1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the internal per-function state used for llvm translation.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16#include "CGBuilder.h"
17#include "CGDebugInfo.h"
18#include "CGLoopInfo.h"
19#include "CGValue.h"
20#include "CodeGenModule.h"
21#include "CodeGenPGO.h"
22#include "EHScopeStack.h"
23#include "VarBypassDetector.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/CurrentSourceLocExprScope.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/StmtOpenMP.h"
30#include "clang/AST/Type.h"
31#include "clang/Basic/ABI.h"
32#include "clang/Basic/CapturedStmt.h"
33#include "clang/Basic/CodeGenOptions.h"
34#include "clang/Basic/OpenMPKinds.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/ArrayRef.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/MapVector.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41#include "llvm/IR/ValueHandle.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Transforms/Utils/SanitizerStats.h"
44
45namespace llvm {
46class BasicBlock;
47class LLVMContext;
48class MDNode;
49class Module;
50class SwitchInst;
51class Twine;
52class Value;
53class CanonicalLoopInfo;
54}
55
56namespace clang {
57class ASTContext;
58class BlockDecl;
59class CXXDestructorDecl;
60class CXXForRangeStmt;
61class CXXTryStmt;
62class Decl;
63class LabelDecl;
64class EnumConstantDecl;
65class FunctionDecl;
66class FunctionProtoType;
67class LabelStmt;
68class ObjCContainerDecl;
69class ObjCInterfaceDecl;
70class ObjCIvarDecl;
71class ObjCMethodDecl;
72class ObjCImplementationDecl;
73class ObjCPropertyImplDecl;
74class TargetInfo;
75class VarDecl;
76class ObjCForCollectionStmt;
77class ObjCAtTryStmt;
78class ObjCAtThrowStmt;
79class ObjCAtSynchronizedStmt;
80class ObjCAutoreleasePoolStmt;
81class OMPUseDevicePtrClause;
82class OMPUseDeviceAddrClause;
83class ReturnsNonNullAttr;
84class SVETypeFlags;
85class OMPExecutableDirective;
86
87namespace analyze_os_log {
88class OSLogBufferLayout;
89}
90
91namespace CodeGen {
92class CodeGenTypes;
93class CGCallee;
94class CGFunctionInfo;
95class CGRecordLayout;
96class CGBlockInfo;
97class CGCXXABI;
98class BlockByrefHelpers;
99class BlockByrefInfo;
100class BlockFlags;
101class BlockFieldFlags;
102class RegionCodeGenTy;
103class TargetCodeGenInfo;
104struct OMPTaskDataTy;
105struct CGCoroData;
106
107/// The kind of evaluation to perform on values of a particular
108/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
109/// CGExprAgg?
110///
111/// TODO: should vectors maybe be split out into their own thing?
112enum TypeEvaluationKind {
113  TEK_Scalar,
114  TEK_Complex,
115  TEK_Aggregate
116};
117
118#define LIST_SANITIZER_CHECKS                                                  \
119  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
120  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
121  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
122  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
123  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
124  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
125  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
126  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
127  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
128  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
129  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
130  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
131  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
132  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
133  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
134  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
135  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
136  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
137  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
138  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
139  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
140  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
141  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
142  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
143  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
144
145enum SanitizerHandler {
146#define SANITIZER_CHECK(Enum, Name, Version) Enum,
147  LIST_SANITIZER_CHECKS
148#undef SANITIZER_CHECK
149};
150
151/// Helper class with most of the code for saving a value for a
152/// conditional expression cleanup.
153struct DominatingLLVMValue {
154  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
155
156  /// Answer whether the given value needs extra work to be saved.
157  static bool needsSaving(llvm::Value *value) {
158    // If it's not an instruction, we don't need to save.
159    if (!isa<llvm::Instruction>(value)) return false;
160
161    // If it's an instruction in the entry block, we don't need to save.
162    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
163    return (block != &block->getParent()->getEntryBlock());
164  }
165
166  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
167  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
168};
169
170/// A partial specialization of DominatingValue for llvm::Values that
171/// might be llvm::Instructions.
172template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
173  typedef T *type;
174  static type restore(CodeGenFunction &CGF, saved_type value) {
175    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
176  }
177};
178
179/// A specialization of DominatingValue for Address.
180template <> struct DominatingValue<Address> {
181  typedef Address type;
182
183  struct saved_type {
184    DominatingLLVMValue::saved_type SavedValue;
185    CharUnits Alignment;
186  };
187
188  static bool needsSaving(type value) {
189    return DominatingLLVMValue::needsSaving(value.getPointer());
190  }
191  static saved_type save(CodeGenFunction &CGF, type value) {
192    return { DominatingLLVMValue::save(CGF, value.getPointer()),
193             value.getAlignment() };
194  }
195  static type restore(CodeGenFunction &CGF, saved_type value) {
196    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
197                   value.Alignment);
198  }
199};
200
201/// A specialization of DominatingValue for RValue.
202template <> struct DominatingValue<RValue> {
203  typedef RValue type;
204  class saved_type {
205    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
206                AggregateAddress, ComplexAddress };
207
208    llvm::Value *Value;
209    unsigned K : 3;
210    unsigned Align : 29;
211    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
212      : Value(v), K(k), Align(a) {}
213
214  public:
215    static bool needsSaving(RValue value);
216    static saved_type save(CodeGenFunction &CGF, RValue value);
217    RValue restore(CodeGenFunction &CGF);
218
219    // implementations in CGCleanup.cpp
220  };
221
222  static bool needsSaving(type value) {
223    return saved_type::needsSaving(value);
224  }
225  static saved_type save(CodeGenFunction &CGF, type value) {
226    return saved_type::save(CGF, value);
227  }
228  static type restore(CodeGenFunction &CGF, saved_type value) {
229    return value.restore(CGF);
230  }
231};
232
233/// CodeGenFunction - This class organizes the per-function state that is used
234/// while generating LLVM code.
235class CodeGenFunction : public CodeGenTypeCache {
236  CodeGenFunction(const CodeGenFunction &) = delete;
237  void operator=(const CodeGenFunction &) = delete;
238
239  friend class CGCXXABI;
240public:
241  /// A jump destination is an abstract label, branching to which may
242  /// require a jump out through normal cleanups.
243  struct JumpDest {
244    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
245    JumpDest(llvm::BasicBlock *Block,
246             EHScopeStack::stable_iterator Depth,
247             unsigned Index)
248      : Block(Block), ScopeDepth(Depth), Index(Index) {}
249
250    bool isValid() const { return Block != nullptr; }
251    llvm::BasicBlock *getBlock() const { return Block; }
252    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
253    unsigned getDestIndex() const { return Index; }
254
255    // This should be used cautiously.
256    void setScopeDepth(EHScopeStack::stable_iterator depth) {
257      ScopeDepth = depth;
258    }
259
260  private:
261    llvm::BasicBlock *Block;
262    EHScopeStack::stable_iterator ScopeDepth;
263    unsigned Index;
264  };
265
266  CodeGenModule &CGM;  // Per-module state.
267  const TargetInfo &Target;
268
269  // For EH/SEH outlined funclets, this field points to parent's CGF
270  CodeGenFunction *ParentCGF = nullptr;
271
272  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
273  LoopInfoStack LoopStack;
274  CGBuilderTy Builder;
275
276  // Stores variables for which we can't generate correct lifetime markers
277  // because of jumps.
278  VarBypassDetector Bypasses;
279
280  /// List of recently emitted OMPCanonicalLoops.
281  ///
282  /// Since OMPCanonicalLoops are nested inside other statements (in particular
283  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
284  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
285  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
286  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
287  /// this stack when done. Entering a new loop requires clearing this list; it
288  /// either means we start parsing a new loop nest (in which case the previous
289  /// loop nest goes out of scope) or a second loop in the same level in which
290  /// case it would be ambiguous into which of the two (or more) loops the loop
291  /// nest would extend.
292  SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
293
294  // CodeGen lambda for loops and support for ordered clause
295  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
296                                  JumpDest)>
297      CodeGenLoopTy;
298  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
299                                  const unsigned, const bool)>
300      CodeGenOrderedTy;
301
302  // Codegen lambda for loop bounds in worksharing loop constructs
303  typedef llvm::function_ref<std::pair<LValue, LValue>(
304      CodeGenFunction &, const OMPExecutableDirective &S)>
305      CodeGenLoopBoundsTy;
306
307  // Codegen lambda for loop bounds in dispatch-based loop implementation
308  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
309      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
310      Address UB)>
311      CodeGenDispatchBoundsTy;
312
313  /// CGBuilder insert helper. This function is called after an
314  /// instruction is created using Builder.
315  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
316                    llvm::BasicBlock *BB,
317                    llvm::BasicBlock::iterator InsertPt) const;
318
319  /// CurFuncDecl - Holds the Decl for the current outermost
320  /// non-closure context.
321  const Decl *CurFuncDecl;
322  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
323  const Decl *CurCodeDecl;
324  const CGFunctionInfo *CurFnInfo;
325  QualType FnRetTy;
326  llvm::Function *CurFn = nullptr;
327
328  /// Save Parameter Decl for coroutine.
329  llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
330
331  // Holds coroutine data if the current function is a coroutine. We use a
332  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
333  // in this header.
334  struct CGCoroInfo {
335    std::unique_ptr<CGCoroData> Data;
336    CGCoroInfo();
337    ~CGCoroInfo();
338  };
339  CGCoroInfo CurCoro;
340
341  bool isCoroutine() const {
342    return CurCoro.Data != nullptr;
343  }
344
345  /// CurGD - The GlobalDecl for the current function being compiled.
346  GlobalDecl CurGD;
347
348  /// PrologueCleanupDepth - The cleanup depth enclosing all the
349  /// cleanups associated with the parameters.
350  EHScopeStack::stable_iterator PrologueCleanupDepth;
351
352  /// ReturnBlock - Unified return block.
353  JumpDest ReturnBlock;
354
355  /// ReturnValue - The temporary alloca to hold the return
356  /// value. This is invalid iff the function has no return value.
357  Address ReturnValue = Address::invalid();
358
359  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
360  /// This is invalid if sret is not in use.
361  Address ReturnValuePointer = Address::invalid();
362
363  /// If a return statement is being visited, this holds the return statment's
364  /// result expression.
365  const Expr *RetExpr = nullptr;
366
367  /// Return true if a label was seen in the current scope.
368  bool hasLabelBeenSeenInCurrentScope() const {
369    if (CurLexicalScope)
370      return CurLexicalScope->hasLabels();
371    return !LabelMap.empty();
372  }
373
374  /// AllocaInsertPoint - This is an instruction in the entry block before which
375  /// we prefer to insert allocas.
376  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
377
378  /// API for captured statement code generation.
379  class CGCapturedStmtInfo {
380  public:
381    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
382        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
383    explicit CGCapturedStmtInfo(const CapturedStmt &S,
384                                CapturedRegionKind K = CR_Default)
385      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
386
387      RecordDecl::field_iterator Field =
388        S.getCapturedRecordDecl()->field_begin();
389      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
390                                                E = S.capture_end();
391           I != E; ++I, ++Field) {
392        if (I->capturesThis())
393          CXXThisFieldDecl = *Field;
394        else if (I->capturesVariable())
395          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
396        else if (I->capturesVariableByCopy())
397          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
398      }
399    }
400
401    virtual ~CGCapturedStmtInfo();
402
403    CapturedRegionKind getKind() const { return Kind; }
404
405    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
406    // Retrieve the value of the context parameter.
407    virtual llvm::Value *getContextValue() const { return ThisValue; }
408
409    /// Lookup the captured field decl for a variable.
410    virtual const FieldDecl *lookup(const VarDecl *VD) const {
411      return CaptureFields.lookup(VD->getCanonicalDecl());
412    }
413
414    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
415    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
416
417    static bool classof(const CGCapturedStmtInfo *) {
418      return true;
419    }
420
421    /// Emit the captured statement body.
422    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
423      CGF.incrementProfileCounter(S);
424      CGF.EmitStmt(S);
425    }
426
427    /// Get the name of the capture helper.
428    virtual StringRef getHelperName() const { return "__captured_stmt"; }
429
430  private:
431    /// The kind of captured statement being generated.
432    CapturedRegionKind Kind;
433
434    /// Keep the map between VarDecl and FieldDecl.
435    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
436
437    /// The base address of the captured record, passed in as the first
438    /// argument of the parallel region function.
439    llvm::Value *ThisValue;
440
441    /// Captured 'this' type.
442    FieldDecl *CXXThisFieldDecl;
443  };
444  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
445
446  /// RAII for correct setting/restoring of CapturedStmtInfo.
447  class CGCapturedStmtRAII {
448  private:
449    CodeGenFunction &CGF;
450    CGCapturedStmtInfo *PrevCapturedStmtInfo;
451  public:
452    CGCapturedStmtRAII(CodeGenFunction &CGF,
453                       CGCapturedStmtInfo *NewCapturedStmtInfo)
454        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
455      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
456    }
457    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
458  };
459
460  /// An abstract representation of regular/ObjC call/message targets.
461  class AbstractCallee {
462    /// The function declaration of the callee.
463    const Decl *CalleeDecl;
464
465  public:
466    AbstractCallee() : CalleeDecl(nullptr) {}
467    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
468    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
469    bool hasFunctionDecl() const {
470      return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
471    }
472    const Decl *getDecl() const { return CalleeDecl; }
473    unsigned getNumParams() const {
474      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
475        return FD->getNumParams();
476      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
477    }
478    const ParmVarDecl *getParamDecl(unsigned I) const {
479      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
480        return FD->getParamDecl(I);
481      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
482    }
483  };
484
485  /// Sanitizers enabled for this function.
486  SanitizerSet SanOpts;
487
488  /// True if CodeGen currently emits code implementing sanitizer checks.
489  bool IsSanitizerScope = false;
490
491  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
492  class SanitizerScope {
493    CodeGenFunction *CGF;
494  public:
495    SanitizerScope(CodeGenFunction *CGF);
496    ~SanitizerScope();
497  };
498
499  /// In C++, whether we are code generating a thunk.  This controls whether we
500  /// should emit cleanups.
501  bool CurFuncIsThunk = false;
502
503  /// In ARC, whether we should autorelease the return value.
504  bool AutoreleaseResult = false;
505
506  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
507  /// potentially set the return value.
508  bool SawAsmBlock = false;
509
510  const NamedDecl *CurSEHParent = nullptr;
511
512  /// True if the current function is an outlined SEH helper. This can be a
513  /// finally block or filter expression.
514  bool IsOutlinedSEHHelper = false;
515
516  /// True if CodeGen currently emits code inside presereved access index
517  /// region.
518  bool IsInPreservedAIRegion = false;
519
520  /// True if the current statement has nomerge attribute.
521  bool InNoMergeAttributedStmt = false;
522
523  // The CallExpr within the current statement that the musttail attribute
524  // applies to.  nullptr if there is no 'musttail' on the current statement.
525  const CallExpr *MustTailCall = nullptr;
526
527  /// Returns true if a function must make progress, which means the
528  /// mustprogress attribute can be added.
529  bool checkIfFunctionMustProgress() {
530    if (CGM.getCodeGenOpts().getFiniteLoops() ==
531        CodeGenOptions::FiniteLoopsKind::Never)
532      return false;
533
534    // C++11 and later guarantees that a thread eventually will do one of the
535    // following (6.9.2.3.1 in C++11):
536    // - terminate,
537    //  - make a call to a library I/O function,
538    //  - perform an access through a volatile glvalue, or
539    //  - perform a synchronization operation or an atomic operation.
540    //
541    // Hence each function is 'mustprogress' in C++11 or later.
542    return getLangOpts().CPlusPlus11;
543  }
544
545  /// Returns true if a loop must make progress, which means the mustprogress
546  /// attribute can be added. \p HasConstantCond indicates whether the branch
547  /// condition is a known constant.
548  bool checkIfLoopMustProgress(bool HasConstantCond) {
549    if (CGM.getCodeGenOpts().getFiniteLoops() ==
550        CodeGenOptions::FiniteLoopsKind::Always)
551      return true;
552    if (CGM.getCodeGenOpts().getFiniteLoops() ==
553        CodeGenOptions::FiniteLoopsKind::Never)
554      return false;
555
556    // If the containing function must make progress, loops also must make
557    // progress (as in C++11 and later).
558    if (checkIfFunctionMustProgress())
559      return true;
560
561    // Now apply rules for plain C (see  6.8.5.6 in C11).
562    // Loops with constant conditions do not have to make progress in any C
563    // version.
564    if (HasConstantCond)
565      return false;
566
567    // Loops with non-constant conditions must make progress in C11 and later.
568    return getLangOpts().C11;
569  }
570
571  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
572  llvm::Value *BlockPointer = nullptr;
573
574  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
575  FieldDecl *LambdaThisCaptureField = nullptr;
576
577  /// A mapping from NRVO variables to the flags used to indicate
578  /// when the NRVO has been applied to this variable.
579  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
580
581  EHScopeStack EHStack;
582  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
583  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
584
585  llvm::Instruction *CurrentFuncletPad = nullptr;
586
587  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
588    bool isRedundantBeforeReturn() override { return true; }
589
590    llvm::Value *Addr;
591    llvm::Value *Size;
592
593  public:
594    CallLifetimeEnd(Address addr, llvm::Value *size)
595        : Addr(addr.getPointer()), Size(size) {}
596
597    void Emit(CodeGenFunction &CGF, Flags flags) override {
598      CGF.EmitLifetimeEnd(Size, Addr);
599    }
600  };
601
602  /// Header for data within LifetimeExtendedCleanupStack.
603  struct LifetimeExtendedCleanupHeader {
604    /// The size of the following cleanup object.
605    unsigned Size;
606    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
607    unsigned Kind : 31;
608    /// Whether this is a conditional cleanup.
609    unsigned IsConditional : 1;
610
611    size_t getSize() const { return Size; }
612    CleanupKind getKind() const { return (CleanupKind)Kind; }
613    bool isConditional() const { return IsConditional; }
614  };
615
616  /// i32s containing the indexes of the cleanup destinations.
617  Address NormalCleanupDest = Address::invalid();
618
619  unsigned NextCleanupDestIndex = 1;
620
621  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
622  llvm::BasicBlock *EHResumeBlock = nullptr;
623
624  /// The exception slot.  All landing pads write the current exception pointer
625  /// into this alloca.
626  llvm::Value *ExceptionSlot = nullptr;
627
628  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
629  /// write the current selector value into this alloca.
630  llvm::AllocaInst *EHSelectorSlot = nullptr;
631
632  /// A stack of exception code slots. Entering an __except block pushes a slot
633  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
634  /// a value from the top of the stack.
635  SmallVector<Address, 1> SEHCodeSlotStack;
636
637  /// Value returned by __exception_info intrinsic.
638  llvm::Value *SEHInfo = nullptr;
639
640  /// Emits a landing pad for the current EH stack.
641  llvm::BasicBlock *EmitLandingPad();
642
643  llvm::BasicBlock *getInvokeDestImpl();
644
645  /// Parent loop-based directive for scan directive.
646  const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
647  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
648  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
649  llvm::BasicBlock *OMPScanExitBlock = nullptr;
650  llvm::BasicBlock *OMPScanDispatch = nullptr;
651  bool OMPFirstScanLoop = false;
652
653  /// Manages parent directive for scan directives.
