DeclContext *CommonAncestor;
59
60  public:
61    UnqualUsingEntry(const DeclContext *Nominated,
62                     const DeclContext *CommonAncestor)
63      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64    }
65
66    const DeclContext *getCommonAncestor() const {
67      return CommonAncestor;
68    }
69
70    const DeclContext *getNominatedNamespace() const {
71      return Nominated;
72    }
73
74    // Sort by the pointer value of the common ancestor.
75    struct Comparator {
76      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77        return L.getCommonAncestor() < R.getCommonAncestor();
78      }
79
80      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81        return E.getCommonAncestor() < DC;
82      }
83
84      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85        return DC < E.getCommonAncestor();
86      }
87    };
88  };
89
90  /// A collection of using directives, as used by C++ unqualified
91  /// lookup.
92  class UnqualUsingDirectiveSet {
93    Sema &SemaRef;
94
95    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96
97    ListTy list;
98    llvm::SmallPtrSet<DeclContext*, 8> visited;
99
100  public:
101    UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102
103    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104      // C++ [namespace.udir]p1:
105      //   During unqualified name lookup, the names appear as if they
106      //   were declared in the nearest enclosing namespace which contains
107      //   both the using-directive and the nominated namespace.
108      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109      assert(InnermostFileDC && InnermostFileDC->isFileContext());
110
111      for (; S; S = S->getParent()) {
112        // C++ [namespace.udir]p1:
113        //   A using-directive shall not appear in class scope, but may
114        //   appear in namespace scope or in block scope.
115        DeclContext *Ctx = S->getEntity();
116        if (Ctx && Ctx->isFileContext()) {
117          visit(Ctx, Ctx);
118        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119          for (auto *I : S->using_directives())
120            if (SemaRef.isVisible(I))
121              visit(I, InnermostFileDC);
122        }
123      }
124    }
125
126    // Visits a context and collect all of its using directives
127    // recursively.  Treats all using directives as if they were
128    // declared in the context.
129    //
130    // A given context is only every visited once, so it is important
131    // that contexts be visited from the inside out in order to get
132    // the effective DCs right.
133    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134      if (!visited.insert(DC).second)
135        return;
136
137      addUsingDirectives(DC, EffectiveDC);
138    }
139
140    // Visits a using directive and collects all of its using
141    // directives recursively.  Treats all using directives as if they
142    // were declared in the effective DC.
143    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144      DeclContext *NS = UD->getNominatedNamespace();
145      if (!visited.insert(NS).second)
146        return;
147
148      addUsingDirective(UD, EffectiveDC);
149      addUsingDirectives(NS, EffectiveDC);
150    }
151
152    // Adds all the using directives in a context (and those nominated
153    // by its using directives, transitively) as if they appeared in
154    // the given effective context.
155    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156      SmallVector<DeclContext*, 4> queue;
157      while (true) {
158        for (auto UD : DC->using_directives()) {
159          DeclContext *NS = UD->getNominatedNamespace();
160          if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161            addUsingDirective(UD, EffectiveDC);
162            queue.push_back(NS);
163          }
164        }
165
166        if (queue.empty())
167          return;
168
169        DC = queue.pop_back_val();
170      }
171    }
172
173    // Add a using directive as if it had been declared in the given
174    // context.  This helps implement C++ [namespace.udir]p3:
175    //   The using-directive is transitive: if a scope contains a
176    //   using-directive that nominates a second namespace that itself
177    //   contains using-directives, the effect is as if the
178    //   using-directives from the second namespace also appeared in
179    //   the first.
180    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181      // Find the common ancestor between the effective context and
182      // the nominated namespace.
183      DeclContext *Common = UD->getNominatedNamespace();
184      while (!Common->Encloses(EffectiveDC))
185        Common = Common->getParent();
186      Common = Common->getPrimaryContext();
187
188      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189    }
190
191    void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192
193    typedef ListTy::const_iterator const_iterator;
194
195    const_iterator begin() const { return list.begin(); }
196    const_iterator end() const { return list.end(); }
197
198    llvm::iterator_range<const_iterator>
199    getNamespacesFor(DeclContext *DC) const {
200      return llvm::make_range(std::equal_range(begin(), end(),
201                                               DC->getPrimaryContext(),
202                                               UnqualUsingEntry::Comparator()));
203    }
204  };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                               bool CPlusPlus,
211                               bool Redeclaration) {
212  unsigned IDNS = 0;
213  switch (NameKind) {
214  case Sema::LookupObjCImplicitSelfParam:
215  case Sema::LookupOrdinaryName:
216  case Sema::LookupRedeclarationWithLinkage:
217  case Sema::LookupLocalFriendName:
218  case Sema::LookupDestructorName:
219    IDNS = Decl::IDNS_Ordinary;
220    if (CPlusPlus) {
221      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
222      if (Redeclaration)
223        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
224    }
225    if (Redeclaration)
226      IDNS |= Decl::IDNS_LocalExtern;
227    break;
228
229  case Sema::LookupOperatorName:
230    // Operator lookup is its own crazy thing;  it is not the same
231    // as (e.g.) looking up an operator name for redeclaration.
232    assert(!Redeclaration && "cannot do redeclaration operator lookup");
233    IDNS = Decl::IDNS_NonMemberOperator;
234    break;
235
236  case Sema::LookupTagName:
237    if (CPlusPlus) {
238      IDNS = Decl::IDNS_Type;
239
240      // When looking for a redeclaration of a tag name, we add:
241      // 1) TagFriend to find undeclared friend decls
242      // 2) Namespace because they can't "overload" with tag decls.
243      // 3) Tag because it includes class templates, which can't
244      //    "overload" with tag decls.
245      if (Redeclaration)
246        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
247    } else {
248      IDNS = Decl::IDNS_Tag;
249    }
250    break;
251
252  case Sema::LookupLabel:
253    IDNS = Decl::IDNS_Label;
254    break;
255
256  case Sema::LookupMemberName:
257    IDNS = Decl::IDNS_Member;
258    if (CPlusPlus)
259      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
260    break;
261
262  case Sema::LookupNestedNameSpecifierName:
263    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
264    break;
265
266  case Sema::LookupNamespaceName:
267    IDNS = Decl::IDNS_Namespace;
268    break;
269
270  case Sema::LookupUsingDeclName:
271    assert(Redeclaration && "should only be used for redecl lookup");
272    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
273           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
274           Decl::IDNS_LocalExtern;
275    break;
276
277  case Sema::LookupObjCProtocolName:
278    IDNS = Decl::IDNS_ObjCProtocol;
279    break;
280
281  case Sema::LookupOMPReductionName:
282    IDNS = Decl::IDNS_OMPReduction;
283    break;
284
285  case Sema::LookupOMPMapperName:
286    IDNS = Decl::IDNS_OMPMapper;
287    break;
288
289  case Sema::LookupAnyName:
290    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
291      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
292      | Decl::IDNS_Type;
293    break;
294  }
295  return IDNS;
296}
297
298void LookupResult::configure() {
299  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
300                 isForRedeclaration());
301
302  // If we're looking for one of the allocation or deallocation
303  // operators, make sure that the implicitly-declared new and delete
304  // operators can be found.
305  switch (NameInfo.getName().getCXXOverloadedOperator()) {
306  case OO_New:
307  case OO_Delete:
308  case OO_Array_New:
309  case OO_Array_Delete:
310    getSema().DeclareGlobalNewDelete();
311    break;
312
313  default:
314    break;
315  }
316
317  // Compiler builtins are always visible, regardless of where they end
318  // up being declared.
319  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
320    if (unsigned BuiltinID = Id->getBuiltinID()) {
321      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
322        AllowHidden = true;
323    }
324  }
325}
326
327bool LookupResult::sanity() const {
328  // This function is never called by NDEBUG builds.
329  assert(ResultKind != NotFound || Decls.size() == 0);
330  assert(ResultKind != Found || Decls.size() == 1);
331  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
332         (Decls.size() == 1 &&
333          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
334  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
335  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
336         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
337                                Ambiguity == AmbiguousBaseSubobjectTypes)));
338  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
339                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
340                                 Ambiguity == AmbiguousBaseSubobjects)));
341  return true;
342}
343
344// Necessary because CXXBasePaths is not complete in Sema.h
345void LookupResult::deletePaths(CXXBasePaths *Paths) {
346  delete Paths;
347}
348
349/// Get a representative context for a declaration such that two declarations
350/// will have the same context if they were found within the same scope.
351static DeclContext *getContextForScopeMatching(Decl *D) {
352  // For function-local declarations, use that function as the context. This
353  // doesn't account for scopes within the function; the caller must deal with
354  // those.
355  DeclContext *DC = D->getLexicalDeclContext();
356  if (DC->isFunctionOrMethod())
357    return DC;
358
359  // Otherwise, look at the semantic context of the declaration. The
360  // declaration must have been found there.
361  return D->getDeclContext()->getRedeclContext();
362}
363
364/// Determine whether \p D is a better lookup result than \p Existing,
365/// given that they declare the same entity.
366static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
367                                    NamedDecl *D, NamedDecl *Existing) {
368  // When looking up redeclarations of a using declaration, prefer a using
369  // shadow declaration over any other declaration of the same entity.
370  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
371      !isa<UsingShadowDecl>(Existing))
372    return true;
373
374  auto *DUnderlying = D->getUnderlyingDecl();
375  auto *EUnderlying = Existing->getUnderlyingDecl();
376
377  // If they have different underlying declarations, prefer a typedef over the
378  // original type (this happens when two type declarations denote the same
379  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
380  // might carry additional semantic information, such as an alignment override.
381  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
382  // declaration over a typedef. Also prefer a tag over a typedef for
383  // destructor name lookup because in some contexts we only accept a
384  // class-name in a destructor declaration.
385  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
386    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
387    bool HaveTag = isa<TagDecl>(EUnderlying);
388    bool WantTag =
389        Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
390    return HaveTag != WantTag;
391  }
392
393  // Pick the function with more default arguments.
394  // FIXME: In the presence of ambiguous default arguments, we should keep both,
395  //        so we can diagnose the ambiguity if the default argument is needed.
396  //        See C++ [over.match.best]p3.
397  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
398    auto *EFD = cast<FunctionDecl>(EUnderlying);
399    unsigned DMin = DFD->getMinRequiredArguments();
400    unsigned EMin = EFD->getMinRequiredArguments();
401    // If D has more default arguments, it is preferred.
402    if (DMin != EMin)
403      return DMin < EMin;
404    // FIXME: When we track visibility for default function arguments, check
405    // that we pick the declaration with more visible default arguments.
406  }
407
408  // Pick the template with more default template arguments.
409  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
410    auto *ETD = cast<TemplateDecl>(EUnderlying);
411    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
412    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
413    // If D has more default arguments, it is preferred. Note that default
414    // arguments (and their visibility) is monotonically increasing across the
415    // redeclaration chain, so this is a quick proxy for "is more recent".
416    if (DMin != EMin)
417      return DMin < EMin;
418    // If D has more *visible* default arguments, it is preferred. Note, an
419    // earlier default argument being visible does not imply that a later
420    // default argument is visible, so we can't just check the first one.
421    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
422        I != N; ++I) {
423      if (!S.hasVisibleDefaultArgument(
424              ETD->getTemplateParameters()->getParam(I)) &&
425          S.hasVisibleDefaultArgument(
426              DTD->getTemplateParameters()->getParam(I)))
427        return true;
428    }
429  }
430
431  // VarDecl can have incomplete array types, prefer the one with more complete
432  // array type.
433  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
434    VarDecl *EVD = cast<VarDecl>(EUnderlying);
435    if (EVD->getType()->isIncompleteType() &&
436        !DVD->getType()->isIncompleteType()) {
437      // Prefer the decl with a more complete type if visible.
438      return S.isVisible(DVD);
439    }
440    return false; // Avoid picking up a newer decl, just because it was newer.
441  }
442
443  // For most kinds of declaration, it doesn't really matter which one we pick.
444  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
445    // If the existing declaration is hidden, prefer the new one. Otherwise,
446    // keep what we've got.
447    return !S.isVisible(Existing);
448  }
449
450  // Pick the newer declaration; it might have a more precise type.
451  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
452       Prev = Prev->getPreviousDecl())
453    if (Prev == EUnderlying)
454      return true;
455  return false;
456}
457
458/// Determine whether \p D can hide a tag declaration.
459static bool canHideTag(NamedDecl *D) {
460  // C++ [basic.scope.declarative]p4:
461  //   Given a set of declarations in a single declarative region [...]
462  //   exactly one declaration shall declare a class name or enumeration name
463  //   that is not a typedef name and the other declarations shall all refer to
464  //   the same variable, non-static data member, or enumerator, or all refer
465  //   to functions and function templates; in this case the class name or
466  //   enumeration name is hidden.
467  // C++ [basic.scope.hiding]p2:
468  //   A class name or enumeration name can be hidden by the name of a
469  //   variable, data member, function, or enumerator declared in the same
470  //   scope.
471  // An UnresolvedUsingValueDecl always instantiates to one of these.
472  D = D->getUnderlyingDecl();
473  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
474         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
475         isa<UnresolvedUsingValueDecl>(D);
476}
477
478/// Resolves the result kind of this lookup.
479void LookupResult::resolveKind() {
480  unsigned N = Decls.size();
481
482  // Fast case: no possible ambiguity.
483  if (N == 0) {
484    assert(ResultKind == NotFound ||
485           ResultKind == NotFoundInCurrentInstantiation);
486    return;
487  }
488
489  // If there's a single decl, we need to examine it to decide what
490  // kind of lookup this is.
491  if (N == 1) {
492    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
493    if (isa<FunctionTemplateDecl>(D))
494      ResultKind = FoundOverloaded;
495    else if (isa<UnresolvedUsingValueDecl>(D))
496      ResultKind = FoundUnresolvedValue;
497    return;
498  }
499
500  // Don't do any extra resolution if we've already resolved as ambiguous.
501  if (ResultKind == Ambiguous) return;
502
503  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
504  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
505
506  bool Ambiguous = false;
507  bool HasTag = false, HasFunction = false;
508  bool HasFunctionTemplate = false, HasUnresolved = false;
509  NamedDecl *HasNonFunction = nullptr;
510
511  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
512
513  unsigned UniqueTagIndex = 0;
514
515  unsigned I = 0;
516  while (I < N) {
517    NamedDecl *D = Decls[I]->getUnderlyingDecl();
518    D = cast<NamedDecl>(D->getCanonicalDecl());
519
520    // Ignore an invalid declaration unless it's the only one left.
521    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
522      Decls[I] = Decls[--N];
523      continue;
524    }
525
526    llvm::Optional<unsigned> ExistingI;
527
528    // Redeclarations of types via typedef can occur both within a scope
529    // and, through using declarations and directives, across scopes. There is
530    // no ambiguity if they all refer to the same type, so unique based on the
531    // canonical type.
532    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
533      QualType T = getSema().Context.getTypeDeclType(TD);
534      auto UniqueResult = UniqueTypes.insert(
535          std::make_pair(getSema().Context.getCanonicalType(T), I));
536      if (!UniqueResult.second) {
537        // The type is not unique.
538        ExistingI = UniqueResult.first->second;
539      }
540    }
541
542    // For non-type declarations, check for a prior lookup result naming this
543    // canonical declaration.
544    if (!ExistingI) {
545      auto UniqueResult = Unique.insert(std::make_pair(D, I));
546      if (!UniqueResult.second) {
547        // We've seen this entity before.
548        ExistingI = UniqueResult.first->second;
549      }
550    }
551
552    if (ExistingI) {
553      // This is not a unique lookup result. Pick one of the results and
554      // discard the other.
555      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
556                                  Decls[*ExistingI]))
557        Decls[*ExistingI] = Decls[I];
558      Decls[I] = Decls[--N];
559      continue;
560    }
561
562    // Otherwise, do some decl type analysis and then continue.
563
564    if (isa<UnresolvedUsingValueDecl>(D)) {
565      HasUnresolved = true;
566    } else if (isa<TagDecl>(D)) {
567      if (HasTag)
568        Ambiguous = true;
569      UniqueTagIndex = I;
570      HasTag = true;
571    } else if (isa<FunctionTemplateDecl>(D)) {
572      HasFunction = true;
573      HasFunctionTemplate = true;
574    } else if (isa<FunctionDecl>(D)) {
575      HasFunction = true;
576    } else {
577      if (HasNonFunction) {
578        // If we're about to create an ambiguity between two declarations that
579        // are equivalent, but one is an internal linkage declaration from one
580        // module and the other is an internal linkage declaration from another
581        // module, just skip it.
582        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
583                                                             D)) {
584          EquivalentNonFunctions.push_back(D);
585          Decls[I] = Decls[--N];
586          continue;
587        }
588
589        Ambiguous = true;
590      }
591      HasNonFunction = D;
592    }
593    I++;
594  }
595
596  // C++ [basic.scope.hiding]p2:
597  //   A class name or enumeration name can be hidden by the name of
598  //   an object, function, or enumerator declared in the same
599  //   scope. If a class or enumeration name and an object, function,
600  //   or enumerator are declared in the same scope (in any order)
601  //   with the same name, the class or enumeration name is hidden
602  //   wherever the object, function, or enumerator name is visible.
603  // But it's still an error if there are distinct tag types found,
604  // even if they're not visible. (ref?)
605  if (N > 1 && HideTags && HasTag && !Ambiguous &&
606      (HasFunction || HasNonFunction || HasUnresolved)) {
607    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
608    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
609        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
610            getContextForScopeMatching(OtherDecl)) &&
611        canHideTag(OtherDecl))
612      Decls[UniqueTagIndex] = Decls[--N];
613    else
614      Ambiguous = true;
615  }
616
617  // FIXME: This diagnostic should really be delayed until we're done with
618  // the lookup result, in case the ambiguity is resolved by the caller.
619  if (!EquivalentNonFunctions.empty() && !Ambiguous)
620    getSema().diagnoseEquivalentInternalLinkageDeclarations(
621        getNameLoc(), HasNonFunction, EquivalentNonFunctions);
622
623  Decls.set_size(N);
624
625  if (HasNonFunction && (HasFunction || HasUnresolved))
626    Ambiguous = true;
627
628  if (Ambiguous)
629    setAmbiguous(LookupResult::AmbiguousReference);
630  else if (HasUnresolved)
631    ResultKind = LookupResult::FoundUnresolvedValue;
632  else if (N > 1 || HasFunctionTemplate)
633    ResultKind = LookupResult::FoundOverloaded;
634  else
635    ResultKind = LookupResult::Found;
636}
637
638void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
639  CXXBasePaths::const_paths_iterator I, E;
640  for (I = P.begin(), E = P.end(); I != E; ++I)
641    for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
642         ++DI)
643      addDecl(*DI);
644}
645
646void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
647  Paths = new CXXBasePaths;
648  Paths->swap(P);
649  addDeclsFromBasePaths(*Paths);
650  resolveKind();
651  setAmbiguous(AmbiguousBaseSubobjects);
652}
653
654void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
655  Paths = new CXXBasePaths;
656  Paths->swap(P);
657  addDeclsFromBasePaths(*Paths);
658  resolveKind();
659  setAmbiguous(AmbiguousBaseSubobjectTypes);
660}
661
662void LookupResult::print(raw_ostream &Out) {
663  Out << Decls.size() << " result(s)";
664  if (isAmbiguous()) Out << ", ambiguous";
665  if (Paths) Out << ", base paths present";
666
667  for (iterator I = begin(), E = end(); I != E; ++I) {
668    Out << "\n";
669    (*I)->print(Out, 2);
670  }
671}
672
673LLVM_DUMP_METHOD void LookupResult::dump() {
674  llvm::errs() << "lookup results for " << getLookupName().getAsString()
675               << ":\n";
676  for (NamedDecl *D : *this)
677    D->dump();
678}
679
680/// Diagnose a missing builtin type.
681static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
682                                           llvm::StringRef Name) {
683  S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
684      << TypeClass << Name;
685  return S.Context.VoidTy;
686}
687
688/// Lookup an OpenCL enum type.
689static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
690  LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
691                      Sema::LookupTagName);
692  S.LookupName(Result, S.TUScope);
693  if (Result.empty())
694    return diagOpenCLBuiltinTypeError(S, "enum", Name);
695  EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
696  if (!Decl)
697    return diagOpenCLBuiltinTypeError(S, "enum", Name);
698  return S.Context.getEnumType(Decl);
699}
700
701/// Lookup an OpenCL typedef type.
702static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
703  LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
704                      Sema::LookupOrdinaryName);
705  S.LookupName(Result, S.TUScope);
706  if (Result.empty())
707    return diagOpenCLBuiltinTypeError(S, "typedef", Name);
708  TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
709  if (!Decl)
710    return diagOpenCLBuiltinTypeError(S, "typedef", Name);
711  return S.Context.getTypedefType(Decl);
712}
713
714/// Get the QualType instances of the return type and arguments for an OpenCL
715/// builtin function signature.
716/// \param S (in) The Sema instance.
717/// \param OpenCLBuiltin (in) The signature currently handled.
718/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
719///        type used as return type or as argument.
720///        Only meaningful for generic types, otherwise equals 1.
721/// \param RetTypes (out) List of the possible return types.
722/// \param ArgTypes (out) List of the possible argument types.  For each
723///        argument, ArgTypes contains QualTypes for the Cartesian product
724///        of (vector sizes) x (types) .
725static void GetQualTypesForOpenCLBuiltin(
726    Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
727    SmallVector<QualType, 1> &RetTypes,
728    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
729  // Get the QualType instances of the return types.
730  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
731  OCL2Qual(S, TypeTable[Sig], RetTypes);
732  GenTypeMaxCnt = RetTypes.size();
733
734  // Get the QualType instances of the arguments.
735  // First type is the return type, skip it.
736  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
737    SmallVector<QualType, 1> Ty;
738    OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
739             Ty);
740    GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
741    ArgTypes.push_back(std::move(Ty));
742  }
743}
744
745/// Create a list of the candidate function overloads for an OpenCL builtin
746/// function.
747/// \param Context (in) The ASTContext instance.
748/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
749///        type used as return type or as argument.
750///        Only meaningful for generic types, otherwise equals 1.
751/// \param FunctionList (out) List of FunctionTypes.
752/// \param RetTypes (in) List of the possible return types.
