VTableBuilder.cpp revision 1.1.1.2
1//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with generation of the layout of virtual tables.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/VTableBuilder.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTDiagnostic.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/RecordLayout.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/Support/Format.h"
22#include "llvm/Support/raw_ostream.h"
23#include <algorithm>
24#include <cstdio>
25
26using namespace clang;
27
28#define DUMP_OVERRIDERS 0
29
30namespace {
31
32/// BaseOffset - Represents an offset from a derived class to a direct or
33/// indirect base class.
34struct BaseOffset {
35  /// DerivedClass - The derived class.
36  const CXXRecordDecl *DerivedClass;
37
38  /// VirtualBase - If the path from the derived class to the base class
39  /// involves virtual base classes, this holds the declaration of the last
40  /// virtual base in this path (i.e. closest to the base class).
41  const CXXRecordDecl *VirtualBase;
42
43  /// NonVirtualOffset - The offset from the derived class to the base class.
44  /// (Or the offset from the virtual base class to the base class, if the
45  /// path from the derived class to the base class involves a virtual base
46  /// class.
47  CharUnits NonVirtualOffset;
48
49  BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
50                 NonVirtualOffset(CharUnits::Zero()) { }
51  BaseOffset(const CXXRecordDecl *DerivedClass,
52             const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
53    : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
54    NonVirtualOffset(NonVirtualOffset) { }
55
56  bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
57};
58
59/// FinalOverriders - Contains the final overrider member functions for all
60/// member functions in the base subobjects of a class.
61class FinalOverriders {
62public:
63  /// OverriderInfo - Information about a final overrider.
64  struct OverriderInfo {
65    /// Method - The method decl of the overrider.
66    const CXXMethodDecl *Method;
67
68    /// VirtualBase - The virtual base class subobject of this overrider.
69    /// Note that this records the closest derived virtual base class subobject.
70    const CXXRecordDecl *VirtualBase;
71
72    /// Offset - the base offset of the overrider's parent in the layout class.
73    CharUnits Offset;
74
75    OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
76                      Offset(CharUnits::Zero()) { }
77  };
78
79private:
80  /// MostDerivedClass - The most derived class for which the final overriders
81  /// are stored.
82  const CXXRecordDecl *MostDerivedClass;
83
84  /// MostDerivedClassOffset - If we're building final overriders for a
85  /// construction vtable, this holds the offset from the layout class to the
86  /// most derived class.
87  const CharUnits MostDerivedClassOffset;
88
89  /// LayoutClass - The class we're using for layout information. Will be
90  /// different than the most derived class if the final overriders are for a
91  /// construction vtable.
92  const CXXRecordDecl *LayoutClass;
93
94  ASTContext &Context;
95
96  /// MostDerivedClassLayout - the AST record layout of the most derived class.
97  const ASTRecordLayout &MostDerivedClassLayout;
98
99  /// MethodBaseOffsetPairTy - Uniquely identifies a member function
100  /// in a base subobject.
101  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
102
103  typedef llvm::DenseMap<MethodBaseOffsetPairTy,
104                         OverriderInfo> OverridersMapTy;
105
106  /// OverridersMap - The final overriders for all virtual member functions of
107  /// all the base subobjects of the most derived class.
108  OverridersMapTy OverridersMap;
109
110  /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
111  /// as a record decl and a subobject number) and its offsets in the most
112  /// derived class as well as the layout class.
113  typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
114                         CharUnits> SubobjectOffsetMapTy;
115
116  typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
117
118  /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
119  /// given base.
120  void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
121                          CharUnits OffsetInLayoutClass,
122                          SubobjectOffsetMapTy &SubobjectOffsets,
123                          SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
124                          SubobjectCountMapTy &SubobjectCounts);
125
126  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
127
128  /// dump - dump the final overriders for a base subobject, and all its direct
129  /// and indirect base subobjects.
130  void dump(raw_ostream &Out, BaseSubobject Base,
131            VisitedVirtualBasesSetTy& VisitedVirtualBases);
132
133public:
134  FinalOverriders(const CXXRecordDecl *MostDerivedClass,
135                  CharUnits MostDerivedClassOffset,
136                  const CXXRecordDecl *LayoutClass);
137
138  /// getOverrider - Get the final overrider for the given method declaration in
139  /// the subobject with the given base offset.
140  OverriderInfo getOverrider(const CXXMethodDecl *MD,
141                             CharUnits BaseOffset) const {
142    assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
143           "Did not find overrider!");
144
145    return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
146  }
147
148  /// dump - dump the final overriders.
149  void dump() {
150    VisitedVirtualBasesSetTy VisitedVirtualBases;
151    dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
152         VisitedVirtualBases);
153  }
154
155};
156
157FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
158                                 CharUnits MostDerivedClassOffset,
159                                 const CXXRecordDecl *LayoutClass)
160  : MostDerivedClass(MostDerivedClass),
161  MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
162  Context(MostDerivedClass->getASTContext()),
163  MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
164
165  // Compute base offsets.
166  SubobjectOffsetMapTy SubobjectOffsets;
167  SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
168  SubobjectCountMapTy SubobjectCounts;
169  ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
170                     /*IsVirtual=*/false,
171                     MostDerivedClassOffset,
172                     SubobjectOffsets, SubobjectLayoutClassOffsets,
173                     SubobjectCounts);
174
175  // Get the final overriders.
176  CXXFinalOverriderMap FinalOverriders;
177  MostDerivedClass->getFinalOverriders(FinalOverriders);
178
179  for (const auto &Overrider : FinalOverriders) {
180    const CXXMethodDecl *MD = Overrider.first;
181    const OverridingMethods &Methods = Overrider.second;
182
183    for (const auto &M : Methods) {
184      unsigned SubobjectNumber = M.first;
185      assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
186                                                   SubobjectNumber)) &&
187             "Did not find subobject offset!");
188
189      CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
190                                                            SubobjectNumber)];
191
192      assert(M.second.size() == 1 && "Final overrider is not unique!");
193      const UniqueVirtualMethod &Method = M.second.front();
194
195      const CXXRecordDecl *OverriderRD = Method.Method->getParent();
196      assert(SubobjectLayoutClassOffsets.count(
197             std::make_pair(OverriderRD, Method.Subobject))
198             && "Did not find subobject offset!");
199      CharUnits OverriderOffset =
200        SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
201                                                   Method.Subobject)];
202
203      OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
204      assert(!Overrider.Method && "Overrider should not exist yet!");
205
206      Overrider.Offset = OverriderOffset;
207      Overrider.Method = Method.Method;
208      Overrider.VirtualBase = Method.InVirtualSubobject;
209    }
210  }
211
212#if DUMP_OVERRIDERS
213  // And dump them (for now).