654  class ParentLoopDirectiveForScanRegion {
655    CodeGenFunction &CGF;
656    const OMPExecutableDirective *ParentLoopDirectiveForScan;
657
658  public:
659    ParentLoopDirectiveForScanRegion(
660        CodeGenFunction &CGF,
661        const OMPExecutableDirective &ParentLoopDirectiveForScan)
662        : CGF(CGF),
663          ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
664      CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
665    }
666    ~ParentLoopDirectiveForScanRegion() {
667      CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
668    }
669  };
670
671  template <class T>
672  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673    return DominatingValue<T>::save(*this, value);
674  }
675
676  class CGFPOptionsRAII {
677  public:
678    CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
679    CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
680    ~CGFPOptionsRAII();
681
682  private:
683    void ConstructorHelper(FPOptions FPFeatures);
684    CodeGenFunction &CGF;
685    FPOptions OldFPFeatures;
686    llvm::fp::ExceptionBehavior OldExcept;
687    llvm::RoundingMode OldRounding;
688    Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
689  };
690  FPOptions CurFPFeatures;
691
692public:
693  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
694  /// rethrows.
695  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
696
697  /// A class controlling the emission of a finally block.
698  class FinallyInfo {
699    /// Where the catchall's edge through the cleanup should go.
700    JumpDest RethrowDest;
701
702    /// A function to call to enter the catch.
703    llvm::FunctionCallee BeginCatchFn;
704
705    /// An i1 variable indicating whether or not the @finally is
706    /// running for an exception.
707    llvm::AllocaInst *ForEHVar;
708
709    /// An i8* variable into which the exception pointer to rethrow
710    /// has been saved.
711    llvm::AllocaInst *SavedExnVar;
712
713  public:
714    void enter(CodeGenFunction &CGF, const Stmt *Finally,
715               llvm::FunctionCallee beginCatchFn,
716               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
717    void exit(CodeGenFunction &CGF);
718  };
719
720  /// Returns true inside SEH __try blocks.
721  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
722
723  /// Returns true while emitting a cleanuppad.
724  bool isCleanupPadScope() const {
725    return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
726  }
727
728  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
729  /// current full-expression.  Safe against the possibility that
730  /// we're currently inside a conditionally-evaluated expression.
731  template <class T, class... As>
732  void pushFullExprCleanup(CleanupKind kind, As... A) {
733    // If we're not in a conditional branch, or if none of the
734    // arguments requires saving, then use the unconditional cleanup.
735    if (!isInConditionalBranch())
736      return EHStack.pushCleanup<T>(kind, A...);
737
738    // Stash values in a tuple so we can guarantee the order of saves.
739    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740    SavedTuple Saved{saveValueInCond(A)...};
741
742    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744    initFullExprCleanup();
745  }
746
747  /// Queue a cleanup to be pushed after finishing the current full-expression,
748  /// potentially with an active flag.
749  template <class T, class... As>
750  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
751    if (!isInConditionalBranch())
752      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
753                                                       A...);
754
755    Address ActiveFlag = createCleanupActiveFlag();
756    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
757           "cleanup active flag should never need saving");
758
759    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
760    SavedTuple Saved{saveValueInCond(A)...};
761
762    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
763    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
764  }
765
766  template <class T, class... As>
767  void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
768                                              Address ActiveFlag, As... A) {
769    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
770                                            ActiveFlag.isValid()};
771
772    size_t OldSize = LifetimeExtendedCleanupStack.size();
773    LifetimeExtendedCleanupStack.resize(
774        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
775        (Header.IsConditional ? sizeof(ActiveFlag) : 0));
776
777    static_assert(sizeof(Header) % alignof(T) == 0,
778                  "Cleanup will be allocated on misaligned address");
779    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
780    new (Buffer) LifetimeExtendedCleanupHeader(Header);
781    new (Buffer + sizeof(Header)) T(A...);
782    if (Header.IsConditional)
783      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
784  }
785
786  /// Set up the last cleanup that was pushed as a conditional
787  /// full-expression cleanup.
788  void initFullExprCleanup() {
789    initFullExprCleanupWithFlag(createCleanupActiveFlag());
790  }
791
792  void initFullExprCleanupWithFlag(Address ActiveFlag);
793  Address createCleanupActiveFlag();
794
795  /// PushDestructorCleanup - Push a cleanup to call the
796  /// complete-object destructor of an object of the given type at the
797  /// given address.  Does nothing if T is not a C++ class type with a
798  /// non-trivial destructor.
799  void PushDestructorCleanup(QualType T, Address Addr);
800
801  /// PushDestructorCleanup - Push a cleanup to call the
802  /// complete-object variant of the given destructor on the object at
803  /// the given address.
804  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
805                             Address Addr);
806
807  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
808  /// process all branch fixups.
809  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
810
811  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
812  /// The block cannot be reactivated.  Pops it if it's the top of the
813  /// stack.
814  ///
815  /// \param DominatingIP - An instruction which is known to
816  ///   dominate the current IP (if set) and which lies along
817  ///   all paths of execution between the current IP and the
818  ///   the point at which the cleanup comes into scope.
819  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
820                              llvm::Instruction *DominatingIP);
821
822  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
823  /// Cannot be used to resurrect a deactivated cleanup.
824  ///
825  /// \param DominatingIP - An instruction which is known to
826  ///   dominate the current IP (if set) and which lies along
827  ///   all paths of execution between the current IP and the
828  ///   the point at which the cleanup comes into scope.
829  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
830                            llvm::Instruction *DominatingIP);
831
832  /// Enters a new scope for capturing cleanups, all of which
833  /// will be executed once the scope is exited.
834  class RunCleanupsScope {
835    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
836    size_t LifetimeExtendedCleanupStackSize;
837    bool OldDidCallStackSave;
838  protected:
839    bool PerformCleanup;
840  private:
841
842    RunCleanupsScope(const RunCleanupsScope &) = delete;
843    void operator=(const RunCleanupsScope &) = delete;
844
845  protected:
846    CodeGenFunction& CGF;
847
848  public:
849    /// Enter a new cleanup scope.
850    explicit RunCleanupsScope(CodeGenFunction &CGF)
851      : PerformCleanup(true), CGF(CGF)
852    {
853      CleanupStackDepth = CGF.EHStack.stable_begin();
854      LifetimeExtendedCleanupStackSize =
855          CGF.LifetimeExtendedCleanupStack.size();
856      OldDidCallStackSave = CGF.DidCallStackSave;
857      CGF.DidCallStackSave = false;
858      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
859      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
860    }
861
862    /// Exit this cleanup scope, emitting any accumulated cleanups.
863    ~RunCleanupsScope() {
864      if (PerformCleanup)
865        ForceCleanup();
866    }
867
868    /// Determine whether this scope requires any cleanups.
869    bool requiresCleanups() const {
870      return CGF.EHStack.stable_begin() != CleanupStackDepth;
871    }
872
873    /// Force the emission of cleanups now, instead of waiting
874    /// until this object is destroyed.
875    /// \param ValuesToReload - A list of values that need to be available at
876    /// the insertion point after cleanup emission. If cleanup emission created
877    /// a shared cleanup block, these value pointers will be rewritten.
878    /// Otherwise, they not will be modified.
879    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
880      assert(PerformCleanup && "Already forced cleanup");
881      CGF.DidCallStackSave = OldDidCallStackSave;
882      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
883                           ValuesToReload);
884      PerformCleanup = false;
885      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
886    }
887  };
888
889  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
890  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
891      EHScopeStack::stable_end();
892
893  class LexicalScope : public RunCleanupsScope {
894    SourceRange Range;
895    SmallVector<const LabelDecl*, 4> Labels;
896    LexicalScope *ParentScope;
897
898    LexicalScope(const LexicalScope &) = delete;
899    void operator=(const LexicalScope &) = delete;
900
901  public:
902    /// Enter a new cleanup scope.
903    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
904      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
905      CGF.CurLexicalScope = this;
906      if (CGDebugInfo *DI = CGF.getDebugInfo())
907        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
908    }
909
910    void addLabel(const LabelDecl *label) {
911      assert(PerformCleanup && "adding label to dead scope?");
912      Labels.push_back(label);
913    }
914
915    /// Exit this cleanup scope, emitting any accumulated
916    /// cleanups.
917    ~LexicalScope() {
918      if (CGDebugInfo *DI = CGF.getDebugInfo())
919        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
920
921      // If we should perform a cleanup, force them now.  Note that
922      // this ends the cleanup scope before rescoping any labels.
923      if (PerformCleanup) {
924        ApplyDebugLocation DL(CGF, Range.getEnd());
925        ForceCleanup();
926      }
927    }
928
929    /// Force the emission of cleanups now, instead of waiting
930    /// until this object is destroyed.
931    void ForceCleanup() {
932      CGF.CurLexicalScope = ParentScope;
933      RunCleanupsScope::ForceCleanup();
934
935      if (!Labels.empty())
936        rescopeLabels();
937    }
938
939    bool hasLabels() const {
940      return !Labels.empty();
941    }
942
943    void rescopeLabels();
944  };
945
946  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
947
948  /// The class used to assign some variables some temporarily addresses.
949  class OMPMapVars {
950    DeclMapTy SavedLocals;
951    DeclMapTy SavedTempAddresses;
952    OMPMapVars(const OMPMapVars &) = delete;
953    void operator=(const OMPMapVars &) = delete;
954
955  public:
956    explicit OMPMapVars() = default;
957    ~OMPMapVars() {
958      assert(SavedLocals.empty() && "Did not restored original addresses.");
959    };
960
961    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
962    /// function \p CGF.
963    /// \return true if at least one variable was set already, false otherwise.
964    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
965                    Address TempAddr) {
966      LocalVD = LocalVD->getCanonicalDecl();
967      // Only save it once.
968      if (SavedLocals.count(LocalVD)) return false;
969
970      // Copy the existing local entry to SavedLocals.
971      auto it = CGF.LocalDeclMap.find(LocalVD);
972      if (it != CGF.LocalDeclMap.end())
973        SavedLocals.try_emplace(LocalVD, it->second);
974      else
975        SavedLocals.try_emplace(LocalVD, Address::invalid());
976
977      // Generate the private entry.
978      QualType VarTy = LocalVD->getType();
979      if (VarTy->isReferenceType()) {
980        Address Temp = CGF.CreateMemTemp(VarTy);
981        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
982        TempAddr = Temp;
983      }
984      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
985
986      return true;
987    }
988
989    /// Applies new addresses to the list of the variables.
990    /// \return true if at least one variable is using new address, false
991    /// otherwise.
992    bool apply(CodeGenFunction &CGF) {
993      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
994      SavedTempAddresses.clear();
995      return !SavedLocals.empty();
996    }
997
998    /// Restores original addresses of the variables.
999    void restore(CodeGenFunction &CGF) {
1000      if (!SavedLocals.empty()) {
1001        copyInto(SavedLocals, CGF.LocalDeclMap);
1002        SavedLocals.clear();
1003      }
1004    }
1005
1006  private:
1007    /// Copy all the entries in the source map over the corresponding
1008    /// entries in the destination, which must exist.
1009    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1010      for (auto &Pair : Src) {
1011        if (!Pair.second.isValid()) {
1012          Dest.erase(Pair.first);
1013          continue;
1014        }
1015
1016        auto I = Dest.find(Pair.first);
1017        if (I != Dest.end())
1018          I->second = Pair.second;
1019        else
1020          Dest.insert(Pair);
1021      }
1022    }
1023  };
1024
1025  /// The scope used to remap some variables as private in the OpenMP loop body
1026  /// (or other captured region emitted without outlining), and to restore old
1027  /// vars back on exit.
1028  class OMPPrivateScope : public RunCleanupsScope {
1029    OMPMapVars MappedVars;
1030    OMPPrivateScope(const OMPPrivateScope &) = delete;
1031    void operator=(const OMPPrivateScope &) = delete;
1032
1033  public:
1034    /// Enter a new OpenMP private scope.
1035    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1036
1037    /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1038    /// function for it to generate corresponding private variable. \p
1039    /// PrivateGen returns an address of the generated private variable.
1040    /// \return true if the variable is registered as private, false if it has
1041    /// been privatized already.
1042    bool addPrivate(const VarDecl *LocalVD,
1043                    const llvm::function_ref<Address()> PrivateGen) {
1044      assert(PerformCleanup && "adding private to dead scope");
1045      return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1046    }
1047
1048    /// Privatizes local variables previously registered as private.
1049    /// Registration is separate from the actual privatization to allow
1050    /// initializers use values of the original variables, not the private one.
1051    /// This is important, for example, if the private variable is a class
1052    /// variable initialized by a constructor that references other private
1053    /// variables. But at initialization original variables must be used, not
1054    /// private copies.
1055    /// \return true if at least one variable was privatized, false otherwise.
1056    bool Privatize() { return MappedVars.apply(CGF); }
1057
1058    void ForceCleanup() {
1059      RunCleanupsScope::ForceCleanup();
1060      MappedVars.restore(CGF);
1061    }
1062
1063    /// Exit scope - all the mapped variables are restored.
1064    ~OMPPrivateScope() {
1065      if (PerformCleanup)
1066        ForceCleanup();
1067    }
1068
1069    /// Checks if the global variable is captured in current function.
1070    bool isGlobalVarCaptured(const VarDecl *VD) const {
1071      VD = VD->getCanonicalDecl();
1072      return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1073    }
1074  };
1075
1076  /// Save/restore original map of previously emitted local vars in case when we
1077  /// need to duplicate emission of the same code several times in the same
1078  /// function for OpenMP code.
1079  class OMPLocalDeclMapRAII {
1080    CodeGenFunction &CGF;
1081    DeclMapTy SavedMap;
1082
1083  public:
1084    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1085        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1086    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1087  };
1088
1089  /// Takes the old cleanup stack size and emits the cleanup blocks
1090  /// that have been added.
1091  void
1092  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1093                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1094
1095  /// Takes the old cleanup stack size and emits the cleanup blocks
1096  /// that have been added, then adds all lifetime-extended cleanups from
1097  /// the given position to the stack.
1098  void
1099  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1100                   size_t OldLifetimeExtendedStackSize,
1101                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1102
1103  void ResolveBranchFixups(llvm::BasicBlock *Target);
1104
1105  /// The given basic block lies in the current EH scope, but may be a
1106  /// target of a potentially scope-crossing jump; get a stable handle
1107  /// to which we can perform this jump later.
1108  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1109    return JumpDest(Target,
1110                    EHStack.getInnermostNormalCleanup(),
1111                    NextCleanupDestIndex++);
1112  }
1113
1114  /// The given basic block lies in the current EH scope, but may be a
1115  /// target of a potentially scope-crossing jump; get a stable handle
1116  /// to which we can perform this jump later.
1117  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1118    return getJumpDestInCurrentScope(createBasicBlock(Name));
1119  }
1120
1121  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1122  /// block through the normal cleanup handling code (if any) and then
1123  /// on to \arg Dest.
1124  void EmitBranchThroughCleanup(JumpDest Dest);
1125
1126  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1127  /// specified destination obviously has no cleanups to run.  'false' is always
1128  /// a conservatively correct answer for this method.
1129  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1130
1131  /// popCatchScope - Pops the catch scope at the top of the EHScope
1132  /// stack, emitting any required code (other than the catch handlers
1133  /// themselves).
1134  void popCatchScope();
1135
1136  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1137  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1138  llvm::BasicBlock *
1139  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1140
1141  /// An object to manage conditionally-evaluated expressions.
1142  class ConditionalEvaluation {
1143    llvm::BasicBlock *StartBB;
1144
1145  public:
1146    ConditionalEvaluation(CodeGenFunction &CGF)
1147      : StartBB(CGF.Builder.GetInsertBlock()) {}
1148
1149    void begin(CodeGenFunction &CGF) {
1150      assert(CGF.OutermostConditional != this);
1151      if (!CGF.OutermostConditional)
1152        CGF.OutermostConditional = this;
1153    }
1154
1155    void end(CodeGenFunction &CGF) {
1156      assert(CGF.OutermostConditional != nullptr);
1157      if (CGF.OutermostConditional == this)
1158        CGF.OutermostConditional = nullptr;
1159    }
1160
1161    /// Returns a block which will be executed prior to each
1162    /// evaluation of the conditional code.
1163    llvm::BasicBlock *getStartingBlock() const {
1164      return StartBB;
1165    }
1166  };
1167
1168  /// isInConditionalBranch - Return true if we're currently emitting
1169  /// one branch or the other of a conditional expression.
1170  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1171
1172  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1173    assert(isInConditionalBranch());
1174    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1175    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1176    store->setAlignment(addr.getAlignment().getAsAlign());
1177  }
1178
1179  /// An RAII object to record that we're evaluating a statement
1180  /// expression.
1181  class StmtExprEvaluation {
1182    CodeGenFunction &CGF;
1183
1184    /// We have to save the outermost conditional: cleanups in a
1185    /// statement expression aren't conditional just because the
1186    /// StmtExpr is.
1187    ConditionalEvaluation *SavedOutermostConditional;
1188
1189  public:
1190    StmtExprEvaluation(CodeGenFunction &CGF)
1191      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1192      CGF.OutermostConditional = nullptr;
1193    }
1194
1195    ~StmtExprEvaluation() {
1196      CGF.OutermostConditional = SavedOutermostConditional;
1197      CGF.EnsureInsertPoint();
1198    }
1199  };
1200
1201  /// An object which temporarily prevents a value from being
1202  /// destroyed by aggressive peephole optimizations that assume that
1203  /// all uses of a value have been realized in the IR.
1204  class PeepholeProtection {
1205    llvm::Instruction *Inst;
1206    friend class CodeGenFunction;
1207
1208  public:
1209    PeepholeProtection() : Inst(nullptr) {}
1210  };
1211
1212  /// A non-RAII class containing all the information about a bound
1213  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1214  /// this which makes individual mappings very simple; using this
1215  /// class directly is useful when you have a variable number of
1216  /// opaque values or don't want the RAII functionality for some
1217  /// reason.
1218  class OpaqueValueMappingData {
1219    const OpaqueValueExpr *OpaqueValue;
1220    bool BoundLValue;
1221    CodeGenFunction::PeepholeProtection Protection;
1222
1223    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1224                           bool boundLValue)
1225      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1226  public:
1227    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1228
1229    static bool shouldBindAsLValue(const Expr *expr) {
1230      // gl-values should be bound as l-values for obvious reasons.
1231      // Records should be bound as l-values because IR generation
1232      // always keeps them in memory.  Expressions of function type
1233      // act exactly like l-values but are formally required to be
1234      // r-values in C.
1235      return expr->isGLValue() ||
1236             expr->getType()->isFunctionType() ||
1237             hasAggregateEvaluationKind(expr->getType());
1238    }
1239
1240    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1241                                       const OpaqueValueExpr *ov,
1242                                       const Expr *e) {
1243      if (shouldBindAsLValue(ov))
1244        return bind(CGF, ov, CGF.EmitLValue(e));
1245      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1246    }
1247
1248    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1249                                       const OpaqueValueExpr *ov,
1250                                       const LValue &lv) {
1251      assert(shouldBindAsLValue(ov));
1252      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1253      return OpaqueValueMappingData(ov, true);
1254    }
1255
1256    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1257                                       const OpaqueValueExpr *ov,
1258                                       const RValue &rv) {
1259      assert(!shouldBindAsLValue(ov));
1260      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1261
1262      OpaqueValueMappingData data(ov, false);
1263
1264      // Work around an extremely aggressive peephole optimization in
1265      // EmitScalarConversion which assumes that all other uses of a
1266      // value are extant.