753/// \param ArgTypes (in) List of the possible types for the arguments.
754static void GetOpenCLBuiltinFctOverloads(
755    ASTContext &Context, unsigned GenTypeMaxCnt,
756    std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
757    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
758  FunctionProtoType::ExtProtoInfo PI(
759      Context.getDefaultCallingConvention(false, false, true));
760  PI.Variadic = false;
761
762  // Do not attempt to create any FunctionTypes if there are no return types,
763  // which happens when a type belongs to a disabled extension.
764  if (RetTypes.size() == 0)
765    return;
766
767  // Create FunctionTypes for each (gen)type.
768  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
769    SmallVector<QualType, 5> ArgList;
770
771    for (unsigned A = 0; A < ArgTypes.size(); A++) {
772      // Bail out if there is an argument that has no available types.
773      if (ArgTypes[A].size() == 0)
774        return;
775
776      // Builtins such as "max" have an "sgentype" argument that represents
777      // the corresponding scalar type of a gentype.  The number of gentypes
778      // must be a multiple of the number of sgentypes.
779      assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
780             "argument type count not compatible with gentype type count");
781      unsigned Idx = IGenType % ArgTypes[A].size();
782      ArgList.push_back(ArgTypes[A][Idx]);
783    }
784
785    FunctionList.push_back(Context.getFunctionType(
786        RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
787  }
788}
789
790/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
791/// non-null <Index, Len> pair, then the name is referencing an OpenCL
792/// builtin function.  Add all candidate signatures to the LookUpResult.
793///
794/// \param S (in) The Sema instance.
795/// \param LR (inout) The LookupResult instance.
796/// \param II (in) The identifier being resolved.
797/// \param FctIndex (in) Starting index in the BuiltinTable.
798/// \param Len (in) The signature list has Len elements.
799static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
800                                                  IdentifierInfo *II,
801                                                  const unsigned FctIndex,
802                                                  const unsigned Len) {
803  // The builtin function declaration uses generic types (gentype).
804  bool HasGenType = false;
805
806  // Maximum number of types contained in a generic type used as return type or
807  // as argument.  Only meaningful for generic types, otherwise equals 1.
808  unsigned GenTypeMaxCnt;
809
810  ASTContext &Context = S.Context;
811
812  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
813    const OpenCLBuiltinStruct &OpenCLBuiltin =
814        BuiltinTable[FctIndex + SignatureIndex];
815
816    // Ignore this builtin function if it is not available in the currently
817    // selected language version.
818    if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
819                                        OpenCLBuiltin.Versions))
820      continue;
821
822    // Ignore this builtin function if it carries an extension macro that is
823    // not defined. This indicates that the extension is not supported by the
824    // target, so the builtin function should not be available.
825    StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
826    if (!Extensions.empty()) {
827      SmallVector<StringRef, 2> ExtVec;
828      Extensions.split(ExtVec, " ");
829      bool AllExtensionsDefined = true;
830      for (StringRef Ext : ExtVec) {
831        if (!S.getPreprocessor().isMacroDefined(Ext)) {
832          AllExtensionsDefined = false;
833          break;
834        }
835      }
836      if (!AllExtensionsDefined)
837        continue;
838    }
839
840    SmallVector<QualType, 1> RetTypes;
841    SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
842
843    // Obtain QualType lists for the function signature.
844    GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
845                                 ArgTypes);
846    if (GenTypeMaxCnt > 1) {
847      HasGenType = true;
848    }
849
850    // Create function overload for each type combination.
851    std::vector<QualType> FunctionList;
852    GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
853                                 ArgTypes);
854
855    SourceLocation Loc = LR.getNameLoc();
856    DeclContext *Parent = Context.getTranslationUnitDecl();
857    FunctionDecl *NewOpenCLBuiltin;
858
859    for (const auto &FTy : FunctionList) {
860      NewOpenCLBuiltin = FunctionDecl::Create(
861          Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
862          false, FTy->isFunctionProtoType());
863      NewOpenCLBuiltin->setImplicit();
864
865      // Create Decl objects for each parameter, adding them to the
866      // FunctionDecl.
867      const auto *FP = cast<FunctionProtoType>(FTy);
868      SmallVector<ParmVarDecl *, 4> ParmList;
869      for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
870        ParmVarDecl *Parm = ParmVarDecl::Create(
871            Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
872            nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
873        Parm->setScopeInfo(0, IParm);
874        ParmList.push_back(Parm);
875      }
876      NewOpenCLBuiltin->setParams(ParmList);
877
878      // Add function attributes.
879      if (OpenCLBuiltin.IsPure)
880        NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
881      if (OpenCLBuiltin.IsConst)
882        NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
883      if (OpenCLBuiltin.IsConv)
884        NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
885
886      if (!S.getLangOpts().OpenCLCPlusPlus)
887        NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
888
889      LR.addDecl(NewOpenCLBuiltin);
890    }
891  }
892
893  // If we added overloads, need to resolve the lookup result.
894  if (Len > 1 || HasGenType)
895    LR.resolveKind();
896}
897
898/// Lookup a builtin function, when name lookup would otherwise
899/// fail.
900bool Sema::LookupBuiltin(LookupResult &R) {
901  Sema::LookupNameKind NameKind = R.getLookupKind();
902
903  // If we didn't find a use of this identifier, and if the identifier
904  // corresponds to a compiler builtin, create the decl object for the builtin
905  // now, injecting it into translation unit scope, and return it.
906  if (NameKind == Sema::LookupOrdinaryName ||
907      NameKind == Sema::LookupRedeclarationWithLinkage) {
908    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
909    if (II) {
910      if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
911        if (II == getASTContext().getMakeIntegerSeqName()) {
912          R.addDecl(getASTContext().getMakeIntegerSeqDecl());
913          return true;
914        } else if (II == getASTContext().getTypePackElementName()) {
915          R.addDecl(getASTContext().getTypePackElementDecl());
916          return true;
917        }
918      }
919
920      // Check if this is an OpenCL Builtin, and if so, insert its overloads.
921      if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
922        auto Index = isOpenCLBuiltin(II->getName());
923        if (Index.first) {
924          InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
925                                                Index.second);
926          return true;
927        }
928      }
929
930      // If this is a builtin on this (or all) targets, create the decl.
931      if (unsigned BuiltinID = II->getBuiltinID()) {
932        // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
933        // library functions like 'malloc'. Instead, we'll just error.
934        if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
935            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
936          return false;
937
938        if (NamedDecl *D =
939                LazilyCreateBuiltin(II, BuiltinID, TUScope,
940                                    R.isForRedeclaration(), R.getNameLoc())) {
941          R.addDecl(D);
942          return true;
943        }
944      }
945    }
946  }
947
948  return false;
949}
950
951/// Looks up the declaration of "struct objc_super" and
952/// saves it for later use in building builtin declaration of
953/// objc_msgSendSuper and objc_msgSendSuper_stret.
954static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
955  ASTContext &Context = Sema.Context;
956  LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
957                      Sema::LookupTagName);
958  Sema.LookupName(Result, S);
959  if (Result.getResultKind() == LookupResult::Found)
960    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
961      Context.setObjCSuperType(Context.getTagDeclType(TD));
962}
963
964void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
965  if (ID == Builtin::BIobjc_msgSendSuper)
966    LookupPredefedObjCSuperType(*this, S);
967}
968
969/// Determine whether we can declare a special member function within
970/// the class at this point.
971static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
972  // We need to have a definition for the class.
973  if (!Class->getDefinition() || Class->isDependentContext())
974    return false;
975
976  // We can't be in the middle of defining the class.
977  return !Class->isBeingDefined();
978}
979
980void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
981  if (!CanDeclareSpecialMemberFunction(Class))
982    return;
983
984  // If the default constructor has not yet been declared, do so now.
985  if (Class->needsImplicitDefaultConstructor())
986    DeclareImplicitDefaultConstructor(Class);
987
988  // If the copy constructor has not yet been declared, do so now.
989  if (Class->needsImplicitCopyConstructor())
990    DeclareImplicitCopyConstructor(Class);
991
992  // If the copy assignment operator has not yet been declared, do so now.
993  if (Class->needsImplicitCopyAssignment())
994    DeclareImplicitCopyAssignment(Class);
995
996  if (getLangOpts().CPlusPlus11) {
997    // If the move constructor has not yet been declared, do so now.
998    if (Class->needsImplicitMoveConstructor())
999      DeclareImplicitMoveConstructor(Class);
1000
1001    // If the move assignment operator has not yet been declared, do so now.
1002    if (Class->needsImplicitMoveAssignment())
1003      DeclareImplicitMoveAssignment(Class);
1004  }
1005
1006  // If the destructor has not yet been declared, do so now.
1007  if (Class->needsImplicitDestructor())
1008    DeclareImplicitDestructor(Class);
1009}
1010
1011/// Determine whether this is the name of an implicitly-declared
1012/// special member function.
1013static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1014  switch (Name.getNameKind()) {
1015  case DeclarationName::CXXConstructorName:
1016  case DeclarationName::CXXDestructorName:
1017    return true;
1018
1019  case DeclarationName::CXXOperatorName:
1020    return Name.getCXXOverloadedOperator() == OO_Equal;
1021
1022  default:
1023    break;
1024  }
1025
1026  return false;
1027}
1028
1029/// If there are any implicit member functions with the given name
1030/// that need to be declared in the given declaration context, do so.
1031static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1032                                                   DeclarationName Name,
1033                                                   SourceLocation Loc,
1034                                                   const DeclContext *DC) {
1035  if (!DC)
1036    return;
1037
1038  switch (Name.getNameKind()) {
1039  case DeclarationName::CXXConstructorName:
1040    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1041      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1042        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1043        if (Record->needsImplicitDefaultConstructor())
1044          S.DeclareImplicitDefaultConstructor(Class);
1045        if (Record->needsImplicitCopyConstructor())
1046          S.DeclareImplicitCopyConstructor(Class);
1047        if (S.getLangOpts().CPlusPlus11 &&
1048            Record->needsImplicitMoveConstructor())
1049          S.DeclareImplicitMoveConstructor(Class);
1050      }
1051    break;
1052
1053  case DeclarationName::CXXDestructorName:
1054    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1055      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1056          CanDeclareSpecialMemberFunction(Record))
1057        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1058    break;
1059
1060  case DeclarationName::CXXOperatorName:
1061    if (Name.getCXXOverloadedOperator() != OO_Equal)
1062      break;
1063
1064    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1065      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1066        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1067        if (Record->needsImplicitCopyAssignment())
1068          S.DeclareImplicitCopyAssignment(Class);
1069        if (S.getLangOpts().CPlusPlus11 &&
1070            Record->needsImplicitMoveAssignment())
1071          S.DeclareImplicitMoveAssignment(Class);
1072      }
1073    }
1074    break;
1075
1076  case DeclarationName::CXXDeductionGuideName:
1077    S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1078    break;
1079
1080  default:
1081    break;
1082  }
1083}
1084
1085// Adds all qualifying matches for a name within a decl context to the
1086// given lookup result.  Returns true if any matches were found.
1087static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1088  bool Found = false;
1089
1090  // Lazily declare C++ special member functions.
1091  if (S.getLangOpts().CPlusPlus)
1092    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1093                                           DC);
1094
1095  // Perform lookup into this declaration context.
1096  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1097  for (NamedDecl *D : DR) {
1098    if ((D = R.getAcceptableDecl(D))) {
1099      R.addDecl(D);
1100      Found = true;
1101    }
1102  }
1103
1104  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1105    return true;
1106
1107  if (R.getLookupName().getNameKind()
1108        != DeclarationName::CXXConversionFunctionName ||
1109      R.getLookupName().getCXXNameType()->isDependentType() ||
1110      !isa<CXXRecordDecl>(DC))
1111    return Found;
1112
1113  // C++ [temp.mem]p6:
1114  //   A specialization of a conversion function template is not found by
1115  //   name lookup. Instead, any conversion function templates visible in the
1116  //   context of the use are considered. [...]
1117  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1118  if (!Record->isCompleteDefinition())
1119    return Found;
1120
1121  // For conversion operators, 'operator auto' should only match
1122  // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1123  // as a candidate for template substitution.
1124  auto *ContainedDeducedType =
1125      R.getLookupName().getCXXNameType()->getContainedDeducedType();
1126  if (R.getLookupName().getNameKind() ==
1127          DeclarationName::CXXConversionFunctionName &&
1128      ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1129    return Found;
1130
1131  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1132         UEnd = Record->conversion_end(); U != UEnd; ++U) {
1133    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1134    if (!ConvTemplate)
1135      continue;
1136
1137    // When we're performing lookup for the purposes of redeclaration, just
1138    // add the conversion function template. When we deduce template
1139    // arguments for specializations, we'll end up unifying the return
1140    // type of the new declaration with the type of the function template.
1141    if (R.isForRedeclaration()) {
1142      R.addDecl(ConvTemplate);
1143      Found = true;
1144      continue;
1145    }
1146
1147    // C++ [temp.mem]p6:
1148    //   [...] For each such operator, if argument deduction succeeds
1149    //   (14.9.2.3), the resulting specialization is used as if found by
1150    //   name lookup.
1151    //
1152    // When referencing a conversion function for any purpose other than
1153    // a redeclaration (such that we'll be building an expression with the
1154    // result), perform template argument deduction and place the
1155    // specialization into the result set. We do this to avoid forcing all
1156    // callers to perform special deduction for conversion functions.
1157    TemplateDeductionInfo Info(R.getNameLoc());
1158    FunctionDecl *Specialization = nullptr;
1159
1160    const FunctionProtoType *ConvProto
1161      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1162    assert(ConvProto && "Nonsensical conversion function template type");
1163
1164    // Compute the type of the function that we would expect the conversion
1165    // function to have, if it were to match the name given.
1166    // FIXME: Calling convention!
1167    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1168    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1169    EPI.ExceptionSpec = EST_None;
1170    QualType ExpectedType
1171      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1172                                            None, EPI);
1173
1174    // Perform template argument deduction against the type that we would
1175    // expect the function to have.
1176    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1177                                            Specialization, Info)
1178          == Sema::TDK_Success) {
1179      R.addDecl(Specialization);
1180      Found = true;
1181    }
1182  }
1183
1184  return Found;
1185}
1186
1187// Performs C++ unqualified lookup into the given file context.
1188static bool
1189CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1190                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1191
1192  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1193
1194  // Perform direct name lookup into the LookupCtx.
1195  bool Found = LookupDirect(S, R, NS);
1196
1197  // Perform direct name lookup into the namespaces nominated by the
1198  // using directives whose common ancestor is this namespace.
1199  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1200    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1201      Found = true;
1202
1203  R.resolveKind();
1204
1205  return Found;
1206}
1207
1208static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1209  if (DeclContext *Ctx = S->getEntity())
1210    return Ctx->isFileContext();
1211  return false;
1212}
1213
1214/// Find the outer declaration context from this scope. This indicates the
1215/// context that we should search up to (exclusive) before considering the
1216/// parent of the specified scope.
1217static DeclContext *findOuterContext(Scope *S) {
1218  for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1219    if (DeclContext *DC = OuterS->getLookupEntity())
1220      return DC;
1221  return nullptr;
1222}
1223
1224namespace {
1225/// An RAII object to specify that we want to find block scope extern
1226/// declarations.
1227struct FindLocalExternScope {
1228  FindLocalExternScope(LookupResult &R)
1229      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1230                                 Decl::IDNS_LocalExtern) {
1231    R.setFindLocalExtern(R.getIdentifierNamespace() &
1232                         (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1233  }
1234  void restore() {
1235    R.setFindLocalExtern(OldFindLocalExtern);
1236  }
1237  ~FindLocalExternScope() {
1238    restore();
1239  }
1240  LookupResult &R;
1241  bool OldFindLocalExtern;
1242};
1243} // end anonymous namespace
1244
1245bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1246  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1247
1248  DeclarationName Name = R.getLookupName();
1249  Sema::LookupNameKind NameKind = R.getLookupKind();
1250
1251  // If this is the name of an implicitly-declared special member function,
1252  // go through the scope stack to implicitly declare
1253  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1254    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1255      if (DeclContext *DC = PreS->getEntity())
1256        DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1257  }
1258
1259  // Implicitly declare member functions with the name we're looking for, if in
1260  // fact we are in a scope where it matters.
1261
1262  Scope *Initial = S;
1263  IdentifierResolver::iterator
1264    I = IdResolver.begin(Name),
1265    IEnd = IdResolver.end();
1266
1267  // First we lookup local scope.
1268  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1269  // ...During unqualified name lookup (3.4.1), the names appear as if
1270  // they were declared in the nearest enclosing namespace which contains
1271  // both the using-directive and the nominated namespace.
1272  // [Note: in this context, "contains" means "contains directly or
1273  // indirectly".
1274  //
1275  // For example:
1276  // namespace A { int i; }
1277  // void foo() {
1278  //   int i;
1279  //   {
1280  //     using namespace A;
1281  //     ++i; // finds local 'i', A::i appears at global scope
1282  //   }
1283  // }
1284  //
1285  UnqualUsingDirectiveSet UDirs(*this);
1286  bool VisitedUsingDirectives = false;
1287  bool LeftStartingScope = false;
1288
1289  // When performing a scope lookup, we want to find local extern decls.
1290  FindLocalExternScope FindLocals(R);
1291
1292  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1293    bool SearchNamespaceScope = true;
1294    // Check whether the IdResolver has anything in this scope.
1295    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1296      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1297        if (NameKind == LookupRedeclarationWithLinkage &&
1298            !(*I)->isTemplateParameter()) {
1299          // If it's a template parameter, we still find it, so we can diagnose
1300          // the invalid redeclaration.
1301
1302          // Determine whether this (or a previous) declaration is
1303          // out-of-scope.
1304          if (!LeftStartingScope && !Initial->isDeclScope(*I))
1305            LeftStartingScope = true;
1306
1307          // If we found something outside of our starting scope that
1308          // does not have linkage, skip it.
1309          if (LeftStartingScope && !((*I)->hasLinkage())) {
1310            R.setShadowed();
1311            continue;
1312          }
1313        } else {
1314          // We found something in this scope, we should not look at the
1315          // namespace scope
1316          SearchNamespaceScope = false;
1317        }
1318        R.addDecl(ND);
1319      }
1320    }
1321    if (!SearchNamespaceScope) {
1322      R.resolveKind();
1323      if (S->isClassScope())
1324        if (CXXRecordDecl *Record =
1325                dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1326          R.setNamingClass(Record);
1327      return true;
1328    }
1329
1330    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1331      // C++11 [class.friend]p11:
1332      //   If a friend declaration appears in a local class and the name
1333      //   specified is an unqualified name, a prior declaration is
1334      //   looked up without considering scopes that are outside the
1335      //   innermost enclosing non-class scope.
1336      return false;
1337    }
1338
1339    if (DeclContext *Ctx = S->getLookupEntity()) {
1340      DeclContext *OuterCtx = findOuterContext(S);
1341      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1342        // We do not directly look into transparent contexts, since
1343        // those entities will be found in the nearest enclosing
1344        // non-transparent context.
1345        if (Ctx->isTransparentContext())
1346          continue;
1347
1348        // We do not look directly into function or method contexts,
1349        // since all of the local variables and parameters of the
1350        // function/method are present within the Scope.
1351        if (Ctx->isFunctionOrMethod()) {
1352          // If we have an Objective-C instance method, look for ivars
1353          // in the corresponding interface.
1354          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1355            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1356              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1357                ObjCInterfaceDecl *ClassDeclared;
1358                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1359                                                 Name.getAsIdentifierInfo(),
1360                                                             ClassDeclared)) {
1361                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1362                    R.addDecl(ND);
1363                    R.resolveKind();
1364                    return true;
1365                  }
1366                }
1367              }
1368          }
1369
1370          continue;
1371        }
1372
1373        // If this is a file context, we need to perform unqualified name
1374        // lookup considering using directives.
1375        if (Ctx->isFileContext()) {
1376          // If we haven't handled using directives yet, do so now.
1377          if (!VisitedUsingDirectives) {
1378            // Add using directives from this context up to the top level.
1379            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1380              if (UCtx->isTransparentContext())
1381                continue;
1382
1383              UDirs.visit(UCtx, UCtx);
1384            }
1385
1386            // Find the innermost file scope, so we can add using directives
1387            // from local scopes.
1388            Scope *InnermostFileScope = S;
1389            while (InnermostFileScope &&
1390                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1391              InnermostFileScope = InnermostFileScope->getParent();
1392            UDirs.visitScopeChain(Initial, InnermostFileScope);
1393
1394            UDirs.done();
1395
1396            VisitedUsingDirectives = true;
1397          }
1398
1399          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1400            R.resolveKind();
1401            return true;
1402          }
1403
1404          continue;
1405        }
1406
1407        // Perform qualified name lookup into this context.
1408        // FIXME: In some cases, we know that every name that could be found by
1409        // this qualified name lookup will also be on the identifier chain. For
1410        // example, inside a class without any base classes, we never need to
1411        // perform qualified lookup because all of the members are on top of the
1412        // identifier chain.
1413        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1414          return true;
1415      }
1416    }
1417  }
1418
1419  // Stop if we ran out of scopes.
1420  // FIXME:  This really, really shouldn't be happening.
1421  if (!S) return false;
1422
1423  // If we are looking for members, no need to look into global/namespace scope.
1424  if (NameKind == LookupMemberName)
1425    return false;
1426
1427  // Collect UsingDirectiveDecls in all scopes, and recursively all
1428  // nominated namespaces by those using-directives.
1429  //
1430  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1431  // don't build it for each lookup!
1432  if (!VisitedUsingDirectives) {
1433    UDirs.visitScopeChain(Initial, S);
1434    UDirs.done();
1435  }
1436
1437  // If we're not performing redeclaration lookup, do not look for local
1438  // extern declarations outside of a function scope.
1439  if (!R.isForRedeclaration())
1440    FindLocals.restore();
1441
1442  // Lookup namespace scope, and global scope.
1443  // Unqualified name lookup in C++ requires looking into scopes
1444  // that aren't strictly lexical, and therefore we walk through the
1445  // context as well as walking through the scopes.
1446  for (; S; S = S->getParent()) {
1447    // Check whether the IdResolver has anything in this scope.