214  dump();
215#endif
216}
217
218static BaseOffset ComputeBaseOffset(const ASTContext &Context,
219                                    const CXXRecordDecl *DerivedRD,
220                                    const CXXBasePath &Path) {
221  CharUnits NonVirtualOffset = CharUnits::Zero();
222
223  unsigned NonVirtualStart = 0;
224  const CXXRecordDecl *VirtualBase = nullptr;
225
226  // First, look for the virtual base class.
227  for (int I = Path.size(), E = 0; I != E; --I) {
228    const CXXBasePathElement &Element = Path[I - 1];
229
230    if (Element.Base->isVirtual()) {
231      NonVirtualStart = I;
232      QualType VBaseType = Element.Base->getType();
233      VirtualBase = VBaseType->getAsCXXRecordDecl();
234      break;
235    }
236  }
237
238  // Now compute the non-virtual offset.
239  for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
240    const CXXBasePathElement &Element = Path[I];
241
242    // Check the base class offset.
243    const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
244
245    const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
246
247    NonVirtualOffset += Layout.getBaseClassOffset(Base);
248  }
249
250  // FIXME: This should probably use CharUnits or something. Maybe we should
251  // even change the base offsets in ASTRecordLayout to be specified in
252  // CharUnits.
253  return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
254
255}
256
257static BaseOffset ComputeBaseOffset(const ASTContext &Context,
258                                    const CXXRecordDecl *BaseRD,
259                                    const CXXRecordDecl *DerivedRD) {
260  CXXBasePaths Paths(/*FindAmbiguities=*/false,
261                     /*RecordPaths=*/true, /*DetectVirtual=*/false);
262
263  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
264    llvm_unreachable("Class must be derived from the passed in base class!");
265
266  return ComputeBaseOffset(Context, DerivedRD, Paths.front());
267}
268
269static BaseOffset
270ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
271                                  const CXXMethodDecl *DerivedMD,
272                                  const CXXMethodDecl *BaseMD) {
273  const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
274  const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
275
276  // Canonicalize the return types.
277  CanQualType CanDerivedReturnType =
278      Context.getCanonicalType(DerivedFT->getReturnType());
279  CanQualType CanBaseReturnType =
280      Context.getCanonicalType(BaseFT->getReturnType());
281
282  assert(CanDerivedReturnType->getTypeClass() ==
283         CanBaseReturnType->getTypeClass() &&
284         "Types must have same type class!");
285
286  if (CanDerivedReturnType == CanBaseReturnType) {
287    // No adjustment needed.
288    return BaseOffset();
289  }
290
291  if (isa<ReferenceType>(CanDerivedReturnType)) {
292    CanDerivedReturnType =
293      CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
294    CanBaseReturnType =
295      CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
296  } else if (isa<PointerType>(CanDerivedReturnType)) {
297    CanDerivedReturnType =
298      CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
299    CanBaseReturnType =
300      CanBaseReturnType->getAs<PointerType>()->getPointeeType();
301  } else {
302    llvm_unreachable("Unexpected return type!");
303  }
304
305  // We need to compare unqualified types here; consider
306  //   const T *Base::foo();
307  //   T *Derived::foo();
308  if (CanDerivedReturnType.getUnqualifiedType() ==
309      CanBaseReturnType.getUnqualifiedType()) {
310    // No adjustment needed.
311    return BaseOffset();
312  }
313
314  const CXXRecordDecl *DerivedRD =
315    cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
316
317  const CXXRecordDecl *BaseRD =
318    cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
319
320  return ComputeBaseOffset(Context, BaseRD, DerivedRD);
321}
322
323void
324FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
325                              CharUnits OffsetInLayoutClass,
326                              SubobjectOffsetMapTy &SubobjectOffsets,
327                              SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
328                              SubobjectCountMapTy &SubobjectCounts) {
329  const CXXRecordDecl *RD = Base.getBase();
330
331  unsigned SubobjectNumber = 0;
332  if (!IsVirtual)
333    SubobjectNumber = ++SubobjectCounts[RD];
334
335  // Set up the subobject to offset mapping.
336  assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
337         && "Subobject offset already exists!");
338  assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
339         && "Subobject offset already exists!");
340
341  SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
342  SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
343    OffsetInLayoutClass;
344
345  // Traverse our bases.
346  for (const auto &B : RD->bases()) {
347    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
348
349    CharUnits BaseOffset;
350    CharUnits BaseOffsetInLayoutClass;
351    if (B.isVirtual()) {
352      // Check if we've visited this virtual base before.
353      if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
354        continue;
355
356      const ASTRecordLayout &LayoutClassLayout =
357        Context.getASTRecordLayout(LayoutClass);
358
359      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
360      BaseOffsetInLayoutClass =
361        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
362    } else {
363      const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
364      CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
365
366      BaseOffset = Base.getBaseOffset() + Offset;
367      BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
368    }
369
370    ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
371                       B.isVirtual(), BaseOffsetInLayoutClass,
372                       SubobjectOffsets, SubobjectLayoutClassOffsets,
373                       SubobjectCounts);
374  }
375}
376
377void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
378                           VisitedVirtualBasesSetTy &VisitedVirtualBases) {
379  const CXXRecordDecl *RD = Base.getBase();
380  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
381
382  for (const auto &B : RD->bases()) {
383    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
384
385    // Ignore bases that don't have any virtual member functions.
386    if (!BaseDecl->isPolymorphic())
387      continue;
388
389    CharUnits BaseOffset;
390    if (B.isVirtual()) {
391      if (!VisitedVirtualBases.insert(BaseDecl).second) {
392        // We've visited this base before.
393        continue;
394      }
395
396      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
397    } else {
398      BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
399    }
400
401    dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
402  }
403
404  Out << "Final overriders for (";
405  RD->printQualifiedName(Out);
406  Out << ", ";
407  Out << Base.getBaseOffset().getQuantity() << ")\n";
408
409  // Now dump the overriders for this base subobject.
410  for (const auto *MD : RD->methods()) {
411    if (!VTableContextBase::hasVtableSlot(MD))
412      continue;
413    MD = MD->getCanonicalDecl();
414
415    OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
416
417    Out << "  ";
418    MD->printQualifiedName(Out);
419    Out << " - (";
420    Overrider.Method->printQualifiedName(Out);
421    Out << ", " << Overrider.Offset.getQuantity() << ')';
422
423    BaseOffset Offset;
424    if (!Overrider.Method->isPure())
425      Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
426
427    if (!Offset.isEmpty()) {
428      Out << " [ret-adj: ";
429      if (Offset.VirtualBase) {
430        Offset.VirtualBase->printQualifiedName(Out);
431        Out << " vbase, ";
432      }
433
434      Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
435    }
436
437    Out << "\n";
438  }
439}
440
441/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
442struct VCallOffsetMap {
443
444  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
445
446  /// Offsets - Keeps track of methods and their offsets.