1267      data.Protection = CGF.protectFromPeepholes(rv);
1268
1269      return data;
1270    }
1271
1272    bool isValid() const { return OpaqueValue != nullptr; }
1273    void clear() { OpaqueValue = nullptr; }
1274
1275    void unbind(CodeGenFunction &CGF) {
1276      assert(OpaqueValue && "no data to unbind!");
1277
1278      if (BoundLValue) {
1279        CGF.OpaqueLValues.erase(OpaqueValue);
1280      } else {
1281        CGF.OpaqueRValues.erase(OpaqueValue);
1282        CGF.unprotectFromPeepholes(Protection);
1283      }
1284    }
1285  };
1286
1287  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1288  class OpaqueValueMapping {
1289    CodeGenFunction &CGF;
1290    OpaqueValueMappingData Data;
1291
1292  public:
1293    static bool shouldBindAsLValue(const Expr *expr) {
1294      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1295    }
1296
1297    /// Build the opaque value mapping for the given conditional
1298    /// operator if it's the GNU ?: extension.  This is a common
1299    /// enough pattern that the convenience operator is really
1300    /// helpful.
1301    ///
1302    OpaqueValueMapping(CodeGenFunction &CGF,
1303                       const AbstractConditionalOperator *op) : CGF(CGF) {
1304      if (isa<ConditionalOperator>(op))
1305        // Leave Data empty.
1306        return;
1307
1308      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1309      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1310                                          e->getCommon());
1311    }
1312
1313    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1314    /// expression is set to the expression the OVE represents.
1315    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1316        : CGF(CGF) {
1317      if (OV) {
1318        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1319                                      "for OVE with no source expression");
1320        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1321      }
1322    }
1323
1324    OpaqueValueMapping(CodeGenFunction &CGF,
1325                       const OpaqueValueExpr *opaqueValue,
1326                       LValue lvalue)
1327      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1328    }
1329
1330    OpaqueValueMapping(CodeGenFunction &CGF,
1331                       const OpaqueValueExpr *opaqueValue,
1332                       RValue rvalue)
1333      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1334    }
1335
1336    void pop() {
1337      Data.unbind(CGF);
1338      Data.clear();
1339    }
1340
1341    ~OpaqueValueMapping() {
1342      if (Data.isValid()) Data.unbind(CGF);
1343    }
1344  };
1345
1346private:
1347  CGDebugInfo *DebugInfo;
1348  /// Used to create unique names for artificial VLA size debug info variables.
1349  unsigned VLAExprCounter = 0;
1350  bool DisableDebugInfo = false;
1351
1352  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1353  /// calling llvm.stacksave for multiple VLAs in the same scope.
1354  bool DidCallStackSave = false;
1355
1356  /// IndirectBranch - The first time an indirect goto is seen we create a block
1357  /// with an indirect branch.  Every time we see the address of a label taken,
1358  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1359  /// codegen'd as a jump to the IndirectBranch's basic block.
1360  llvm::IndirectBrInst *IndirectBranch = nullptr;
1361
1362  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1363  /// decls.
1364  DeclMapTy LocalDeclMap;
1365
1366  // Keep track of the cleanups for callee-destructed parameters pushed to the
1367  // cleanup stack so that they can be deactivated later.
1368  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1369      CalleeDestructedParamCleanups;
1370
1371  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1372  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1373  /// parameter.
1374  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1375      SizeArguments;
1376
1377  /// Track escaped local variables with auto storage. Used during SEH
1378  /// outlining to produce a call to llvm.localescape.
1379  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1380
1381  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1382  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1383
1384  // BreakContinueStack - This keeps track of where break and continue
1385  // statements should jump to.
1386  struct BreakContinue {
1387    BreakContinue(JumpDest Break, JumpDest Continue)
1388      : BreakBlock(Break), ContinueBlock(Continue) {}
1389
1390    JumpDest BreakBlock;
1391    JumpDest ContinueBlock;
1392  };
1393  SmallVector<BreakContinue, 8> BreakContinueStack;
1394
1395  /// Handles cancellation exit points in OpenMP-related constructs.
1396  class OpenMPCancelExitStack {
1397    /// Tracks cancellation exit point and join point for cancel-related exit
1398    /// and normal exit.
1399    struct CancelExit {
1400      CancelExit() = default;
1401      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1402                 JumpDest ContBlock)
1403          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1404      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1405      /// true if the exit block has been emitted already by the special
1406      /// emitExit() call, false if the default codegen is used.
1407      bool HasBeenEmitted = false;
1408      JumpDest ExitBlock;
1409      JumpDest ContBlock;
1410    };
1411
1412    SmallVector<CancelExit, 8> Stack;
1413
1414  public:
1415    OpenMPCancelExitStack() : Stack(1) {}
1416    ~OpenMPCancelExitStack() = default;
1417    /// Fetches the exit block for the current OpenMP construct.
1418    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1419    /// Emits exit block with special codegen procedure specific for the related
1420    /// OpenMP construct + emits code for normal construct cleanup.
1421    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1422                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1423      if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1424        assert(CGF.getOMPCancelDestination(Kind).isValid());
1425        assert(CGF.HaveInsertPoint());
1426        assert(!Stack.back().HasBeenEmitted);
1427        auto IP = CGF.Builder.saveAndClearIP();
1428        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1429        CodeGen(CGF);
1430        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1431        CGF.Builder.restoreIP(IP);
1432        Stack.back().HasBeenEmitted = true;
1433      }
1434      CodeGen(CGF);
1435    }
1436    /// Enter the cancel supporting \a Kind construct.
1437    /// \param Kind OpenMP directive that supports cancel constructs.
1438    /// \param HasCancel true, if the construct has inner cancel directive,
1439    /// false otherwise.
1440    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1441      Stack.push_back({Kind,
1442                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1443                                 : JumpDest(),
1444                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1445                                 : JumpDest()});
1446    }
1447    /// Emits default exit point for the cancel construct (if the special one
1448    /// has not be used) + join point for cancel/normal exits.
1449    void exit(CodeGenFunction &CGF) {
1450      if (getExitBlock().isValid()) {
1451        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1452        bool HaveIP = CGF.HaveInsertPoint();
1453        if (!Stack.back().HasBeenEmitted) {
1454          if (HaveIP)
1455            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1456          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1457          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1458        }
1459        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1460        if (!HaveIP) {
1461          CGF.Builder.CreateUnreachable();
1462          CGF.Builder.ClearInsertionPoint();
1463        }
1464      }
1465      Stack.pop_back();
1466    }
1467  };
1468  OpenMPCancelExitStack OMPCancelStack;
1469
1470  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1471  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1472                                                    Stmt::Likelihood LH);
1473
1474  CodeGenPGO PGO;
1475
1476  /// Calculate branch weights appropriate for PGO data
1477  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1478                                     uint64_t FalseCount) const;
1479  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1480  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1481                                            uint64_t LoopCount) const;
1482
1483public:
1484  /// Increment the profiler's counter for the given statement by \p StepV.
1485  /// If \p StepV is null, the default increment is 1.
1486  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1487    if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1488        !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1489      PGO.emitCounterIncrement(Builder, S, StepV);
1490    PGO.setCurrentStmt(S);
1491  }
1492
1493  /// Get the profiler's count for the given statement.
1494  uint64_t getProfileCount(const Stmt *S) {
1495    Optional<uint64_t> Count = PGO.getStmtCount(S);
1496    if (!Count.hasValue())
1497      return 0;
1498    return *Count;
1499  }
1500
1501  /// Set the profiler's current count.
1502  void setCurrentProfileCount(uint64_t Count) {
1503    PGO.setCurrentRegionCount(Count);
1504  }
1505
1506  /// Get the profiler's current count. This is generally the count for the most
1507  /// recently incremented counter.
1508  uint64_t getCurrentProfileCount() {
1509    return PGO.getCurrentRegionCount();
1510  }
1511
1512private:
1513
1514  /// SwitchInsn - This is nearest current switch instruction. It is null if
1515  /// current context is not in a switch.
1516  llvm::SwitchInst *SwitchInsn = nullptr;
1517  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1518  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1519
1520  /// The likelihood attributes of the SwitchCase.
1521  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1522
1523  /// CaseRangeBlock - This block holds if condition check for last case
1524  /// statement range in current switch instruction.
1525  llvm::BasicBlock *CaseRangeBlock = nullptr;
1526
1527  /// OpaqueLValues - Keeps track of the current set of opaque value
1528  /// expressions.
1529  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1530  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1531
1532  // VLASizeMap - This keeps track of the associated size for each VLA type.
1533  // We track this by the size expression rather than the type itself because
1534  // in certain situations, like a const qualifier applied to an VLA typedef,
1535  // multiple VLA types can share the same size expression.
1536  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1537  // enter/leave scopes.
1538  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1539
1540  /// A block containing a single 'unreachable' instruction.  Created
1541  /// lazily by getUnreachableBlock().
1542  llvm::BasicBlock *UnreachableBlock = nullptr;
1543
1544  /// Counts of the number return expressions in the function.
1545  unsigned NumReturnExprs = 0;
1546
1547  /// Count the number of simple (constant) return expressions in the function.
1548  unsigned NumSimpleReturnExprs = 0;
1549
1550  /// The last regular (non-return) debug location (breakpoint) in the function.
1551  SourceLocation LastStopPoint;
1552
1553public:
1554  /// Source location information about the default argument or member
1555  /// initializer expression we're evaluating, if any.
1556  CurrentSourceLocExprScope CurSourceLocExprScope;
1557  using SourceLocExprScopeGuard =
1558      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1559
1560  /// A scope within which we are constructing the fields of an object which
1561  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1562  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1563  class FieldConstructionScope {
1564  public:
1565    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1566        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1567      CGF.CXXDefaultInitExprThis = This;
1568    }
1569    ~FieldConstructionScope() {
1570      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1571    }
1572
1573  private:
1574    CodeGenFunction &CGF;
1575    Address OldCXXDefaultInitExprThis;
1576  };
1577
1578  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1579  /// is overridden to be the object under construction.
1580  class CXXDefaultInitExprScope  {
1581  public:
1582    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1583        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1584          OldCXXThisAlignment(CGF.CXXThisAlignment),
1585          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1586      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1587      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1588    }
1589    ~CXXDefaultInitExprScope() {
1590      CGF.CXXThisValue = OldCXXThisValue;
1591      CGF.CXXThisAlignment = OldCXXThisAlignment;
1592    }
1593
1594  public:
1595    CodeGenFunction &CGF;
1596    llvm::Value *OldCXXThisValue;
1597    CharUnits OldCXXThisAlignment;
1598    SourceLocExprScopeGuard SourceLocScope;
1599  };
1600
1601  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1602    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1603        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1604  };
1605
1606  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1607  /// current loop index is overridden.
1608  class ArrayInitLoopExprScope {
1609  public:
1610    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1611      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1612      CGF.ArrayInitIndex = Index;
1613    }
1614    ~ArrayInitLoopExprScope() {
1615      CGF.ArrayInitIndex = OldArrayInitIndex;
1616    }
1617
1618  private:
1619    CodeGenFunction &CGF;
1620    llvm::Value *OldArrayInitIndex;
1621  };
1622
1623  class InlinedInheritingConstructorScope {
1624  public:
1625    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1626        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1627          OldCurCodeDecl(CGF.CurCodeDecl),
1628          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1629          OldCXXABIThisValue(CGF.CXXABIThisValue),
1630          OldCXXThisValue(CGF.CXXThisValue),
1631          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1632          OldCXXThisAlignment(CGF.CXXThisAlignment),
1633          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1634          OldCXXInheritedCtorInitExprArgs(
1635              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1636      CGF.CurGD = GD;
1637      CGF.CurFuncDecl = CGF.CurCodeDecl =
1638          cast<CXXConstructorDecl>(GD.getDecl());
1639      CGF.CXXABIThisDecl = nullptr;
1640      CGF.CXXABIThisValue = nullptr;
1641      CGF.CXXThisValue = nullptr;
1642      CGF.CXXABIThisAlignment = CharUnits();
1643      CGF.CXXThisAlignment = CharUnits();
1644      CGF.ReturnValue = Address::invalid();
1645      CGF.FnRetTy = QualType();
1646      CGF.CXXInheritedCtorInitExprArgs.clear();
1647    }
1648    ~InlinedInheritingConstructorScope() {
1649      CGF.CurGD = OldCurGD;
1650      CGF.CurFuncDecl = OldCurFuncDecl;
1651      CGF.CurCodeDecl = OldCurCodeDecl;
1652      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1653      CGF.CXXABIThisValue = OldCXXABIThisValue;
1654      CGF.CXXThisValue = OldCXXThisValue;
1655      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1656      CGF.CXXThisAlignment = OldCXXThisAlignment;
1657      CGF.ReturnValue = OldReturnValue;
1658      CGF.FnRetTy = OldFnRetTy;
1659      CGF.CXXInheritedCtorInitExprArgs =
1660          std::move(OldCXXInheritedCtorInitExprArgs);
1661    }
1662
1663  private:
1664    CodeGenFunction &CGF;
1665    GlobalDecl OldCurGD;
1666    const Decl *OldCurFuncDecl;
1667    const Decl *OldCurCodeDecl;
1668    ImplicitParamDecl *OldCXXABIThisDecl;
1669    llvm::Value *OldCXXABIThisValue;
1670    llvm::Value *OldCXXThisValue;
1671    CharUnits OldCXXABIThisAlignment;
1672    CharUnits OldCXXThisAlignment;
1673    Address OldReturnValue;
1674    QualType OldFnRetTy;
1675    CallArgList OldCXXInheritedCtorInitExprArgs;
1676  };
1677
1678  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1679  // region body, and finalization codegen callbacks. This will class will also
1680  // contain privatization functions used by the privatization call backs
1681  //
1682  // TODO: this is temporary class for things that are being moved out of
1683  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1684  // utility function for use with the OMPBuilder. Once that move to use the
1685  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1686  // directly, or a new helper class that will contain functions used by both
1687  // this and the OMPBuilder
1688
1689  struct OMPBuilderCBHelpers {
1690
1691    OMPBuilderCBHelpers() = delete;
1692    OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1693    OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1694
1695    using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1696
1697    /// Cleanup action for allocate support.
1698    class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1699
1700    private:
1701      llvm::CallInst *RTLFnCI;
1702
1703    public:
1704      OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1705        RLFnCI->removeFromParent();
1706      }
1707
1708      void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1709        if (!CGF.HaveInsertPoint())
1710          return;
1711        CGF.Builder.Insert(RTLFnCI);
1712      }
1713    };
1714
1715    /// Returns address of the threadprivate variable for the current
1716    /// thread. This Also create any necessary OMP runtime calls.
1717    ///
1718    /// \param VD VarDecl for Threadprivate variable.
1719    /// \param VDAddr Address of the Vardecl
1720    /// \param Loc  The location where the barrier directive was encountered
1721    static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1722                                          const VarDecl *VD, Address VDAddr,
1723                                          SourceLocation Loc);
1724
1725    /// Gets the OpenMP-specific address of the local variable /p VD.
1726    static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1727                                             const VarDecl *VD);
1728    /// Get the platform-specific name separator.
1729    /// \param Parts different parts of the final name that needs separation
1730    /// \param FirstSeparator First separator used between the initial two
1731    ///        parts of the name.
1732    /// \param Separator separator used between all of the rest consecutinve
1733    ///        parts of the name
1734    static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1735                                             StringRef FirstSeparator = ".",
1736                                             StringRef Separator = ".");
1737    /// Emit the Finalization for an OMP region
1738    /// \param CGF	The Codegen function this belongs to
1739    /// \param IP	Insertion point for generating the finalization code.
1740    static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1741      CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1742      assert(IP.getBlock()->end() != IP.getPoint() &&
1743             "OpenMP IR Builder should cause terminated block!");
1744
1745      llvm::BasicBlock *IPBB = IP.getBlock();
1746      llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1747      assert(DestBB && "Finalization block should have one successor!");
1748
1749      // erase and replace with cleanup branch.
1750      IPBB->getTerminator()->eraseFromParent();
1751      CGF.Builder.SetInsertPoint(IPBB);
1752      CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1753      CGF.EmitBranchThroughCleanup(Dest);
1754    }
1755
1756    /// Emit the body of an OMP region
1757    /// \param CGF	The Codegen function this belongs to
1758    /// \param RegionBodyStmt	The body statement for the OpenMP region being
1759    /// 			 generated
1760    /// \param CodeGenIP	Insertion point for generating the body code.
1761    /// \param FiniBB	The finalization basic block
1762    static void EmitOMPRegionBody(CodeGenFunction &CGF,
1763                                  const Stmt *RegionBodyStmt,
1764                                  InsertPointTy CodeGenIP,
1765                                  llvm::BasicBlock &FiniBB) {
1766      llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1767      if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1768        CodeGenIPBBTI->eraseFromParent();
1769
1770      CGF.Builder.SetInsertPoint(CodeGenIPBB);
1771
1772      CGF.EmitStmt(RegionBodyStmt);
1773
1774      if (CGF.Builder.saveIP().isSet())
1775        CGF.Builder.CreateBr(&FiniBB);
1776    }
1777
1778    /// RAII for preserving necessary info during Outlined region body codegen.
1779    class OutlinedRegionBodyRAII {
1780
1781      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1782      CodeGenFunction::JumpDest OldReturnBlock;
1783      CGBuilderTy::InsertPoint IP;
1784      CodeGenFunction &CGF;
1785
1786    public:
1787      OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1788                             llvm::BasicBlock &RetBB)
1789          : CGF(cgf) {
1790        assert(AllocaIP.isSet() &&
1791               "Must specify Insertion point for allocas of outlined function");
1792        OldAllocaIP = CGF.AllocaInsertPt;
1793        CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1794        IP = CGF.Builder.saveIP();
1795
1796        OldReturnBlock = CGF.ReturnBlock;
1797        CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1798      }
1799
1800      ~OutlinedRegionBodyRAII() {
1801        CGF.AllocaInsertPt = OldAllocaIP;
1802        CGF.ReturnBlock = OldReturnBlock;
1803        CGF.Builder.restoreIP(IP);
1804      }
1805    };
1806
1807    /// RAII for preserving necessary info during inlined region body codegen.
1808    class InlinedRegionBodyRAII {
1809
1810      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1811      CodeGenFunction &CGF;
1812
1813    public:
1814      InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1815                            llvm::BasicBlock &FiniBB)
1816          : CGF(cgf) {
1817        // Alloca insertion block should be in the entry block of the containing
1818        // function so it expects an empty AllocaIP in which case will reuse the
1819        // old alloca insertion point, or a new AllocaIP in the same block as
1820        // the old one
1821        assert((!AllocaIP.isSet() ||
1822                CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1823               "Insertion point should be in the entry block of containing "
1824               "function!");
1825        OldAllocaIP = CGF.AllocaInsertPt;
1826        if (AllocaIP.isSet())
1827          CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1828
1829        // TODO: Remove the call, after making sure the counter is not used by
1830        //       the EHStack.
1831        // Since this is an inlined region, it should not modify the
1832        // ReturnBlock, and should reuse the one for the enclosing outlined
1833        // region. So, the JumpDest being return by the function is discarded
1834        (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1835      }
1836
1837      ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1838    };
1839  };
1840
1841private:
1842  /// CXXThisDecl - When generating code for a C++ member function,
1843  /// this will hold the implicit 'this' declaration.
1844  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1845  llvm::Value *CXXABIThisValue = nullptr;
1846  llvm::Value *CXXThisValue = nullptr;
1847  CharUnits CXXABIThisAlignment;
1848  CharUnits CXXThisAlignment;
1849
1850  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1851  /// this expression.
1852  Address CXXDefaultInitExprThis = Address::invalid();
1853
1854  /// The current array initialization index when evaluating an
1855  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1856  llvm::Value *ArrayInitIndex = nullptr;
1857
1858  /// The values of function arguments to use when evaluating
1859  /// CXXInheritedCtorInitExprs within this context.