1448    bool Found = false;
1449    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1450      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1451        // We found something.  Look for anything else in our scope
1452        // with this same name and in an acceptable identifier
1453        // namespace, so that we can construct an overload set if we
1454        // need to.
1455        Found = true;
1456        R.addDecl(ND);
1457      }
1458    }
1459
1460    if (Found && S->isTemplateParamScope()) {
1461      R.resolveKind();
1462      return true;
1463    }
1464
1465    DeclContext *Ctx = S->getLookupEntity();
1466    if (Ctx) {
1467      DeclContext *OuterCtx = findOuterContext(S);
1468      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1469        // We do not directly look into transparent contexts, since
1470        // those entities will be found in the nearest enclosing
1471        // non-transparent context.
1472        if (Ctx->isTransparentContext())
1473          continue;
1474
1475        // If we have a context, and it's not a context stashed in the
1476        // template parameter scope for an out-of-line definition, also
1477        // look into that context.
1478        if (!(Found && S->isTemplateParamScope())) {
1479          assert(Ctx->isFileContext() &&
1480              "We should have been looking only at file context here already.");
1481
1482          // Look into context considering using-directives.
1483          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1484            Found = true;
1485        }
1486
1487        if (Found) {
1488          R.resolveKind();
1489          return true;
1490        }
1491
1492        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1493          return false;
1494      }
1495    }
1496
1497    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1498      return false;
1499  }
1500
1501  return !R.empty();
1502}
1503
1504void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1505  if (auto *M = getCurrentModule())
1506    Context.mergeDefinitionIntoModule(ND, M);
1507  else
1508    // We're not building a module; just make the definition visible.
1509    ND->setVisibleDespiteOwningModule();
1510
1511  // If ND is a template declaration, make the template parameters
1512  // visible too. They're not (necessarily) within a mergeable DeclContext.
1513  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1514    for (auto *Param : *TD->getTemplateParameters())
1515      makeMergedDefinitionVisible(Param);
1516}
1517
1518/// Find the module in which the given declaration was defined.
1519static Module *getDefiningModule(Sema &S, Decl *Entity) {
1520  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1521    // If this function was instantiated from a template, the defining module is
1522    // the module containing the pattern.
1523    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1524      Entity = Pattern;
1525  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1526    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1527      Entity = Pattern;
1528  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1529    if (auto *Pattern = ED->getTemplateInstantiationPattern())
1530      Entity = Pattern;
1531  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1532    if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1533      Entity = Pattern;
1534  }
1535
1536  // Walk up to the containing context. That might also have been instantiated
1537  // from a template.
1538  DeclContext *Context = Entity->getLexicalDeclContext();
1539  if (Context->isFileContext())
1540    return S.getOwningModule(Entity);
1541  return getDefiningModule(S, cast<Decl>(Context));
1542}
1543
1544llvm::DenseSet<Module*> &Sema::getLookupModules() {
1545  unsigned N = CodeSynthesisContexts.size();
1546  for (unsigned I = CodeSynthesisContextLookupModules.size();
1547       I != N; ++I) {
1548    Module *M = CodeSynthesisContexts[I].Entity ?
1549                getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1550                nullptr;
1551    if (M && !LookupModulesCache.insert(M).second)
1552      M = nullptr;
1553    CodeSynthesisContextLookupModules.push_back(M);
1554  }
1555  return LookupModulesCache;
1556}
1557
1558/// Determine whether the module M is part of the current module from the
1559/// perspective of a module-private visibility check.
1560static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1561  // If M is the global module fragment of a module that we've not yet finished
1562  // parsing, then it must be part of the current module.
1563  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1564         (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1565}
1566
1567bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1568  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1569    if (isModuleVisible(Merged))
1570      return true;
1571  return false;
1572}
1573
1574bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1575  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1576    if (isInCurrentModule(Merged, getLangOpts()))
1577      return true;
1578  return false;
1579}
1580
1581template<typename ParmDecl>
1582static bool
1583hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1584                          llvm::SmallVectorImpl<Module *> *Modules) {
1585  if (!D->hasDefaultArgument())
1586    return false;
1587
1588  while (D) {
1589    auto &DefaultArg = D->getDefaultArgStorage();
1590    if (!DefaultArg.isInherited() && S.isVisible(D))
1591      return true;
1592
1593    if (!DefaultArg.isInherited() && Modules) {
1594      auto *NonConstD = const_cast<ParmDecl*>(D);
1595      Modules->push_back(S.getOwningModule(NonConstD));
1596    }
1597
1598    // If there was a previous default argument, maybe its parameter is visible.
1599    D = DefaultArg.getInheritedFrom();
1600  }
1601  return false;
1602}
1603
1604bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1605                                     llvm::SmallVectorImpl<Module *> *Modules) {
1606  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1607    return ::hasVisibleDefaultArgument(*this, P, Modules);
1608  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1609    return ::hasVisibleDefaultArgument(*this, P, Modules);
1610  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1611                                     Modules);
1612}
1613
1614template<typename Filter>
1615static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1616                                      llvm::SmallVectorImpl<Module *> *Modules,
1617                                      Filter F) {
1618  bool HasFilteredRedecls = false;
1619
1620  for (auto *Redecl : D->redecls()) {
1621    auto *R = cast<NamedDecl>(Redecl);
1622    if (!F(R))
1623      continue;
1624
1625    if (S.isVisible(R))
1626      return true;
1627
1628    HasFilteredRedecls = true;
1629
1630    if (Modules)
1631      Modules->push_back(R->getOwningModule());
1632  }
1633
1634  // Only return false if there is at least one redecl that is not filtered out.
1635  if (HasFilteredRedecls)
1636    return false;
1637
1638  return true;
1639}
1640
1641bool Sema::hasVisibleExplicitSpecialization(
1642    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1643  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1644    if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1645      return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1646    if (auto *FD = dyn_cast<FunctionDecl>(D))
1647      return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1648    if (auto *VD = dyn_cast<VarDecl>(D))
1649      return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1650    llvm_unreachable("unknown explicit specialization kind");
1651  });
1652}
1653
1654bool Sema::hasVisibleMemberSpecialization(
1655    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1656  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1657         "not a member specialization");
1658  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1659    // If the specialization is declared at namespace scope, then it's a member
1660    // specialization declaration. If it's lexically inside the class
1661    // definition then it was instantiated.
1662    //
1663    // FIXME: This is a hack. There should be a better way to determine this.
1664    // FIXME: What about MS-style explicit specializations declared within a
1665    //        class definition?
1666    return D->getLexicalDeclContext()->isFileContext();
1667  });
1668}
1669
1670/// Determine whether a declaration is visible to name lookup.
1671///
1672/// This routine determines whether the declaration D is visible in the current
1673/// lookup context, taking into account the current template instantiation
1674/// stack. During template instantiation, a declaration is visible if it is
1675/// visible from a module containing any entity on the template instantiation
1676/// path (by instantiating a template, you allow it to see the declarations that
1677/// your module can see, including those later on in your module).
1678bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1679  assert(!D->isUnconditionallyVisible() &&
1680         "should not call this: not in slow case");
1681
1682  Module *DeclModule = SemaRef.getOwningModule(D);
1683  assert(DeclModule && "hidden decl has no owning module");
1684
1685  // If the owning module is visible, the decl is visible.
1686  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1687    return true;
1688
1689  // Determine whether a decl context is a file context for the purpose of
1690  // visibility. This looks through some (export and linkage spec) transparent
1691  // contexts, but not others (enums).
1692  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1693    return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1694           isa<ExportDecl>(DC);
1695  };
1696
1697  // If this declaration is not at namespace scope
1698  // then it is visible if its lexical parent has a visible definition.
1699  DeclContext *DC = D->getLexicalDeclContext();
1700  if (DC && !IsEffectivelyFileContext(DC)) {
1701    // For a parameter, check whether our current template declaration's
1702    // lexical context is visible, not whether there's some other visible
1703    // definition of it, because parameters aren't "within" the definition.
1704    //
1705    // In C++ we need to check for a visible definition due to ODR merging,
1706    // and in C we must not because each declaration of a function gets its own
1707    // set of declarations for tags in prototype scope.
1708    bool VisibleWithinParent;
1709    if (D->isTemplateParameter()) {
1710      bool SearchDefinitions = true;
1711      if (const auto *DCD = dyn_cast<Decl>(DC)) {
1712        if (const auto *TD = DCD->getDescribedTemplate()) {
1713          TemplateParameterList *TPL = TD->getTemplateParameters();
1714          auto Index = getDepthAndIndex(D).second;
1715          SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1716        }
1717      }
1718      if (SearchDefinitions)
1719        VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1720      else
1721        VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1722    } else if (isa<ParmVarDecl>(D) ||
1723               (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1724      VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1725    else if (D->isModulePrivate()) {
1726      // A module-private declaration is only visible if an enclosing lexical
1727      // parent was merged with another definition in the current module.
1728      VisibleWithinParent = false;
1729      do {
1730        if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1731          VisibleWithinParent = true;
1732          break;
1733        }
1734        DC = DC->getLexicalParent();
1735      } while (!IsEffectivelyFileContext(DC));
1736    } else {
1737      VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1738    }
1739
1740    if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1741        // FIXME: Do something better in this case.
1742        !SemaRef.getLangOpts().ModulesLocalVisibility) {
1743      // Cache the fact that this declaration is implicitly visible because
1744      // its parent has a visible definition.
1745      D->setVisibleDespiteOwningModule();
1746    }
1747    return VisibleWithinParent;
1748  }
1749
1750  return false;
1751}
1752
1753bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1754  // The module might be ordinarily visible. For a module-private query, that
1755  // means it is part of the current module. For any other query, that means it
1756  // is in our visible module set.
1757  if (ModulePrivate) {
1758    if (isInCurrentModule(M, getLangOpts()))
1759      return true;
1760  } else {
1761    if (VisibleModules.isVisible(M))
1762      return true;
1763  }
1764
1765  // Otherwise, it might be visible by virtue of the query being within a
1766  // template instantiation or similar that is permitted to look inside M.
1767
1768  // Find the extra places where we need to look.
1769  const auto &LookupModules = getLookupModules();
1770  if (LookupModules.empty())
1771    return false;
1772
1773  // If our lookup set contains the module, it's visible.
1774  if (LookupModules.count(M))
1775    return true;
1776
1777  // For a module-private query, that's everywhere we get to look.
1778  if (ModulePrivate)
1779    return false;
1780
1781  // Check whether M is transitively exported to an import of the lookup set.
1782  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1783    return LookupM->isModuleVisible(M);
1784  });
1785}
1786
1787bool Sema::isVisibleSlow(const NamedDecl *D) {
1788  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1789}
1790
1791bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1792  // FIXME: If there are both visible and hidden declarations, we need to take
1793  // into account whether redeclaration is possible. Example:
1794  //
1795  // Non-imported module:
1796  //   int f(T);        // #1
1797  // Some TU:
1798  //   static int f(U); // #2, not a redeclaration of #1
1799  //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1800  //                    // with #2 if T == U; neither should be ambiguous.
1801  for (auto *D : R) {
1802    if (isVisible(D))
1803      return true;
1804    assert(D->isExternallyDeclarable() &&
1805           "should not have hidden, non-externally-declarable result here");
1806  }
1807
1808  // This function is called once "New" is essentially complete, but before a
1809  // previous declaration is attached. We can't query the linkage of "New" in
1810  // general, because attaching the previous declaration can change the
1811  // linkage of New to match the previous declaration.
1812  //
1813  // However, because we've just determined that there is no *visible* prior
1814  // declaration, we can compute the linkage here. There are two possibilities:
1815  //
1816  //  * This is not a redeclaration; it's safe to compute the linkage now.
1817  //
1818  //  * This is a redeclaration of a prior declaration that is externally
1819  //    redeclarable. In that case, the linkage of the declaration is not
1820  //    changed by attaching the prior declaration, because both are externally
1821  //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1822  //
1823  // FIXME: This is subtle and fragile.
1824  return New->isExternallyDeclarable();
1825}
1826
1827/// Retrieve the visible declaration corresponding to D, if any.
1828///
1829/// This routine determines whether the declaration D is visible in the current
1830/// module, with the current imports. If not, it checks whether any
1831/// redeclaration of D is visible, and if so, returns that declaration.
1832///
1833/// \returns D, or a visible previous declaration of D, whichever is more recent
1834/// and visible. If no declaration of D is visible, returns null.
1835static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1836                                     unsigned IDNS) {
1837  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1838
1839  for (auto RD : D->redecls()) {
1840    // Don't bother with extra checks if we already know this one isn't visible.
1841    if (RD == D)
1842      continue;
1843
1844    auto ND = cast<NamedDecl>(RD);
1845    // FIXME: This is wrong in the case where the previous declaration is not
1846    // visible in the same scope as D. This needs to be done much more
1847    // carefully.
1848    if (ND->isInIdentifierNamespace(IDNS) &&
1849        LookupResult::isVisible(SemaRef, ND))
1850      return ND;
1851  }
1852
1853  return nullptr;
1854}
1855
1856bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1857                                     llvm::SmallVectorImpl<Module *> *Modules) {
1858  assert(!isVisible(D) && "not in slow case");
1859  return hasVisibleDeclarationImpl(*this, D, Modules,
1860                                   [](const NamedDecl *) { return true; });
1861}
1862
1863NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1864  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1865    // Namespaces are a bit of a special case: we expect there to be a lot of
1866    // redeclarations of some namespaces, all declarations of a namespace are
1867    // essentially interchangeable, all declarations are found by name lookup
1868    // if any is, and namespaces are never looked up during template
1869    // instantiation. So we benefit from caching the check in this case, and
1870    // it is correct to do so.
1871    auto *Key = ND->getCanonicalDecl();
1872    if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1873      return Acceptable;
1874    auto *Acceptable = isVisible(getSema(), Key)
1875                           ? Key
1876                           : findAcceptableDecl(getSema(), Key, IDNS);
1877    if (Acceptable)
1878      getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1879    return Acceptable;
1880  }
1881
1882  return findAcceptableDecl(getSema(), D, IDNS);
1883}
1884
1885/// Perform unqualified name lookup starting from a given
1886/// scope.
1887///
1888/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1889/// used to find names within the current scope. For example, 'x' in
1890/// @code
1891/// int x;
1892/// int f() {
1893///   return x; // unqualified name look finds 'x' in the global scope
1894/// }
1895/// @endcode
1896///
1897/// Different lookup criteria can find different names. For example, a
1898/// particular scope can have both a struct and a function of the same
1899/// name, and each can be found by certain lookup criteria. For more
1900/// information about lookup criteria, see the documentation for the
1901/// class LookupCriteria.
1902///
1903/// @param S        The scope from which unqualified name lookup will
1904/// begin. If the lookup criteria permits, name lookup may also search
1905/// in the parent scopes.
1906///
1907/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1908/// look up and the lookup kind), and is updated with the results of lookup
1909/// including zero or more declarations and possibly additional information
1910/// used to diagnose ambiguities.
1911///
1912/// @returns \c true if lookup succeeded and false otherwise.
1913bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1914  DeclarationName Name = R.getLookupName();
1915  if (!Name) return false;
1916
1917  LookupNameKind NameKind = R.getLookupKind();
1918
1919  if (!getLangOpts().CPlusPlus) {
1920    // Unqualified name lookup in C/Objective-C is purely lexical, so
1921    // search in the declarations attached to the name.
1922    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1923      // Find the nearest non-transparent declaration scope.
1924      while (!(S->getFlags() & Scope::DeclScope) ||
1925             (S->getEntity() && S->getEntity()->isTransparentContext()))
1926        S = S->getParent();
1927    }
1928
1929    // When performing a scope lookup, we want to find local extern decls.
1930    FindLocalExternScope FindLocals(R);
1931
1932    // Scan up the scope chain looking for a decl that matches this
1933    // identifier that is in the appropriate namespace.  This search
1934    // should not take long, as shadowing of names is uncommon, and
1935    // deep shadowing is extremely uncommon.
1936    bool LeftStartingScope = false;
1937
1938    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1939                                   IEnd = IdResolver.end();
1940         I != IEnd; ++I)
1941      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1942        if (NameKind == LookupRedeclarationWithLinkage) {
1943          // Determine whether this (or a previous) declaration is
1944          // out-of-scope.
1945          if (!LeftStartingScope && !S->isDeclScope(*I))
1946            LeftStartingScope = true;
1947
1948          // If we found something outside of our starting scope that
1949          // does not have linkage, skip it.
1950          if (LeftStartingScope && !((*I)->hasLinkage())) {
1951            R.setShadowed();
1952            continue;
1953          }
1954        }
1955        else if (NameKind == LookupObjCImplicitSelfParam &&
1956                 !isa<ImplicitParamDecl>(*I))
1957          continue;
1958
1959        R.addDecl(D);
1960
1961        // Check whether there are any other declarations with the same name
1962        // and in the same scope.
1963        if (I != IEnd) {
1964          // Find the scope in which this declaration was declared (if it
1965          // actually exists in a Scope).
1966          while (S && !S->isDeclScope(D))
1967            S = S->getParent();
1968
1969          // If the scope containing the declaration is the translation unit,
1970          // then we'll need to perform our checks based on the matching
1971          // DeclContexts rather than matching scopes.
1972          if (S && isNamespaceOrTranslationUnitScope(S))
1973            S = nullptr;
1974
1975          // Compute the DeclContext, if we need it.
1976          DeclContext *DC = nullptr;
1977          if (!S)
1978            DC = (*I)->getDeclContext()->getRedeclContext();
1979
1980          IdentifierResolver::iterator LastI = I;
1981          for (++LastI; LastI != IEnd; ++LastI) {
1982            if (S) {
1983              // Match based on scope.
1984              if (!S->isDeclScope(*LastI))
1985                break;
1986            } else {
1987              // Match based on DeclContext.
1988              DeclContext *LastDC
1989                = (*LastI)->getDeclContext()->getRedeclContext();
1990              if (!LastDC->Equals(DC))
1991                break;
1992            }
1993
1994            // If the declaration is in the right namespace and visible, add it.
1995            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1996              R.addDecl(LastD);
1997          }
1998
1999          R.resolveKind();
2000        }
2001
2002        return true;
2003      }
2004  } else {
2005    // Perform C++ unqualified name lookup.
2006    if (CppLookupName(R, S))
2007      return true;
2008  }
2009
2010  // If we didn't find a use of this identifier, and if the identifier
2011  // corresponds to a compiler builtin, create the decl object for the builtin
2012  // now, injecting it into translation unit scope, and return it.
2013  if (AllowBuiltinCreation && LookupBuiltin(R))
2014    return true;
2015
2016  // If we didn't find a use of this identifier, the ExternalSource
2017  // may be able to handle the situation.
2018  // Note: some lookup failures are expected!
2019  // See e.g. R.isForRedeclaration().
2020  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2021}
2022
2023/// Perform qualified name lookup in the namespaces nominated by
2024/// using directives by the given context.
2025///
2026/// C++98 [namespace.qual]p2:
2027///   Given X::m (where X is a user-declared namespace), or given \::m
2028///   (where X is the global namespace), let S be the set of all
2029///   declarations of m in X and in the transitive closure of all
2030///   namespaces nominated by using-directives in X and its used
2031///   namespaces, except that using-directives are ignored in any
2032///   namespace, including X, directly containing one or more
2033///   declarations of m. No namespace is searched more than once in
2034///   the lookup of a name. If S is the empty set, the program is
2035///   ill-formed. Otherwise, if S has exactly one member, or if the
2036///   context of the reference is a using-declaration
2037///   (namespace.udecl), S is the required set of declarations of
2038///   m. Otherwise if the use of m is not one that allows a unique
2039///   declaration to be chosen from S, the program is ill-formed.
2040///
2041/// C++98 [namespace.qual]p5:
2042///   During the lookup of a qualified namespace member name, if the
2043///   lookup finds more than one declaration of the member, and if one
2044///   declaration introduces a class name or enumeration name and the
2045///   other declarations either introduce the same object, the same
2046///   enumerator or a set of functions, the non-type name hides the
2047///   class or enumeration name if and only if the declarations are
2048///   from the same namespace; otherwise (the declarations are from
2049///   different namespaces), the program is ill-formed.
2050static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2051                                                 DeclContext *StartDC) {
2052  assert(StartDC->isFileContext() && "start context is not a file context");
2053
2054  // We have not yet looked into these namespaces, much less added
2055  // their "using-children" to the queue.
2056  SmallVector<NamespaceDecl*, 8> Queue;
2057
2058  // We have at least added all these contexts to the queue.
2059  llvm::SmallPtrSet<DeclContext*, 8> Visited;
2060  Visited.insert(StartDC);
2061
2062  // We have already looked into the initial namespace; seed the queue
2063  // with its using-children.
2064  for (auto *I : StartDC->using_directives()) {
2065    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2066    if (S.isVisible(I) && Visited.insert(ND).second)
2067      Queue.push_back(ND);
2068  }
2069
2070  // The easiest way to implement the restriction in [namespace.qual]p5
2071  // is to check whether any of the individual results found a tag
2072  // and, if so, to declare an ambiguity if the final result is not
2073  // a tag.
2074  bool FoundTag = false;
2075  bool FoundNonTag = false;
2076
2077  LookupResult LocalR(LookupResult::Temporary, R);
2078
2079  bool Found = false;
2080  while (!Queue.empty()) {
2081    NamespaceDecl *ND = Queue.pop_back_val();
2082
2083    // We go through some convolutions here to avoid copying results
2084    // between LookupResults.
2085    bool UseLocal = !R.empty();
2086    LookupResult &DirectR = UseLocal ? LocalR : R;
2087    bool FoundDirect = LookupDirect(S, DirectR, ND);
2088
2089    if (FoundDirect) {
2090      // First do any local hiding.
2091      DirectR.resolveKind();
2092
2093      // If the local result is a tag, remember that.
2094      if (DirectR.isSingleTagDecl())
2095        FoundTag = true;
2096      else
2097        FoundNonTag = true;
2098
2099      // Append the local results to the total results if necessary.
2100      if (UseLocal) {
2101        R.addAllDecls(LocalR);
2102        LocalR.clear();
2103      }
2104    }
2105
2106    // If we find names in this namespace, ignore its using directives.