447  // FIXME: This should be a real map and not a vector.
448  SmallVector<MethodAndOffsetPairTy, 16> Offsets;
449
450  /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
451  /// can share the same vcall offset.
452  static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
453                                         const CXXMethodDecl *RHS);
454
455public:
456  /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
457  /// add was successful, or false if there was already a member function with
458  /// the same signature in the map.
459  bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
460
461  /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
462  /// vtable address point) for the given virtual member function.
463  CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
464
465  // empty - Return whether the offset map is empty or not.
466  bool empty() const { return Offsets.empty(); }
467};
468
469static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
470                                    const CXXMethodDecl *RHS) {
471  const FunctionProtoType *LT =
472    cast<FunctionProtoType>(LHS->getType().getCanonicalType());
473  const FunctionProtoType *RT =
474    cast<FunctionProtoType>(RHS->getType().getCanonicalType());
475
476  // Fast-path matches in the canonical types.
477  if (LT == RT) return true;
478
479  // Force the signatures to match.  We can't rely on the overrides
480  // list here because there isn't necessarily an inheritance
481  // relationship between the two methods.
482  if (LT->getMethodQuals() != RT->getMethodQuals())
483    return false;
484  return LT->getParamTypes() == RT->getParamTypes();
485}
486
487bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
488                                                const CXXMethodDecl *RHS) {
489  assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
490  assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
491
492  // A destructor can share a vcall offset with another destructor.
493  if (isa<CXXDestructorDecl>(LHS))
494    return isa<CXXDestructorDecl>(RHS);
495
496  // FIXME: We need to check more things here.
497
498  // The methods must have the same name.
499  DeclarationName LHSName = LHS->getDeclName();
500  DeclarationName RHSName = RHS->getDeclName();
501  if (LHSName != RHSName)
502    return false;
503
504  // And the same signatures.
505  return HasSameVirtualSignature(LHS, RHS);
506}
507
508bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
509                                    CharUnits OffsetOffset) {
510  // Check if we can reuse an offset.
511  for (const auto &OffsetPair : Offsets) {
512    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
513      return false;
514  }
515
516  // Add the offset.
517  Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
518  return true;
519}
520
521CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
522  // Look for an offset.
523  for (const auto &OffsetPair : Offsets) {
524    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
525      return OffsetPair.second;
526  }
527
528  llvm_unreachable("Should always find a vcall offset offset!");
529}
530
531/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
532class VCallAndVBaseOffsetBuilder {
533public:
534  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
535    VBaseOffsetOffsetsMapTy;
536
537private:
538  const ItaniumVTableContext &VTables;
539
540  /// MostDerivedClass - The most derived class for which we're building vcall
541  /// and vbase offsets.
542  const CXXRecordDecl *MostDerivedClass;
543
544  /// LayoutClass - The class we're using for layout information. Will be
545  /// different than the most derived class if we're building a construction
546  /// vtable.
547  const CXXRecordDecl *LayoutClass;
548
549  /// Context - The ASTContext which we will use for layout information.
550  ASTContext &Context;
551
552  /// Components - vcall and vbase offset components
553  typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
554  VTableComponentVectorTy Components;
555
556  /// VisitedVirtualBases - Visited virtual bases.
557  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
558
559  /// VCallOffsets - Keeps track of vcall offsets.
560  VCallOffsetMap VCallOffsets;
561
562
563  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
564  /// relative to the address point.
565  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
566
567  /// FinalOverriders - The final overriders of the most derived class.
568  /// (Can be null when we're not building a vtable of the most derived class).
569  const FinalOverriders *Overriders;
570
571  /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
572  /// given base subobject.
573  void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
574                               CharUnits RealBaseOffset);
575
576  /// AddVCallOffsets - Add vcall offsets for the given base subobject.
577  void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
578
579  /// AddVBaseOffsets - Add vbase offsets for the given class.
580  void AddVBaseOffsets(const CXXRecordDecl *Base,
581                       CharUnits OffsetInLayoutClass);
582
583  /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
584  /// chars, relative to the vtable address point.
585  CharUnits getCurrentOffsetOffset() const;
586
587public:
588  VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
589                             const CXXRecordDecl *MostDerivedClass,
590                             const CXXRecordDecl *LayoutClass,
591                             const FinalOverriders *Overriders,
592                             BaseSubobject Base, bool BaseIsVirtual,
593                             CharUnits OffsetInLayoutClass)
594      : VTables(VTables), MostDerivedClass(MostDerivedClass),
595        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
596        Overriders(Overriders) {
597
598    // Add vcall and vbase offsets.
599    AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
600  }
601
602  /// Methods for iterating over the components.
603  typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
604  const_iterator components_begin() const { return Components.rbegin(); }
605  const_iterator components_end() const { return Components.rend(); }
606
607  const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
608  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
609    return VBaseOffsetOffsets;
610  }
611};
612
613void
614VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
615                                                    bool BaseIsVirtual,
616                                                    CharUnits RealBaseOffset) {
617  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
618
619  // Itanium C++ ABI 2.5.2:
620  //   ..in classes sharing a virtual table with a primary base class, the vcall
621  //   and vbase offsets added by the derived class all come before the vcall
622  //   and vbase offsets required by the base class, so that the latter may be
623  //   laid out as required by the base class without regard to additions from
624  //   the derived class(es).
625
626  // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
627  // emit them for the primary base first).
628  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
629    bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
630
631    CharUnits PrimaryBaseOffset;
632
633    // Get the base offset of the primary base.
634    if (PrimaryBaseIsVirtual) {
635      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
636             "Primary vbase should have a zero offset!");
637
638      const ASTRecordLayout &MostDerivedClassLayout =
639        Context.getASTRecordLayout(MostDerivedClass);
640
641      PrimaryBaseOffset =
642        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
643    } else {
644      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
645             "Primary base should have a zero offset!");
646
647      PrimaryBaseOffset = Base.getBaseOffset();
648    }
649
650    AddVCallAndVBaseOffsets(
651      BaseSubobject(PrimaryBase,PrimaryBaseOffset),
652      PrimaryBaseIsVirtual, RealBaseOffset);
653  }
654
655  AddVBaseOffsets(Base.getBase(), RealBaseOffset);
656
657  // We only want to add vcall offsets for virtual bases.