1860  CallArgList CXXInheritedCtorInitExprArgs;
1861
1862  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1863  /// destructor, this will hold the implicit argument (e.g. VTT).
1864  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1865  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1866
1867  /// OutermostConditional - Points to the outermost active
1868  /// conditional control.  This is used so that we know if a
1869  /// temporary should be destroyed conditionally.
1870  ConditionalEvaluation *OutermostConditional = nullptr;
1871
1872  /// The current lexical scope.
1873  LexicalScope *CurLexicalScope = nullptr;
1874
1875  /// The current source location that should be used for exception
1876  /// handling code.
1877  SourceLocation CurEHLocation;
1878
1879  /// BlockByrefInfos - For each __block variable, contains
1880  /// information about the layout of the variable.
1881  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1882
1883  /// Used by -fsanitize=nullability-return to determine whether the return
1884  /// value can be checked.
1885  llvm::Value *RetValNullabilityPrecondition = nullptr;
1886
1887  /// Check if -fsanitize=nullability-return instrumentation is required for
1888  /// this function.
1889  bool requiresReturnValueNullabilityCheck() const {
1890    return RetValNullabilityPrecondition;
1891  }
1892
1893  /// Used to store precise source locations for return statements by the
1894  /// runtime return value checks.
1895  Address ReturnLocation = Address::invalid();
1896
1897  /// Check if the return value of this function requires sanitization.
1898  bool requiresReturnValueCheck() const;
1899
1900  llvm::BasicBlock *TerminateLandingPad = nullptr;
1901  llvm::BasicBlock *TerminateHandler = nullptr;
1902  llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1903
1904  /// Terminate funclets keyed by parent funclet pad.
1905  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1906
1907  /// Largest vector width used in ths function. Will be used to create a
1908  /// function attribute.
1909  unsigned LargestVectorWidth = 0;
1910
1911  /// True if we need emit the life-time markers. This is initially set in
1912  /// the constructor, but could be overwritten to true if this is a coroutine.
1913  bool ShouldEmitLifetimeMarkers;
1914
1915  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1916  /// the function metadata.
1917  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1918                                llvm::Function *Fn);
1919
1920public:
1921  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1922  ~CodeGenFunction();
1923
1924  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1925  ASTContext &getContext() const { return CGM.getContext(); }
1926  CGDebugInfo *getDebugInfo() {
1927    if (DisableDebugInfo)
1928      return nullptr;
1929    return DebugInfo;
1930  }
1931  void disableDebugInfo() { DisableDebugInfo = true; }
1932  void enableDebugInfo() { DisableDebugInfo = false; }
1933
1934  bool shouldUseFusedARCCalls() {
1935    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1936  }
1937
1938  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1939
1940  /// Returns a pointer to the function's exception object and selector slot,
1941  /// which is assigned in every landing pad.
1942  Address getExceptionSlot();
1943  Address getEHSelectorSlot();
1944
1945  /// Returns the contents of the function's exception object and selector
1946  /// slots.
1947  llvm::Value *getExceptionFromSlot();
1948  llvm::Value *getSelectorFromSlot();
1949
1950  Address getNormalCleanupDestSlot();
1951
1952  llvm::BasicBlock *getUnreachableBlock() {
1953    if (!UnreachableBlock) {
1954      UnreachableBlock = createBasicBlock("unreachable");
1955      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1956    }
1957    return UnreachableBlock;
1958  }
1959
1960  llvm::BasicBlock *getInvokeDest() {
1961    if (!EHStack.requiresLandingPad()) return nullptr;
1962    return getInvokeDestImpl();
1963  }
1964
1965  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1966
1967  const TargetInfo &getTarget() const { return Target; }
1968  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1969  const TargetCodeGenInfo &getTargetHooks() const {
1970    return CGM.getTargetCodeGenInfo();
1971  }
1972
1973  //===--------------------------------------------------------------------===//
1974  //                                  Cleanups
1975  //===--------------------------------------------------------------------===//
1976
1977  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1978
1979  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1980                                        Address arrayEndPointer,
1981                                        QualType elementType,
1982                                        CharUnits elementAlignment,
1983                                        Destroyer *destroyer);
1984  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1985                                      llvm::Value *arrayEnd,
1986                                      QualType elementType,
1987                                      CharUnits elementAlignment,
1988                                      Destroyer *destroyer);
1989
1990  void pushDestroy(QualType::DestructionKind dtorKind,
1991                   Address addr, QualType type);
1992  void pushEHDestroy(QualType::DestructionKind dtorKind,
1993                     Address addr, QualType type);
1994  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1995                   Destroyer *destroyer, bool useEHCleanupForArray);
1996  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1997                                   QualType type, Destroyer *destroyer,
1998                                   bool useEHCleanupForArray);
1999  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2000                                   llvm::Value *CompletePtr,
2001                                   QualType ElementType);
2002  void pushStackRestore(CleanupKind kind, Address SPMem);
2003  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2004                   bool useEHCleanupForArray);
2005  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2006                                        Destroyer *destroyer,
2007                                        bool useEHCleanupForArray,
2008                                        const VarDecl *VD);
2009  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2010                        QualType elementType, CharUnits elementAlign,
2011                        Destroyer *destroyer,
2012                        bool checkZeroLength, bool useEHCleanup);
2013
2014  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2015
2016  /// Determines whether an EH cleanup is required to destroy a type
2017  /// with the given destruction kind.
2018  bool needsEHCleanup(QualType::DestructionKind kind) {
2019    switch (kind) {
2020    case QualType::DK_none:
2021      return false;
2022    case QualType::DK_cxx_destructor:
2023    case QualType::DK_objc_weak_lifetime:
2024    case QualType::DK_nontrivial_c_struct:
2025      return getLangOpts().Exceptions;
2026    case QualType::DK_objc_strong_lifetime:
2027      return getLangOpts().Exceptions &&
2028             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2029    }
2030    llvm_unreachable("bad destruction kind");
2031  }
2032
2033  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2034    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2035  }
2036
2037  //===--------------------------------------------------------------------===//
2038  //                                  Objective-C
2039  //===--------------------------------------------------------------------===//
2040
2041  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2042
2043  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2044
2045  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2046  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2047                          const ObjCPropertyImplDecl *PID);
2048  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2049                              const ObjCPropertyImplDecl *propImpl,
2050                              const ObjCMethodDecl *GetterMothodDecl,
2051                              llvm::Constant *AtomicHelperFn);
2052
2053  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2054                                  ObjCMethodDecl *MD, bool ctor);
2055
2056  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2057  /// for the given property.
2058  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2059                          const ObjCPropertyImplDecl *PID);
2060  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2061                              const ObjCPropertyImplDecl *propImpl,
2062                              llvm::Constant *AtomicHelperFn);
2063
2064  //===--------------------------------------------------------------------===//
2065  //                                  Block Bits
2066  //===--------------------------------------------------------------------===//
2067
2068  /// Emit block literal.
2069  /// \return an LLVM value which is a pointer to a struct which contains
2070  /// information about the block, including the block invoke function, the
2071  /// captured variables, etc.
2072  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2073
2074  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2075                                        const CGBlockInfo &Info,
2076                                        const DeclMapTy &ldm,
2077                                        bool IsLambdaConversionToBlock,
2078                                        bool BuildGlobalBlock);
2079
2080  /// Check if \p T is a C++ class that has a destructor that can throw.
2081  static bool cxxDestructorCanThrow(QualType T);
2082
2083  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2084  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2085  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2086                                             const ObjCPropertyImplDecl *PID);
2087  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2088                                             const ObjCPropertyImplDecl *PID);
2089  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2090
2091  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2092                         bool CanThrow);
2093
2094  class AutoVarEmission;
2095
2096  void emitByrefStructureInit(const AutoVarEmission &emission);
2097
2098  /// Enter a cleanup to destroy a __block variable.  Note that this
2099  /// cleanup should be a no-op if the variable hasn't left the stack
2100  /// yet; if a cleanup is required for the variable itself, that needs
2101  /// to be done externally.
2102  ///
2103  /// \param Kind Cleanup kind.
2104  ///
2105  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2106  /// structure that will be passed to _Block_object_dispose. When
2107  /// \p LoadBlockVarAddr is true, the address of the field of the block
2108  /// structure that holds the address of the __block structure.
2109  ///
2110  /// \param Flags The flag that will be passed to _Block_object_dispose.
2111  ///
2112  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2113  /// \p Addr to get the address of the __block structure.
2114  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2115                         bool LoadBlockVarAddr, bool CanThrow);
2116
2117  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2118                                llvm::Value *ptr);
2119
2120  Address LoadBlockStruct();
2121  Address GetAddrOfBlockDecl(const VarDecl *var);
2122
2123  /// BuildBlockByrefAddress - Computes the location of the
2124  /// data in a variable which is declared as __block.
2125  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2126                                bool followForward = true);
2127  Address emitBlockByrefAddress(Address baseAddr,
2128                                const BlockByrefInfo &info,
2129                                bool followForward,
2130                                const llvm::Twine &name);
2131
2132  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2133
2134  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2135
2136  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2137                    const CGFunctionInfo &FnInfo);
2138
2139  /// Annotate the function with an attribute that disables TSan checking at
2140  /// runtime.
2141  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2142
2143  /// Emit code for the start of a function.
2144  /// \param Loc       The location to be associated with the function.
2145  /// \param StartLoc  The location of the function body.
2146  void StartFunction(GlobalDecl GD,
2147                     QualType RetTy,
2148                     llvm::Function *Fn,
2149                     const CGFunctionInfo &FnInfo,
2150                     const FunctionArgList &Args,
2151                     SourceLocation Loc = SourceLocation(),
2152                     SourceLocation StartLoc = SourceLocation());
2153
2154  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2155
2156  void EmitConstructorBody(FunctionArgList &Args);
2157  void EmitDestructorBody(FunctionArgList &Args);
2158  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2159  void EmitFunctionBody(const Stmt *Body);
2160  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2161
2162  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2163                                  CallArgList &CallArgs);
2164  void EmitLambdaBlockInvokeBody();
2165  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2166  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2167  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2168    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2169  }
2170  void EmitAsanPrologueOrEpilogue(bool Prologue);
2171
2172  /// Emit the unified return block, trying to avoid its emission when
2173  /// possible.
2174  /// \return The debug location of the user written return statement if the
2175  /// return block is is avoided.
2176  llvm::DebugLoc EmitReturnBlock();
2177
2178  /// FinishFunction - Complete IR generation of the current function. It is
2179  /// legal to call this function even if there is no current insertion point.
2180  void FinishFunction(SourceLocation EndLoc=SourceLocation());
2181
2182  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2183                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2184
2185  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2186                                 const ThunkInfo *Thunk, bool IsUnprototyped);
2187
2188  void FinishThunk();
2189
2190  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2191  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2192                         llvm::FunctionCallee Callee);
2193
2194  /// Generate a thunk for the given method.
2195  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2196                     GlobalDecl GD, const ThunkInfo &Thunk,
2197                     bool IsUnprototyped);
2198
2199  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2200                                       const CGFunctionInfo &FnInfo,
2201                                       GlobalDecl GD, const ThunkInfo &Thunk);
2202
2203  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2204                        FunctionArgList &Args);
2205
2206  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2207
2208  /// Struct with all information about dynamic [sub]class needed to set vptr.
2209  struct VPtr {
2210    BaseSubobject Base;
2211    const CXXRecordDecl *NearestVBase;
2212    CharUnits OffsetFromNearestVBase;
2213    const CXXRecordDecl *VTableClass;
2214  };
2215
2216  /// Initialize the vtable pointer of the given subobject.
2217  void InitializeVTablePointer(const VPtr &vptr);
2218
2219  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2220
2221  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2222  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2223
2224  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2225                         CharUnits OffsetFromNearestVBase,
2226                         bool BaseIsNonVirtualPrimaryBase,
2227                         const CXXRecordDecl *VTableClass,
2228                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2229
2230  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2231
2232  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2233  /// to by This.
2234  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2235                            const CXXRecordDecl *VTableClass);
2236
2237  enum CFITypeCheckKind {
2238    CFITCK_VCall,
2239    CFITCK_NVCall,
2240    CFITCK_DerivedCast,
2241    CFITCK_UnrelatedCast,
2242    CFITCK_ICall,
2243    CFITCK_NVMFCall,
2244    CFITCK_VMFCall,
2245  };
2246
2247  /// Derived is the presumed address of an object of type T after a
2248  /// cast. If T is a polymorphic class type, emit a check that the virtual
2249  /// table for Derived belongs to a class derived from T.
2250  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2251                                 bool MayBeNull, CFITypeCheckKind TCK,
2252                                 SourceLocation Loc);
2253
2254  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2255  /// If vptr CFI is enabled, emit a check that VTable is valid.
2256  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2257                                 CFITypeCheckKind TCK, SourceLocation Loc);
2258
2259  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2260  /// RD using llvm.type.test.
2261  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2262                          CFITypeCheckKind TCK, SourceLocation Loc);
2263
2264  /// If whole-program virtual table optimization is enabled, emit an assumption
2265  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2266  /// enabled, emit a check that VTable is a member of RD's type identifier.
2267  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2268                                    llvm::Value *VTable, SourceLocation Loc);
2269
2270  /// Returns whether we should perform a type checked load when loading a
2271  /// virtual function for virtual calls to members of RD. This is generally
2272  /// true when both vcall CFI and whole-program-vtables are enabled.
2273  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2274
2275  /// Emit a type checked load from the given vtable.
2276  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2277                                         uint64_t VTableByteOffset);
2278
2279  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2280  /// given phase of destruction for a destructor.  The end result
2281  /// should call destructors on members and base classes in reverse
2282  /// order of their construction.
2283  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2284
2285  /// ShouldInstrumentFunction - Return true if the current function should be
2286  /// instrumented with __cyg_profile_func_* calls
2287  bool ShouldInstrumentFunction();
2288
2289  /// ShouldXRayInstrument - Return true if the current function should be
2290  /// instrumented with XRay nop sleds.
2291  bool ShouldXRayInstrumentFunction() const;
2292
2293  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2294  /// XRay custom event handling calls.
2295  bool AlwaysEmitXRayCustomEvents() const;
2296
2297  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2298  /// XRay typed event handling calls.
2299  bool AlwaysEmitXRayTypedEvents() const;
2300
2301  /// Encode an address into a form suitable for use in a function prologue.
2302  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2303                                             llvm::Constant *Addr);
2304
2305  /// Decode an address used in a function prologue, encoded by \c
2306  /// EncodeAddrForUseInPrologue.
2307  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2308                                        llvm::Value *EncodedAddr);
2309
2310  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2311  /// arguments for the given function. This is also responsible for naming the
2312  /// LLVM function arguments.
2313  void EmitFunctionProlog(const CGFunctionInfo &FI,
2314                          llvm::Function *Fn,
2315                          const FunctionArgList &Args);
2316
2317  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2318  /// given temporary.
2319  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2320                          SourceLocation EndLoc);
2321
2322  /// Emit a test that checks if the return value \p RV is nonnull.
2323  void EmitReturnValueCheck(llvm::Value *RV);
2324
2325  /// EmitStartEHSpec - Emit the start of the exception spec.
2326  void EmitStartEHSpec(const Decl *D);
2327
2328  /// EmitEndEHSpec - Emit the end of the exception spec.
2329  void EmitEndEHSpec(const Decl *D);
2330
2331  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2332  llvm::BasicBlock *getTerminateLandingPad();
2333
2334  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2335  /// terminate.
2336  llvm::BasicBlock *getTerminateFunclet();
2337
2338  /// getTerminateHandler - Return a handler (not a landing pad, just
2339  /// a catch handler) that just calls terminate.  This is used when
2340  /// a terminate scope encloses a try.
2341  llvm::BasicBlock *getTerminateHandler();
2342
2343  llvm::Type *ConvertTypeForMem(QualType T);
2344  llvm::Type *ConvertType(QualType T);
2345  llvm::Type *ConvertType(const TypeDecl *T) {
2346    return ConvertType(getContext().getTypeDeclType(T));
2347  }
2348
2349  /// LoadObjCSelf - Load the value of self. This function is only valid while
2350  /// generating code for an Objective-C method.
2351  llvm::Value *LoadObjCSelf();
2352
2353  /// TypeOfSelfObject - Return type of object that this self represents.
2354  QualType TypeOfSelfObject();
2355
2356  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2357  static TypeEvaluationKind getEvaluationKind(QualType T);
2358
2359  static bool hasScalarEvaluationKind(QualType T) {
2360    return getEvaluationKind(T) == TEK_Scalar;
2361  }
2362
2363  static bool hasAggregateEvaluationKind(QualType T) {
2364    return getEvaluationKind(T) == TEK_Aggregate;
2365  }
2366
2367  /// createBasicBlock - Create an LLVM basic block.
2368  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2369                                     llvm::Function *parent = nullptr,
2370                                     llvm::BasicBlock *before = nullptr) {
2371    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2372  }
2373
2374  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2375  /// label maps to.
2376  JumpDest getJumpDestForLabel(const LabelDecl *S);
2377
2378  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2379  /// another basic block, simplify it. This assumes that no other code could
2380  /// potentially reference the basic block.
2381  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2382
2383  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2384  /// adding a fall-through branch from the current insert block if
2385  /// necessary. It is legal to call this function even if there is no current
2386  /// insertion point.
2387  ///
2388  /// IsFinished - If true, indicates that the caller has finished emitting
2389  /// branches to the given block and does not expect to emit code into it. This
2390  /// means the block can be ignored if it is unreachable.
2391  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2392
2393  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2394  /// near its uses, and leave the insertion point in it.
2395  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2396
2397  /// EmitBranch - Emit a branch to the specified basic block from the current
2398  /// insert block, taking care to avoid creation of branches from dummy
2399  /// blocks. It is legal to call this function even if there is no current
2400  /// insertion point.
2401  ///
2402  /// This function clears the current insertion point. The caller should follow
2403  /// calls to this function with calls to Emit*Block prior to generation new
2404  /// code.
2405  void EmitBranch(llvm::BasicBlock *Block);
2406
2407  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2408  /// indicates that the current code being emitted is unreachable.
2409  bool HaveInsertPoint() const {
2410    return Builder.GetInsertBlock() != nullptr;
2411  }
2412
2413  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2414  /// emitted IR has a place to go. Note that by definition, if this function
2415  /// creates a block then that block is unreachable; callers may do better to
2416  /// detect when no insertion point is defined and simply skip IR generation.
2417  void EnsureInsertPoint() {
2418    if (!HaveInsertPoint())
2419      EmitBlock(createBasicBlock());
2420  }
2421
2422  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2423  /// specified stmt yet.
2424  void ErrorUnsupported(const Stmt *S, const char *Type);
2425
2426  //===--------------------------------------------------------------------===//
2427  //                                  Helpers
2428  //===--------------------------------------------------------------------===//
2429
2430  LValue MakeAddrLValue(Address Addr, QualType T,
2431                        AlignmentSource Source = AlignmentSource::Type) {
2432    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2433                            CGM.getTBAAAccessInfo(T));
2434  }
2435
2436  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2437                        TBAAAccessInfo TBAAInfo) {
2438    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2439  }
2440
2441  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2442                        AlignmentSource Source = AlignmentSource::Type) {
2443    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2444                            LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2445  }
2446
2447  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2448                        LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2449    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2450                            BaseInfo, TBAAInfo);
2451  }
2452
2453  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2454  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2455
2456  Address EmitLoadOfReference(LValue RefLVal,
2457                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2458                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2459  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2460  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2461                                   AlignmentSource Source =
2462                                       AlignmentSource::Type) {
2463    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2464                                    CGM.getTBAAAccessInfo(RefTy));
2465    return EmitLoadOfReferenceLValue(RefLVal);
2466  }
2467
2468  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2469                            LValueBaseInfo *BaseInfo = nullptr,
2470                            TBAAAccessInfo *TBAAInfo = nullptr);
2471  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2472
2473  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2474  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2475  /// insertion point of the builder. The caller is responsible for setting an
2476  /// appropriate alignment on
2477  /// the alloca.