2107    if (FoundDirect) {
2108      Found = true;
2109      continue;
2110    }
2111
2112    for (auto I : ND->using_directives()) {
2113      NamespaceDecl *Nom = I->getNominatedNamespace();
2114      if (S.isVisible(I) && Visited.insert(Nom).second)
2115        Queue.push_back(Nom);
2116    }
2117  }
2118
2119  if (Found) {
2120    if (FoundTag && FoundNonTag)
2121      R.setAmbiguousQualifiedTagHiding();
2122    else
2123      R.resolveKind();
2124  }
2125
2126  return Found;
2127}
2128
2129/// Perform qualified name lookup into a given context.
2130///
2131/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2132/// names when the context of those names is explicit specified, e.g.,
2133/// "std::vector" or "x->member", or as part of unqualified name lookup.
2134///
2135/// Different lookup criteria can find different names. For example, a
2136/// particular scope can have both a struct and a function of the same
2137/// name, and each can be found by certain lookup criteria. For more
2138/// information about lookup criteria, see the documentation for the
2139/// class LookupCriteria.
2140///
2141/// \param R captures both the lookup criteria and any lookup results found.
2142///
2143/// \param LookupCtx The context in which qualified name lookup will
2144/// search. If the lookup criteria permits, name lookup may also search
2145/// in the parent contexts or (for C++ classes) base classes.
2146///
2147/// \param InUnqualifiedLookup true if this is qualified name lookup that
2148/// occurs as part of unqualified name lookup.
2149///
2150/// \returns true if lookup succeeded, false if it failed.
2151bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2152                               bool InUnqualifiedLookup) {
2153  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2154
2155  if (!R.getLookupName())
2156    return false;
2157
2158  // Make sure that the declaration context is complete.
2159  assert((!isa<TagDecl>(LookupCtx) ||
2160          LookupCtx->isDependentContext() ||
2161          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2162          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2163         "Declaration context must already be complete!");
2164
2165  struct QualifiedLookupInScope {
2166    bool oldVal;
2167    DeclContext *Context;
2168    // Set flag in DeclContext informing debugger that we're looking for qualified name
2169    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2170      oldVal = ctx->setUseQualifiedLookup();
2171    }
2172    ~QualifiedLookupInScope() {
2173      Context->setUseQualifiedLookup(oldVal);
2174    }
2175  } QL(LookupCtx);
2176
2177  if (LookupDirect(*this, R, LookupCtx)) {
2178    R.resolveKind();
2179    if (isa<CXXRecordDecl>(LookupCtx))
2180      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2181    return true;
2182  }
2183
2184  // Don't descend into implied contexts for redeclarations.
2185  // C++98 [namespace.qual]p6:
2186  //   In a declaration for a namespace member in which the
2187  //   declarator-id is a qualified-id, given that the qualified-id
2188  //   for the namespace member has the form
2189  //     nested-name-specifier unqualified-id
2190  //   the unqualified-id shall name a member of the namespace
2191  //   designated by the nested-name-specifier.
2192  // See also [class.mfct]p5 and [class.static.data]p2.
2193  if (R.isForRedeclaration())
2194    return false;
2195
2196  // If this is a namespace, look it up in the implied namespaces.
2197  if (LookupCtx->isFileContext())
2198    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2199
2200  // If this isn't a C++ class, we aren't allowed to look into base
2201  // classes, we're done.
2202  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2203  if (!LookupRec || !LookupRec->getDefinition())
2204    return false;
2205
2206  // We're done for lookups that can never succeed for C++ classes.
2207  if (R.getLookupKind() == LookupOperatorName ||
2208      R.getLookupKind() == LookupNamespaceName ||
2209      R.getLookupKind() == LookupObjCProtocolName ||
2210      R.getLookupKind() == LookupLabel)
2211    return false;
2212
2213  // If we're performing qualified name lookup into a dependent class,
2214  // then we are actually looking into a current instantiation. If we have any
2215  // dependent base classes, then we either have to delay lookup until
2216  // template instantiation time (at which point all bases will be available)
2217  // or we have to fail.
2218  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2219      LookupRec->hasAnyDependentBases()) {
2220    R.setNotFoundInCurrentInstantiation();
2221    return false;
2222  }
2223
2224  // Perform lookup into our base classes.
2225
2226  DeclarationName Name = R.getLookupName();
2227  unsigned IDNS = R.getIdentifierNamespace();
2228
2229  // Look for this member in our base classes.
2230  auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2231                                   CXXBasePath &Path) -> bool {
2232    CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2233    // Drop leading non-matching lookup results from the declaration list so
2234    // we don't need to consider them again below.
2235    for (Path.Decls = BaseRecord->lookup(Name).begin();
2236         Path.Decls != Path.Decls.end(); ++Path.Decls) {
2237      if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2238        return true;
2239    }
2240    return false;
2241  };
2242
2243  CXXBasePaths Paths;
2244  Paths.setOrigin(LookupRec);
2245  if (!LookupRec->lookupInBases(BaseCallback, Paths))
2246    return false;
2247
2248  R.setNamingClass(LookupRec);
2249
2250  // C++ [class.member.lookup]p2:
2251  //   [...] If the resulting set of declarations are not all from
2252  //   sub-objects of the same type, or the set has a nonstatic member
2253  //   and includes members from distinct sub-objects, there is an
2254  //   ambiguity and the program is ill-formed. Otherwise that set is
2255  //   the result of the lookup.
2256  QualType SubobjectType;
2257  int SubobjectNumber = 0;
2258  AccessSpecifier SubobjectAccess = AS_none;
2259
2260  // Check whether the given lookup result contains only static members.
2261  auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2262    for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2263      if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2264        return false;
2265    return true;
2266  };
2267
2268  bool TemplateNameLookup = R.isTemplateNameLookup();
2269
2270  // Determine whether two sets of members contain the same members, as
2271  // required by C++ [class.member.lookup]p6.
2272  auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2273                                 DeclContext::lookup_iterator B) {
2274    using Iterator = DeclContextLookupResult::iterator;
2275    using Result = const void *;
2276
2277    auto Next = [&](Iterator &It, Iterator End) -> Result {
2278      while (It != End) {
2279        NamedDecl *ND = *It++;
2280        if (!ND->isInIdentifierNamespace(IDNS))
2281          continue;
2282
2283        // C++ [temp.local]p3:
2284        //   A lookup that finds an injected-class-name (10.2) can result in
2285        //   an ambiguity in certain cases (for example, if it is found in
2286        //   more than one base class). If all of the injected-class-names
2287        //   that are found refer to specializations of the same class
2288        //   template, and if the name is used as a template-name, the
2289        //   reference refers to the class template itself and not a
2290        //   specialization thereof, and is not ambiguous.
2291        if (TemplateNameLookup)
2292          if (auto *TD = getAsTemplateNameDecl(ND))
2293            ND = TD;
2294
2295        // C++ [class.member.lookup]p3:
2296        //   type declarations (including injected-class-names) are replaced by
2297        //   the types they designate
2298        if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2299          QualType T = Context.getTypeDeclType(TD);
2300          return T.getCanonicalType().getAsOpaquePtr();
2301        }
2302
2303        return ND->getUnderlyingDecl()->getCanonicalDecl();
2304      }
2305      return nullptr;
2306    };
2307
2308    // We'll often find the declarations are in the same order. Handle this
2309    // case (and the special case of only one declaration) efficiently.
2310    Iterator AIt = A, BIt = B, AEnd, BEnd;
2311    while (true) {
2312      Result AResult = Next(AIt, AEnd);
2313      Result BResult = Next(BIt, BEnd);
2314      if (!AResult && !BResult)
2315        return true;
2316      if (!AResult || !BResult)
2317        return false;
2318      if (AResult != BResult) {
2319        // Found a mismatch; carefully check both lists, accounting for the
2320        // possibility of declarations appearing more than once.
2321        llvm::SmallDenseMap<Result, bool, 32> AResults;
2322        for (; AResult; AResult = Next(AIt, AEnd))
2323          AResults.insert({AResult, /*FoundInB*/false});
2324        unsigned Found = 0;
2325        for (; BResult; BResult = Next(BIt, BEnd)) {
2326          auto It = AResults.find(BResult);
2327          if (It == AResults.end())
2328            return false;
2329          if (!It->second) {
2330            It->second = true;
2331            ++Found;
2332          }
2333        }
2334        return AResults.size() == Found;
2335      }
2336    }
2337  };
2338
2339  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2340       Path != PathEnd; ++Path) {
2341    const CXXBasePathElement &PathElement = Path->back();
2342
2343    // Pick the best (i.e. most permissive i.e. numerically lowest) access
2344    // across all paths.
2345    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2346
2347    // Determine whether we're looking at a distinct sub-object or not.
2348    if (SubobjectType.isNull()) {
2349      // This is the first subobject we've looked at. Record its type.
2350      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2351      SubobjectNumber = PathElement.SubobjectNumber;
2352      continue;
2353    }
2354
2355    if (SubobjectType !=
2356        Context.getCanonicalType(PathElement.Base->getType())) {
2357      // We found members of the given name in two subobjects of
2358      // different types. If the declaration sets aren't the same, this
2359      // lookup is ambiguous.
2360      //
2361      // FIXME: The language rule says that this applies irrespective of
2362      // whether the sets contain only static members.
2363      if (HasOnlyStaticMembers(Path->Decls) &&
2364          HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2365        continue;
2366
2367      R.setAmbiguousBaseSubobjectTypes(Paths);
2368      return true;
2369    }
2370
2371    // FIXME: This language rule no longer exists. Checking for ambiguous base
2372    // subobjects should be done as part of formation of a class member access
2373    // expression (when converting the object parameter to the member's type).
2374    if (SubobjectNumber != PathElement.SubobjectNumber) {
2375      // We have a different subobject of the same type.
2376
2377      // C++ [class.member.lookup]p5:
2378      //   A static member, a nested type or an enumerator defined in
2379      //   a base class T can unambiguously be found even if an object
2380      //   has more than one base class subobject of type T.
2381      if (HasOnlyStaticMembers(Path->Decls))
2382        continue;
2383
2384      // We have found a nonstatic member name in multiple, distinct
2385      // subobjects. Name lookup is ambiguous.
2386      R.setAmbiguousBaseSubobjects(Paths);
2387      return true;
2388    }
2389  }
2390
2391  // Lookup in a base class succeeded; return these results.
2392
2393  for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2394       I != E; ++I) {
2395    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2396                                                    (*I)->getAccess());
2397    if (NamedDecl *ND = R.getAcceptableDecl(*I))
2398      R.addDecl(ND, AS);
2399  }
2400  R.resolveKind();
2401  return true;
2402}
2403
2404/// Performs qualified name lookup or special type of lookup for
2405/// "__super::" scope specifier.
2406///
2407/// This routine is a convenience overload meant to be called from contexts
2408/// that need to perform a qualified name lookup with an optional C++ scope
2409/// specifier that might require special kind of lookup.
2410///
2411/// \param R captures both the lookup criteria and any lookup results found.
2412///
2413/// \param LookupCtx The context in which qualified name lookup will
2414/// search.
2415///
2416/// \param SS An optional C++ scope-specifier.
2417///
2418/// \returns true if lookup succeeded, false if it failed.
2419bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2420                               CXXScopeSpec &SS) {
2421  auto *NNS = SS.getScopeRep();
2422  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2423    return LookupInSuper(R, NNS->getAsRecordDecl());
2424  else
2425
2426    return LookupQualifiedName(R, LookupCtx);
2427}
2428
2429/// Performs name lookup for a name that was parsed in the
2430/// source code, and may contain a C++ scope specifier.
2431///
2432/// This routine is a convenience routine meant to be called from
2433/// contexts that receive a name and an optional C++ scope specifier
2434/// (e.g., "N::M::x"). It will then perform either qualified or
2435/// unqualified name lookup (with LookupQualifiedName or LookupName,
2436/// respectively) on the given name and return those results. It will
2437/// perform a special type of lookup for "__super::" scope specifier.
2438///
2439/// @param S        The scope from which unqualified name lookup will
2440/// begin.
2441///
2442/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2443///
2444/// @param EnteringContext Indicates whether we are going to enter the
2445/// context of the scope-specifier SS (if present).
2446///
2447/// @returns True if any decls were found (but possibly ambiguous)
2448bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2449                            bool AllowBuiltinCreation, bool EnteringContext) {
2450  if (SS && SS->isInvalid()) {
2451    // When the scope specifier is invalid, don't even look for
2452    // anything.
2453    return false;
2454  }
2455
2456  if (SS && SS->isSet()) {
2457    NestedNameSpecifier *NNS = SS->getScopeRep();
2458    if (NNS->getKind() == NestedNameSpecifier::Super)
2459      return LookupInSuper(R, NNS->getAsRecordDecl());
2460
2461    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2462      // We have resolved the scope specifier to a particular declaration
2463      // contex, and will perform name lookup in that context.
2464      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2465        return false;
2466
2467      R.setContextRange(SS->getRange());
2468      return LookupQualifiedName(R, DC);
2469    }
2470
2471    // We could not resolve the scope specified to a specific declaration
2472    // context, which means that SS refers to an unknown specialization.
2473    // Name lookup can't find anything in this case.
2474    R.setNotFoundInCurrentInstantiation();
2475    R.setContextRange(SS->getRange());
2476    return false;
2477  }
2478
2479  // Perform unqualified name lookup starting in the given scope.
2480  return LookupName(R, S, AllowBuiltinCreation);
2481}
2482
2483/// Perform qualified name lookup into all base classes of the given
2484/// class.
2485///
2486/// \param R captures both the lookup criteria and any lookup results found.
2487///
2488/// \param Class The context in which qualified name lookup will
2489/// search. Name lookup will search in all base classes merging the results.
2490///
2491/// @returns True if any decls were found (but possibly ambiguous)
2492bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2493  // The access-control rules we use here are essentially the rules for
2494  // doing a lookup in Class that just magically skipped the direct
2495  // members of Class itself.  That is, the naming class is Class, and the
2496  // access includes the access of the base.
2497  for (const auto &BaseSpec : Class->bases()) {
2498    CXXRecordDecl *RD = cast<CXXRecordDecl>(
2499        BaseSpec.getType()->castAs<RecordType>()->getDecl());
2500    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2501    Result.setBaseObjectType(Context.getRecordType(Class));
2502    LookupQualifiedName(Result, RD);
2503
2504    // Copy the lookup results into the target, merging the base's access into
2505    // the path access.
2506    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2507      R.addDecl(I.getDecl(),
2508                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2509                                           I.getAccess()));
2510    }
2511
2512    Result.suppressDiagnostics();
2513  }
2514
2515  R.resolveKind();
2516  R.setNamingClass(Class);
2517
2518  return !R.empty();
2519}
2520
2521/// Produce a diagnostic describing the ambiguity that resulted
2522/// from name lookup.
2523///
2524/// \param Result The result of the ambiguous lookup to be diagnosed.
2525void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2526  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2527
2528  DeclarationName Name = Result.getLookupName();
2529  SourceLocation NameLoc = Result.getNameLoc();
2530  SourceRange LookupRange = Result.getContextRange();
2531
2532  switch (Result.getAmbiguityKind()) {
2533  case LookupResult::AmbiguousBaseSubobjects: {
2534    CXXBasePaths *Paths = Result.getBasePaths();
2535    QualType SubobjectType = Paths->front().back().Base->getType();
2536    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2537      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2538      << LookupRange;
2539
2540    DeclContext::lookup_iterator Found = Paths->front().Decls;
2541    while (isa<CXXMethodDecl>(*Found) &&
2542           cast<CXXMethodDecl>(*Found)->isStatic())
2543      ++Found;
2544
2545    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2546    break;
2547  }
2548
2549  case LookupResult::AmbiguousBaseSubobjectTypes: {
2550    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2551      << Name << LookupRange;
2552
2553    CXXBasePaths *Paths = Result.getBasePaths();
2554    std::set<const NamedDecl *> DeclsPrinted;
2555    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2556                                      PathEnd = Paths->end();
2557         Path != PathEnd; ++Path) {
2558      const NamedDecl *D = *Path->Decls;
2559      if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2560        continue;
2561      if (DeclsPrinted.insert(D).second) {
2562        if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2563          Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2564              << TD->getUnderlyingType();
2565        else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2566          Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2567              << Context.getTypeDeclType(TD);
2568        else
2569          Diag(D->getLocation(), diag::note_ambiguous_member_found);
2570      }
2571    }
2572    break;
2573  }
2574
2575  case LookupResult::AmbiguousTagHiding: {
2576    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2577
2578    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2579
2580    for (auto *D : Result)
2581      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2582        TagDecls.insert(TD);
2583        Diag(TD->getLocation(), diag::note_hidden_tag);
2584      }
2585
2586    for (auto *D : Result)
2587      if (!isa<TagDecl>(D))
2588        Diag(D->getLocation(), diag::note_hiding_object);
2589
2590    // For recovery purposes, go ahead and implement the hiding.
2591    LookupResult::Filter F = Result.makeFilter();
2592    while (F.hasNext()) {
2593      if (TagDecls.count(F.next()))
2594        F.erase();
2595    }
2596    F.done();
2597    break;
2598  }
2599
2600  case LookupResult::AmbiguousReference: {
2601    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2602
2603    for (auto *D : Result)
2604      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2605    break;
2606  }
2607  }
2608}
2609
2610namespace {
2611  struct AssociatedLookup {
2612    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2613                     Sema::AssociatedNamespaceSet &Namespaces,
2614                     Sema::AssociatedClassSet &Classes)
2615      : S(S), Namespaces(Namespaces), Classes(Classes),
2616        InstantiationLoc(InstantiationLoc) {
2617    }
2618
2619    bool addClassTransitive(CXXRecordDecl *RD) {
2620      Classes.insert(RD);
2621      return ClassesTransitive.insert(RD);
2622    }
2623
2624    Sema &S;
2625    Sema::AssociatedNamespaceSet &Namespaces;
2626    Sema::AssociatedClassSet &Classes;
2627    SourceLocation InstantiationLoc;
2628
2629  private:
2630    Sema::AssociatedClassSet ClassesTransitive;
2631  };
2632} // end anonymous namespace
2633
2634static void
2635addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2636
2637// Given the declaration context \param Ctx of a class, class template or
2638// enumeration, add the associated namespaces to \param Namespaces as described
2639// in [basic.lookup.argdep]p2.
2640static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2641                                      DeclContext *Ctx) {
2642  // The exact wording has been changed in C++14 as a result of
2643  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2644  // to all language versions since it is possible to return a local type
2645  // from a lambda in C++11.
2646  //
2647  // C++14 [basic.lookup.argdep]p2:
2648  //   If T is a class type [...]. Its associated namespaces are the innermost
2649  //   enclosing namespaces of its associated classes. [...]
2650  //
2651  //   If T is an enumeration type, its associated namespace is the innermost
2652  //   enclosing namespace of its declaration. [...]
2653
2654  // We additionally skip inline namespaces. The innermost non-inline namespace
2655  // contains all names of all its nested inline namespaces anyway, so we can
2656  // replace the entire inline namespace tree with its root.
2657  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2658    Ctx = Ctx->getParent();
2659
2660  Namespaces.insert(Ctx->getPrimaryContext());
2661}
2662
2663// Add the associated classes and namespaces for argument-dependent
2664// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2665static void
2666addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2667                                  const TemplateArgument &Arg) {
2668  // C++ [basic.lookup.argdep]p2, last bullet:
2669  //   -- [...] ;
2670  switch (Arg.getKind()) {
2671    case TemplateArgument::Null:
2672      break;
2673
2674    case TemplateArgument::Type:
2675      // [...] the namespaces and classes associated with the types of the
2676      // template arguments provided for template type parameters (excluding
2677      // template template parameters)
2678      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2679      break;
2680
2681    case TemplateArgument::Template:
2682    case TemplateArgument::TemplateExpansion: {
2683      // [...] the namespaces in which any template template arguments are
2684      // defined; and the classes in which any member templates used as
2685      // template template arguments are defined.
2686      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2687      if (ClassTemplateDecl *ClassTemplate
2688                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2689        DeclContext *Ctx = ClassTemplate->getDeclContext();
2690        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2691          Result.Classes.insert(EnclosingClass);
2692        // Add the associated namespace for this class.
2693        CollectEnclosingNamespace(Result.Namespaces, Ctx);
2694      }
2695      break;
2696    }
2697
2698    case TemplateArgument::Declaration:
2699    case TemplateArgument::Integral:
2700    case TemplateArgument::Expression:
2701    case TemplateArgument::NullPtr:
2702      // [Note: non-type template arguments do not contribute to the set of
2703      //  associated namespaces. ]
2704      break;
2705
2706    case TemplateArgument::Pack:
2707      for (const auto &P : Arg.pack_elements())
2708        addAssociatedClassesAndNamespaces(Result, P);
2709      break;
2710  }
2711}
2712
2713// Add the associated classes and namespaces for argument-dependent lookup
2714// with an argument of class type (C++ [basic.lookup.argdep]p2).
2715static void
2716addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2717                                  CXXRecordDecl *Class) {
2718
2719  // Just silently ignore anything whose name is __va_list_tag.
2720  if (Class->getDeclName() == Result.S.VAListTagName)
2721    return;
2722
2723  // C++ [basic.lookup.argdep]p2:
2724  //   [...]
2725  //     -- If T is a class type (including unions), its associated
2726  //        classes are: the class itself; the class of which it is a
2727  //        member, if any; and its direct and indirect base classes.
2728  //        Its associated namespaces are the innermost enclosing
2729  //        namespaces of its associated classes.
2730
2731  // Add the class of which it is a member, if any.
2732  DeclContext *Ctx = Class->getDeclContext();
2733  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2734    Result.Classes.insert(EnclosingClass);
2735
2736  // Add the associated namespace for this class.
2737  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2738
2739  // -- If T is a template-id, its associated namespaces and classes are
2740  //    the namespace in which the template is defined; for member
2741  //    templates, the member template's class; the namespaces and classes
2742  //    associated with the types of the template arguments provided for
2743  //    template type parameters (excluding template template parameters); the
2744  //    namespaces in which any template template arguments are defined; and
2745  //    the classes in which any member templates used as template template
2746  //    arguments are defined. [Note: non-type template arguments do not
2747  //    contribute to the set of associated namespaces. ]
2748  if (ClassTemplateSpecializationDecl *Spec
2749        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2750    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2751    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2752      Result.Classes.insert(EnclosingClass);
2753    // Add the associated namespace for this class.