658  if (BaseIsVirtual)
659    AddVCallOffsets(Base, RealBaseOffset);
660}
661
662CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
663  // OffsetIndex is the index of this vcall or vbase offset, relative to the
664  // vtable address point. (We subtract 3 to account for the information just
665  // above the address point, the RTTI info, the offset to top, and the
666  // vcall offset itself).
667  int64_t OffsetIndex = -(int64_t)(3 + Components.size());
668
669  // Under the relative ABI, the offset widths are 32-bit ints instead of
670  // pointer widths.
671  CharUnits OffsetWidth = Context.toCharUnitsFromBits(
672      VTables.isRelativeLayout() ? 32
673                                 : Context.getTargetInfo().getPointerWidth(0));
674  CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
675
676  return OffsetOffset;
677}
678
679void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
680                                                 CharUnits VBaseOffset) {
681  const CXXRecordDecl *RD = Base.getBase();
682  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
683
684  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
685
686  // Handle the primary base first.
687  // We only want to add vcall offsets if the base is non-virtual; a virtual
688  // primary base will have its vcall and vbase offsets emitted already.
689  if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
690    // Get the base offset of the primary base.
691    assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
692           "Primary base should have a zero offset!");
693
694    AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
695                    VBaseOffset);
696  }
697
698  // Add the vcall offsets.
699  for (const auto *MD : RD->methods()) {
700    if (!VTableContextBase::hasVtableSlot(MD))
701      continue;
702    MD = MD->getCanonicalDecl();
703
704    CharUnits OffsetOffset = getCurrentOffsetOffset();
705
706    // Don't add a vcall offset if we already have one for this member function
707    // signature.
708    if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
709      continue;
710
711    CharUnits Offset = CharUnits::Zero();
712
713    if (Overriders) {
714      // Get the final overrider.
715      FinalOverriders::OverriderInfo Overrider =
716        Overriders->getOverrider(MD, Base.getBaseOffset());
717
718      /// The vcall offset is the offset from the virtual base to the object
719      /// where the function was overridden.
720      Offset = Overrider.Offset - VBaseOffset;
721    }
722
723    Components.push_back(
724      VTableComponent::MakeVCallOffset(Offset));
725  }
726
727  // And iterate over all non-virtual bases (ignoring the primary base).
728  for (const auto &B : RD->bases()) {
729    if (B.isVirtual())
730      continue;
731
732    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
733    if (BaseDecl == PrimaryBase)
734      continue;
735
736    // Get the base offset of this base.
737    CharUnits BaseOffset = Base.getBaseOffset() +
738      Layout.getBaseClassOffset(BaseDecl);
739
740    AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
741                    VBaseOffset);
742  }
743}
744
745void
746VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
747                                            CharUnits OffsetInLayoutClass) {
748  const ASTRecordLayout &LayoutClassLayout =
749    Context.getASTRecordLayout(LayoutClass);
750
751  // Add vbase offsets.
752  for (const auto &B : RD->bases()) {
753    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
754
755    // Check if this is a virtual base that we haven't visited before.
756    if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
757      CharUnits Offset =
758        LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
759
760      // Add the vbase offset offset.
761      assert(!VBaseOffsetOffsets.count(BaseDecl) &&
762             "vbase offset offset already exists!");
763
764      CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
765      VBaseOffsetOffsets.insert(
766          std::make_pair(BaseDecl, VBaseOffsetOffset));
767
768      Components.push_back(
769          VTableComponent::MakeVBaseOffset(Offset));
770    }
771
772    // Check the base class looking for more vbase offsets.
773    AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
774  }
775}
776
777/// ItaniumVTableBuilder - Class for building vtable layout information.
778class ItaniumVTableBuilder {
779public:
780  /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
781  /// primary bases.
782  typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
783    PrimaryBasesSetVectorTy;
784
785  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
786    VBaseOffsetOffsetsMapTy;
787
788  typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
789
790  typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
791
792private:
793  /// VTables - Global vtable information.
794  ItaniumVTableContext &VTables;
795
796  /// MostDerivedClass - The most derived class for which we're building this
797  /// vtable.
798  const CXXRecordDecl *MostDerivedClass;
799
800  /// MostDerivedClassOffset - If we're building a construction vtable, this
801  /// holds the offset from the layout class to the most derived class.
802  const CharUnits MostDerivedClassOffset;
803
804  /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
805  /// base. (This only makes sense when building a construction vtable).
806  bool MostDerivedClassIsVirtual;
807
808  /// LayoutClass - The class we're using for layout information. Will be
809  /// different than the most derived class if we're building a construction
810  /// vtable.
811  const CXXRecordDecl *LayoutClass;
812
813  /// Context - The ASTContext which we will use for layout information.
814  ASTContext &Context;
815
816  /// FinalOverriders - The final overriders of the most derived class.
817  const FinalOverriders Overriders;
818
819  /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
820  /// bases in this vtable.
821  llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
822
823  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
824  /// the most derived class.
825  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
826
827  /// Components - The components of the vtable being built.
828  SmallVector<VTableComponent, 64> Components;
829
830  /// AddressPoints - Address points for the vtable being built.
831  AddressPointsMapTy AddressPoints;
832
833  /// MethodInfo - Contains information about a method in a vtable.
834  /// (Used for computing 'this' pointer adjustment thunks.
835  struct MethodInfo {
836    /// BaseOffset - The base offset of this method.
837    const CharUnits BaseOffset;
838
839    /// BaseOffsetInLayoutClass - The base offset in the layout class of this
840    /// method.
841    const CharUnits BaseOffsetInLayoutClass;
842
843    /// VTableIndex - The index in the vtable that this method has.
844    /// (For destructors, this is the index of the complete destructor).
845    const uint64_t VTableIndex;
846
847    MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
848               uint64_t VTableIndex)
849      : BaseOffset(BaseOffset),
850      BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
851      VTableIndex(VTableIndex) { }
852
853    MethodInfo()
854      : BaseOffset(CharUnits::Zero()),
855      BaseOffsetInLayoutClass(CharUnits::Zero()),
856      VTableIndex(0) { }
857
858    MethodInfo(MethodInfo const&) = default;
859  };
860
861  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
862
863  /// MethodInfoMap - The information for all methods in the vtable we're
864  /// currently building.
865  MethodInfoMapTy MethodInfoMap;
866
867  /// MethodVTableIndices - Contains the index (relative to the vtable address
868  /// point) where the function pointer for a virtual function is stored.