2478  ///
2479  /// \p ArraySize is the number of array elements to be allocated if it
2480  ///    is not nullptr.
2481  ///
2482  /// LangAS::Default is the address space of pointers to local variables and
2483  /// temporaries, as exposed in the source language. In certain
2484  /// configurations, this is not the same as the alloca address space, and a
2485  /// cast is needed to lift the pointer from the alloca AS into
2486  /// LangAS::Default. This can happen when the target uses a restricted
2487  /// address space for the stack but the source language requires
2488  /// LangAS::Default to be a generic address space. The latter condition is
2489  /// common for most programming languages; OpenCL is an exception in that
2490  /// LangAS::Default is the private address space, which naturally maps
2491  /// to the stack.
2492  ///
2493  /// Because the address of a temporary is often exposed to the program in
2494  /// various ways, this function will perform the cast. The original alloca
2495  /// instruction is returned through \p Alloca if it is not nullptr.
2496  ///
2497  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2498  /// more efficient if the caller knows that the address will not be exposed.
2499  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2500                                     llvm::Value *ArraySize = nullptr);
2501  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2502                           const Twine &Name = "tmp",
2503                           llvm::Value *ArraySize = nullptr,
2504                           Address *Alloca = nullptr);
2505  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2506                                      const Twine &Name = "tmp",
2507                                      llvm::Value *ArraySize = nullptr);
2508
2509  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2510  /// default ABI alignment of the given LLVM type.
2511  ///
2512  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2513  /// any given AST type that happens to have been lowered to the
2514  /// given IR type.  This should only ever be used for function-local,
2515  /// IR-driven manipulations like saving and restoring a value.  Do
2516  /// not hand this address off to arbitrary IRGen routines, and especially
2517  /// do not pass it as an argument to a function that might expect a
2518  /// properly ABI-aligned value.
2519  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2520                                       const Twine &Name = "tmp");
2521
2522  /// InitTempAlloca - Provide an initial value for the given alloca which
2523  /// will be observable at all locations in the function.
2524  ///
2525  /// The address should be something that was returned from one of
2526  /// the CreateTempAlloca or CreateMemTemp routines, and the
2527  /// initializer must be valid in the entry block (i.e. it must
2528  /// either be a constant or an argument value).
2529  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2530
2531  /// CreateIRTemp - Create a temporary IR object of the given type, with
2532  /// appropriate alignment. This routine should only be used when an temporary
2533  /// value needs to be stored into an alloca (for example, to avoid explicit
2534  /// PHI construction), but the type is the IR type, not the type appropriate
2535  /// for storing in memory.
2536  ///
2537  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2538  /// ConvertType instead of ConvertTypeForMem.
2539  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2540
2541  /// CreateMemTemp - Create a temporary memory object of the given type, with
2542  /// appropriate alignmen and cast it to the default address space. Returns
2543  /// the original alloca instruction by \p Alloca if it is not nullptr.
2544  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2545                        Address *Alloca = nullptr);
2546  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2547                        Address *Alloca = nullptr);
2548
2549  /// CreateMemTemp - Create a temporary memory object of the given type, with
2550  /// appropriate alignmen without casting it to the default address space.
2551  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2552  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2553                                   const Twine &Name = "tmp");
2554
2555  /// CreateAggTemp - Create a temporary memory object for the given
2556  /// aggregate type.
2557  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2558                             Address *Alloca = nullptr) {
2559    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2560                                 T.getQualifiers(),
2561                                 AggValueSlot::IsNotDestructed,
2562                                 AggValueSlot::DoesNotNeedGCBarriers,
2563                                 AggValueSlot::IsNotAliased,
2564                                 AggValueSlot::DoesNotOverlap);
2565  }
2566
2567  /// Emit a cast to void* in the appropriate address space.
2568  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2569
2570  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2571  /// expression and compare the result against zero, returning an Int1Ty value.
2572  llvm::Value *EvaluateExprAsBool(const Expr *E);
2573
2574  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2575  void EmitIgnoredExpr(const Expr *E);
2576
2577  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2578  /// any type.  The result is returned as an RValue struct.  If this is an
2579  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2580  /// the result should be returned.
2581  ///
2582  /// \param ignoreResult True if the resulting value isn't used.
2583  RValue EmitAnyExpr(const Expr *E,
2584                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2585                     bool ignoreResult = false);
2586
2587  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2588  // or the value of the expression, depending on how va_list is defined.
2589  Address EmitVAListRef(const Expr *E);
2590
2591  /// Emit a "reference" to a __builtin_ms_va_list; this is
2592  /// always the value of the expression, because a __builtin_ms_va_list is a
2593  /// pointer to a char.
2594  Address EmitMSVAListRef(const Expr *E);
2595
2596  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2597  /// always be accessible even if no aggregate location is provided.
2598  RValue EmitAnyExprToTemp(const Expr *E);
2599
2600  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2601  /// arbitrary expression into the given memory location.
2602  void EmitAnyExprToMem(const Expr *E, Address Location,
2603                        Qualifiers Quals, bool IsInitializer);
2604
2605  void EmitAnyExprToExn(const Expr *E, Address Addr);
2606
2607  /// EmitExprAsInit - Emits the code necessary to initialize a
2608  /// location in memory with the given initializer.
2609  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2610                      bool capturedByInit);
2611
2612  /// hasVolatileMember - returns true if aggregate type has a volatile
2613  /// member.
2614  bool hasVolatileMember(QualType T) {
2615    if (const RecordType *RT = T->getAs<RecordType>()) {
2616      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2617      return RD->hasVolatileMember();
2618    }
2619    return false;
2620  }
2621
2622  /// Determine whether a return value slot may overlap some other object.
2623  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2624    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2625    // class subobjects. These cases may need to be revisited depending on the
2626    // resolution of the relevant core issue.
2627    return AggValueSlot::DoesNotOverlap;
2628  }
2629
2630  /// Determine whether a field initialization may overlap some other object.
2631  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2632
2633  /// Determine whether a base class initialization may overlap some other
2634  /// object.
2635  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2636                                                const CXXRecordDecl *BaseRD,
2637                                                bool IsVirtual);
2638
2639  /// Emit an aggregate assignment.
2640  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2641    bool IsVolatile = hasVolatileMember(EltTy);
2642    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2643  }
2644
2645  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2646                             AggValueSlot::Overlap_t MayOverlap) {
2647    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2648  }
2649
2650  /// EmitAggregateCopy - Emit an aggregate copy.
2651  ///
2652  /// \param isVolatile \c true iff either the source or the destination is
2653  ///        volatile.
2654  /// \param MayOverlap Whether the tail padding of the destination might be
2655  ///        occupied by some other object. More efficient code can often be
2656  ///        generated if not.
2657  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2658                         AggValueSlot::Overlap_t MayOverlap,
2659                         bool isVolatile = false);
2660
2661  /// GetAddrOfLocalVar - Return the address of a local variable.
2662  Address GetAddrOfLocalVar(const VarDecl *VD) {
2663    auto it = LocalDeclMap.find(VD);
2664    assert(it != LocalDeclMap.end() &&
2665           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2666    return it->second;
2667  }
2668
2669  /// Given an opaque value expression, return its LValue mapping if it exists,
2670  /// otherwise create one.
2671  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2672
2673  /// Given an opaque value expression, return its RValue mapping if it exists,
2674  /// otherwise create one.
2675  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2676
2677  /// Get the index of the current ArrayInitLoopExpr, if any.
2678  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2679
2680  /// getAccessedFieldNo - Given an encoded value and a result number, return
2681  /// the input field number being accessed.
2682  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2683
2684  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2685  llvm::BasicBlock *GetIndirectGotoBlock();
2686
2687  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2688  static bool IsWrappedCXXThis(const Expr *E);
2689
2690  /// EmitNullInitialization - Generate code to set a value of the given type to
2691  /// null, If the type contains data member pointers, they will be initialized
2692  /// to -1 in accordance with the Itanium C++ ABI.
2693  void EmitNullInitialization(Address DestPtr, QualType Ty);
2694
2695  /// Emits a call to an LLVM variable-argument intrinsic, either
2696  /// \c llvm.va_start or \c llvm.va_end.
2697  /// \param ArgValue A reference to the \c va_list as emitted by either
2698  /// \c EmitVAListRef or \c EmitMSVAListRef.
2699  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2700  /// calls \c llvm.va_end.
2701  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2702
2703  /// Generate code to get an argument from the passed in pointer
2704  /// and update it accordingly.
2705  /// \param VE The \c VAArgExpr for which to generate code.
2706  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2707  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2708  /// \returns A pointer to the argument.
2709  // FIXME: We should be able to get rid of this method and use the va_arg
2710  // instruction in LLVM instead once it works well enough.
2711  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2712
2713  /// emitArrayLength - Compute the length of an array, even if it's a
2714  /// VLA, and drill down to the base element type.
2715  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2716                               QualType &baseType,
2717                               Address &addr);
2718
2719  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2720  /// the given variably-modified type and store them in the VLASizeMap.
2721  ///
2722  /// This function can be called with a null (unreachable) insert point.
2723  void EmitVariablyModifiedType(QualType Ty);
2724
2725  struct VlaSizePair {
2726    llvm::Value *NumElts;
2727    QualType Type;
2728
2729    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2730  };
2731
2732  /// Return the number of elements for a single dimension
2733  /// for the given array type.
2734  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2735  VlaSizePair getVLAElements1D(QualType vla);
2736
2737  /// Returns an LLVM value that corresponds to the size,
2738  /// in non-variably-sized elements, of a variable length array type,
2739  /// plus that largest non-variably-sized element type.  Assumes that
2740  /// the type has already been emitted with EmitVariablyModifiedType.
2741  VlaSizePair getVLASize(const VariableArrayType *vla);
2742  VlaSizePair getVLASize(QualType vla);
2743
2744  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2745  /// generating code for an C++ member function.
2746  llvm::Value *LoadCXXThis() {
2747    assert(CXXThisValue && "no 'this' value for this function");
2748    return CXXThisValue;
2749  }
2750  Address LoadCXXThisAddress();
2751
2752  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2753  /// virtual bases.
2754  // FIXME: Every place that calls LoadCXXVTT is something
2755  // that needs to be abstracted properly.
2756  llvm::Value *LoadCXXVTT() {
2757    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2758    return CXXStructorImplicitParamValue;
2759  }
2760
2761  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2762  /// complete class to the given direct base.
2763  Address
2764  GetAddressOfDirectBaseInCompleteClass(Address Value,
2765                                        const CXXRecordDecl *Derived,
2766                                        const CXXRecordDecl *Base,
2767                                        bool BaseIsVirtual);
2768
2769  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2770
2771  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2772  /// load of 'this' and returns address of the base class.
2773  Address GetAddressOfBaseClass(Address Value,
2774                                const CXXRecordDecl *Derived,
2775                                CastExpr::path_const_iterator PathBegin,
2776                                CastExpr::path_const_iterator PathEnd,
2777                                bool NullCheckValue, SourceLocation Loc);
2778
2779  Address GetAddressOfDerivedClass(Address Value,
2780                                   const CXXRecordDecl *Derived,
2781                                   CastExpr::path_const_iterator PathBegin,
2782                                   CastExpr::path_const_iterator PathEnd,
2783                                   bool NullCheckValue);
2784
2785  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2786  /// base constructor/destructor with virtual bases.
2787  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2788  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2789  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2790                               bool Delegating);
2791
2792  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2793                                      CXXCtorType CtorType,
2794                                      const FunctionArgList &Args,
2795                                      SourceLocation Loc);
2796  // It's important not to confuse this and the previous function. Delegating
2797  // constructors are the C++0x feature. The constructor delegate optimization
2798  // is used to reduce duplication in the base and complete consturctors where
2799  // they are substantially the same.
2800  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2801                                        const FunctionArgList &Args);
2802
2803  /// Emit a call to an inheriting constructor (that is, one that invokes a
2804  /// constructor inherited from a base class) by inlining its definition. This
2805  /// is necessary if the ABI does not support forwarding the arguments to the
2806  /// base class constructor (because they're variadic or similar).
2807  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2808                                               CXXCtorType CtorType,
2809                                               bool ForVirtualBase,
2810                                               bool Delegating,
2811                                               CallArgList &Args);
2812
2813  /// Emit a call to a constructor inherited from a base class, passing the
2814  /// current constructor's arguments along unmodified (without even making
2815  /// a copy).
2816  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2817                                       bool ForVirtualBase, Address This,
2818                                       bool InheritedFromVBase,
2819                                       const CXXInheritedCtorInitExpr *E);
2820
2821  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2822                              bool ForVirtualBase, bool Delegating,
2823                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2824
2825  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2826                              bool ForVirtualBase, bool Delegating,
2827                              Address This, CallArgList &Args,
2828                              AggValueSlot::Overlap_t Overlap,
2829                              SourceLocation Loc, bool NewPointerIsChecked);
2830
2831  /// Emit assumption load for all bases. Requires to be be called only on
2832  /// most-derived class and not under construction of the object.
2833  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2834
2835  /// Emit assumption that vptr load == global vtable.
2836  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2837
2838  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2839                                      Address This, Address Src,
2840                                      const CXXConstructExpr *E);
2841
2842  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2843                                  const ArrayType *ArrayTy,
2844                                  Address ArrayPtr,
2845                                  const CXXConstructExpr *E,
2846                                  bool NewPointerIsChecked,
2847                                  bool ZeroInitialization = false);
2848
2849  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2850                                  llvm::Value *NumElements,
2851                                  Address ArrayPtr,
2852                                  const CXXConstructExpr *E,
2853                                  bool NewPointerIsChecked,
2854                                  bool ZeroInitialization = false);
2855
2856  static Destroyer destroyCXXObject;
2857
2858  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2859                             bool ForVirtualBase, bool Delegating, Address This,
2860                             QualType ThisTy);
2861
2862  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2863                               llvm::Type *ElementTy, Address NewPtr,
2864                               llvm::Value *NumElements,
2865                               llvm::Value *AllocSizeWithoutCookie);
2866
2867  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2868                        Address Ptr);
2869
2870  void EmitSehCppScopeBegin();
2871  void EmitSehCppScopeEnd();
2872  void EmitSehTryScopeBegin();
2873  void EmitSehTryScopeEnd();
2874
2875  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2876  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2877
2878  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2879  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2880
2881  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2882                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
2883                      CharUnits CookieSize = CharUnits());
2884
2885  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2886                                  const CallExpr *TheCallExpr, bool IsDelete);
2887
2888  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2889  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2890  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2891
2892  /// Situations in which we might emit a check for the suitability of a
2893  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2894  /// compiler-rt.
2895  enum TypeCheckKind {
2896    /// Checking the operand of a load. Must be suitably sized and aligned.
2897    TCK_Load,
2898    /// Checking the destination of a store. Must be suitably sized and aligned.
2899    TCK_Store,
2900    /// Checking the bound value in a reference binding. Must be suitably sized
2901    /// and aligned, but is not required to refer to an object (until the
2902    /// reference is used), per core issue 453.
2903    TCK_ReferenceBinding,
2904    /// Checking the object expression in a non-static data member access. Must
2905    /// be an object within its lifetime.
2906    TCK_MemberAccess,
2907    /// Checking the 'this' pointer for a call to a non-static member function.
2908    /// Must be an object within its lifetime.
2909    TCK_MemberCall,
2910    /// Checking the 'this' pointer for a constructor call.
2911    TCK_ConstructorCall,
2912    /// Checking the operand of a static_cast to a derived pointer type. Must be
2913    /// null or an object within its lifetime.
2914    TCK_DowncastPointer,
2915    /// Checking the operand of a static_cast to a derived reference type. Must
2916    /// be an object within its lifetime.
2917    TCK_DowncastReference,
2918    /// Checking the operand of a cast to a base object. Must be suitably sized
2919    /// and aligned.
2920    TCK_Upcast,
2921    /// Checking the operand of a cast to a virtual base object. Must be an
2922    /// object within its lifetime.
2923    TCK_UpcastToVirtualBase,
2924    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2925    TCK_NonnullAssign,
2926    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2927    /// null or an object within its lifetime.
2928    TCK_DynamicOperation
2929  };
2930
2931  /// Determine whether the pointer type check \p TCK permits null pointers.
2932  static bool isNullPointerAllowed(TypeCheckKind TCK);
2933
2934  /// Determine whether the pointer type check \p TCK requires a vptr check.
2935  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2936
2937  /// Whether any type-checking sanitizers are enabled. If \c false,
2938  /// calls to EmitTypeCheck can be skipped.
2939  bool sanitizePerformTypeCheck() const;
2940
2941  /// Emit a check that \p V is the address of storage of the
2942  /// appropriate size and alignment for an object of type \p Type
2943  /// (or if ArraySize is provided, for an array of that bound).
2944  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2945                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
2946                     SanitizerSet SkippedChecks = SanitizerSet(),
2947                     llvm::Value *ArraySize = nullptr);
2948
2949  /// Emit a check that \p Base points into an array object, which
2950  /// we can access at index \p Index. \p Accessed should be \c false if we
2951  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2952  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2953                       QualType IndexType, bool Accessed);
2954
2955  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2956                                       bool isInc, bool isPre);
2957  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2958                                         bool isInc, bool isPre);
2959
2960  /// Converts Location to a DebugLoc, if debug information is enabled.
2961  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2962
2963  /// Get the record field index as represented in debug info.
2964  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2965
2966
2967  //===--------------------------------------------------------------------===//
2968  //                            Declaration Emission
2969  //===--------------------------------------------------------------------===//
2970
2971  /// EmitDecl - Emit a declaration.
2972  ///
2973  /// This function can be called with a null (unreachable) insert point.
2974  void EmitDecl(const Decl &D);
2975
2976  /// EmitVarDecl - Emit a local variable declaration.
2977  ///
2978  /// This function can be called with a null (unreachable) insert point.
2979  void EmitVarDecl(const VarDecl &D);
2980
2981  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2982                      bool capturedByInit);
2983
2984  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2985                             llvm::Value *Address);
2986
2987  /// Determine whether the given initializer is trivial in the sense
2988  /// that it requires no code to be generated.
2989  bool isTrivialInitializer(const Expr *Init);
2990
2991  /// EmitAutoVarDecl - Emit an auto variable declaration.
2992  ///
2993  /// This function can be called with a null (unreachable) insert point.
2994  void EmitAutoVarDecl(const VarDecl &D);
2995
2996  class AutoVarEmission {
2997    friend class CodeGenFunction;
2998
2999    const VarDecl *Variable;
3000
3001    /// The address of the alloca for languages with explicit address space
3002    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3003    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3004    /// as a global constant.
3005    Address Addr;
3006
3007    llvm::Value *NRVOFlag;
3008
3009    /// True if the variable is a __block variable that is captured by an
3010    /// escaping block.
3011    bool IsEscapingByRef;
3012
3013    /// True if the variable is of aggregate type and has a constant
3014    /// initializer.