2754    CollectEnclosingNamespace(Result.Namespaces, Ctx);
2755
2756    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2757    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2758      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2759  }
2760
2761  // Add the class itself. If we've already transitively visited this class,
2762  // we don't need to visit base classes.
2763  if (!Result.addClassTransitive(Class))
2764    return;
2765
2766  // Only recurse into base classes for complete types.
2767  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2768                               Result.S.Context.getRecordType(Class)))
2769    return;
2770
2771  // Add direct and indirect base classes along with their associated
2772  // namespaces.
2773  SmallVector<CXXRecordDecl *, 32> Bases;
2774  Bases.push_back(Class);
2775  while (!Bases.empty()) {
2776    // Pop this class off the stack.
2777    Class = Bases.pop_back_val();
2778
2779    // Visit the base classes.
2780    for (const auto &Base : Class->bases()) {
2781      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2782      // In dependent contexts, we do ADL twice, and the first time around,
2783      // the base type might be a dependent TemplateSpecializationType, or a
2784      // TemplateTypeParmType. If that happens, simply ignore it.
2785      // FIXME: If we want to support export, we probably need to add the
2786      // namespace of the template in a TemplateSpecializationType, or even
2787      // the classes and namespaces of known non-dependent arguments.
2788      if (!BaseType)
2789        continue;
2790      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2791      if (Result.addClassTransitive(BaseDecl)) {
2792        // Find the associated namespace for this base class.
2793        DeclContext *BaseCtx = BaseDecl->getDeclContext();
2794        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2795
2796        // Make sure we visit the bases of this base class.
2797        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2798          Bases.push_back(BaseDecl);
2799      }
2800    }
2801  }
2802}
2803
2804// Add the associated classes and namespaces for
2805// argument-dependent lookup with an argument of type T
2806// (C++ [basic.lookup.koenig]p2).
2807static void
2808addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2809  // C++ [basic.lookup.koenig]p2:
2810  //
2811  //   For each argument type T in the function call, there is a set
2812  //   of zero or more associated namespaces and a set of zero or more
2813  //   associated classes to be considered. The sets of namespaces and
2814  //   classes is determined entirely by the types of the function
2815  //   arguments (and the namespace of any template template
2816  //   argument). Typedef names and using-declarations used to specify
2817  //   the types do not contribute to this set. The sets of namespaces
2818  //   and classes are determined in the following way:
2819
2820  SmallVector<const Type *, 16> Queue;
2821  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2822
2823  while (true) {
2824    switch (T->getTypeClass()) {
2825
2826#define TYPE(Class, Base)
2827#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2828#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2829#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2830#define ABSTRACT_TYPE(Class, Base)
2831#include "clang/AST/TypeNodes.inc"
2832      // T is canonical.  We can also ignore dependent types because
2833      // we don't need to do ADL at the definition point, but if we
2834      // wanted to implement template export (or if we find some other
2835      // use for associated classes and namespaces...) this would be
2836      // wrong.
2837      break;
2838
2839    //    -- If T is a pointer to U or an array of U, its associated
2840    //       namespaces and classes are those associated with U.
2841    case Type::Pointer:
2842      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2843      continue;
2844    case Type::ConstantArray:
2845    case Type::IncompleteArray:
2846    case Type::VariableArray:
2847      T = cast<ArrayType>(T)->getElementType().getTypePtr();
2848      continue;
2849
2850    //     -- If T is a fundamental type, its associated sets of
2851    //        namespaces and classes are both empty.
2852    case Type::Builtin:
2853      break;
2854
2855    //     -- If T is a class type (including unions), its associated
2856    //        classes are: the class itself; the class of which it is
2857    //        a member, if any; and its direct and indirect base classes.
2858    //        Its associated namespaces are the innermost enclosing
2859    //        namespaces of its associated classes.
2860    case Type::Record: {
2861      CXXRecordDecl *Class =
2862          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2863      addAssociatedClassesAndNamespaces(Result, Class);
2864      break;
2865    }
2866
2867    //     -- If T is an enumeration type, its associated namespace
2868    //        is the innermost enclosing namespace of its declaration.
2869    //        If it is a class member, its associated class is the
2870    //        member���s class; else it has no associated class.
2871    case Type::Enum: {
2872      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2873
2874      DeclContext *Ctx = Enum->getDeclContext();
2875      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2876        Result.Classes.insert(EnclosingClass);
2877
2878      // Add the associated namespace for this enumeration.
2879      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2880
2881      break;
2882    }
2883
2884    //     -- If T is a function type, its associated namespaces and
2885    //        classes are those associated with the function parameter
2886    //        types and those associated with the return type.
2887    case Type::FunctionProto: {
2888      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2889      for (const auto &Arg : Proto->param_types())
2890        Queue.push_back(Arg.getTypePtr());
2891      // fallthrough
2892      LLVM_FALLTHROUGH;
2893    }
2894    case Type::FunctionNoProto: {
2895      const FunctionType *FnType = cast<FunctionType>(T);
2896      T = FnType->getReturnType().getTypePtr();
2897      continue;
2898    }
2899
2900    //     -- If T is a pointer to a member function of a class X, its
2901    //        associated namespaces and classes are those associated
2902    //        with the function parameter types and return type,
2903    //        together with those associated with X.
2904    //
2905    //     -- If T is a pointer to a data member of class X, its
2906    //        associated namespaces and classes are those associated
2907    //        with the member type together with those associated with
2908    //        X.
2909    case Type::MemberPointer: {
2910      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2911
2912      // Queue up the class type into which this points.
2913      Queue.push_back(MemberPtr->getClass());
2914
2915      // And directly continue with the pointee type.
2916      T = MemberPtr->getPointeeType().getTypePtr();
2917      continue;
2918    }
2919
2920    // As an extension, treat this like a normal pointer.
2921    case Type::BlockPointer:
2922      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2923      continue;
2924
2925    // References aren't covered by the standard, but that's such an
2926    // obvious defect that we cover them anyway.
2927    case Type::LValueReference:
2928    case Type::RValueReference:
2929      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2930      continue;
2931
2932    // These are fundamental types.
2933    case Type::Vector:
2934    case Type::ExtVector:
2935    case Type::ConstantMatrix:
2936    case Type::Complex:
2937    case Type::ExtInt:
2938      break;
2939
2940    // Non-deduced auto types only get here for error cases.
2941    case Type::Auto:
2942    case Type::DeducedTemplateSpecialization:
2943      break;
2944
2945    // If T is an Objective-C object or interface type, or a pointer to an
2946    // object or interface type, the associated namespace is the global
2947    // namespace.
2948    case Type::ObjCObject:
2949    case Type::ObjCInterface:
2950    case Type::ObjCObjectPointer:
2951      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2952      break;
2953
2954    // Atomic types are just wrappers; use the associations of the
2955    // contained type.
2956    case Type::Atomic:
2957      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2958      continue;
2959    case Type::Pipe:
2960      T = cast<PipeType>(T)->getElementType().getTypePtr();
2961      continue;
2962    }
2963
2964    if (Queue.empty())
2965      break;
2966    T = Queue.pop_back_val();
2967  }
2968}
2969
2970/// Find the associated classes and namespaces for
2971/// argument-dependent lookup for a call with the given set of
2972/// arguments.
2973///
2974/// This routine computes the sets of associated classes and associated
2975/// namespaces searched by argument-dependent lookup
2976/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2977void Sema::FindAssociatedClassesAndNamespaces(
2978    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2979    AssociatedNamespaceSet &AssociatedNamespaces,
2980    AssociatedClassSet &AssociatedClasses) {
2981  AssociatedNamespaces.clear();
2982  AssociatedClasses.clear();
2983
2984  AssociatedLookup Result(*this, InstantiationLoc,
2985                          AssociatedNamespaces, AssociatedClasses);
2986
2987  // C++ [basic.lookup.koenig]p2:
2988  //   For each argument type T in the function call, there is a set
2989  //   of zero or more associated namespaces and a set of zero or more
2990  //   associated classes to be considered. The sets of namespaces and
2991  //   classes is determined entirely by the types of the function
2992  //   arguments (and the namespace of any template template
2993  //   argument).
2994  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2995    Expr *Arg = Args[ArgIdx];
2996
2997    if (Arg->getType() != Context.OverloadTy) {
2998      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2999      continue;
3000    }
3001
3002    // [...] In addition, if the argument is the name or address of a
3003    // set of overloaded functions and/or function templates, its
3004    // associated classes and namespaces are the union of those
3005    // associated with each of the members of the set: the namespace
3006    // in which the function or function template is defined and the
3007    // classes and namespaces associated with its (non-dependent)
3008    // parameter types and return type.
3009    OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3010
3011    for (const NamedDecl *D : OE->decls()) {
3012      // Look through any using declarations to find the underlying function.
3013      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3014
3015      // Add the classes and namespaces associated with the parameter
3016      // types and return type of this function.
3017      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3018    }
3019  }
3020}
3021
3022NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3023                                  SourceLocation Loc,
3024                                  LookupNameKind NameKind,
3025                                  RedeclarationKind Redecl) {
3026  LookupResult R(*this, Name, Loc, NameKind, Redecl);
3027  LookupName(R, S);
3028  return R.getAsSingle<NamedDecl>();
3029}
3030
3031/// Find the protocol with the given name, if any.
3032ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3033                                       SourceLocation IdLoc,
3034                                       RedeclarationKind Redecl) {
3035  Decl *D = LookupSingleName(TUScope, II, IdLoc,
3036                             LookupObjCProtocolName, Redecl);
3037  return cast_or_null<ObjCProtocolDecl>(D);
3038}
3039
3040void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3041                                        UnresolvedSetImpl &Functions) {
3042  // C++ [over.match.oper]p3:
3043  //     -- The set of non-member candidates is the result of the
3044  //        unqualified lookup of operator@ in the context of the
3045  //        expression according to the usual rules for name lookup in
3046  //        unqualified function calls (3.4.2) except that all member
3047  //        functions are ignored.
3048  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3049  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3050  LookupName(Operators, S);
3051
3052  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3053  Functions.append(Operators.begin(), Operators.end());
3054}
3055
3056Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3057                                                           CXXSpecialMember SM,
3058                                                           bool ConstArg,
3059                                                           bool VolatileArg,
3060                                                           bool RValueThis,
3061                                                           bool ConstThis,
3062                                                           bool VolatileThis) {
3063  assert(CanDeclareSpecialMemberFunction(RD) &&
3064         "doing special member lookup into record that isn't fully complete");
3065  RD = RD->getDefinition();
3066  if (RValueThis || ConstThis || VolatileThis)
3067    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3068           "constructors and destructors always have unqualified lvalue this");
3069  if (ConstArg || VolatileArg)
3070    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3071           "parameter-less special members can't have qualified arguments");
3072
3073  // FIXME: Get the caller to pass in a location for the lookup.
3074  SourceLocation LookupLoc = RD->getLocation();
3075
3076  llvm::FoldingSetNodeID ID;
3077  ID.AddPointer(RD);
3078  ID.AddInteger(SM);
3079  ID.AddInteger(ConstArg);
3080  ID.AddInteger(VolatileArg);
3081  ID.AddInteger(RValueThis);
3082  ID.AddInteger(ConstThis);
3083  ID.AddInteger(VolatileThis);
3084
3085  void *InsertPoint;
3086  SpecialMemberOverloadResultEntry *Result =
3087    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3088
3089  // This was already cached
3090  if (Result)
3091    return *Result;
3092
3093  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3094  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3095  SpecialMemberCache.InsertNode(Result, InsertPoint);
3096
3097  if (SM == CXXDestructor) {
3098    if (RD->needsImplicitDestructor()) {
3099      runWithSufficientStackSpace(RD->getLocation(), [&] {
3100        DeclareImplicitDestructor(RD);
3101      });
3102    }
3103    CXXDestructorDecl *DD = RD->getDestructor();
3104    Result->setMethod(DD);
3105    Result->setKind(DD && !DD->isDeleted()
3106                        ? SpecialMemberOverloadResult::Success
3107                        : SpecialMemberOverloadResult::NoMemberOrDeleted);
3108    return *Result;
3109  }
3110
3111  // Prepare for overload resolution. Here we construct a synthetic argument
3112  // if necessary and make sure that implicit functions are declared.
3113  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3114  DeclarationName Name;
3115  Expr *Arg = nullptr;
3116  unsigned NumArgs;
3117
3118  QualType ArgType = CanTy;
3119  ExprValueKind VK = VK_LValue;
3120
3121  if (SM == CXXDefaultConstructor) {
3122    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3123    NumArgs = 0;
3124    if (RD->needsImplicitDefaultConstructor()) {
3125      runWithSufficientStackSpace(RD->getLocation(), [&] {
3126        DeclareImplicitDefaultConstructor(RD);
3127      });
3128    }
3129  } else {
3130    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3131      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3132      if (RD->needsImplicitCopyConstructor()) {
3133        runWithSufficientStackSpace(RD->getLocation(), [&] {
3134          DeclareImplicitCopyConstructor(RD);
3135        });
3136      }
3137      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3138        runWithSufficientStackSpace(RD->getLocation(), [&] {
3139          DeclareImplicitMoveConstructor(RD);
3140        });
3141      }
3142    } else {
3143      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3144      if (RD->needsImplicitCopyAssignment()) {
3145        runWithSufficientStackSpace(RD->getLocation(), [&] {
3146          DeclareImplicitCopyAssignment(RD);
3147        });
3148      }
3149      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3150        runWithSufficientStackSpace(RD->getLocation(), [&] {
3151          DeclareImplicitMoveAssignment(RD);
3152        });
3153      }
3154    }
3155
3156    if (ConstArg)
3157      ArgType.addConst();
3158    if (VolatileArg)
3159      ArgType.addVolatile();
3160
3161    // This isn't /really/ specified by the standard, but it's implied
3162    // we should be working from an RValue in the case of move to ensure
3163    // that we prefer to bind to rvalue references, and an LValue in the
3164    // case of copy to ensure we don't bind to rvalue references.
3165    // Possibly an XValue is actually correct in the case of move, but
3166    // there is no semantic difference for class types in this restricted
3167    // case.
3168    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3169      VK = VK_LValue;
3170    else
3171      VK = VK_RValue;
3172  }
3173
3174  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3175
3176  if (SM != CXXDefaultConstructor) {
3177    NumArgs = 1;
3178    Arg = &FakeArg;
3179  }
3180
3181  // Create the object argument
3182  QualType ThisTy = CanTy;
3183  if (ConstThis)
3184    ThisTy.addConst();
3185  if (VolatileThis)
3186    ThisTy.addVolatile();
3187  Expr::Classification Classification =
3188    OpaqueValueExpr(LookupLoc, ThisTy,
3189                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3190
3191  // Now we perform lookup on the name we computed earlier and do overload
3192  // resolution. Lookup is only performed directly into the class since there
3193  // will always be a (possibly implicit) declaration to shadow any others.
3194  OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3195  DeclContext::lookup_result R = RD->lookup(Name);
3196
3197  if (R.empty()) {
3198    // We might have no default constructor because we have a lambda's closure
3199    // type, rather than because there's some other declared constructor.
3200    // Every class has a copy/move constructor, copy/move assignment, and
3201    // destructor.
3202    assert(SM == CXXDefaultConstructor &&
3203           "lookup for a constructor or assignment operator was empty");
3204    Result->setMethod(nullptr);
3205    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3206    return *Result;
3207  }
3208
3209  // Copy the candidates as our processing of them may load new declarations
3210  // from an external source and invalidate lookup_result.
3211  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3212
3213  for (NamedDecl *CandDecl : Candidates) {
3214    if (CandDecl->isInvalidDecl())
3215      continue;
3216
3217    DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3218    auto CtorInfo = getConstructorInfo(Cand);
3219    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3220      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3221        AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3222                           llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3223      else if (CtorInfo)
3224        AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3225                             llvm::makeArrayRef(&Arg, NumArgs), OCS,
3226                             /*SuppressUserConversions*/ true);
3227      else
3228        AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3229                             /*SuppressUserConversions*/ true);
3230    } else if (FunctionTemplateDecl *Tmpl =
3231                 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3232      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3233        AddMethodTemplateCandidate(
3234            Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3235            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3236      else if (CtorInfo)
3237        AddTemplateOverloadCandidate(
3238            CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3239            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3240      else
3241        AddTemplateOverloadCandidate(
3242            Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3243    } else {
3244      assert(isa<UsingDecl>(Cand.getDecl()) &&
3245             "illegal Kind of operator = Decl");
3246    }
3247  }
3248
3249  OverloadCandidateSet::iterator Best;
3250  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3251    case OR_Success:
3252      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3253      Result->setKind(SpecialMemberOverloadResult::Success);
3254      break;
3255
3256    case OR_Deleted:
3257      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3258      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3259      break;
3260
3261    case OR_Ambiguous:
3262      Result->setMethod(nullptr);
3263      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3264      break;
3265
3266    case OR_No_Viable_Function:
3267      Result->setMethod(nullptr);
3268      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3269      break;
3270  }
3271
3272  return *Result;
3273}
3274
3275/// Look up the default constructor for the given class.
3276CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3277  SpecialMemberOverloadResult Result =
3278    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3279                        false, false);
3280
3281  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3282}
3283
3284/// Look up the copying constructor for the given class.
3285CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3286                                                   unsigned Quals) {
3287  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3288         "non-const, non-volatile qualifiers for copy ctor arg");
3289  SpecialMemberOverloadResult Result =
3290    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3291                        Quals & Qualifiers::Volatile, false, false, false);
3292
3293  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3294}
3295
3296/// Look up the moving constructor for the given class.
3297CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3298                                                  unsigned Quals) {
3299  SpecialMemberOverloadResult Result =
3300    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3301                        Quals & Qualifiers::Volatile, false, false, false);
3302
3303  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3304}
3305
3306/// Look up the constructors for the given class.
3307DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3308  // If the implicit constructors have not yet been declared, do so now.
3309  if (CanDeclareSpecialMemberFunction(Class)) {
3310    runWithSufficientStackSpace(Class->getLocation(), [&] {
3311      if (Class->needsImplicitDefaultConstructor())
3312        DeclareImplicitDefaultConstructor(Class);
3313      if (Class->needsImplicitCopyConstructor())
3314        DeclareImplicitCopyConstructor(Class);
3315      if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3316        DeclareImplicitMoveConstructor(Class);
3317    });
3318  }
3319
3320  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3321  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3322  return Class->lookup(Name);
3323}
3324
3325/// Look up the copying assignment operator for the given class.
3326CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3327                                             unsigned Quals, bool RValueThis,
3328                                             unsigned ThisQuals) {
3329  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3330         "non-const, non-volatile qualifiers for copy assignment arg");
3331  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3332         "non-const, non-volatile qualifiers for copy assignment this");
3333  SpecialMemberOverloadResult Result =
3334    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3335                        Quals & Qualifiers::Volatile, RValueThis,
3336                        ThisQuals & Qualifiers::Const,
3337                        ThisQuals & Qualifiers::Volatile);
3338
3339  return Result.getMethod();
3340}
3341
3342/// Look up the moving assignment operator for the given class.
3343CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3344                                            unsigned Quals,
3345                                            bool RValueThis,
3346                                            unsigned ThisQuals) {
3347  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3348         "non-const, non-volatile qualifiers for copy assignment this");
3349  SpecialMemberOverloadResult Result =
3350    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3351                        Quals & Qualifiers::Volatile, RValueThis,
3352                        ThisQuals & Qualifiers::Const,
3353                        ThisQuals & Qualifiers::Volatile);
3354
3355  return Result.getMethod();
3356}
3357
3358/// Look for the destructor of the given class.
3359///
3360/// During semantic analysis, this routine should be used in lieu of
3361/// CXXRecordDecl::getDestructor().
3362///
3363/// \returns The destructor for this class.
3364CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3365  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3366                                                     false, false, false,
3367                                                     false, false).getMethod());
3368}
3369
3370/// LookupLiteralOperator - Determine which literal operator should be used for
3371/// a user-defined literal, per C++11 [lex.ext].
3372///
3373/// Normal overload resolution is not used to select which literal operator to
3374/// call for a user-defined literal. Look up the provided literal operator name,
3375/// and filter the results to the appropriate set for the given argument types.
3376Sema::LiteralOperatorLookupResult
3377Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3378                            ArrayRef<QualType> ArgTys, bool AllowRaw,
3379                            bool AllowTemplate, bool AllowStringTemplatePack,
3380                            bool DiagnoseMissing, StringLiteral *StringLit) {
3381  LookupName(R, S);
3382  assert(R.getResultKind() != LookupResult::Ambiguous &&
3383         "literal operator lookup can't be ambiguous");
3384
3385  // Filter the lookup results appropriately.
3386  LookupResult::Filter F = R.makeFilter();
3387
3388  bool AllowCooked = true;
3389  bool FoundRaw = false;
3390  bool FoundTemplate = false;
3391  bool FoundStringTemplatePack = false;
3392  bool FoundCooked = false;
3393
3394  while (F.hasNext()) {
3395    Decl *D = F.next();
3396    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3397      D = USD->getTargetDecl();
3398
3399    // If the declaration we found is invalid, skip it.
3400    if (D->isInvalidDecl()) {
3401      F.erase();
3402      continue;
3403    }
3404
3405    bool IsRaw = false;
3406    bool IsTemplate = false;
3407    bool IsStringTemplatePack = false;
3408    bool IsCooked = false;
3409
3410    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3411      if (FD->getNumParams() == 1 &&
3412          FD->getParamDecl(0)->getType()->getAs<PointerType>())
3413        IsRaw = true;
3414      else if (FD->getNumParams() == ArgTys.size()) {
3415        IsCooked = true;
3416        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3417          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3418          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3419            IsCooked = false;
3420            break;
3421          }
3422        }
3423      }
3424    }
3425    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3426      TemplateParameterList *Params = FD->getTemplateParameters();
3427      if (Params->size() == 1) {
3428        IsTemplate = true;
3429        if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3430          // Implied but not stated: user-defined integer and floating literals
3431          // only ever use numeric literal operator templates, not templates
3432          // taking a parameter of class type.
3433          F.erase();
3434          continue;
3435        }
3436
3437        // A string literal template is only considered if the string literal
3438        // is a well-formed template argument for the template parameter.