869  MethodVTableIndicesTy MethodVTableIndices;
870
871  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
872
873  /// VTableThunks - The thunks by vtable index in the vtable currently being
874  /// built.
875  VTableThunksMapTy VTableThunks;
876
877  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
878  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
879
880  /// Thunks - A map that contains all the thunks needed for all methods in the
881  /// most derived class for which the vtable is currently being built.
882  ThunksMapTy Thunks;
883
884  /// AddThunk - Add a thunk for the given method.
885  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
886
887  /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
888  /// part of the vtable we're currently building.
889  void ComputeThisAdjustments();
890
891  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
892
893  /// PrimaryVirtualBases - All known virtual bases who are a primary base of
894  /// some other base.
895  VisitedVirtualBasesSetTy PrimaryVirtualBases;
896
897  /// ComputeReturnAdjustment - Compute the return adjustment given a return
898  /// adjustment base offset.
899  ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
900
901  /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
902  /// the 'this' pointer from the base subobject to the derived subobject.
903  BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
904                                             BaseSubobject Derived) const;
905
906  /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
907  /// given virtual member function, its offset in the layout class and its
908  /// final overrider.
909  ThisAdjustment
910  ComputeThisAdjustment(const CXXMethodDecl *MD,
911                        CharUnits BaseOffsetInLayoutClass,
912                        FinalOverriders::OverriderInfo Overrider);
913
914  /// AddMethod - Add a single virtual member function to the vtable
915  /// components vector.
916  void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
917
918  /// IsOverriderUsed - Returns whether the overrider will ever be used in this
919  /// part of the vtable.
920  ///
921  /// Itanium C++ ABI 2.5.2:
922  ///
923  ///   struct A { virtual void f(); };
924  ///   struct B : virtual public A { int i; };
925  ///   struct C : virtual public A { int j; };
926  ///   struct D : public B, public C {};
927  ///
928  ///   When B and C are declared, A is a primary base in each case, so although
929  ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
930  ///   adjustment is required and no thunk is generated. However, inside D
931  ///   objects, A is no longer a primary base of C, so if we allowed calls to
932  ///   C::f() to use the copy of A's vtable in the C subobject, we would need
933  ///   to adjust this from C* to B::A*, which would require a third-party
934  ///   thunk. Since we require that a call to C::f() first convert to A*,
935  ///   C-in-D's copy of A's vtable is never referenced, so this is not
936  ///   necessary.
937  bool IsOverriderUsed(const CXXMethodDecl *Overrider,
938                       CharUnits BaseOffsetInLayoutClass,
939                       const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
940                       CharUnits FirstBaseOffsetInLayoutClass) const;
941
942
943  /// AddMethods - Add the methods of this base subobject and all its
944  /// primary bases to the vtable components vector.
945  void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
946                  const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
947                  CharUnits FirstBaseOffsetInLayoutClass,
948                  PrimaryBasesSetVectorTy &PrimaryBases);
949
950  // LayoutVTable - Layout the vtable for the given base class, including its
951  // secondary vtables and any vtables for virtual bases.
952  void LayoutVTable();
953
954  /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
955  /// given base subobject, as well as all its secondary vtables.
956  ///
957  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
958  /// or a direct or indirect base of a virtual base.
959  ///
960  /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
961  /// in the layout class.
962  void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
963                                        bool BaseIsMorallyVirtual,
964                                        bool BaseIsVirtualInLayoutClass,
965                                        CharUnits OffsetInLayoutClass);
966
967  /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
968  /// subobject.
969  ///
970  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
971  /// or a direct or indirect base of a virtual base.
972  void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
973                              CharUnits OffsetInLayoutClass);
974
975  /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
976  /// class hierarchy.
977  void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
978                                    CharUnits OffsetInLayoutClass,
979                                    VisitedVirtualBasesSetTy &VBases);
980
981  /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
982  /// given base (excluding any primary bases).
983  void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
984                                    VisitedVirtualBasesSetTy &VBases);
985
986  /// isBuildingConstructionVTable - Return whether this vtable builder is
987  /// building a construction vtable.
988  bool isBuildingConstructorVTable() const {
989    return MostDerivedClass != LayoutClass;
990  }
991
992public:
993  /// Component indices of the first component of each of the vtables in the
994  /// vtable group.
995  SmallVector<size_t, 4> VTableIndices;
996
997  ItaniumVTableBuilder(ItaniumVTableContext &VTables,
998                       const CXXRecordDecl *MostDerivedClass,
999                       CharUnits MostDerivedClassOffset,
1000                       bool MostDerivedClassIsVirtual,
1001                       const CXXRecordDecl *LayoutClass)
1002      : VTables(VTables), MostDerivedClass(MostDerivedClass),
1003        MostDerivedClassOffset(MostDerivedClassOffset),
1004        MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1005        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1006        Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1007    assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1008
1009    LayoutVTable();
1010
1011    if (Context.getLangOpts().DumpVTableLayouts)
1012      dumpLayout(llvm::outs());
1013  }
1014
1015  uint64_t getNumThunks() const {
1016    return Thunks.size();
1017  }
1018
1019  ThunksMapTy::const_iterator thunks_begin() const {
1020    return Thunks.begin();
1021  }
1022
1023  ThunksMapTy::const_iterator thunks_end() const {
1024    return Thunks.end();
1025  }
1026
1027  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1028    return VBaseOffsetOffsets;
1029  }
1030
1031  const AddressPointsMapTy &getAddressPoints() const {
1032    return AddressPoints;
1033  }
1034
1035  MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1036    return MethodVTableIndices.begin();
1037  }
1038
1039  MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1040    return MethodVTableIndices.end();
1041  }
1042
1043  ArrayRef<VTableComponent> vtable_components() const { return Components; }
1044
1045  AddressPointsMapTy::const_iterator address_points_begin() const {
1046    return AddressPoints.begin();
1047  }
1048
1049  AddressPointsMapTy::const_iterator address_points_end() const {
1050    return AddressPoints.end();
1051  }
1052
1053  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1054    return VTableThunks.begin();
1055  }
1056
1057  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1058    return VTableThunks.end();
1059  }
1060
1061  /// dumpLayout - Dump the vtable layout.
1062  void dumpLayout(raw_ostream&);
1063};
1064
1065void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1066                                    const ThunkInfo &Thunk) {
1067  assert(!isBuildingConstructorVTable() &&
1068         "Can't add thunks for construction vtable");
1069
1070  SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1071
1072  // Check if we have this thunk already.