3015    bool IsConstantAggregate;
3016
3017    /// Non-null if we should use lifetime annotations.
3018    llvm::Value *SizeForLifetimeMarkers;
3019
3020    /// Address with original alloca instruction. Invalid if the variable was
3021    /// emitted as a global constant.
3022    Address AllocaAddr;
3023
3024    struct Invalid {};
3025    AutoVarEmission(Invalid)
3026        : Variable(nullptr), Addr(Address::invalid()),
3027          AllocaAddr(Address::invalid()) {}
3028
3029    AutoVarEmission(const VarDecl &variable)
3030        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3031          IsEscapingByRef(false), IsConstantAggregate(false),
3032          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3033
3034    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3035
3036  public:
3037    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3038
3039    bool useLifetimeMarkers() const {
3040      return SizeForLifetimeMarkers != nullptr;
3041    }
3042    llvm::Value *getSizeForLifetimeMarkers() const {
3043      assert(useLifetimeMarkers());
3044      return SizeForLifetimeMarkers;
3045    }
3046
3047    /// Returns the raw, allocated address, which is not necessarily
3048    /// the address of the object itself. It is casted to default
3049    /// address space for address space agnostic languages.
3050    Address getAllocatedAddress() const {
3051      return Addr;
3052    }
3053
3054    /// Returns the address for the original alloca instruction.
3055    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3056
3057    /// Returns the address of the object within this declaration.
3058    /// Note that this does not chase the forwarding pointer for
3059    /// __block decls.
3060    Address getObjectAddress(CodeGenFunction &CGF) const {
3061      if (!IsEscapingByRef) return Addr;
3062
3063      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3064    }
3065  };
3066  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3067  void EmitAutoVarInit(const AutoVarEmission &emission);
3068  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3069  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3070                              QualType::DestructionKind dtorKind);
3071
3072  /// Emits the alloca and debug information for the size expressions for each
3073  /// dimension of an array. It registers the association of its (1-dimensional)
3074  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3075  /// reference this node when creating the DISubrange object to describe the
3076  /// array types.
3077  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3078                                              const VarDecl &D,
3079                                              bool EmitDebugInfo);
3080
3081  void EmitStaticVarDecl(const VarDecl &D,
3082                         llvm::GlobalValue::LinkageTypes Linkage);
3083
3084  class ParamValue {
3085    llvm::Value *Value;
3086    unsigned Alignment;
3087    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3088  public:
3089    static ParamValue forDirect(llvm::Value *value) {
3090      return ParamValue(value, 0);
3091    }
3092    static ParamValue forIndirect(Address addr) {
3093      assert(!addr.getAlignment().isZero());
3094      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3095    }
3096
3097    bool isIndirect() const { return Alignment != 0; }
3098    llvm::Value *getAnyValue() const { return Value; }
3099
3100    llvm::Value *getDirectValue() const {
3101      assert(!isIndirect());
3102      return Value;
3103    }
3104
3105    Address getIndirectAddress() const {
3106      assert(isIndirect());
3107      return Address(Value, CharUnits::fromQuantity(Alignment));
3108    }
3109  };
3110
3111  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3112  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3113
3114  /// protectFromPeepholes - Protect a value that we're intending to
3115  /// store to the side, but which will probably be used later, from
3116  /// aggressive peepholing optimizations that might delete it.
3117  ///
3118  /// Pass the result to unprotectFromPeepholes to declare that
3119  /// protection is no longer required.
3120  ///
3121  /// There's no particular reason why this shouldn't apply to
3122  /// l-values, it's just that no existing peepholes work on pointers.
3123  PeepholeProtection protectFromPeepholes(RValue rvalue);
3124  void unprotectFromPeepholes(PeepholeProtection protection);
3125
3126  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3127                                    SourceLocation Loc,
3128                                    SourceLocation AssumptionLoc,
3129                                    llvm::Value *Alignment,
3130                                    llvm::Value *OffsetValue,
3131                                    llvm::Value *TheCheck,
3132                                    llvm::Instruction *Assumption);
3133
3134  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3135                               SourceLocation Loc, SourceLocation AssumptionLoc,
3136                               llvm::Value *Alignment,
3137                               llvm::Value *OffsetValue = nullptr);
3138
3139  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3140                               SourceLocation AssumptionLoc,
3141                               llvm::Value *Alignment,
3142                               llvm::Value *OffsetValue = nullptr);
3143
3144  //===--------------------------------------------------------------------===//
3145  //                             Statement Emission
3146  //===--------------------------------------------------------------------===//
3147
3148  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3149  void EmitStopPoint(const Stmt *S);
3150
3151  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3152  /// this function even if there is no current insertion point.
3153  ///
3154  /// This function may clear the current insertion point; callers should use
3155  /// EnsureInsertPoint if they wish to subsequently generate code without first
3156  /// calling EmitBlock, EmitBranch, or EmitStmt.
3157  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3158
3159  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3160  /// necessarily require an insertion point or debug information; typically
3161  /// because the statement amounts to a jump or a container of other
3162  /// statements.
3163  ///
3164  /// \return True if the statement was handled.
3165  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3166
3167  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3168                           AggValueSlot AVS = AggValueSlot::ignored());
3169  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3170                                       bool GetLast = false,
3171                                       AggValueSlot AVS =
3172                                                AggValueSlot::ignored());
3173
3174  /// EmitLabel - Emit the block for the given label. It is legal to call this
3175  /// function even if there is no current insertion point.
3176  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3177
3178  void EmitLabelStmt(const LabelStmt &S);
3179  void EmitAttributedStmt(const AttributedStmt &S);
3180  void EmitGotoStmt(const GotoStmt &S);
3181  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3182  void EmitIfStmt(const IfStmt &S);
3183
3184  void EmitWhileStmt(const WhileStmt &S,
3185                     ArrayRef<const Attr *> Attrs = None);
3186  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3187  void EmitForStmt(const ForStmt &S,
3188                   ArrayRef<const Attr *> Attrs = None);
3189  void EmitReturnStmt(const ReturnStmt &S);
3190  void EmitDeclStmt(const DeclStmt &S);
3191  void EmitBreakStmt(const BreakStmt &S);
3192  void EmitContinueStmt(const ContinueStmt &S);
3193  void EmitSwitchStmt(const SwitchStmt &S);
3194  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3195  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3196  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3197  void EmitAsmStmt(const AsmStmt &S);
3198
3199  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3200  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3201  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3202  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3203  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3204
3205  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3206  void EmitCoreturnStmt(const CoreturnStmt &S);
3207  RValue EmitCoawaitExpr(const CoawaitExpr &E,
3208                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3209                         bool ignoreResult = false);
3210  LValue EmitCoawaitLValue(const CoawaitExpr *E);
3211  RValue EmitCoyieldExpr(const CoyieldExpr &E,
3212                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3213                         bool ignoreResult = false);
3214  LValue EmitCoyieldLValue(const CoyieldExpr *E);
3215  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3216
3217  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3218  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3219
3220  void EmitCXXTryStmt(const CXXTryStmt &S);
3221  void EmitSEHTryStmt(const SEHTryStmt &S);
3222  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3223  void EnterSEHTryStmt(const SEHTryStmt &S);
3224  void ExitSEHTryStmt(const SEHTryStmt &S);
3225  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3226                           llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3227
3228  void pushSEHCleanup(CleanupKind kind,
3229                      llvm::Function *FinallyFunc);
3230  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3231                              const Stmt *OutlinedStmt);
3232
3233  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3234                                            const SEHExceptStmt &Except);
3235
3236  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3237                                             const SEHFinallyStmt &Finally);
3238
3239  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3240                                llvm::Value *ParentFP,
3241                                llvm::Value *EntryEBP);
3242  llvm::Value *EmitSEHExceptionCode();
3243  llvm::Value *EmitSEHExceptionInfo();
3244  llvm::Value *EmitSEHAbnormalTermination();
3245
3246  /// Emit simple code for OpenMP directives in Simd-only mode.
3247  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3248
3249  /// Scan the outlined statement for captures from the parent function. For
3250  /// each capture, mark the capture as escaped and emit a call to
3251  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3252  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3253                          bool IsFilter);
3254
3255  /// Recovers the address of a local in a parent function. ParentVar is the
3256  /// address of the variable used in the immediate parent function. It can
3257  /// either be an alloca or a call to llvm.localrecover if there are nested
3258  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3259  /// frame.
3260  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3261                                    Address ParentVar,
3262                                    llvm::Value *ParentFP);
3263
3264  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3265                           ArrayRef<const Attr *> Attrs = None);
3266
3267  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3268  class OMPCancelStackRAII {
3269    CodeGenFunction &CGF;
3270
3271  public:
3272    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3273                       bool HasCancel)
3274        : CGF(CGF) {
3275      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3276    }
3277    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3278  };
3279
3280  /// Returns calculated size of the specified type.
3281  llvm::Value *getTypeSize(QualType Ty);
3282  LValue InitCapturedStruct(const CapturedStmt &S);
3283  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3284  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3285  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3286  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3287                                                     SourceLocation Loc);
3288  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3289                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
3290  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3291                          SourceLocation Loc);
3292  /// Perform element by element copying of arrays with type \a
3293  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3294  /// generated by \a CopyGen.
3295  ///
3296  /// \param DestAddr Address of the destination array.
3297  /// \param SrcAddr Address of the source array.
3298  /// \param OriginalType Type of destination and source arrays.
3299  /// \param CopyGen Copying procedure that copies value of single array element
3300  /// to another single array element.
3301  void EmitOMPAggregateAssign(
3302      Address DestAddr, Address SrcAddr, QualType OriginalType,
3303      const llvm::function_ref<void(Address, Address)> CopyGen);
3304  /// Emit proper copying of data from one variable to another.
3305  ///
3306  /// \param OriginalType Original type of the copied variables.
3307  /// \param DestAddr Destination address.
3308  /// \param SrcAddr Source address.
3309  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3310  /// type of the base array element).
3311  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3312  /// the base array element).
3313  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3314  /// DestVD.
3315  void EmitOMPCopy(QualType OriginalType,
3316                   Address DestAddr, Address SrcAddr,
3317                   const VarDecl *DestVD, const VarDecl *SrcVD,
3318                   const Expr *Copy);
3319  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3320  /// \a X = \a E \a BO \a E.
3321  ///
3322  /// \param X Value to be updated.
3323  /// \param E Update value.
3324  /// \param BO Binary operation for update operation.
3325  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3326  /// expression, false otherwise.
3327  /// \param AO Atomic ordering of the generated atomic instructions.
3328  /// \param CommonGen Code generator for complex expressions that cannot be
3329  /// expressed through atomicrmw instruction.
3330  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3331  /// generated, <false, RValue::get(nullptr)> otherwise.
3332  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3333      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3334      llvm::AtomicOrdering AO, SourceLocation Loc,
3335      const llvm::function_ref<RValue(RValue)> CommonGen);
3336  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3337                                 OMPPrivateScope &PrivateScope);
3338  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3339                            OMPPrivateScope &PrivateScope);
3340  void EmitOMPUseDevicePtrClause(
3341      const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3342      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3343  void EmitOMPUseDeviceAddrClause(
3344      const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3345      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3346  /// Emit code for copyin clause in \a D directive. The next code is
3347  /// generated at the start of outlined functions for directives:
3348  /// \code
3349  /// threadprivate_var1 = master_threadprivate_var1;
3350  /// operator=(threadprivate_var2, master_threadprivate_var2);
3351  /// ...
3352  /// __kmpc_barrier(&loc, global_tid);
3353  /// \endcode
3354  ///
3355  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3356  /// \returns true if at least one copyin variable is found, false otherwise.
3357  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3358  /// Emit initial code for lastprivate variables. If some variable is
3359  /// not also firstprivate, then the default initialization is used. Otherwise
3360  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3361  /// method.
3362  ///
3363  /// \param D Directive that may have 'lastprivate' directives.
3364  /// \param PrivateScope Private scope for capturing lastprivate variables for
3365  /// proper codegen in internal captured statement.
3366  ///
3367  /// \returns true if there is at least one lastprivate variable, false
3368  /// otherwise.
3369  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3370                                    OMPPrivateScope &PrivateScope);
3371  /// Emit final copying of lastprivate values to original variables at
3372  /// the end of the worksharing or simd directive.
3373  ///
3374  /// \param D Directive that has at least one 'lastprivate' directives.
3375  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3376  /// it is the last iteration of the loop code in associated directive, or to
3377  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3378  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3379                                     bool NoFinals,
3380                                     llvm::Value *IsLastIterCond = nullptr);
3381  /// Emit initial code for linear clauses.
3382  void EmitOMPLinearClause(const OMPLoopDirective &D,
3383                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3384  /// Emit final code for linear clauses.
3385  /// \param CondGen Optional conditional code for final part of codegen for
3386  /// linear clause.
3387  void EmitOMPLinearClauseFinal(
3388      const OMPLoopDirective &D,
3389      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3390  /// Emit initial code for reduction variables. Creates reduction copies
3391  /// and initializes them with the values according to OpenMP standard.
3392  ///
3393  /// \param D Directive (possibly) with the 'reduction' clause.
3394  /// \param PrivateScope Private scope for capturing reduction variables for
3395  /// proper codegen in internal captured statement.
3396  ///
3397  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3398                                  OMPPrivateScope &PrivateScope,
3399                                  bool ForInscan = false);
3400  /// Emit final update of reduction values to original variables at
3401  /// the end of the directive.
3402  ///
3403  /// \param D Directive that has at least one 'reduction' directives.
3404  /// \param ReductionKind The kind of reduction to perform.
3405  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3406                                   const OpenMPDirectiveKind ReductionKind);
3407  /// Emit initial code for linear variables. Creates private copies
3408  /// and initializes them with the values according to OpenMP standard.
3409  ///
3410  /// \param D Directive (possibly) with the 'linear' clause.
3411  /// \return true if at least one linear variable is found that should be
3412  /// initialized with the value of the original variable, false otherwise.
3413  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3414
3415  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3416                                        llvm::Function * /*OutlinedFn*/,
3417                                        const OMPTaskDataTy & /*Data*/)>
3418      TaskGenTy;
3419  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3420                                 const OpenMPDirectiveKind CapturedRegion,
3421                                 const RegionCodeGenTy &BodyGen,
3422                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3423  struct OMPTargetDataInfo {
3424    Address BasePointersArray = Address::invalid();
3425    Address PointersArray = Address::invalid();
3426    Address SizesArray = Address::invalid();
3427    Address MappersArray = Address::invalid();
3428    unsigned NumberOfTargetItems = 0;
3429    explicit OMPTargetDataInfo() = default;
3430    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3431                      Address SizesArray, Address MappersArray,
3432                      unsigned NumberOfTargetItems)
3433        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3434          SizesArray(SizesArray), MappersArray(MappersArray),
3435          NumberOfTargetItems(NumberOfTargetItems) {}
3436  };
3437  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3438                                       const RegionCodeGenTy &BodyGen,
3439                                       OMPTargetDataInfo &InputInfo);
3440
3441  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3442  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3443  void EmitOMPTileDirective(const OMPTileDirective &S);
3444  void EmitOMPForDirective(const OMPForDirective &S);
3445  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3446  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3447  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3448  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3449  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3450  void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3451  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3452  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3453  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3454  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3455  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3456  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3457  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3458  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3459  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3460  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3461  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3462  void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3463  void EmitOMPScanDirective(const OMPScanDirective &S);
3464  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3465  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3466  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3467  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3468  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3469  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3470  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3471  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3472  void
3473  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3474  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3475  void
3476  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3477  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3478  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3479  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3480  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3481  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3482  void
3483  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3484  void EmitOMPParallelMasterTaskLoopDirective(
3485      const OMPParallelMasterTaskLoopDirective &S);
3486  void EmitOMPParallelMasterTaskLoopSimdDirective(
3487      const OMPParallelMasterTaskLoopSimdDirective &S);
3488  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3489  void EmitOMPDistributeParallelForDirective(
3490      const OMPDistributeParallelForDirective &S);
3491  void EmitOMPDistributeParallelForSimdDirective(
3492      const OMPDistributeParallelForSimdDirective &S);
3493  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3494  void EmitOMPTargetParallelForSimdDirective(
3495      const OMPTargetParallelForSimdDirective &S);
3496  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3497  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3498  void
3499  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3500  void EmitOMPTeamsDistributeParallelForSimdDirective(
3501      const OMPTeamsDistributeParallelForSimdDirective &S);
3502  void EmitOMPTeamsDistributeParallelForDirective(
3503      const OMPTeamsDistributeParallelForDirective &S);
3504  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3505  void EmitOMPTargetTeamsDistributeDirective(
3506      const OMPTargetTeamsDistributeDirective &S);
3507  void EmitOMPTargetTeamsDistributeParallelForDirective(
3508      const OMPTargetTeamsDistributeParallelForDirective &S);
3509  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3510      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3511  void EmitOMPTargetTeamsDistributeSimdDirective(
3512      const OMPTargetTeamsDistributeSimdDirective &S);
3513
3514  /// Emit device code for the target directive.
3515  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3516                                          StringRef ParentName,
3517                                          const OMPTargetDirective &S);
3518  static void
3519  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3520                                      const OMPTargetParallelDirective &S);
3521  /// Emit device code for the target parallel for directive.
3522  static void EmitOMPTargetParallelForDeviceFunction(
3523      CodeGenModule &CGM, StringRef ParentName,
3524      const OMPTargetParallelForDirective &S);
3525  /// Emit device code for the target parallel for simd directive.
3526  static void EmitOMPTargetParallelForSimdDeviceFunction(
3527      CodeGenModule &CGM, StringRef ParentName,
3528      const OMPTargetParallelForSimdDirective &S);
3529  /// Emit device code for the target teams directive.
3530  static void
3531  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3532                                   const OMPTargetTeamsDirective &S);
3533  /// Emit device code for the target teams distribute directive.
3534  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3535      CodeGenModule &CGM, StringRef ParentName,
3536      const OMPTargetTeamsDistributeDirective &S);
3537  /// Emit device code for the target teams distribute simd directive.
3538  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3539      CodeGenModule &CGM, StringRef ParentName,
3540      const OMPTargetTeamsDistributeSimdDirective &S);
3541  /// Emit device code for the target simd directive.
3542  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3543                                              StringRef ParentName,
3544                                              const OMPTargetSimdDirective &S);
3545  /// Emit device code for the target teams distribute parallel for simd
3546  /// directive.
3547  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3548      CodeGenModule &CGM, StringRef ParentName,
3549      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3550
3551  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3552      CodeGenModule &CGM, StringRef ParentName,
3553      const OMPTargetTeamsDistributeParallelForDirective &S);
3554
3555  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3556  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3557  /// future it is meant to be the number of loops expected in the loop nests
3558  /// (usually specified by the "collapse" clause) that are collapsed to a
3559  /// single loop by this function.
3560  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3561                                                             int Depth);
3562
3563  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3564  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3565
3566  /// Emit inner loop of the worksharing/simd construct.
3567  ///
3568  /// \param S Directive, for which the inner loop must be emitted.
3569  /// \param RequiresCleanup true, if directive has some associated private
3570  /// variables.
3571  /// \param LoopCond Bollean condition for loop continuation.
3572  /// \param IncExpr Increment expression for loop control variable.
3573  /// \param BodyGen Generator for the inner body of the inner loop.
3574  /// \param PostIncGen Genrator for post-increment code (required for ordered
3575  /// loop directvies).
3576  void EmitOMPInnerLoop(
3577      const OMPExecutableDirective &S, bool RequiresCleanup,
3578      const Expr *LoopCond, const Expr *IncExpr,
3579      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3580      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3581
3582  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3583  /// Emit initial code for loop counters of loop-based directives.