3439        if (StringLit) {
3440          SFINAETrap Trap(*this);
3441          SmallVector<TemplateArgument, 1> Checked;
3442          TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3443          if (CheckTemplateArgument(Params->getParam(0), Arg, FD,
3444                                    R.getNameLoc(), R.getNameLoc(), 0,
3445                                    Checked) ||
3446              Trap.hasErrorOccurred())
3447            IsTemplate = false;
3448        }
3449      } else {
3450        IsStringTemplatePack = true;
3451      }
3452    }
3453
3454    if (AllowTemplate && StringLit && IsTemplate) {
3455      FoundTemplate = true;
3456      AllowRaw = false;
3457      AllowCooked = false;
3458      AllowStringTemplatePack = false;
3459      if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3460        F.restart();
3461        FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3462      }
3463    } else if (AllowCooked && IsCooked) {
3464      FoundCooked = true;
3465      AllowRaw = false;
3466      AllowTemplate = StringLit;
3467      AllowStringTemplatePack = false;
3468      if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3469        // Go through again and remove the raw and template decls we've
3470        // already found.
3471        F.restart();
3472        FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3473      }
3474    } else if (AllowRaw && IsRaw) {
3475      FoundRaw = true;
3476    } else if (AllowTemplate && IsTemplate) {
3477      FoundTemplate = true;
3478    } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3479      FoundStringTemplatePack = true;
3480    } else {
3481      F.erase();
3482    }
3483  }
3484
3485  F.done();
3486
3487  // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3488  // form for string literal operator templates.
3489  if (StringLit && FoundTemplate)
3490    return LOLR_Template;
3491
3492  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3493  // parameter type, that is used in preference to a raw literal operator
3494  // or literal operator template.
3495  if (FoundCooked)
3496    return LOLR_Cooked;
3497
3498  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3499  // operator template, but not both.
3500  if (FoundRaw && FoundTemplate) {
3501    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3502    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3503      NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3504    return LOLR_Error;
3505  }
3506
3507  if (FoundRaw)
3508    return LOLR_Raw;
3509
3510  if (FoundTemplate)
3511    return LOLR_Template;
3512
3513  if (FoundStringTemplatePack)
3514    return LOLR_StringTemplatePack;
3515
3516  // Didn't find anything we could use.
3517  if (DiagnoseMissing) {
3518    Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3519        << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3520        << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3521        << (AllowTemplate || AllowStringTemplatePack);
3522    return LOLR_Error;
3523  }
3524
3525  return LOLR_ErrorNoDiagnostic;
3526}
3527
3528void ADLResult::insert(NamedDecl *New) {
3529  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3530
3531  // If we haven't yet seen a decl for this key, or the last decl
3532  // was exactly this one, we're done.
3533  if (Old == nullptr || Old == New) {
3534    Old = New;
3535    return;
3536  }
3537
3538  // Otherwise, decide which is a more recent redeclaration.
3539  FunctionDecl *OldFD = Old->getAsFunction();
3540  FunctionDecl *NewFD = New->getAsFunction();
3541
3542  FunctionDecl *Cursor = NewFD;
3543  while (true) {
3544    Cursor = Cursor->getPreviousDecl();
3545
3546    // If we got to the end without finding OldFD, OldFD is the newer
3547    // declaration;  leave things as they are.
3548    if (!Cursor) return;
3549
3550    // If we do find OldFD, then NewFD is newer.
3551    if (Cursor == OldFD) break;
3552
3553    // Otherwise, keep looking.
3554  }
3555
3556  Old = New;
3557}
3558
3559void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3560                                   ArrayRef<Expr *> Args, ADLResult &Result) {
3561  // Find all of the associated namespaces and classes based on the
3562  // arguments we have.
3563  AssociatedNamespaceSet AssociatedNamespaces;
3564  AssociatedClassSet AssociatedClasses;
3565  FindAssociatedClassesAndNamespaces(Loc, Args,
3566                                     AssociatedNamespaces,
3567                                     AssociatedClasses);
3568
3569  // C++ [basic.lookup.argdep]p3:
3570  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3571  //   and let Y be the lookup set produced by argument dependent
3572  //   lookup (defined as follows). If X contains [...] then Y is
3573  //   empty. Otherwise Y is the set of declarations found in the
3574  //   namespaces associated with the argument types as described
3575  //   below. The set of declarations found by the lookup of the name
3576  //   is the union of X and Y.
3577  //
3578  // Here, we compute Y and add its members to the overloaded
3579  // candidate set.
3580  for (auto *NS : AssociatedNamespaces) {
3581    //   When considering an associated namespace, the lookup is the
3582    //   same as the lookup performed when the associated namespace is
3583    //   used as a qualifier (3.4.3.2) except that:
3584    //
3585    //     -- Any using-directives in the associated namespace are
3586    //        ignored.
3587    //
3588    //     -- Any namespace-scope friend functions declared in
3589    //        associated classes are visible within their respective
3590    //        namespaces even if they are not visible during an ordinary
3591    //        lookup (11.4).
3592    DeclContext::lookup_result R = NS->lookup(Name);
3593    for (auto *D : R) {
3594      auto *Underlying = D;
3595      if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3596        Underlying = USD->getTargetDecl();
3597
3598      if (!isa<FunctionDecl>(Underlying) &&
3599          !isa<FunctionTemplateDecl>(Underlying))
3600        continue;
3601
3602      // The declaration is visible to argument-dependent lookup if either
3603      // it's ordinarily visible or declared as a friend in an associated
3604      // class.
3605      bool Visible = false;
3606      for (D = D->getMostRecentDecl(); D;
3607           D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3608        if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3609          if (isVisible(D)) {
3610            Visible = true;
3611            break;
3612          }
3613        } else if (D->getFriendObjectKind()) {
3614          auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3615          if (AssociatedClasses.count(RD) && isVisible(D)) {
3616            Visible = true;
3617            break;
3618          }
3619        }
3620      }
3621
3622      // FIXME: Preserve D as the FoundDecl.
3623      if (Visible)
3624        Result.insert(Underlying);
3625    }
3626  }
3627}
3628
3629//----------------------------------------------------------------------------
3630// Search for all visible declarations.
3631//----------------------------------------------------------------------------
3632VisibleDeclConsumer::~VisibleDeclConsumer() { }
3633
3634bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3635
3636namespace {
3637
3638class ShadowContextRAII;
3639
3640class VisibleDeclsRecord {
3641public:
3642  /// An entry in the shadow map, which is optimized to store a
3643  /// single declaration (the common case) but can also store a list
3644  /// of declarations.
3645  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3646
3647private:
3648  /// A mapping from declaration names to the declarations that have
3649  /// this name within a particular scope.
3650  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3651
3652  /// A list of shadow maps, which is used to model name hiding.
3653  std::list<ShadowMap> ShadowMaps;
3654
3655  /// The declaration contexts we have already visited.
3656  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3657
3658  friend class ShadowContextRAII;
3659
3660public:
3661  /// Determine whether we have already visited this context
3662  /// (and, if not, note that we are going to visit that context now).
3663  bool visitedContext(DeclContext *Ctx) {
3664    return !VisitedContexts.insert(Ctx).second;
3665  }
3666
3667  bool alreadyVisitedContext(DeclContext *Ctx) {
3668    return VisitedContexts.count(Ctx);
3669  }
3670
3671  /// Determine whether the given declaration is hidden in the
3672  /// current scope.
3673  ///
3674  /// \returns the declaration that hides the given declaration, or
3675  /// NULL if no such declaration exists.
3676  NamedDecl *checkHidden(NamedDecl *ND);
3677
3678  /// Add a declaration to the current shadow map.
3679  void add(NamedDecl *ND) {
3680    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3681  }
3682};
3683
3684/// RAII object that records when we've entered a shadow context.
3685class ShadowContextRAII {
3686  VisibleDeclsRecord &Visible;
3687
3688  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3689
3690public:
3691  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3692    Visible.ShadowMaps.emplace_back();
3693  }
3694
3695  ~ShadowContextRAII() {
3696    Visible.ShadowMaps.pop_back();
3697  }
3698};
3699
3700} // end anonymous namespace
3701
3702NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3703  unsigned IDNS = ND->getIdentifierNamespace();
3704  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3705  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3706       SM != SMEnd; ++SM) {
3707    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3708    if (Pos == SM->end())
3709      continue;
3710
3711    for (auto *D : Pos->second) {
3712      // A tag declaration does not hide a non-tag declaration.
3713      if (D->hasTagIdentifierNamespace() &&
3714          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3715                   Decl::IDNS_ObjCProtocol)))
3716        continue;
3717
3718      // Protocols are in distinct namespaces from everything else.
3719      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3720           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3721          D->getIdentifierNamespace() != IDNS)
3722        continue;
3723
3724      // Functions and function templates in the same scope overload
3725      // rather than hide.  FIXME: Look for hiding based on function
3726      // signatures!
3727      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3728          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3729          SM == ShadowMaps.rbegin())
3730        continue;
3731
3732      // A shadow declaration that's created by a resolved using declaration
3733      // is not hidden by the same using declaration.
3734      if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3735          cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3736        continue;
3737
3738      // We've found a declaration that hides this one.
3739      return D;
3740    }
3741  }
3742
3743  return nullptr;
3744}
3745
3746namespace {
3747class LookupVisibleHelper {
3748public:
3749  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3750                      bool LoadExternal)
3751      : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3752        LoadExternal(LoadExternal) {}
3753
3754  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3755                          bool IncludeGlobalScope) {
3756    // Determine the set of using directives available during
3757    // unqualified name lookup.
3758    Scope *Initial = S;
3759    UnqualUsingDirectiveSet UDirs(SemaRef);
3760    if (SemaRef.getLangOpts().CPlusPlus) {
3761      // Find the first namespace or translation-unit scope.
3762      while (S && !isNamespaceOrTranslationUnitScope(S))
3763        S = S->getParent();
3764
3765      UDirs.visitScopeChain(Initial, S);
3766    }
3767    UDirs.done();
3768
3769    // Look for visible declarations.
3770    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3771    Result.setAllowHidden(Consumer.includeHiddenDecls());
3772    if (!IncludeGlobalScope)
3773      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3774    ShadowContextRAII Shadow(Visited);
3775    lookupInScope(Initial, Result, UDirs);
3776  }
3777
3778  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3779                          Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3780    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3781    Result.setAllowHidden(Consumer.includeHiddenDecls());
3782    if (!IncludeGlobalScope)
3783      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3784
3785    ShadowContextRAII Shadow(Visited);
3786    lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3787                        /*InBaseClass=*/false);
3788  }
3789
3790private:
3791  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3792                           bool QualifiedNameLookup, bool InBaseClass) {
3793    if (!Ctx)
3794      return;
3795
3796    // Make sure we don't visit the same context twice.
3797    if (Visited.visitedContext(Ctx->getPrimaryContext()))
3798      return;
3799
3800    Consumer.EnteredContext(Ctx);
3801
3802    // Outside C++, lookup results for the TU live on identifiers.
3803    if (isa<TranslationUnitDecl>(Ctx) &&
3804        !Result.getSema().getLangOpts().CPlusPlus) {
3805      auto &S = Result.getSema();
3806      auto &Idents = S.Context.Idents;
3807
3808      // Ensure all external identifiers are in the identifier table.
3809      if (LoadExternal)
3810        if (IdentifierInfoLookup *External =
3811                Idents.getExternalIdentifierLookup()) {
3812          std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3813          for (StringRef Name = Iter->Next(); !Name.empty();
3814               Name = Iter->Next())
3815            Idents.get(Name);
3816        }
3817
3818      // Walk all lookup results in the TU for each identifier.
3819      for (const auto &Ident : Idents) {
3820        for (auto I = S.IdResolver.begin(Ident.getValue()),
3821                  E = S.IdResolver.end();
3822             I != E; ++I) {
3823          if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3824            if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3825              Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3826              Visited.add(ND);
3827            }
3828          }
3829        }
3830      }
3831
3832      return;
3833    }
3834
3835    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3836      Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3837
3838    // We sometimes skip loading namespace-level results (they tend to be huge).
3839    bool Load = LoadExternal ||
3840                !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3841    // Enumerate all of the results in this context.
3842    for (DeclContextLookupResult R :
3843         Load ? Ctx->lookups()
3844              : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3845      for (auto *D : R) {
3846        if (auto *ND = Result.getAcceptableDecl(D)) {
3847          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3848          Visited.add(ND);
3849        }
3850      }
3851    }
3852
3853    // Traverse using directives for qualified name lookup.
3854    if (QualifiedNameLookup) {
3855      ShadowContextRAII Shadow(Visited);
3856      for (auto I : Ctx->using_directives()) {
3857        if (!Result.getSema().isVisible(I))
3858          continue;
3859        lookupInDeclContext(I->getNominatedNamespace(), Result,
3860                            QualifiedNameLookup, InBaseClass);
3861      }
3862    }
3863
3864    // Traverse the contexts of inherited C++ classes.
3865    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3866      if (!Record->hasDefinition())
3867        return;
3868
3869      for (const auto &B : Record->bases()) {
3870        QualType BaseType = B.getType();
3871
3872        RecordDecl *RD;
3873        if (BaseType->isDependentType()) {
3874          if (!IncludeDependentBases) {
3875            // Don't look into dependent bases, because name lookup can't look
3876            // there anyway.
3877            continue;
3878          }
3879          const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3880          if (!TST)
3881            continue;
3882          TemplateName TN = TST->getTemplateName();
3883          const auto *TD =
3884              dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3885          if (!TD)
3886            continue;
3887          RD = TD->getTemplatedDecl();
3888        } else {
3889          const auto *Record = BaseType->getAs<RecordType>();
3890          if (!Record)
3891            continue;
3892          RD = Record->getDecl();
3893        }
3894
3895        // FIXME: It would be nice to be able to determine whether referencing
3896        // a particular member would be ambiguous. For example, given
3897        //
3898        //   struct A { int member; };
3899        //   struct B { int member; };
3900        //   struct C : A, B { };
3901        //
3902        //   void f(C *c) { c->### }
3903        //
3904        // accessing 'member' would result in an ambiguity. However, we
3905        // could be smart enough to qualify the member with the base
3906        // class, e.g.,
3907        //
3908        //   c->B::member
3909        //
3910        // or
3911        //
3912        //   c->A::member
3913
3914        // Find results in this base class (and its bases).
3915        ShadowContextRAII Shadow(Visited);
3916        lookupInDeclContext(RD, Result, QualifiedNameLookup,
3917                            /*InBaseClass=*/true);
3918      }
3919    }
3920
3921    // Traverse the contexts of Objective-C classes.
3922    if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3923      // Traverse categories.
3924      for (auto *Cat : IFace->visible_categories()) {
3925        ShadowContextRAII Shadow(Visited);
3926        lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3927                            /*InBaseClass=*/false);
3928      }
3929
3930      // Traverse protocols.
3931      for (auto *I : IFace->all_referenced_protocols()) {
3932        ShadowContextRAII Shadow(Visited);
3933        lookupInDeclContext(I, Result, QualifiedNameLookup,
3934                            /*InBaseClass=*/false);
3935      }
3936
3937      // Traverse the superclass.
3938      if (IFace->getSuperClass()) {
3939        ShadowContextRAII Shadow(Visited);
3940        lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3941                            /*InBaseClass=*/true);
3942      }
3943
3944      // If there is an implementation, traverse it. We do this to find
3945      // synthesized ivars.
3946      if (IFace->getImplementation()) {
3947        ShadowContextRAII Shadow(Visited);
3948        lookupInDeclContext(IFace->getImplementation(), Result,
3949                            QualifiedNameLookup, InBaseClass);
3950      }
3951    } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3952      for (auto *I : Protocol->protocols()) {
3953        ShadowContextRAII Shadow(Visited);
3954        lookupInDeclContext(I, Result, QualifiedNameLookup,
3955                            /*InBaseClass=*/false);
3956      }
3957    } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3958      for (auto *I : Category->protocols()) {
3959        ShadowContextRAII Shadow(Visited);
3960        lookupInDeclContext(I, Result, QualifiedNameLookup,
3961                            /*InBaseClass=*/false);
3962      }
3963
3964      // If there is an implementation, traverse it.
3965      if (Category->getImplementation()) {
3966        ShadowContextRAII Shadow(Visited);
3967        lookupInDeclContext(Category->getImplementation(), Result,
3968                            QualifiedNameLookup, /*InBaseClass=*/true);
3969      }
3970    }
3971  }
3972
3973  void lookupInScope(Scope *S, LookupResult &Result,
3974                     UnqualUsingDirectiveSet &UDirs) {
3975    // No clients run in this mode and it's not supported. Please add tests and
3976    // remove the assertion if you start relying on it.
3977    assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3978
3979    if (!S)
3980      return;
3981
3982    if (!S->getEntity() ||
3983        (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3984        (S->getEntity())->isFunctionOrMethod()) {
3985      FindLocalExternScope FindLocals(Result);
3986      // Walk through the declarations in this Scope. The consumer might add new
3987      // decls to the scope as part of deserialization, so make a copy first.
3988      SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3989      for (Decl *D : ScopeDecls) {
3990        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3991          if ((ND = Result.getAcceptableDecl(ND))) {
3992            Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3993            Visited.add(ND);
3994          }
3995      }
3996    }
3997
3998    DeclContext *Entity = S->getLookupEntity();
3999    if (Entity) {
4000      // Look into this scope's declaration context, along with any of its
4001      // parent lookup contexts (e.g., enclosing classes), up to the point
4002      // where we hit the context stored in the next outer scope.
4003      DeclContext *OuterCtx = findOuterContext(S);
4004
4005      for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4006           Ctx = Ctx->getLookupParent()) {
4007        if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4008          if (Method->isInstanceMethod()) {
4009            // For instance methods, look for ivars in the method's interface.
4010            LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4011                                    Result.getNameLoc(),
4012                                    Sema::LookupMemberName);
4013            if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4014              lookupInDeclContext(IFace, IvarResult,
4015                                  /*QualifiedNameLookup=*/false,
4016                                  /*InBaseClass=*/false);
4017            }
4018          }
4019
4020          // We've already performed all of the name lookup that we need
4021          // to for Objective-C methods; the next context will be the
4022          // outer scope.
4023          break;
4024        }
4025
4026        if (Ctx->isFunctionOrMethod())
4027          continue;
4028
4029        lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4030                            /*InBaseClass=*/false);
4031      }
4032    } else if (!S->getParent()) {
4033      // Look into the translation unit scope. We walk through the translation
4034      // unit's declaration context, because the Scope itself won't have all of
4035      // the declarations if we loaded a precompiled header.
4036      // FIXME: We would like the translation unit's Scope object to point to
4037      // the translation unit, so we don't need this special "if" branch.
4038      // However, doing so would force the normal C++ name-lookup code to look
4039      // into the translation unit decl when the IdentifierInfo chains would
4040      // suffice. Once we fix that problem (which is part of a more general
4041      // "don't look in DeclContexts unless we have to" optimization), we can
4042      // eliminate this.
4043      Entity = Result.getSema().Context.getTranslationUnitDecl();
4044      lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4045                          /*InBaseClass=*/false);
4046    }
4047
4048    if (Entity) {
4049      // Lookup visible declarations in any namespaces found by using
4050      // directives.
4051      for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4052        lookupInDeclContext(
4053            const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4054            /*QualifiedNameLookup=*/false,
4055            /*InBaseClass=*/false);
4056    }
4057
4058    // Lookup names in the parent scope.
4059    ShadowContextRAII Shadow(Visited);
4060    lookupInScope(S->getParent(), Result, UDirs);
4061  }
4062
4063private:
4064  VisibleDeclsRecord Visited;
4065  VisibleDeclConsumer &Consumer;
4066  bool IncludeDependentBases;
4067  bool LoadExternal;
4068};
4069} // namespace
4070
4071void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4072                              VisibleDeclConsumer &Consumer,
4073                              bool IncludeGlobalScope, bool LoadExternal) {
4074  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4075                        LoadExternal);
4076  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4077}
4078
4079void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4080                              VisibleDeclConsumer &Consumer,
4081                              bool IncludeGlobalScope,
4082                              bool IncludeDependentBases, bool LoadExternal) {
4083  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4084  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4085}
4086
4087/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4088/// If GnuLabelLoc is a valid source location, then this is a definition
4089/// of an __label__ label name, otherwise it is a normal label definition
4090/// or use.
4091LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4092                                     SourceLocation GnuLabelLoc) {
4093  // Do a lookup to see if we have a label with this name already.
4094  NamedDecl *Res = nullptr;
4095
4096  if (GnuLabelLoc.isValid()) {
4097    // Local label definitions always shadow existing labels.
4098    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4099    Scope *S = CurScope;
4100    PushOnScopeChains(Res, S, true);
4101    return cast<LabelDecl>(Res);
4102  }
4103
4104  // Not a GNU local label.
4105  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4106  // If we found a label, check to see if it is in the same context as us.
4107  // When in a Block, we don't want to reuse a label in an enclosing function.
4108  if (Res && Res->getDeclContext() != CurContext)
4109    Res = nullptr;
4110  if (!Res) {
4111    // If not forward referenced or defined already, create the backing decl.
4112    Res = LabelDecl::Create(Context, CurContext, Loc, II);
4113    Scope *S = CurScope->getFnParent();
4114    assert(S && "Not in a function?");
4115    PushOnScopeChains(Res, S, true);
4116  }
4117  return cast<LabelDecl>(Res);
4118}
4119
4120//===----------------------------------------------------------------------===//
4121// Typo correction
4122//===----------------------------------------------------------------------===//
4123
4124static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4125                              TypoCorrection &Candidate) {
4126  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4127  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4128}
4129
4130static void LookupPotentialTypoResult(Sema &SemaRef,
4131                                      LookupResult &Res,
4132                                      IdentifierInfo *Name,
4133                                      Scope *S, CXXScopeSpec *SS,
4134                                      DeclContext *MemberContext,
4135                                      bool EnteringContext,
4136                                      bool isObjCIvarLookup,
4137                                      bool FindHidden);
4138
4139/// Check whether the declarations found for a typo correction are
4140/// visible. Set the correction's RequiresImport flag to true if none of the
4141/// declarations are visible, false otherwise.