1073  if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
1074    return;
1075
1076  ThunksVector.push_back(Thunk);
1077}
1078
1079typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1080
1081/// Visit all the methods overridden by the given method recursively,
1082/// in a depth-first pre-order. The Visitor's visitor method returns a bool
1083/// indicating whether to continue the recursion for the given overridden
1084/// method (i.e. returning false stops the iteration).
1085template <class VisitorTy>
1086static void
1087visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1088  assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1089
1090  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1091    if (!Visitor(OverriddenMD))
1092      continue;
1093    visitAllOverriddenMethods(OverriddenMD, Visitor);
1094  }
1095}
1096
1097/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1098/// the overridden methods that the function decl overrides.
1099static void
1100ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1101                            OverriddenMethodsSetTy& OverriddenMethods) {
1102  auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1103    // Don't recurse on this method if we've already collected it.
1104    return OverriddenMethods.insert(MD).second;
1105  };
1106  visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1107}
1108
1109void ItaniumVTableBuilder::ComputeThisAdjustments() {
1110  // Now go through the method info map and see if any of the methods need
1111  // 'this' pointer adjustments.
1112  for (const auto &MI : MethodInfoMap) {
1113    const CXXMethodDecl *MD = MI.first;
1114    const MethodInfo &MethodInfo = MI.second;
1115
1116    // Ignore adjustments for unused function pointers.
1117    uint64_t VTableIndex = MethodInfo.VTableIndex;
1118    if (Components[VTableIndex].getKind() ==
1119        VTableComponent::CK_UnusedFunctionPointer)
1120      continue;
1121
1122    // Get the final overrider for this method.
1123    FinalOverriders::OverriderInfo Overrider =
1124      Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1125
1126    // Check if we need an adjustment at all.
1127    if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1128      // When a return thunk is needed by a derived class that overrides a
1129      // virtual base, gcc uses a virtual 'this' adjustment as well.
1130      // While the thunk itself might be needed by vtables in subclasses or
1131      // in construction vtables, there doesn't seem to be a reason for using
1132      // the thunk in this vtable. Still, we do so to match gcc.
1133      if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1134        continue;
1135    }
1136
1137    ThisAdjustment ThisAdjustment =
1138      ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1139
1140    if (ThisAdjustment.isEmpty())
1141      continue;
1142
1143    // Add it.
1144    VTableThunks[VTableIndex].This = ThisAdjustment;
1145
1146    if (isa<CXXDestructorDecl>(MD)) {
1147      // Add an adjustment for the deleting destructor as well.
1148      VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1149    }
1150  }
1151
1152  /// Clear the method info map.
1153  MethodInfoMap.clear();
1154
1155  if (isBuildingConstructorVTable()) {
1156    // We don't need to store thunk information for construction vtables.
1157    return;
1158  }
1159
1160  for (const auto &TI : VTableThunks) {
1161    const VTableComponent &Component = Components[TI.first];
1162    const ThunkInfo &Thunk = TI.second;
1163    const CXXMethodDecl *MD;
1164
1165    switch (Component.getKind()) {
1166    default:
1167      llvm_unreachable("Unexpected vtable component kind!");
1168    case VTableComponent::CK_FunctionPointer:
1169      MD = Component.getFunctionDecl();
1170      break;
1171    case VTableComponent::CK_CompleteDtorPointer:
1172      MD = Component.getDestructorDecl();
1173      break;
1174    case VTableComponent::CK_DeletingDtorPointer:
1175      // We've already added the thunk when we saw the complete dtor pointer.
1176      continue;
1177    }
1178
1179    if (MD->getParent() == MostDerivedClass)
1180      AddThunk(MD, Thunk);
1181  }
1182}
1183
1184ReturnAdjustment
1185ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1186  ReturnAdjustment Adjustment;
1187
1188  if (!Offset.isEmpty()) {
1189    if (Offset.VirtualBase) {
1190      // Get the virtual base offset offset.
1191      if (Offset.DerivedClass == MostDerivedClass) {
1192        // We can get the offset offset directly from our map.
1193        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1194          VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1195      } else {
1196        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1197          VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1198                                             Offset.VirtualBase).getQuantity();
1199      }
1200    }
1201
1202    Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1203  }
1204
1205  return Adjustment;
1206}
1207
1208BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1209    BaseSubobject Base, BaseSubobject Derived) const {
1210  const CXXRecordDecl *BaseRD = Base.getBase();
1211  const CXXRecordDecl *DerivedRD = Derived.getBase();
1212
1213  CXXBasePaths Paths(/*FindAmbiguities=*/true,
1214                     /*RecordPaths=*/true, /*DetectVirtual=*/true);
1215
1216  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1217    llvm_unreachable("Class must be derived from the passed in base class!");
1218
1219  // We have to go through all the paths, and see which one leads us to the
1220  // right base subobject.
1221  for (const CXXBasePath &Path : Paths) {
1222    BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1223
1224    CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1225
1226    if (Offset.VirtualBase) {
1227      // If we have a virtual base class, the non-virtual offset is relative
1228      // to the virtual base class offset.
1229      const ASTRecordLayout &LayoutClassLayout =
1230        Context.getASTRecordLayout(LayoutClass);
1231
1232      /// Get the virtual base offset, relative to the most derived class
1233      /// layout.
1234      OffsetToBaseSubobject +=
1235        LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1236    } else {
1237      // Otherwise, the non-virtual offset is relative to the derived class
1238      // offset.
1239      OffsetToBaseSubobject += Derived.getBaseOffset();
1240    }
1241
1242    // Check if this path gives us the right base subobject.
1243    if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1244      // Since we're going from the base class _to_ the derived class, we'll
1245      // invert the non-virtual offset here.
1246      Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1247      return Offset;
1248    }
1249  }
1250
1251  return BaseOffset();
1252}
1253
1254ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1255    const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1256    FinalOverriders::OverriderInfo Overrider) {
1257  // Ignore adjustments for pure virtual member functions.
1258  if (Overrider.Method->isPure())
1259    return ThisAdjustment();
1260
1261  BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1262                                        BaseOffsetInLayoutClass);
1263
1264  BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1265                                       Overrider.Offset);
1266
1267  // Compute the adjustment offset.
1268  BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1269                                                      OverriderBaseSubobject);
1270  if (Offset.isEmpty())
1271    return ThisAdjustment();
1272
1273  ThisAdjustment Adjustment;
1274
1275  if (Offset.VirtualBase) {
1276    // Get the vcall offset map for this virtual base.
1277    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1278
1279    if (VCallOffsets.empty()) {
1280      // We don't have vcall offsets for this virtual base, go ahead and
1281      // build them.