3584  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3585                                  OMPPrivateScope &LoopScope);
3586
3587  /// Helper for the OpenMP loop directives.
3588  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3589
3590  /// Emit code for the worksharing loop-based directive.
3591  /// \return true, if this construct has any lastprivate clause, false -
3592  /// otherwise.
3593  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3594                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3595                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3596
3597  /// Emit code for the distribute loop-based directive.
3598  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3599                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3600
3601  /// Helpers for the OpenMP loop directives.
3602  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3603  void EmitOMPSimdFinal(
3604      const OMPLoopDirective &D,
3605      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3606
3607  /// Emits the lvalue for the expression with possibly captured variable.
3608  LValue EmitOMPSharedLValue(const Expr *E);
3609
3610private:
3611  /// Helpers for blocks.
3612  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3613
3614  /// struct with the values to be passed to the OpenMP loop-related functions
3615  struct OMPLoopArguments {
3616    /// loop lower bound
3617    Address LB = Address::invalid();
3618    /// loop upper bound
3619    Address UB = Address::invalid();
3620    /// loop stride
3621    Address ST = Address::invalid();
3622    /// isLastIteration argument for runtime functions
3623    Address IL = Address::invalid();
3624    /// Chunk value generated by sema
3625    llvm::Value *Chunk = nullptr;
3626    /// EnsureUpperBound
3627    Expr *EUB = nullptr;
3628    /// IncrementExpression
3629    Expr *IncExpr = nullptr;
3630    /// Loop initialization
3631    Expr *Init = nullptr;
3632    /// Loop exit condition
3633    Expr *Cond = nullptr;
3634    /// Update of LB after a whole chunk has been executed
3635    Expr *NextLB = nullptr;
3636    /// Update of UB after a whole chunk has been executed
3637    Expr *NextUB = nullptr;
3638    OMPLoopArguments() = default;
3639    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3640                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3641                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3642                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3643                     Expr *NextUB = nullptr)
3644        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3645          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3646          NextUB(NextUB) {}
3647  };
3648  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3649                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3650                        const OMPLoopArguments &LoopArgs,
3651                        const CodeGenLoopTy &CodeGenLoop,
3652                        const CodeGenOrderedTy &CodeGenOrdered);
3653  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3654                           bool IsMonotonic, const OMPLoopDirective &S,
3655                           OMPPrivateScope &LoopScope, bool Ordered,
3656                           const OMPLoopArguments &LoopArgs,
3657                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3658  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3659                                  const OMPLoopDirective &S,
3660                                  OMPPrivateScope &LoopScope,
3661                                  const OMPLoopArguments &LoopArgs,
3662                                  const CodeGenLoopTy &CodeGenLoopContent);
3663  /// Emit code for sections directive.
3664  void EmitSections(const OMPExecutableDirective &S);
3665
3666public:
3667
3668  //===--------------------------------------------------------------------===//
3669  //                         LValue Expression Emission
3670  //===--------------------------------------------------------------------===//
3671
3672  /// Create a check that a scalar RValue is non-null.
3673  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3674
3675  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3676  RValue GetUndefRValue(QualType Ty);
3677
3678  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3679  /// and issue an ErrorUnsupported style diagnostic (using the
3680  /// provided Name).
3681  RValue EmitUnsupportedRValue(const Expr *E,
3682                               const char *Name);
3683
3684  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3685  /// an ErrorUnsupported style diagnostic (using the provided Name).
3686  LValue EmitUnsupportedLValue(const Expr *E,
3687                               const char *Name);
3688
3689  /// EmitLValue - Emit code to compute a designator that specifies the location
3690  /// of the expression.
3691  ///
3692  /// This can return one of two things: a simple address or a bitfield
3693  /// reference.  In either case, the LLVM Value* in the LValue structure is
3694  /// guaranteed to be an LLVM pointer type.
3695  ///
3696  /// If this returns a bitfield reference, nothing about the pointee type of
3697  /// the LLVM value is known: For example, it may not be a pointer to an
3698  /// integer.
3699  ///
3700  /// If this returns a normal address, and if the lvalue's C type is fixed
3701  /// size, this method guarantees that the returned pointer type will point to
3702  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3703  /// variable length type, this is not possible.
3704  ///
3705  LValue EmitLValue(const Expr *E);
3706
3707  /// Same as EmitLValue but additionally we generate checking code to
3708  /// guard against undefined behavior.  This is only suitable when we know
3709  /// that the address will be used to access the object.
3710  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3711
3712  RValue convertTempToRValue(Address addr, QualType type,
3713                             SourceLocation Loc);
3714
3715  void EmitAtomicInit(Expr *E, LValue lvalue);
3716
3717  bool LValueIsSuitableForInlineAtomic(LValue Src);
3718
3719  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3720                        AggValueSlot Slot = AggValueSlot::ignored());
3721
3722  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3723                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3724                        AggValueSlot slot = AggValueSlot::ignored());
3725
3726  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3727
3728  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3729                       bool IsVolatile, bool isInit);
3730
3731  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3732      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3733      llvm::AtomicOrdering Success =
3734          llvm::AtomicOrdering::SequentiallyConsistent,
3735      llvm::AtomicOrdering Failure =
3736          llvm::AtomicOrdering::SequentiallyConsistent,
3737      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3738
3739  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3740                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3741                        bool IsVolatile);
3742
3743  /// EmitToMemory - Change a scalar value from its value
3744  /// representation to its in-memory representation.
3745  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3746
3747  /// EmitFromMemory - Change a scalar value from its memory
3748  /// representation to its value representation.
3749  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3750
3751  /// Check if the scalar \p Value is within the valid range for the given
3752  /// type \p Ty.
3753  ///
3754  /// Returns true if a check is needed (even if the range is unknown).
3755  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3756                            SourceLocation Loc);
3757
3758  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3759  /// care to appropriately convert from the memory representation to
3760  /// the LLVM value representation.
3761  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3762                                SourceLocation Loc,
3763                                AlignmentSource Source = AlignmentSource::Type,
3764                                bool isNontemporal = false) {
3765    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3766                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3767  }
3768
3769  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3770                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3771                                TBAAAccessInfo TBAAInfo,
3772                                bool isNontemporal = false);
3773
3774  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3775  /// care to appropriately convert from the memory representation to
3776  /// the LLVM value representation.  The l-value must be a simple
3777  /// l-value.
3778  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3779
3780  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3781  /// care to appropriately convert from the memory representation to
3782  /// the LLVM value representation.
3783  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3784                         bool Volatile, QualType Ty,
3785                         AlignmentSource Source = AlignmentSource::Type,
3786                         bool isInit = false, bool isNontemporal = false) {
3787    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3788                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3789  }
3790
3791  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3792                         bool Volatile, QualType Ty,
3793                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3794                         bool isInit = false, bool isNontemporal = false);
3795
3796  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3797  /// care to appropriately convert from the memory representation to
3798  /// the LLVM value representation.  The l-value must be a simple
3799  /// l-value.  The isInit flag indicates whether this is an initialization.
3800  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3801  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3802
3803  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3804  /// this method emits the address of the lvalue, then loads the result as an
3805  /// rvalue, returning the rvalue.
3806  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3807  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3808  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3809  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3810
3811  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3812  /// lvalue, where both are guaranteed to the have the same type, and that type
3813  /// is 'Ty'.
3814  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3815  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3816  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3817
3818  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3819  /// as EmitStoreThroughLValue.
3820  ///
3821  /// \param Result [out] - If non-null, this will be set to a Value* for the
3822  /// bit-field contents after the store, appropriate for use as the result of
3823  /// an assignment to the bit-field.
3824  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3825                                      llvm::Value **Result=nullptr);
3826
3827  /// Emit an l-value for an assignment (simple or compound) of complex type.
3828  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3829  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3830  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3831                                             llvm::Value *&Result);
3832
3833  // Note: only available for agg return types
3834  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3835  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3836  // Note: only available for agg return types
3837  LValue EmitCallExprLValue(const CallExpr *E);
3838  // Note: only available for agg return types
3839  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3840  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3841  LValue EmitStringLiteralLValue(const StringLiteral *E);
3842  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3843  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3844  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3845  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3846                                bool Accessed = false);
3847  LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3848  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3849                                 bool IsLowerBound = true);
3850  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3851  LValue EmitMemberExpr(const MemberExpr *E);
3852  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3853  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3854  LValue EmitInitListLValue(const InitListExpr *E);
3855  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3856  LValue EmitCastLValue(const CastExpr *E);
3857  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3858  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3859
3860  Address EmitExtVectorElementLValue(LValue V);
3861
3862  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3863
3864  Address EmitArrayToPointerDecay(const Expr *Array,
3865                                  LValueBaseInfo *BaseInfo = nullptr,
3866                                  TBAAAccessInfo *TBAAInfo = nullptr);
3867
3868  class ConstantEmission {
3869    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3870    ConstantEmission(llvm::Constant *C, bool isReference)
3871      : ValueAndIsReference(C, isReference) {}
3872  public:
3873    ConstantEmission() {}
3874    static ConstantEmission forReference(llvm::Constant *C) {
3875      return ConstantEmission(C, true);
3876    }
3877    static ConstantEmission forValue(llvm::Constant *C) {
3878      return ConstantEmission(C, false);
3879    }
3880
3881    explicit operator bool() const {
3882      return ValueAndIsReference.getOpaqueValue() != nullptr;
3883    }
3884
3885    bool isReference() const { return ValueAndIsReference.getInt(); }
3886    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3887      assert(isReference());
3888      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3889                                            refExpr->getType());
3890    }
3891
3892    llvm::Constant *getValue() const {
3893      assert(!isReference());
3894      return ValueAndIsReference.getPointer();
3895    }
3896  };
3897
3898  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3899  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3900  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3901
3902  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3903                                AggValueSlot slot = AggValueSlot::ignored());
3904  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3905
3906  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3907                              const ObjCIvarDecl *Ivar);
3908  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3909  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3910
3911  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3912  /// if the Field is a reference, this will return the address of the reference
3913  /// and not the address of the value stored in the reference.
3914  LValue EmitLValueForFieldInitialization(LValue Base,
3915                                          const FieldDecl* Field);
3916
3917  LValue EmitLValueForIvar(QualType ObjectTy,
3918                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
3919                           unsigned CVRQualifiers);
3920
3921  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3922  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3923  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3924  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3925
3926  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3927  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3928  LValue EmitStmtExprLValue(const StmtExpr *E);
3929  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3930  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3931  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3932
3933  //===--------------------------------------------------------------------===//
3934  //                         Scalar Expression Emission
3935  //===--------------------------------------------------------------------===//
3936
3937  /// EmitCall - Generate a call of the given function, expecting the given
3938  /// result type, and using the given argument list which specifies both the
3939  /// LLVM arguments and the types they were derived from.
3940  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3941                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3942                  llvm::CallBase **callOrInvoke, bool IsMustTail,
3943                  SourceLocation Loc);
3944  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3945                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3946                  llvm::CallBase **callOrInvoke = nullptr,
3947                  bool IsMustTail = false) {
3948    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3949                    IsMustTail, SourceLocation());
3950  }
3951  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3952                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3953  RValue EmitCallExpr(const CallExpr *E,
3954                      ReturnValueSlot ReturnValue = ReturnValueSlot());
3955  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3956  CGCallee EmitCallee(const Expr *E);
3957
3958  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3959  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3960
3961  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3962                                  const Twine &name = "");
3963  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3964                                  ArrayRef<llvm::Value *> args,
3965                                  const Twine &name = "");
3966  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3967                                          const Twine &name = "");
3968  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3969                                          ArrayRef<llvm::Value *> args,
3970                                          const Twine &name = "");
3971
3972  SmallVector<llvm::OperandBundleDef, 1>
3973  getBundlesForFunclet(llvm::Value *Callee);
3974
3975  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3976                                   ArrayRef<llvm::Value *> Args,
3977                                   const Twine &Name = "");
3978  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3979                                          ArrayRef<llvm::Value *> args,
3980                                          const Twine &name = "");
3981  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3982                                          const Twine &name = "");
3983  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3984                                       ArrayRef<llvm::Value *> args);
3985
3986  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3987                                     NestedNameSpecifier *Qual,
3988                                     llvm::Type *Ty);
3989
3990  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3991                                               CXXDtorType Type,
3992                                               const CXXRecordDecl *RD);
3993
3994  // Return the copy constructor name with the prefix "__copy_constructor_"
3995  // removed.
3996  static std::string getNonTrivialCopyConstructorStr(QualType QT,
3997                                                     CharUnits Alignment,
3998                                                     bool IsVolatile,
3999                                                     ASTContext &Ctx);
4000
4001  // Return the destructor name with the prefix "__destructor_" removed.
4002  static std::string getNonTrivialDestructorStr(QualType QT,
4003                                                CharUnits Alignment,
4004                                                bool IsVolatile,
4005                                                ASTContext &Ctx);
4006
4007  // These functions emit calls to the special functions of non-trivial C
4008  // structs.
4009  void defaultInitNonTrivialCStructVar(LValue Dst);
4010  void callCStructDefaultConstructor(LValue Dst);
4011  void callCStructDestructor(LValue Dst);
4012  void callCStructCopyConstructor(LValue Dst, LValue Src);
4013  void callCStructMoveConstructor(LValue Dst, LValue Src);
4014  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4015  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4016
4017  RValue
4018  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4019                              const CGCallee &Callee,
4020                              ReturnValueSlot ReturnValue, llvm::Value *This,
4021                              llvm::Value *ImplicitParam,
4022                              QualType ImplicitParamTy, const CallExpr *E,
4023                              CallArgList *RtlArgs);
4024  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4025                               llvm::Value *This, QualType ThisTy,
4026                               llvm::Value *ImplicitParam,
4027                               QualType ImplicitParamTy, const CallExpr *E);
4028  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4029                               ReturnValueSlot ReturnValue);
4030  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4031                                               const CXXMethodDecl *MD,
4032                                               ReturnValueSlot ReturnValue,
4033                                               bool HasQualifier,
4034                                               NestedNameSpecifier *Qualifier,
4035                                               bool IsArrow, const Expr *Base);
4036  // Compute the object pointer.
4037  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4038                                          llvm::Value *memberPtr,
4039                                          const MemberPointerType *memberPtrType,
4040                                          LValueBaseInfo *BaseInfo = nullptr,
4041                                          TBAAAccessInfo *TBAAInfo = nullptr);
4042  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4043                                      ReturnValueSlot ReturnValue);
4044
4045  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4046                                       const CXXMethodDecl *MD,
4047                                       ReturnValueSlot ReturnValue);
4048  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4049
4050  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4051                                ReturnValueSlot ReturnValue);
4052
4053  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
4054                                       ReturnValueSlot ReturnValue);
4055  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
4056                                        ReturnValueSlot ReturnValue);
4057
4058  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4059                         const CallExpr *E, ReturnValueSlot ReturnValue);
4060
4061  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4062
4063  /// Emit IR for __builtin_os_log_format.
4064  RValue emitBuiltinOSLogFormat(const CallExpr &E);
4065
4066  /// Emit IR for __builtin_is_aligned.
4067  RValue EmitBuiltinIsAligned(const CallExpr *E);
4068  /// Emit IR for __builtin_align_up/__builtin_align_down.
4069  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4070
4071  llvm::Function *generateBuiltinOSLogHelperFunction(
4072      const analyze_os_log::OSLogBufferLayout &Layout,
4073      CharUnits BufferAlignment);
4074
4075  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4076
4077  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4078  /// is unhandled by the current target.
4079  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4080                                     ReturnValueSlot ReturnValue);
4081
4082  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4083                                             const llvm::CmpInst::Predicate Fp,
4084                                             const llvm::CmpInst::Predicate Ip,
4085                                             const llvm::Twine &Name = "");
4086  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4087                                  ReturnValueSlot ReturnValue,
4088                                  llvm::Triple::ArchType Arch);
4089  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4090                                     ReturnValueSlot ReturnValue,
4091                                     llvm::Triple::ArchType Arch);
4092  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4093                                     ReturnValueSlot ReturnValue,
4094                                     llvm::Triple::ArchType Arch);
4095  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4096                                   QualType RTy);
4097  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4098                                   QualType RTy);
4099
4100  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4101                                         unsigned LLVMIntrinsic,
4102                                         unsigned AltLLVMIntrinsic,
4103                                         const char *NameHint,
4104                                         unsigned Modifier,
4105                                         const CallExpr *E,
4106                                         SmallVectorImpl<llvm::Value *> &Ops,
4107                                         Address PtrOp0, Address PtrOp1,
4108                                         llvm::Triple::ArchType Arch);
4109
4110  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4111                                          unsigned Modifier, llvm::Type *ArgTy,
4112                                          const CallExpr *E);
4113  llvm::Value *EmitNeonCall(llvm::Function *F,
4114                            SmallVectorImpl<llvm::Value*> &O,
4115                            const char *name,
4116                            unsigned shift = 0, bool rightshift = false);
4117  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4118                             const llvm::ElementCount &Count);
4119  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4120  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4121                                   bool negateForRightShift);
4122  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4123                                 llvm::Type *Ty, bool usgn, const char *name);
4124  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4125  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4126  /// access builtin.  Only required if it can't be inferred from the base
4127  /// pointer operand.
4128  llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4129
4130  SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4131                                                   llvm::Type *ReturnType,
4132                                                   ArrayRef<llvm::Value *> Ops);
4133  llvm::Type *getEltType(SVETypeFlags TypeFlags);
4134  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4135  llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4136  llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4137  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4138  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4139  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4140  llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4141                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4142                            unsigned BuiltinID);
4143  llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4144                           llvm::ArrayRef<llvm::Value *> Ops,
4145                           unsigned BuiltinID);
4146  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4147                                    llvm::ScalableVectorType *VTy);
4148  llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4149                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4150                                 unsigned IntID);
4151  llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4152                                   llvm::SmallVectorImpl<llvm::Value *> &Ops,
4153                                   unsigned IntID);
4154  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4155                                 SmallVectorImpl<llvm::Value *> &Ops,
4156                                 unsigned BuiltinID, bool IsZExtReturn);
4157  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4158                                  SmallVectorImpl<llvm::Value *> &Ops,
4159                                  unsigned BuiltinID);
4160  llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4161                                   SmallVectorImpl<llvm::Value *> &Ops,
4162                                   unsigned BuiltinID);
4163  llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4164                                     SmallVectorImpl<llvm::Value *> &Ops,
4165                                     unsigned IntID);
4166  llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4167                                 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4168  llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4169                                  SmallVectorImpl<llvm::Value *> &Ops,
4170                                  unsigned IntID);
4171  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4172
4173  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4174                                      llvm::Triple::ArchType Arch);
4175  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4176
4177  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4178  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4179  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4180  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4181  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4182  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4183  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4184                                          const CallExpr *E);
4185  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4186  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4187                                    ReturnValueSlot ReturnValue);
4188  bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4189                               llvm::AtomicOrdering &AO,
4190                               llvm::SyncScope::ID &SSID);
4191
4192  enum class MSVCIntrin;
4193  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4194
4195  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4196
4197  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4198  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4199  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4200  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4201  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4202  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4203                                const ObjCMethodDecl *MethodWithObjects);
4204  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4205  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4206                             ReturnValueSlot Return = ReturnValueSlot());
4207
4208  /// Retrieves the default cleanup kind for an ARC cleanup.
4209  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4210  CleanupKind getARCCleanupKind() {
4211    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4212             ? NormalAndEHCleanup : NormalCleanup;
4213  }
4214
4215  // ARC primitives.