4142static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4143  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4144
4145  for (/**/; DI != DE; ++DI)
4146    if (!LookupResult::isVisible(SemaRef, *DI))
4147      break;
4148  // No filtering needed if all decls are visible.
4149  if (DI == DE) {
4150    TC.setRequiresImport(false);
4151    return;
4152  }
4153
4154  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4155  bool AnyVisibleDecls = !NewDecls.empty();
4156
4157  for (/**/; DI != DE; ++DI) {
4158    if (LookupResult::isVisible(SemaRef, *DI)) {
4159      if (!AnyVisibleDecls) {
4160        // Found a visible decl, discard all hidden ones.
4161        AnyVisibleDecls = true;
4162        NewDecls.clear();
4163      }
4164      NewDecls.push_back(*DI);
4165    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4166      NewDecls.push_back(*DI);
4167  }
4168
4169  if (NewDecls.empty())
4170    TC = TypoCorrection();
4171  else {
4172    TC.setCorrectionDecls(NewDecls);
4173    TC.setRequiresImport(!AnyVisibleDecls);
4174  }
4175}
4176
4177// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4178// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4179// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4180static void getNestedNameSpecifierIdentifiers(
4181    NestedNameSpecifier *NNS,
4182    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4183  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4184    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4185  else
4186    Identifiers.clear();
4187
4188  const IdentifierInfo *II = nullptr;
4189
4190  switch (NNS->getKind()) {
4191  case NestedNameSpecifier::Identifier:
4192    II = NNS->getAsIdentifier();
4193    break;
4194
4195  case NestedNameSpecifier::Namespace:
4196    if (NNS->getAsNamespace()->isAnonymousNamespace())
4197      return;
4198    II = NNS->getAsNamespace()->getIdentifier();
4199    break;
4200
4201  case NestedNameSpecifier::NamespaceAlias:
4202    II = NNS->getAsNamespaceAlias()->getIdentifier();
4203    break;
4204
4205  case NestedNameSpecifier::TypeSpecWithTemplate:
4206  case NestedNameSpecifier::TypeSpec:
4207    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4208    break;
4209
4210  case NestedNameSpecifier::Global:
4211  case NestedNameSpecifier::Super:
4212    return;
4213  }
4214
4215  if (II)
4216    Identifiers.push_back(II);
4217}
4218
4219void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4220                                       DeclContext *Ctx, bool InBaseClass) {
4221  // Don't consider hidden names for typo correction.
4222  if (Hiding)
4223    return;
4224
4225  // Only consider entities with identifiers for names, ignoring
4226  // special names (constructors, overloaded operators, selectors,
4227  // etc.).
4228  IdentifierInfo *Name = ND->getIdentifier();
4229  if (!Name)
4230    return;
4231
4232  // Only consider visible declarations and declarations from modules with
4233  // names that exactly match.
4234  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4235    return;
4236
4237  FoundName(Name->getName());
4238}
4239
4240void TypoCorrectionConsumer::FoundName(StringRef Name) {
4241  // Compute the edit distance between the typo and the name of this
4242  // entity, and add the identifier to the list of results.
4243  addName(Name, nullptr);
4244}
4245
4246void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4247  // Compute the edit distance between the typo and this keyword,
4248  // and add the keyword to the list of results.
4249  addName(Keyword, nullptr, nullptr, true);
4250}
4251
4252void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4253                                     NestedNameSpecifier *NNS, bool isKeyword) {
4254  // Use a simple length-based heuristic to determine the minimum possible
4255  // edit distance. If the minimum isn't good enough, bail out early.
4256  StringRef TypoStr = Typo->getName();
4257  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4258  if (MinED && TypoStr.size() / MinED < 3)
4259    return;
4260
4261  // Compute an upper bound on the allowable edit distance, so that the
4262  // edit-distance algorithm can short-circuit.
4263  unsigned UpperBound = (TypoStr.size() + 2) / 3;
4264  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4265  if (ED > UpperBound) return;
4266
4267  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4268  if (isKeyword) TC.makeKeyword();
4269  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4270  addCorrection(TC);
4271}
4272
4273static const unsigned MaxTypoDistanceResultSets = 5;
4274
4275void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4276  StringRef TypoStr = Typo->getName();
4277  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4278
4279  // For very short typos, ignore potential corrections that have a different
4280  // base identifier from the typo or which have a normalized edit distance
4281  // longer than the typo itself.
4282  if (TypoStr.size() < 3 &&
4283      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4284    return;
4285
4286  // If the correction is resolved but is not viable, ignore it.
4287  if (Correction.isResolved()) {
4288    checkCorrectionVisibility(SemaRef, Correction);
4289    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4290      return;
4291  }
4292
4293  TypoResultList &CList =
4294      CorrectionResults[Correction.getEditDistance(false)][Name];
4295
4296  if (!CList.empty() && !CList.back().isResolved())
4297    CList.pop_back();
4298  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4299    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4300    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4301         RI != RIEnd; ++RI) {
4302      // If the Correction refers to a decl already in the result list,
4303      // replace the existing result if the string representation of Correction
4304      // comes before the current result alphabetically, then stop as there is
4305      // nothing more to be done to add Correction to the candidate set.
4306      if (RI->getCorrectionDecl() == NewND) {
4307        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4308          *RI = Correction;
4309        return;
4310      }
4311    }
4312  }
4313  if (CList.empty() || Correction.isResolved())
4314    CList.push_back(Correction);
4315
4316  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4317    CorrectionResults.erase(std::prev(CorrectionResults.end()));
4318}
4319
4320void TypoCorrectionConsumer::addNamespaces(
4321    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4322  SearchNamespaces = true;
4323
4324  for (auto KNPair : KnownNamespaces)
4325    Namespaces.addNameSpecifier(KNPair.first);
4326
4327  bool SSIsTemplate = false;
4328  if (NestedNameSpecifier *NNS =
4329          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4330    if (const Type *T = NNS->getAsType())
4331      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4332  }
4333  // Do not transform this into an iterator-based loop. The loop body can
4334  // trigger the creation of further types (through lazy deserialization) and
4335  // invalid iterators into this list.
4336  auto &Types = SemaRef.getASTContext().getTypes();
4337  for (unsigned I = 0; I != Types.size(); ++I) {
4338    const auto *TI = Types[I];
4339    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4340      CD = CD->getCanonicalDecl();
4341      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4342          !CD->isUnion() && CD->getIdentifier() &&
4343          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4344          (CD->isBeingDefined() || CD->isCompleteDefinition()))
4345        Namespaces.addNameSpecifier(CD);
4346    }
4347  }
4348}
4349
4350const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4351  if (++CurrentTCIndex < ValidatedCorrections.size())
4352    return ValidatedCorrections[CurrentTCIndex];
4353
4354  CurrentTCIndex = ValidatedCorrections.size();
4355  while (!CorrectionResults.empty()) {
4356    auto DI = CorrectionResults.begin();
4357    if (DI->second.empty()) {
4358      CorrectionResults.erase(DI);
4359      continue;
4360    }
4361
4362    auto RI = DI->second.begin();
4363    if (RI->second.empty()) {
4364      DI->second.erase(RI);
4365      performQualifiedLookups();
4366      continue;
4367    }
4368
4369    TypoCorrection TC = RI->second.pop_back_val();
4370    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4371      ValidatedCorrections.push_back(TC);
4372      return ValidatedCorrections[CurrentTCIndex];
4373    }
4374  }
4375  return ValidatedCorrections[0];  // The empty correction.
4376}
4377
4378bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4379  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4380  DeclContext *TempMemberContext = MemberContext;
4381  CXXScopeSpec *TempSS = SS.get();
4382retry_lookup:
4383  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4384                            EnteringContext,
4385                            CorrectionValidator->IsObjCIvarLookup,
4386                            Name == Typo && !Candidate.WillReplaceSpecifier());
4387  switch (Result.getResultKind()) {
4388  case LookupResult::NotFound:
4389  case LookupResult::NotFoundInCurrentInstantiation:
4390  case LookupResult::FoundUnresolvedValue:
4391    if (TempSS) {
4392      // Immediately retry the lookup without the given CXXScopeSpec
4393      TempSS = nullptr;
4394      Candidate.WillReplaceSpecifier(true);
4395      goto retry_lookup;
4396    }
4397    if (TempMemberContext) {
4398      if (SS && !TempSS)
4399        TempSS = SS.get();
4400      TempMemberContext = nullptr;
4401      goto retry_lookup;
4402    }
4403    if (SearchNamespaces)
4404      QualifiedResults.push_back(Candidate);
4405    break;
4406
4407  case LookupResult::Ambiguous:
4408    // We don't deal with ambiguities.
4409    break;
4410
4411  case LookupResult::Found:
4412  case LookupResult::FoundOverloaded:
4413    // Store all of the Decls for overloaded symbols
4414    for (auto *TRD : Result)
4415      Candidate.addCorrectionDecl(TRD);
4416    checkCorrectionVisibility(SemaRef, Candidate);
4417    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4418      if (SearchNamespaces)
4419        QualifiedResults.push_back(Candidate);
4420      break;
4421    }
4422    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4423    return true;
4424  }
4425  return false;
4426}
4427
4428void TypoCorrectionConsumer::performQualifiedLookups() {
4429  unsigned TypoLen = Typo->getName().size();
4430  for (const TypoCorrection &QR : QualifiedResults) {
4431    for (const auto &NSI : Namespaces) {
4432      DeclContext *Ctx = NSI.DeclCtx;
4433      const Type *NSType = NSI.NameSpecifier->getAsType();
4434
4435      // If the current NestedNameSpecifier refers to a class and the
4436      // current correction candidate is the name of that class, then skip
4437      // it as it is unlikely a qualified version of the class' constructor
4438      // is an appropriate correction.
4439      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4440                                           nullptr) {
4441        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4442          continue;
4443      }
4444
4445      TypoCorrection TC(QR);
4446      TC.ClearCorrectionDecls();
4447      TC.setCorrectionSpecifier(NSI.NameSpecifier);
4448      TC.setQualifierDistance(NSI.EditDistance);
4449      TC.setCallbackDistance(0); // Reset the callback distance
4450
4451      // If the current correction candidate and namespace combination are
4452      // too far away from the original typo based on the normalized edit
4453      // distance, then skip performing a qualified name lookup.
4454      unsigned TmpED = TC.getEditDistance(true);
4455      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4456          TypoLen / TmpED < 3)
4457        continue;
4458
4459      Result.clear();
4460      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4461      if (!SemaRef.LookupQualifiedName(Result, Ctx))
4462        continue;
4463
4464      // Any corrections added below will be validated in subsequent
4465      // iterations of the main while() loop over the Consumer's contents.
4466      switch (Result.getResultKind()) {
4467      case LookupResult::Found:
4468      case LookupResult::FoundOverloaded: {
4469        if (SS && SS->isValid()) {
4470          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4471          std::string OldQualified;
4472          llvm::raw_string_ostream OldOStream(OldQualified);
4473          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4474          OldOStream << Typo->getName();
4475          // If correction candidate would be an identical written qualified
4476          // identifier, then the existing CXXScopeSpec probably included a
4477          // typedef that didn't get accounted for properly.
4478          if (OldOStream.str() == NewQualified)
4479            break;
4480        }
4481        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4482             TRD != TRDEnd; ++TRD) {
4483          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4484                                        NSType ? NSType->getAsCXXRecordDecl()
4485                                               : nullptr,
4486                                        TRD.getPair()) == Sema::AR_accessible)
4487            TC.addCorrectionDecl(*TRD);
4488        }
4489        if (TC.isResolved()) {
4490          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4491          addCorrection(TC);
4492        }
4493        break;
4494      }
4495      case LookupResult::NotFound:
4496      case LookupResult::NotFoundInCurrentInstantiation:
4497      case LookupResult::Ambiguous:
4498      case LookupResult::FoundUnresolvedValue:
4499        break;
4500      }
4501    }
4502  }
4503  QualifiedResults.clear();
4504}
4505
4506TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4507    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4508    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4509  if (NestedNameSpecifier *NNS =
4510          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4511    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4512    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4513
4514    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4515  }
4516  // Build the list of identifiers that would be used for an absolute
4517  // (from the global context) NestedNameSpecifier referring to the current
4518  // context.
4519  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4520    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4521      CurContextIdentifiers.push_back(ND->getIdentifier());
4522  }
4523
4524  // Add the global context as a NestedNameSpecifier
4525  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4526                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
4527  DistanceMap[1].push_back(SI);
4528}
4529
4530auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4531    DeclContext *Start) -> DeclContextList {
4532  assert(Start && "Building a context chain from a null context");
4533  DeclContextList Chain;
4534  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4535       DC = DC->getLookupParent()) {
4536    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4537    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4538        !(ND && ND->isAnonymousNamespace()))
4539      Chain.push_back(DC->getPrimaryContext());
4540  }
4541  return Chain;
4542}
4543
4544unsigned
4545TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4546    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4547  unsigned NumSpecifiers = 0;
4548  for (DeclContext *C : llvm::reverse(DeclChain)) {
4549    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4550      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4551      ++NumSpecifiers;
4552    } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4553      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4554                                        RD->getTypeForDecl());
4555      ++NumSpecifiers;
4556    }
4557  }
4558  return NumSpecifiers;
4559}
4560
4561void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4562    DeclContext *Ctx) {
4563  NestedNameSpecifier *NNS = nullptr;
4564  unsigned NumSpecifiers = 0;
4565  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4566  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4567
4568  // Eliminate common elements from the two DeclContext chains.
4569  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4570    if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4571      break;
4572    NamespaceDeclChain.pop_back();
4573  }
4574
4575  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4576  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4577
4578  // Add an explicit leading '::' specifier if needed.
4579  if (NamespaceDeclChain.empty()) {
4580    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4581    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4582    NumSpecifiers =
4583        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4584  } else if (NamedDecl *ND =
4585                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4586    IdentifierInfo *Name = ND->getIdentifier();
4587    bool SameNameSpecifier = false;
4588    if (std::find(CurNameSpecifierIdentifiers.begin(),
4589                  CurNameSpecifierIdentifiers.end(),
4590                  Name) != CurNameSpecifierIdentifiers.end()) {
4591      std::string NewNameSpecifier;
4592      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4593      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4594      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4595      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4596      SpecifierOStream.flush();
4597      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4598    }
4599    if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4600                                 CurContextIdentifiers.end()) {
4601      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4602      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4603      NumSpecifiers =
4604          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4605    }
4606  }
4607
4608  // If the built NestedNameSpecifier would be replacing an existing
4609  // NestedNameSpecifier, use the number of component identifiers that
4610  // would need to be changed as the edit distance instead of the number
4611  // of components in the built NestedNameSpecifier.
4612  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4613    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4614    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4615    NumSpecifiers = llvm::ComputeEditDistance(
4616        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4617        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4618  }
4619
4620  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4621  DistanceMap[NumSpecifiers].push_back(SI);
4622}
4623
4624/// Perform name lookup for a possible result for typo correction.
4625static void LookupPotentialTypoResult(Sema &SemaRef,
4626                                      LookupResult &Res,
4627                                      IdentifierInfo *Name,
4628                                      Scope *S, CXXScopeSpec *SS,
4629                                      DeclContext *MemberContext,
4630                                      bool EnteringContext,
4631                                      bool isObjCIvarLookup,
4632                                      bool FindHidden) {
4633  Res.suppressDiagnostics();
4634  Res.clear();
4635  Res.setLookupName(Name);
4636  Res.setAllowHidden(FindHidden);
4637  if (MemberContext) {
4638    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4639      if (isObjCIvarLookup) {
4640        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4641          Res.addDecl(Ivar);
4642          Res.resolveKind();
4643          return;
4644        }
4645      }
4646
4647      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4648              Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4649        Res.addDecl(Prop);
4650        Res.resolveKind();
4651        return;
4652      }
4653    }
4654
4655    SemaRef.LookupQualifiedName(Res, MemberContext);
4656    return;
4657  }
4658
4659  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4660                           EnteringContext);
4661
4662  // Fake ivar lookup; this should really be part of
4663  // LookupParsedName.
4664  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4665    if (Method->isInstanceMethod() && Method->getClassInterface() &&
4666        (Res.empty() ||
4667         (Res.isSingleResult() &&
4668          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4669       if (ObjCIvarDecl *IV
4670             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4671         Res.addDecl(IV);
4672         Res.resolveKind();
4673       }
4674     }
4675  }
4676}
4677
4678/// Add keywords to the consumer as possible typo corrections.
4679static void AddKeywordsToConsumer(Sema &SemaRef,
4680                                  TypoCorrectionConsumer &Consumer,
4681                                  Scope *S, CorrectionCandidateCallback &CCC,
4682                                  bool AfterNestedNameSpecifier) {
4683  if (AfterNestedNameSpecifier) {
4684    // For 'X::', we know exactly which keywords can appear next.
4685    Consumer.addKeywordResult("template");
4686    if (CCC.WantExpressionKeywords)
4687      Consumer.addKeywordResult("operator");
4688    return;
4689  }
4690
4691  if (CCC.WantObjCSuper)
4692    Consumer.addKeywordResult("super");
4693
4694  if (CCC.WantTypeSpecifiers) {
4695    // Add type-specifier keywords to the set of results.
4696    static const char *const CTypeSpecs[] = {
4697      "char", "const", "double", "enum", "float", "int", "long", "short",
4698      "signed", "struct", "union", "unsigned", "void", "volatile",
4699      "_Complex", "_Imaginary",
4700      // storage-specifiers as well
4701      "extern", "inline", "static", "typedef"
4702    };
4703
4704    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4705    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4706      Consumer.addKeywordResult(CTypeSpecs[I]);
4707
4708    if (SemaRef.getLangOpts().C99)
4709      Consumer.addKeywordResult("restrict");
4710    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4711      Consumer.addKeywordResult("bool");
4712    else if (SemaRef.getLangOpts().C99)
4713      Consumer.addKeywordResult("_Bool");
4714
4715    if (SemaRef.getLangOpts().CPlusPlus) {
4716      Consumer.addKeywordResult("class");
4717      Consumer.addKeywordResult("typename");
4718      Consumer.addKeywordResult("wchar_t");
4719
4720      if (SemaRef.getLangOpts().CPlusPlus11) {
4721        Consumer.addKeywordResult("char16_t");
4722        Consumer.addKeywordResult("char32_t");
4723        Consumer.addKeywordResult("constexpr");
4724        Consumer.addKeywordResult("decltype");
4725        Consumer.addKeywordResult("thread_local");
4726      }
4727    }
4728
4729    if (SemaRef.getLangOpts().GNUKeywords)
4730      Consumer.addKeywordResult("typeof");
4731  } else if (CCC.WantFunctionLikeCasts) {
4732    static const char *const CastableTypeSpecs[] = {
4733      "char", "double", "float", "int", "long", "short",
4734      "signed", "unsigned", "void"
4735    };
4736    for (auto *kw : CastableTypeSpecs)
4737      Consumer.addKeywordResult(kw);
4738  }
4739
4740  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4741    Consumer.addKeywordResult("const_cast");
4742    Consumer.addKeywordResult("dynamic_cast");
4743    Consumer.addKeywordResult("reinterpret_cast");
4744    Consumer.addKeywordResult("static_cast");
4745  }
4746
4747  if (CCC.WantExpressionKeywords) {
4748    Consumer.addKeywordResult("sizeof");
4749    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4750      Consumer.addKeywordResult("false");
4751      Consumer.addKeywordResult("true");
4752    }
4753
4754    if (SemaRef.getLangOpts().CPlusPlus) {
4755      static const char *const CXXExprs[] = {
4756        "delete", "new", "operator", "throw", "typeid"
4757      };
4758      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4759      for (unsigned I = 0; I != NumCXXExprs; ++I)
4760        Consumer.addKeywordResult(CXXExprs[I]);
4761
4762      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4763          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4764        Consumer.addKeywordResult("this");
4765
4766      if (SemaRef.getLangOpts().CPlusPlus11) {
4767        Consumer.addKeywordResult("alignof");
4768        Consumer.addKeywordResult("nullptr");
4769      }
4770    }
4771
4772    if (SemaRef.getLangOpts().C11) {
4773      // FIXME: We should not suggest _Alignof if the alignof macro
4774      // is present.
4775      Consumer.addKeywordResult("_Alignof");
4776    }
4777  }
4778
4779  if (CCC.WantRemainingKeywords) {
4780    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4781      // Statements.
4782      static const char *const CStmts[] = {
4783        "do", "else", "for", "goto", "if", "return", "switch", "while" };
4784      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4785      for (unsigned I = 0; I != NumCStmts; ++I)
4786        Consumer.addKeywordResult(CStmts[I]);
4787
4788      if (SemaRef.getLangOpts().CPlusPlus) {
4789        Consumer.addKeywordResult("catch");
4790        Consumer.addKeywordResult("try");
4791      }
4792
4793      if (S && S->getBreakParent())
4794        Consumer.addKeywordResult("break");
4795
4796      if (S && S->getContinueParent())
4797        Consumer.addKeywordResult("continue");
4798
4799      if (SemaRef.getCurFunction() &&
4800          !SemaRef.getCurFunction()->SwitchStack.empty()) {
4801        Consumer.addKeywordResult("case");
4802        Consumer.addKeywordResult("default");
4803      }
4804    } else {
4805      if (SemaRef.getLangOpts().CPlusPlus) {
4806        Consumer.addKeywordResult("namespace");
4807        Consumer.addKeywordResult("template");
4808      }
4809
4810      if (S && S->isClassScope()) {
4811        Consumer.addKeywordResult("explicit");
4812        Consumer.addKeywordResult("friend");
4813        Consumer.addKeywordResult("mutable");
4814        Consumer.addKeywordResult("private");
4815        Consumer.addKeywordResult("protected");
4816        Consumer.addKeywordResult("public");
4817        Consumer.addKeywordResult("virtual");
4818      }
4819    }
4820
4821    if (SemaRef.getLangOpts().CPlusPlus) {
4822      Consumer.addKeywordResult("using");
4823
4824      if (SemaRef.getLangOpts().CPlusPlus11)
4825        Consumer.addKeywordResult("static_assert");
4826    }
4827  }
4828}
4829
4830std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4831    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4832    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4833    DeclContext *MemberContext, bool EnteringContext,
4834    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4835
4836  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4837      DisableTypoCorrection)
4838    return nullptr;
4839
4840  // In Microsoft mode, don't perform typo correction in a template member
4841  // function dependent context because it interferes with the "lookup into
4842  // dependent bases of class templates" feature.