1282      VCallAndVBaseOffsetBuilder Builder(
1283          VTables, MostDerivedClass, MostDerivedClass,
1284          /*Overriders=*/nullptr,
1285          BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1286          /*BaseIsVirtual=*/true,
1287          /*OffsetInLayoutClass=*/
1288          CharUnits::Zero());
1289
1290      VCallOffsets = Builder.getVCallOffsets();
1291    }
1292
1293    Adjustment.Virtual.Itanium.VCallOffsetOffset =
1294      VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1295  }
1296
1297  // Set the non-virtual part of the adjustment.
1298  Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1299
1300  return Adjustment;
1301}
1302
1303void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1304                                     ReturnAdjustment ReturnAdjustment) {
1305  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1306    assert(ReturnAdjustment.isEmpty() &&
1307           "Destructor can't have return adjustment!");
1308
1309    // Add both the complete destructor and the deleting destructor.
1310    Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1311    Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1312  } else {
1313    // Add the return adjustment if necessary.
1314    if (!ReturnAdjustment.isEmpty())
1315      VTableThunks[Components.size()].Return = ReturnAdjustment;
1316
1317    // Add the function.
1318    Components.push_back(VTableComponent::MakeFunction(MD));
1319  }
1320}
1321
1322/// OverridesIndirectMethodInBase - Return whether the given member function
1323/// overrides any methods in the set of given bases.
1324/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1325/// For example, if we have:
1326///
1327/// struct A { virtual void f(); }
1328/// struct B : A { virtual void f(); }
1329/// struct C : B { virtual void f(); }
1330///
1331/// OverridesIndirectMethodInBase will return true if given C::f as the method
1332/// and { A } as the set of bases.
1333static bool OverridesIndirectMethodInBases(
1334    const CXXMethodDecl *MD,
1335    ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1336  if (Bases.count(MD->getParent()))
1337    return true;
1338
1339  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1340    // Check "indirect overriders".
1341    if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1342      return true;
1343  }
1344
1345  return false;
1346}
1347
1348bool ItaniumVTableBuilder::IsOverriderUsed(
1349    const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1350    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1351    CharUnits FirstBaseOffsetInLayoutClass) const {
1352  // If the base and the first base in the primary base chain have the same
1353  // offsets, then this overrider will be used.
1354  if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1355   return true;
1356
1357  // We know now that Base (or a direct or indirect base of it) is a primary
1358  // base in part of the class hierarchy, but not a primary base in the most
1359  // derived class.
1360
1361  // If the overrider is the first base in the primary base chain, we know
1362  // that the overrider will be used.
1363  if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1364    return true;
1365
1366  ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1367
1368  const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1369  PrimaryBases.insert(RD);
1370
1371  // Now traverse the base chain, starting with the first base, until we find
1372  // the base that is no longer a primary base.
1373  while (true) {
1374    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1375    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1376
1377    if (!PrimaryBase)
1378      break;
1379
1380    if (Layout.isPrimaryBaseVirtual()) {
1381      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1382             "Primary base should always be at offset 0!");
1383
1384      const ASTRecordLayout &LayoutClassLayout =
1385        Context.getASTRecordLayout(LayoutClass);
1386
1387      // Now check if this is the primary base that is not a primary base in the
1388      // most derived class.
1389      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1390          FirstBaseOffsetInLayoutClass) {
1391        // We found it, stop walking the chain.
1392        break;
1393      }
1394    } else {
1395      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1396             "Primary base should always be at offset 0!");
1397    }
1398
1399    if (!PrimaryBases.insert(PrimaryBase))
1400      llvm_unreachable("Found a duplicate primary base!");
1401
1402    RD = PrimaryBase;
1403  }
1404
1405  // If the final overrider is an override of one of the primary bases,
1406  // then we know that it will be used.
1407  return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1408}
1409
1410typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1411
1412/// FindNearestOverriddenMethod - Given a method, returns the overridden method
1413/// from the nearest base. Returns null if no method was found.
1414/// The Bases are expected to be sorted in a base-to-derived order.
1415static const CXXMethodDecl *
1416FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1417                            BasesSetVectorTy &Bases) {
1418  OverriddenMethodsSetTy OverriddenMethods;
1419  ComputeAllOverriddenMethods(MD, OverriddenMethods);
1420
1421  for (const CXXRecordDecl *PrimaryBase :
1422       llvm::make_range(Bases.rbegin(), Bases.rend())) {
1423    // Now check the overridden methods.
1424    for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1425      // We found our overridden method.
1426      if (OverriddenMD->getParent() == PrimaryBase)
1427        return OverriddenMD;
1428    }
1429  }
1430
1431  return nullptr;
1432}
1433
1434void ItaniumVTableBuilder::AddMethods(
1435    BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1436    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1437    CharUnits FirstBaseOffsetInLayoutClass,
1438    PrimaryBasesSetVectorTy &PrimaryBases) {
1439  // Itanium C++ ABI 2.5.2:
1440  //   The order of the virtual function pointers in a virtual table is the
1441  //   order of declaration of the corresponding member functions in the class.
1442  //
1443  //   There is an entry for any virtual function declared in a class,
1444  //   whether it is a new function or overrides a base class function,
1445  //   unless it overrides a function from the primary base, and conversion
1446  //   between their return types does not require an adjustment.
1447
1448  const CXXRecordDecl *RD = Base.getBase();
1449  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1450
1451  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1452    CharUnits PrimaryBaseOffset;
1453    CharUnits PrimaryBaseOffsetInLayoutClass;
1454    if (Layout.isPrimaryBaseVirtual()) {
1455      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1456             "Primary vbase should have a zero offset!");
1457
1458      const ASTRecordLayout &MostDerivedClassLayout =
1459        Context.getASTRecordLayout(MostDerivedClass);
1460
1461      PrimaryBaseOffset =
1462        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1463
1464      const ASTRecordLayout &LayoutClassLayout =
1465        Context.getASTRecordLayout(LayoutClass);
1466
1467      PrimaryBaseOffsetInLayoutClass =
1468        LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1469    } else {
1470      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1471             "Primary base should have a zero offset!");
1472
1473      PrimaryBaseOffset = Base.getBaseOffset();
1474      PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1475    }
1476
1477    AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1478               PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1479               FirstBaseOffsetInLayoutClass, PrimaryBases);
1480
1481    if (!PrimaryBases.insert(PrimaryBase))
1482      llvm_unreachable("Found a duplicate primary base!");
1483  }
1484
1485  typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1486  NewVirtualFunctionsTy NewVirtualFunctions;
1487
1488  llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1489
1490  // Now go through all virtual member functions and add them.