4216  void EmitARCInitWeak(Address addr, llvm::Value *value);
4217  void EmitARCDestroyWeak(Address addr);
4218  llvm::Value *EmitARCLoadWeak(Address addr);
4219  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4220  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4221  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4222  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4223  void EmitARCCopyWeak(Address dst, Address src);
4224  void EmitARCMoveWeak(Address dst, Address src);
4225  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4226  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4227  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4228                                  bool resultIgnored);
4229  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4230                                      bool resultIgnored);
4231  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4232  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4233  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4234  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4235  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4236  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4237  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4238  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4239  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4240  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4241
4242  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4243  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4244                                      llvm::Type *returnType);
4245  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4246
4247  std::pair<LValue,llvm::Value*>
4248  EmitARCStoreAutoreleasing(const BinaryOperator *e);
4249  std::pair<LValue,llvm::Value*>
4250  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4251  std::pair<LValue,llvm::Value*>
4252  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4253
4254  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4255                             llvm::Type *returnType);
4256  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4257                                     llvm::Type *returnType);
4258  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4259
4260  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4261  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4262  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4263
4264  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4265  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4266                                            bool allowUnsafeClaim);
4267  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4268  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4269  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4270
4271  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4272
4273  void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4274
4275  static Destroyer destroyARCStrongImprecise;
4276  static Destroyer destroyARCStrongPrecise;
4277  static Destroyer destroyARCWeak;
4278  static Destroyer emitARCIntrinsicUse;
4279  static Destroyer destroyNonTrivialCStruct;
4280
4281  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4282  llvm::Value *EmitObjCAutoreleasePoolPush();
4283  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4284  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4285  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4286
4287  /// Emits a reference binding to the passed in expression.
4288  RValue EmitReferenceBindingToExpr(const Expr *E);
4289
4290  //===--------------------------------------------------------------------===//
4291  //                           Expression Emission
4292  //===--------------------------------------------------------------------===//
4293
4294  // Expressions are broken into three classes: scalar, complex, aggregate.
4295
4296  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4297  /// scalar type, returning the result.
4298  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4299
4300  /// Emit a conversion from the specified type to the specified destination
4301  /// type, both of which are LLVM scalar types.
4302  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4303                                    QualType DstTy, SourceLocation Loc);
4304
4305  /// Emit a conversion from the specified complex type to the specified
4306  /// destination type, where the destination type is an LLVM scalar type.
4307  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4308                                             QualType DstTy,
4309                                             SourceLocation Loc);
4310
4311  /// EmitAggExpr - Emit the computation of the specified expression
4312  /// of aggregate type.  The result is computed into the given slot,
4313  /// which may be null to indicate that the value is not needed.
4314  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4315
4316  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4317  /// aggregate type into a temporary LValue.
4318  LValue EmitAggExprToLValue(const Expr *E);
4319
4320  /// Build all the stores needed to initialize an aggregate at Dest with the
4321  /// value Val.
4322  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4323
4324  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4325  /// make sure it survives garbage collection until this point.
4326  void EmitExtendGCLifetime(llvm::Value *object);
4327
4328  /// EmitComplexExpr - Emit the computation of the specified expression of
4329  /// complex type, returning the result.
4330  ComplexPairTy EmitComplexExpr(const Expr *E,
4331                                bool IgnoreReal = false,
4332                                bool IgnoreImag = false);
4333
4334  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4335  /// type and place its result into the specified l-value.
4336  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4337
4338  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4339  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4340
4341  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4342  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4343
4344  Address emitAddrOfRealComponent(Address complex, QualType complexType);
4345  Address emitAddrOfImagComponent(Address complex, QualType complexType);
4346
4347  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4348  /// global variable that has already been created for it.  If the initializer
4349  /// has a different type than GV does, this may free GV and return a different
4350  /// one.  Otherwise it just returns GV.
4351  llvm::GlobalVariable *
4352  AddInitializerToStaticVarDecl(const VarDecl &D,
4353                                llvm::GlobalVariable *GV);
4354
4355  // Emit an @llvm.invariant.start call for the given memory region.
4356  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4357
4358  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4359  /// variable with global storage.
4360  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4361                                bool PerformInit);
4362
4363  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4364                                   llvm::Constant *Addr);
4365
4366  /// Call atexit() with a function that passes the given argument to
4367  /// the given function.
4368  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4369                                    llvm::Constant *addr);
4370
4371  /// Call atexit() with function dtorStub.
4372  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4373
4374  /// Call unatexit() with function dtorStub.
4375  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4376
4377  /// Emit code in this function to perform a guarded variable
4378  /// initialization.  Guarded initializations are used when it's not
4379  /// possible to prove that an initialization will be done exactly
4380  /// once, e.g. with a static local variable or a static data member
4381  /// of a class template.
4382  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4383                          bool PerformInit);
4384
4385  enum class GuardKind { VariableGuard, TlsGuard };
4386
4387  /// Emit a branch to select whether or not to perform guarded initialization.
4388  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4389                                llvm::BasicBlock *InitBlock,
4390                                llvm::BasicBlock *NoInitBlock,
4391                                GuardKind Kind, const VarDecl *D);
4392
4393  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4394  /// variables.
4395  void
4396  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4397                            ArrayRef<llvm::Function *> CXXThreadLocals,
4398                            ConstantAddress Guard = ConstantAddress::invalid());
4399
4400  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4401  /// variables.
4402  void GenerateCXXGlobalCleanUpFunc(
4403      llvm::Function *Fn,
4404      ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4405                          llvm::Constant *>>
4406          DtorsOrStermFinalizers);
4407
4408  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4409                                        const VarDecl *D,
4410                                        llvm::GlobalVariable *Addr,
4411                                        bool PerformInit);
4412
4413  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4414
4415  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4416
4417  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4418
4419  RValue EmitAtomicExpr(AtomicExpr *E);
4420
4421  //===--------------------------------------------------------------------===//
4422  //                         Annotations Emission
4423  //===--------------------------------------------------------------------===//
4424
4425  /// Emit an annotation call (intrinsic).
4426  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4427                                  llvm::Value *AnnotatedVal,
4428                                  StringRef AnnotationStr,
4429                                  SourceLocation Location,
4430                                  const AnnotateAttr *Attr);
4431
4432  /// Emit local annotations for the local variable V, declared by D.
4433  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4434
4435  /// Emit field annotations for the given field & value. Returns the
4436  /// annotation result.
4437  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4438
4439  //===--------------------------------------------------------------------===//
4440  //                             Internal Helpers
4441  //===--------------------------------------------------------------------===//
4442
4443  /// ContainsLabel - Return true if the statement contains a label in it.  If
4444  /// this statement is not executed normally, it not containing a label means
4445  /// that we can just remove the code.
4446  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4447
4448  /// containsBreak - Return true if the statement contains a break out of it.
4449  /// If the statement (recursively) contains a switch or loop with a break
4450  /// inside of it, this is fine.
4451  static bool containsBreak(const Stmt *S);
4452
4453  /// Determine if the given statement might introduce a declaration into the
4454  /// current scope, by being a (possibly-labelled) DeclStmt.
4455  static bool mightAddDeclToScope(const Stmt *S);
4456
4457  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4458  /// to a constant, or if it does but contains a label, return false.  If it
4459  /// constant folds return true and set the boolean result in Result.
4460  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4461                                    bool AllowLabels = false);
4462
4463  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4464  /// to a constant, or if it does but contains a label, return false.  If it
4465  /// constant folds return true and set the folded value.
4466  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4467                                    bool AllowLabels = false);
4468
4469  /// isInstrumentedCondition - Determine whether the given condition is an
4470  /// instrumentable condition (i.e. no "&&" or "||").
4471  static bool isInstrumentedCondition(const Expr *C);
4472
4473  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4474  /// increments a profile counter based on the semantics of the given logical
4475  /// operator opcode.  This is used to instrument branch condition coverage
4476  /// for logical operators.
4477  void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4478                                llvm::BasicBlock *TrueBlock,
4479                                llvm::BasicBlock *FalseBlock,
4480                                uint64_t TrueCount = 0,
4481                                Stmt::Likelihood LH = Stmt::LH_None,
4482                                const Expr *CntrIdx = nullptr);
4483
4484  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4485  /// if statement) to the specified blocks.  Based on the condition, this might
4486  /// try to simplify the codegen of the conditional based on the branch.
4487  /// TrueCount should be the number of times we expect the condition to
4488  /// evaluate to true based on PGO data.
4489  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4490                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4491                            Stmt::Likelihood LH = Stmt::LH_None);
4492
4493  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4494  /// nonnull, if \p LHS is marked _Nonnull.
4495  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4496
4497  /// An enumeration which makes it easier to specify whether or not an
4498  /// operation is a subtraction.
4499  enum { NotSubtraction = false, IsSubtraction = true };
4500
4501  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4502  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4503  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4504  /// \p IsSubtraction indicates whether the expression used to form the GEP
4505  /// is a subtraction.
4506  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4507                                      ArrayRef<llvm::Value *> IdxList,
4508                                      bool SignedIndices,
4509                                      bool IsSubtraction,
4510                                      SourceLocation Loc,
4511                                      const Twine &Name = "");
4512
4513  /// Specifies which type of sanitizer check to apply when handling a
4514  /// particular builtin.
4515  enum BuiltinCheckKind {
4516    BCK_CTZPassedZero,
4517    BCK_CLZPassedZero,
4518  };
4519
4520  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4521  /// enabled, a runtime check specified by \p Kind is also emitted.
4522  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4523
4524  /// Emit a description of a type in a format suitable for passing to
4525  /// a runtime sanitizer handler.
4526  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4527
4528  /// Convert a value into a format suitable for passing to a runtime
4529  /// sanitizer handler.
4530  llvm::Value *EmitCheckValue(llvm::Value *V);
4531
4532  /// Emit a description of a source location in a format suitable for
4533  /// passing to a runtime sanitizer handler.
4534  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4535
4536  /// Create a basic block that will either trap or call a handler function in
4537  /// the UBSan runtime with the provided arguments, and create a conditional
4538  /// branch to it.
4539  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4540                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4541                 ArrayRef<llvm::Value *> DynamicArgs);
4542
4543  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4544  /// if Cond if false.
4545  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4546                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4547                            ArrayRef<llvm::Constant *> StaticArgs);
4548
4549  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4550  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4551  void EmitUnreachable(SourceLocation Loc);
4552
4553  /// Create a basic block that will call the trap intrinsic, and emit a
4554  /// conditional branch to it, for the -ftrapv checks.
4555  void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4556
4557  /// Emit a call to trap or debugtrap and attach function attribute
4558  /// "trap-func-name" if specified.
4559  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4560
4561  /// Emit a stub for the cross-DSO CFI check function.
4562  void EmitCfiCheckStub();
4563
4564  /// Emit a cross-DSO CFI failure handling function.
4565  void EmitCfiCheckFail();
4566
4567  /// Create a check for a function parameter that may potentially be
4568  /// declared as non-null.
4569  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4570                           AbstractCallee AC, unsigned ParmNum);
4571
4572  /// EmitCallArg - Emit a single call argument.
4573  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4574
4575  /// EmitDelegateCallArg - We are performing a delegate call; that
4576  /// is, the current function is delegating to another one.  Produce
4577  /// a r-value suitable for passing the given parameter.
4578  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4579                           SourceLocation loc);
4580
4581  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4582  /// point operation, expressed as the maximum relative error in ulp.
4583  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4584
4585  /// SetFPModel - Control floating point behavior via fp-model settings.
4586  void SetFPModel();
4587
4588  /// Set the codegen fast-math flags.
4589  void SetFastMathFlags(FPOptions FPFeatures);
4590
4591private:
4592  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4593  void EmitReturnOfRValue(RValue RV, QualType Ty);
4594
4595  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4596
4597  llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4598      DeferredReplacements;
4599
4600  /// Set the address of a local variable.
4601  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4602    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4603    LocalDeclMap.insert({VD, Addr});
4604  }
4605
4606  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4607  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4608  ///
4609  /// \param AI - The first function argument of the expansion.
4610  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4611                          llvm::Function::arg_iterator &AI);
4612
4613  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4614  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4615  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4616  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4617                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4618                        unsigned &IRCallArgPos);
4619
4620  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4621                            const Expr *InputExpr, std::string &ConstraintStr);
4622
4623  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4624                                  LValue InputValue, QualType InputType,
4625                                  std::string &ConstraintStr,
4626                                  SourceLocation Loc);
4627
4628  /// Attempts to statically evaluate the object size of E. If that
4629  /// fails, emits code to figure the size of E out for us. This is
4630  /// pass_object_size aware.
4631  ///
4632  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4633  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4634                                               llvm::IntegerType *ResType,
4635                                               llvm::Value *EmittedE,
4636                                               bool IsDynamic);
4637
4638  /// Emits the size of E, as required by __builtin_object_size. This
4639  /// function is aware of pass_object_size parameters, and will act accordingly
4640  /// if E is a parameter with the pass_object_size attribute.
4641  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4642                                     llvm::IntegerType *ResType,
4643                                     llvm::Value *EmittedE,
4644                                     bool IsDynamic);
4645
4646  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4647                                       Address Loc);
4648
4649public:
4650  enum class EvaluationOrder {
4651    ///! No language constraints on evaluation order.
4652    Default,
4653    ///! Language semantics require left-to-right evaluation.
4654    ForceLeftToRight,
4655    ///! Language semantics require right-to-left evaluation.
4656    ForceRightToLeft
4657  };
4658
4659  // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4660  // an ObjCMethodDecl.
4661  struct PrototypeWrapper {
4662    llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4663
4664    PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4665    PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4666  };
4667
4668  void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4669                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4670                    AbstractCallee AC = AbstractCallee(),
4671                    unsigned ParamsToSkip = 0,
4672                    EvaluationOrder Order = EvaluationOrder::Default);
4673
4674  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4675  /// emit the value and compute our best estimate of the alignment of the
4676  /// pointee.
4677  ///
4678  /// \param BaseInfo - If non-null, this will be initialized with
4679  /// information about the source of the alignment and the may-alias
4680  /// attribute.  Note that this function will conservatively fall back on
4681  /// the type when it doesn't recognize the expression and may-alias will
4682  /// be set to false.
4683  ///
4684  /// One reasonable way to use this information is when there's a language
4685  /// guarantee that the pointer must be aligned to some stricter value, and
4686  /// we're simply trying to ensure that sufficiently obvious uses of under-
4687  /// aligned objects don't get miscompiled; for example, a placement new
4688  /// into the address of a local variable.  In such a case, it's quite
4689  /// reasonable to just ignore the returned alignment when it isn't from an
4690  /// explicit source.
4691  Address EmitPointerWithAlignment(const Expr *Addr,
4692                                   LValueBaseInfo *BaseInfo = nullptr,
4693                                   TBAAAccessInfo *TBAAInfo = nullptr);
4694
4695  /// If \p E references a parameter with pass_object_size info or a constant
4696  /// array size modifier, emit the object size divided by the size of \p EltTy.
4697  /// Otherwise return null.
4698  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4699
4700  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4701
4702  struct MultiVersionResolverOption {
4703    llvm::Function *Function;
4704    struct Conds {
4705      StringRef Architecture;
4706      llvm::SmallVector<StringRef, 8> Features;
4707
4708      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4709          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4710    } Conditions;
4711
4712    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4713                               ArrayRef<StringRef> Feats)
4714        : Function(F), Conditions(Arch, Feats) {}
4715  };
4716
4717  // Emits the body of a multiversion function's resolver. Assumes that the
4718  // options are already sorted in the proper order, with the 'default' option
4719  // last (if it exists).
4720  void EmitMultiVersionResolver(llvm::Function *Resolver,
4721                                ArrayRef<MultiVersionResolverOption> Options);
4722
4723  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4724
4725private:
4726  QualType getVarArgType(const Expr *Arg);
4727
4728  void EmitDeclMetadata();
4729
4730  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4731                                  const AutoVarEmission &emission);
4732
4733  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4734
4735  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4736  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4737  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4738  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4739  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4740  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4741  llvm::Value *EmitX86CpuInit();
4742  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4743};
4744
4745/// TargetFeatures - This class is used to check whether the builtin function
4746/// has the required tagert specific features. It is able to support the
4747/// combination of ','(and), '|'(or), and '()'. By default, the priority of
4748/// ',' is higher than that of '|' .
4749/// E.g:
4750/// A,B|C means the builtin function requires both A and B, or C.
4751/// If we want the builtin function requires both A and B, or both A and C,
4752/// there are two ways: A,B|A,C or A,(B|C).
4753/// The FeaturesList should not contain spaces, and brackets must appear in
4754/// pairs.
4755class TargetFeatures {
4756  struct FeatureListStatus {
4757    bool HasFeatures;
4758    StringRef CurFeaturesList;
4759  };
4760
4761  const llvm::StringMap<bool> &CallerFeatureMap;
4762
4763  FeatureListStatus getAndFeatures(StringRef FeatureList) {
4764    int InParentheses = 0;
4765    bool HasFeatures = true;
4766    size_t SubexpressionStart = 0;
4767    for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4768      char CurrentToken = FeatureList[i];
4769      switch (CurrentToken) {
4770      default:
4771        break;
4772      case '(':
4773        if (InParentheses == 0)
4774          SubexpressionStart = i + 1;
4775        ++InParentheses;
4776        break;
4777      case ')':
4778        --InParentheses;
4779        assert(InParentheses >= 0 && "Parentheses are not in pair");
4780        LLVM_FALLTHROUGH;
4781      case '|':
4782      case ',':
4783        if (InParentheses == 0) {
4784          if (HasFeatures && i != SubexpressionStart) {
4785            StringRef F = FeatureList.slice(SubexpressionStart, i);
4786            HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4787                                              : CallerFeatureMap.lookup(F);
4788          }
4789          SubexpressionStart = i + 1;
4790          if (CurrentToken == '|') {
4791            return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4792          }
4793        }
4794        break;
4795      }
4796    }
4797    assert(InParentheses == 0 && "Parentheses are not in pair");
4798    if (HasFeatures && SubexpressionStart != FeatureList.size())
4799      HasFeatures =
4800          CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4801    return {HasFeatures, StringRef()};
4802  }
4803
4804public:
4805  bool hasRequiredFeatures(StringRef FeatureList) {
4806    FeatureListStatus FS = {false, FeatureList};
4807    while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4808      FS = getAndFeatures(FS.CurFeaturesList);
4809    return FS.HasFeatures;
4810  }
4811
4812  TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4813      : CallerFeatureMap(CallerFeatureMap) {}
4814};
4815
4816inline DominatingLLVMValue::saved_type
4817DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4818  if (!needsSaving(value)) return saved_type(value, false);
4819
4820  // Otherwise, we need an alloca.
4821  auto align = CharUnits::fromQuantity(
4822            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4823  Address alloca =
4824    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4825  CGF.Builder.CreateStore(value, alloca);
4826
4827  return saved_type(alloca.getPointer(), true);
4828}
4829
4830inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4831                                                 saved_type value) {
4832  // If the value says it wasn't saved, trust that it's still dominating.
4833  if (!value.getInt()) return value.getPointer();
4834
4835  // Otherwise, it should be an alloca instruction, as set up in save().
4836  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4837  return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4838                                       alloca->getAlign());
4839}
4840
4841}  // end namespace CodeGen
4842
4843// Map the LangOption for floating point exception behavior into
4844// the corresponding enum in the IR.
4845llvm::fp::ExceptionBehavior
4846ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4847}  // end namespace clang
4848
4849#endif
4850