4843  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4844      isa<CXXMethodDecl>(CurContext))
4845    return nullptr;
4846
4847  // We only attempt to correct typos for identifiers.
4848  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4849  if (!Typo)
4850    return nullptr;
4851
4852  // If the scope specifier itself was invalid, don't try to correct
4853  // typos.
4854  if (SS && SS->isInvalid())
4855    return nullptr;
4856
4857  // Never try to correct typos during any kind of code synthesis.
4858  if (!CodeSynthesisContexts.empty())
4859    return nullptr;
4860
4861  // Don't try to correct 'super'.
4862  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4863    return nullptr;
4864
4865  // Abort if typo correction already failed for this specific typo.
4866  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4867  if (locs != TypoCorrectionFailures.end() &&
4868      locs->second.count(TypoName.getLoc()))
4869    return nullptr;
4870
4871  // Don't try to correct the identifier "vector" when in AltiVec mode.
4872  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4873  // remove this workaround.
4874  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4875    return nullptr;
4876
4877  // Provide a stop gap for files that are just seriously broken.  Trying
4878  // to correct all typos can turn into a HUGE performance penalty, causing
4879  // some files to take minutes to get rejected by the parser.
4880  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4881  if (Limit && TyposCorrected >= Limit)
4882    return nullptr;
4883  ++TyposCorrected;
4884
4885  // If we're handling a missing symbol error, using modules, and the
4886  // special search all modules option is used, look for a missing import.
4887  if (ErrorRecovery && getLangOpts().Modules &&
4888      getLangOpts().ModulesSearchAll) {
4889    // The following has the side effect of loading the missing module.
4890    getModuleLoader().lookupMissingImports(Typo->getName(),
4891                                           TypoName.getBeginLoc());
4892  }
4893
4894  // Extend the lifetime of the callback. We delayed this until here
4895  // to avoid allocations in the hot path (which is where no typo correction
4896  // occurs). Note that CorrectionCandidateCallback is polymorphic and
4897  // initially stack-allocated.
4898  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4899  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4900      *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4901      EnteringContext);
4902
4903  // Perform name lookup to find visible, similarly-named entities.
4904  bool IsUnqualifiedLookup = false;
4905  DeclContext *QualifiedDC = MemberContext;
4906  if (MemberContext) {
4907    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4908
4909    // Look in qualified interfaces.
4910    if (OPT) {
4911      for (auto *I : OPT->quals())
4912        LookupVisibleDecls(I, LookupKind, *Consumer);
4913    }
4914  } else if (SS && SS->isSet()) {
4915    QualifiedDC = computeDeclContext(*SS, EnteringContext);
4916    if (!QualifiedDC)
4917      return nullptr;
4918
4919    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4920  } else {
4921    IsUnqualifiedLookup = true;
4922  }
4923
4924  // Determine whether we are going to search in the various namespaces for
4925  // corrections.
4926  bool SearchNamespaces
4927    = getLangOpts().CPlusPlus &&
4928      (IsUnqualifiedLookup || (SS && SS->isSet()));
4929
4930  if (IsUnqualifiedLookup || SearchNamespaces) {
4931    // For unqualified lookup, look through all of the names that we have
4932    // seen in this translation unit.
4933    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4934    for (const auto &I : Context.Idents)
4935      Consumer->FoundName(I.getKey());
4936
4937    // Walk through identifiers in external identifier sources.
4938    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4939    if (IdentifierInfoLookup *External
4940                            = Context.Idents.getExternalIdentifierLookup()) {
4941      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4942      do {
4943        StringRef Name = Iter->Next();
4944        if (Name.empty())
4945          break;
4946
4947        Consumer->FoundName(Name);
4948      } while (true);
4949    }
4950  }
4951
4952  AddKeywordsToConsumer(*this, *Consumer, S,
4953                        *Consumer->getCorrectionValidator(),
4954                        SS && SS->isNotEmpty());
4955
4956  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4957  // to search those namespaces.
4958  if (SearchNamespaces) {
4959    // Load any externally-known namespaces.
4960    if (ExternalSource && !LoadedExternalKnownNamespaces) {
4961      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4962      LoadedExternalKnownNamespaces = true;
4963      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4964      for (auto *N : ExternalKnownNamespaces)
4965        KnownNamespaces[N] = true;
4966    }
4967
4968    Consumer->addNamespaces(KnownNamespaces);
4969  }
4970
4971  return Consumer;
4972}
4973
4974/// Try to "correct" a typo in the source code by finding
4975/// visible declarations whose names are similar to the name that was
4976/// present in the source code.
4977///
4978/// \param TypoName the \c DeclarationNameInfo structure that contains
4979/// the name that was present in the source code along with its location.
4980///
4981/// \param LookupKind the name-lookup criteria used to search for the name.
4982///
4983/// \param S the scope in which name lookup occurs.
4984///
4985/// \param SS the nested-name-specifier that precedes the name we're
4986/// looking for, if present.
4987///
4988/// \param CCC A CorrectionCandidateCallback object that provides further
4989/// validation of typo correction candidates. It also provides flags for
4990/// determining the set of keywords permitted.
4991///
4992/// \param MemberContext if non-NULL, the context in which to look for
4993/// a member access expression.
4994///
4995/// \param EnteringContext whether we're entering the context described by
4996/// the nested-name-specifier SS.
4997///
4998/// \param OPT when non-NULL, the search for visible declarations will
4999/// also walk the protocols in the qualified interfaces of \p OPT.
5000///
5001/// \returns a \c TypoCorrection containing the corrected name if the typo
5002/// along with information such as the \c NamedDecl where the corrected name
5003/// was declared, and any additional \c NestedNameSpecifier needed to access
5004/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5005TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5006                                 Sema::LookupNameKind LookupKind,
5007                                 Scope *S, CXXScopeSpec *SS,
5008                                 CorrectionCandidateCallback &CCC,
5009                                 CorrectTypoKind Mode,
5010                                 DeclContext *MemberContext,
5011                                 bool EnteringContext,
5012                                 const ObjCObjectPointerType *OPT,
5013                                 bool RecordFailure) {
5014  // Always let the ExternalSource have the first chance at correction, even
5015  // if we would otherwise have given up.
5016  if (ExternalSource) {
5017    if (TypoCorrection Correction =
5018            ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5019                                        MemberContext, EnteringContext, OPT))
5020      return Correction;
5021  }
5022
5023  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5024  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5025  // some instances of CTC_Unknown, while WantRemainingKeywords is true
5026  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5027  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5028
5029  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5030  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5031                                             MemberContext, EnteringContext,
5032                                             OPT, Mode == CTK_ErrorRecovery);
5033
5034  if (!Consumer)
5035    return TypoCorrection();
5036
5037  // If we haven't found anything, we're done.
5038  if (Consumer->empty())
5039    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5040
5041  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5042  // is not more that about a third of the length of the typo's identifier.
5043  unsigned ED = Consumer->getBestEditDistance(true);
5044  unsigned TypoLen = Typo->getName().size();
5045  if (ED > 0 && TypoLen / ED < 3)
5046    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5047
5048  TypoCorrection BestTC = Consumer->getNextCorrection();
5049  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5050  if (!BestTC)
5051    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5052
5053  ED = BestTC.getEditDistance();
5054
5055  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5056    // If this was an unqualified lookup and we believe the callback
5057    // object wouldn't have filtered out possible corrections, note
5058    // that no correction was found.
5059    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5060  }
5061
5062  // If only a single name remains, return that result.
5063  if (!SecondBestTC ||
5064      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5065    const TypoCorrection &Result = BestTC;
5066
5067    // Don't correct to a keyword that's the same as the typo; the keyword
5068    // wasn't actually in scope.
5069    if (ED == 0 && Result.isKeyword())
5070      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5071
5072    TypoCorrection TC = Result;
5073    TC.setCorrectionRange(SS, TypoName);
5074    checkCorrectionVisibility(*this, TC);
5075    return TC;
5076  } else if (SecondBestTC && ObjCMessageReceiver) {
5077    // Prefer 'super' when we're completing in a message-receiver
5078    // context.
5079
5080    if (BestTC.getCorrection().getAsString() != "super") {
5081      if (SecondBestTC.getCorrection().getAsString() == "super")
5082        BestTC = SecondBestTC;
5083      else if ((*Consumer)["super"].front().isKeyword())
5084        BestTC = (*Consumer)["super"].front();
5085    }
5086    // Don't correct to a keyword that's the same as the typo; the keyword
5087    // wasn't actually in scope.
5088    if (BestTC.getEditDistance() == 0 ||
5089        BestTC.getCorrection().getAsString() != "super")
5090      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5091
5092    BestTC.setCorrectionRange(SS, TypoName);
5093    return BestTC;
5094  }
5095
5096  // Record the failure's location if needed and return an empty correction. If
5097  // this was an unqualified lookup and we believe the callback object did not
5098  // filter out possible corrections, also cache the failure for the typo.
5099  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5100}
5101
5102/// Try to "correct" a typo in the source code by finding
5103/// visible declarations whose names are similar to the name that was
5104/// present in the source code.
5105///
5106/// \param TypoName the \c DeclarationNameInfo structure that contains
5107/// the name that was present in the source code along with its location.
5108///
5109/// \param LookupKind the name-lookup criteria used to search for the name.
5110///
5111/// \param S the scope in which name lookup occurs.
5112///
5113/// \param SS the nested-name-specifier that precedes the name we're
5114/// looking for, if present.
5115///
5116/// \param CCC A CorrectionCandidateCallback object that provides further
5117/// validation of typo correction candidates. It also provides flags for
5118/// determining the set of keywords permitted.
5119///
5120/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5121/// diagnostics when the actual typo correction is attempted.
5122///
5123/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5124/// Expr from a typo correction candidate.
5125///
5126/// \param MemberContext if non-NULL, the context in which to look for
5127/// a member access expression.
5128///
5129/// \param EnteringContext whether we're entering the context described by
5130/// the nested-name-specifier SS.
5131///
5132/// \param OPT when non-NULL, the search for visible declarations will
5133/// also walk the protocols in the qualified interfaces of \p OPT.
5134///
5135/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5136/// Expr representing the result of performing typo correction, or nullptr if
5137/// typo correction is not possible. If nullptr is returned, no diagnostics will
5138/// be emitted and it is the responsibility of the caller to emit any that are
5139/// needed.
5140TypoExpr *Sema::CorrectTypoDelayed(
5141    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5142    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5143    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5144    DeclContext *MemberContext, bool EnteringContext,
5145    const ObjCObjectPointerType *OPT) {
5146  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5147                                             MemberContext, EnteringContext,
5148                                             OPT, Mode == CTK_ErrorRecovery);
5149
5150  // Give the external sema source a chance to correct the typo.
5151  TypoCorrection ExternalTypo;
5152  if (ExternalSource && Consumer) {
5153    ExternalTypo = ExternalSource->CorrectTypo(
5154        TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5155        MemberContext, EnteringContext, OPT);
5156    if (ExternalTypo)
5157      Consumer->addCorrection(ExternalTypo);
5158  }
5159
5160  if (!Consumer || Consumer->empty())
5161    return nullptr;
5162
5163  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5164  // is not more that about a third of the length of the typo's identifier.
5165  unsigned ED = Consumer->getBestEditDistance(true);
5166  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5167  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5168    return nullptr;
5169  ExprEvalContexts.back().NumTypos++;
5170  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5171                           TypoName.getLoc());
5172}
5173
5174void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5175  if (!CDecl) return;
5176
5177  if (isKeyword())
5178    CorrectionDecls.clear();
5179
5180  CorrectionDecls.push_back(CDecl);
5181
5182  if (!CorrectionName)
5183    CorrectionName = CDecl->getDeclName();
5184}
5185
5186std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5187  if (CorrectionNameSpec) {
5188    std::string tmpBuffer;
5189    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5190    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5191    PrefixOStream << CorrectionName;
5192    return PrefixOStream.str();
5193  }
5194
5195  return CorrectionName.getAsString();
5196}
5197
5198bool CorrectionCandidateCallback::ValidateCandidate(
5199    const TypoCorrection &candidate) {
5200  if (!candidate.isResolved())
5201    return true;
5202
5203  if (candidate.isKeyword())
5204    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5205           WantRemainingKeywords || WantObjCSuper;
5206
5207  bool HasNonType = false;
5208  bool HasStaticMethod = false;
5209  bool HasNonStaticMethod = false;
5210  for (Decl *D : candidate) {
5211    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5212      D = FTD->getTemplatedDecl();
5213    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5214      if (Method->isStatic())
5215        HasStaticMethod = true;
5216      else
5217        HasNonStaticMethod = true;
5218    }
5219    if (!isa<TypeDecl>(D))
5220      HasNonType = true;
5221  }
5222
5223  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5224      !candidate.getCorrectionSpecifier())
5225    return false;
5226
5227  return WantTypeSpecifiers || HasNonType;
5228}
5229
5230FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5231                                             bool HasExplicitTemplateArgs,
5232                                             MemberExpr *ME)
5233    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5234      CurContext(SemaRef.CurContext), MemberFn(ME) {
5235  WantTypeSpecifiers = false;
5236  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5237                          !HasExplicitTemplateArgs && NumArgs == 1;
5238  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5239  WantRemainingKeywords = false;
5240}
5241
5242bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5243  if (!candidate.getCorrectionDecl())
5244    return candidate.isKeyword();
5245
5246  for (auto *C : candidate) {
5247    FunctionDecl *FD = nullptr;
5248    NamedDecl *ND = C->getUnderlyingDecl();
5249    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5250      FD = FTD->getTemplatedDecl();
5251    if (!HasExplicitTemplateArgs && !FD) {
5252      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5253        // If the Decl is neither a function nor a template function,
5254        // determine if it is a pointer or reference to a function. If so,
5255        // check against the number of arguments expected for the pointee.
5256        QualType ValType = cast<ValueDecl>(ND)->getType();
5257        if (ValType.isNull())
5258          continue;
5259        if (ValType->isAnyPointerType() || ValType->isReferenceType())
5260          ValType = ValType->getPointeeType();
5261        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5262          if (FPT->getNumParams() == NumArgs)
5263            return true;
5264      }
5265    }
5266
5267    // A typo for a function-style cast can look like a function call in C++.
5268    if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5269                                 : isa<TypeDecl>(ND)) &&
5270        CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5271      // Only a class or class template can take two or more arguments.
5272      return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5273
5274    // Skip the current candidate if it is not a FunctionDecl or does not accept
5275    // the current number of arguments.
5276    if (!FD || !(FD->getNumParams() >= NumArgs &&
5277                 FD->getMinRequiredArguments() <= NumArgs))
5278      continue;
5279
5280    // If the current candidate is a non-static C++ method, skip the candidate
5281    // unless the method being corrected--or the current DeclContext, if the
5282    // function being corrected is not a method--is a method in the same class
5283    // or a descendent class of the candidate's parent class.
5284    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5285      if (MemberFn || !MD->isStatic()) {
5286        CXXMethodDecl *CurMD =
5287            MemberFn
5288                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5289                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5290        CXXRecordDecl *CurRD =
5291            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5292        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5293        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5294          continue;
5295      }
5296    }
5297    return true;
5298  }
5299  return false;
5300}
5301
5302void Sema::diagnoseTypo(const TypoCorrection &Correction,
5303                        const PartialDiagnostic &TypoDiag,
5304                        bool ErrorRecovery) {
5305  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5306               ErrorRecovery);
5307}
5308
5309/// Find which declaration we should import to provide the definition of
5310/// the given declaration.
5311static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5312  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5313    return VD->getDefinition();
5314  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5315    return FD->getDefinition();
5316  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5317    return TD->getDefinition();
5318  // The first definition for this ObjCInterfaceDecl might be in the TU
5319  // and not associated with any module. Use the one we know to be complete
5320  // and have just seen in a module.
5321  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5322    return ID;
5323  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5324    return PD->getDefinition();
5325  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5326    if (NamedDecl *TTD = TD->getTemplatedDecl())
5327      return getDefinitionToImport(TTD);
5328  return nullptr;
5329}
5330
5331void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5332                                 MissingImportKind MIK, bool Recover) {
5333  // Suggest importing a module providing the definition of this entity, if
5334  // possible.
5335  NamedDecl *Def = getDefinitionToImport(Decl);
5336  if (!Def)
5337    Def = Decl;
5338
5339  Module *Owner = getOwningModule(Def);
5340  assert(Owner && "definition of hidden declaration is not in a module");
5341
5342  llvm::SmallVector<Module*, 8> OwningModules;
5343  OwningModules.push_back(Owner);
5344  auto Merged = Context.getModulesWithMergedDefinition(Def);
5345  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5346
5347  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5348                        Recover);
5349}
5350
5351/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5352/// suggesting the addition of a #include of the specified file.
5353static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5354                                          llvm::StringRef IncludingFile) {
5355  bool IsSystem = false;
5356  auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5357      E, IncludingFile, &IsSystem);
5358  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5359}
5360
5361void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5362                                 SourceLocation DeclLoc,
5363                                 ArrayRef<Module *> Modules,
5364                                 MissingImportKind MIK, bool Recover) {
5365  assert(!Modules.empty());
5366
5367  auto NotePrevious = [&] {
5368    // FIXME: Suppress the note backtrace even under
5369    // -fdiagnostics-show-note-include-stack. We don't care how this
5370    // declaration was previously reached.
5371    Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5372  };
5373
5374  // Weed out duplicates from module list.
5375  llvm::SmallVector<Module*, 8> UniqueModules;
5376  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5377  for (auto *M : Modules) {
5378    if (M->Kind == Module::GlobalModuleFragment)
5379      continue;
5380    if (UniqueModuleSet.insert(M).second)
5381      UniqueModules.push_back(M);
5382  }
5383
5384  // Try to find a suitable header-name to #include.
5385  std::string HeaderName;
5386  if (const FileEntry *Header =
5387          PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5388    if (const FileEntry *FE =
5389            SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5390      HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5391  }
5392
5393  // If we have a #include we should suggest, or if all definition locations
5394  // were in global module fragments, don't suggest an import.
5395  if (!HeaderName.empty() || UniqueModules.empty()) {
5396    // FIXME: Find a smart place to suggest inserting a #include, and add
5397    // a FixItHint there.
5398    Diag(UseLoc, diag::err_module_unimported_use_header)
5399        << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5400    // Produce a note showing where the entity was declared.
5401    NotePrevious();
5402    if (Recover)
5403      createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5404    return;
5405  }
5406
5407  Modules = UniqueModules;
5408
5409  if (Modules.size() > 1) {
5410    std::string ModuleList;
5411    unsigned N = 0;
5412    for (Module *M : Modules) {
5413      ModuleList += "\n        ";
5414      if (++N == 5 && N != Modules.size()) {
5415        ModuleList += "[...]";
5416        break;
5417      }
5418      ModuleList += M->getFullModuleName();
5419    }
5420
5421    Diag(UseLoc, diag::err_module_unimported_use_multiple)
5422      << (int)MIK << Decl << ModuleList;
5423  } else {
5424    // FIXME: Add a FixItHint that imports the corresponding module.
5425    Diag(UseLoc, diag::err_module_unimported_use)
5426      << (int)MIK << Decl << Modules[0]->getFullModuleName();
5427  }
5428
5429  NotePrevious();
5430
5431  // Try to recover by implicitly importing this module.
5432  if (Recover)
5433    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5434}
5435
5436/// Diagnose a successfully-corrected typo. Separated from the correction
5437/// itself to allow external validation of the result, etc.
5438///
5439/// \param Correction The result of performing typo correction.
5440/// \param TypoDiag The diagnostic to produce. This will have the corrected
5441///        string added to it (and usually also a fixit).
5442/// \param PrevNote A note to use when indicating the location of the entity to
5443///        which we are correcting. Will have the correction string added to it.
5444/// \param ErrorRecovery If \c true (the default), the caller is going to
5445///        recover from the typo as if the corrected string had been typed.
5446///        In this case, \c PDiag must be an error, and we will attach a fixit
5447///        to it.
5448void Sema::diagnoseTypo(const TypoCorrection &Correction,
5449                        const PartialDiagnostic &TypoDiag,
5450                        const PartialDiagnostic &PrevNote,
5451                        bool ErrorRecovery) {
5452  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5453  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5454  FixItHint FixTypo = FixItHint::CreateReplacement(
5455      Correction.getCorrectionRange(), CorrectedStr);
5456
5457  // Maybe we're just missing a module import.
5458  if (Correction.requiresImport()) {
5459    NamedDecl *Decl = Correction.getFoundDecl();
5460    assert(Decl && "import required but no declaration to import");
5461
5462    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5463                          MissingImportKind::Declaration, ErrorRecovery);
5464    return;
5465  }
5466
5467  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5468    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5469
5470  NamedDecl *ChosenDecl =
5471      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5472  if (PrevNote.getDiagID() && ChosenDecl)
5473    Diag(ChosenDecl->getLocation(), PrevNote)
5474      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5475
5476  // Add any extra diagnostics.
5477  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5478    Diag(Correction.getCorrectionRange().getBegin(), PD);
5479}
5480
5481TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5482                                  TypoDiagnosticGenerator TDG,
5483                                  TypoRecoveryCallback TRC,
5484                                  SourceLocation TypoLoc) {
5485  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5486  auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5487  auto &State = DelayedTypos[TE];
5488  State.Consumer = std::move(TCC);
5489  State.DiagHandler = std::move(TDG);
5490  State.RecoveryHandler = std::move(TRC);
5491  if (TE)
5492    TypoExprs.push_back(TE);
5493  return TE;
5494}
5495
5496const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5497  auto Entry = DelayedTypos.find(TE);
5498  assert(Entry != DelayedTypos.end() &&
5499         "Failed to get the state for a TypoExpr!");
5500  return Entry->second;
5501}
5502
5503void Sema::clearDelayedTypo(TypoExpr *TE) {
5504  DelayedTypos.erase(TE);
5505}
5506
5507void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5508  DeclarationNameInfo Name(II, IILoc);
5509  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5510  R.suppressDiagnostics();
5511  R.setHideTags(false);
5512  LookupName(R, S);
5513  R.dump();
5514}
5515