1491  for (const auto *MD : RD->methods()) {
1492    if (!ItaniumVTableContext::hasVtableSlot(MD))
1493      continue;
1494    MD = MD->getCanonicalDecl();
1495
1496    // Get the final overrider.
1497    FinalOverriders::OverriderInfo Overrider =
1498      Overriders.getOverrider(MD, Base.getBaseOffset());
1499
1500    // Check if this virtual member function overrides a method in a primary
1501    // base. If this is the case, and the return type doesn't require adjustment
1502    // then we can just use the member function from the primary base.
1503    if (const CXXMethodDecl *OverriddenMD =
1504          FindNearestOverriddenMethod(MD, PrimaryBases)) {
1505      if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1506                                            OverriddenMD).isEmpty()) {
1507        // Replace the method info of the overridden method with our own
1508        // method.
1509        assert(MethodInfoMap.count(OverriddenMD) &&
1510               "Did not find the overridden method!");
1511        MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1512
1513        MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1514                              OverriddenMethodInfo.VTableIndex);
1515
1516        assert(!MethodInfoMap.count(MD) &&
1517               "Should not have method info for this method yet!");
1518
1519        MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1520        MethodInfoMap.erase(OverriddenMD);
1521
1522        // If the overridden method exists in a virtual base class or a direct
1523        // or indirect base class of a virtual base class, we need to emit a
1524        // thunk if we ever have a class hierarchy where the base class is not
1525        // a primary base in the complete object.
1526        if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1527          // Compute the this adjustment.
1528          ThisAdjustment ThisAdjustment =
1529            ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1530                                  Overrider);
1531
1532          if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1533              Overrider.Method->getParent() == MostDerivedClass) {
1534
1535            // There's no return adjustment from OverriddenMD and MD,
1536            // but that doesn't mean there isn't one between MD and
1537            // the final overrider.
1538            BaseOffset ReturnAdjustmentOffset =
1539              ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1540            ReturnAdjustment ReturnAdjustment =
1541              ComputeReturnAdjustment(ReturnAdjustmentOffset);
1542
1543            // This is a virtual thunk for the most derived class, add it.
1544            AddThunk(Overrider.Method,
1545                     ThunkInfo(ThisAdjustment, ReturnAdjustment));
1546          }
1547        }
1548
1549        continue;
1550      }
1551    }
1552
1553    if (MD->isImplicit())
1554      NewImplicitVirtualFunctions.push_back(MD);
1555    else
1556      NewVirtualFunctions.push_back(MD);
1557  }
1558
1559  std::stable_sort(
1560      NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1561      [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1562        if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1563          return A->isCopyAssignmentOperator();
1564        if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1565          return A->isMoveAssignmentOperator();
1566        if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1567          return isa<CXXDestructorDecl>(A);
1568        assert(A->getOverloadedOperator() == OO_EqualEqual &&
1569               B->getOverloadedOperator() == OO_EqualEqual &&
1570               "unexpected or duplicate implicit virtual function");
1571        // We rely on Sema to have declared the operator== members in the
1572        // same order as the corresponding operator<=> members.
1573        return false;
1574      });
1575  NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1576                             NewImplicitVirtualFunctions.end());
1577
1578  for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1579    // Get the final overrider.
1580    FinalOverriders::OverriderInfo Overrider =
1581      Overriders.getOverrider(MD, Base.getBaseOffset());
1582
1583    // Insert the method info for this method.
1584    MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1585                          Components.size());
1586
1587    assert(!MethodInfoMap.count(MD) &&
1588           "Should not have method info for this method yet!");
1589    MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1590
1591    // Check if this overrider is going to be used.
1592    const CXXMethodDecl *OverriderMD = Overrider.Method;
1593    if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1594                         FirstBaseInPrimaryBaseChain,
1595                         FirstBaseOffsetInLayoutClass)) {
1596      Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1597      continue;
1598    }
1599
1600    // Check if this overrider needs a return adjustment.
1601    // We don't want to do this for pure virtual member functions.
1602    BaseOffset ReturnAdjustmentOffset;
1603    if (!OverriderMD->isPure()) {
1604      ReturnAdjustmentOffset =
1605        ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1606    }
1607
1608    ReturnAdjustment ReturnAdjustment =
1609      ComputeReturnAdjustment(ReturnAdjustmentOffset);
1610
1611    AddMethod(Overrider.Method, ReturnAdjustment);
1612  }
1613}
1614
1615void ItaniumVTableBuilder::LayoutVTable() {
1616  LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1617                                                 CharUnits::Zero()),
1618                                   /*BaseIsMorallyVirtual=*/false,
1619                                   MostDerivedClassIsVirtual,
1620                                   MostDerivedClassOffset);
1621
1622  VisitedVirtualBasesSetTy VBases;
1623
1624  // Determine the primary virtual bases.
1625  DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1626                               VBases);
1627  VBases.clear();
1628
1629  LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1630
1631  // -fapple-kext adds an extra entry at end of vtbl.
1632  bool IsAppleKext = Context.getLangOpts().AppleKext;
1633  if (IsAppleKext)
1634    Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1635}
1636
1637void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1638    BaseSubobject Base, bool BaseIsMorallyVirtual,
1639    bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1640  assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1641
1642  unsigned VTableIndex = Components.size();
1643  VTableIndices.push_back(VTableIndex);
1644
1645  // Add vcall and vbase offsets for this vtable.
1646  VCallAndVBaseOffsetBuilder Builder(
1647      VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1648      BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1649  Components.append(Builder.components_begin(), Builder.components_end());
1650
1651  // Check if we need to add these vcall offsets.
1652  if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1653    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1654
1655    if (VCallOffsets.empty())
1656      VCallOffsets = Builder.getVCallOffsets();
1657  }
1658
1659  // If we're laying out the most derived class we want to keep track of the
1660  // virtual base class offset offsets.
1661  if (Base.getBase() == MostDerivedClass)
1662    VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1663
1664  // Add the offset to top.
1665  CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1666  Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1667
1668  // Next, add the RTTI.
1669  Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1670
1671  uint64_t AddressPoint = Components.size();
1672
1673  // Now go through all virtual member functions and add them.
1674  PrimaryBasesSetVectorTy PrimaryBases;
1675  AddMethods(Base, OffsetInLayoutClass,
1676             Base.getBase(), OffsetInLayoutClass,
1677             PrimaryBases);
1678
1679  const CXXRecordDecl *RD = Base.getBase();
1680  if (RD == MostDerivedClass) {
1681    assert(MethodVTableIndices.empty());
1682    for (const auto &I : MethodInfoMap) {
1683      const CXXMethodDecl *MD = I.first;
1684      const MethodInfo &MI = I.second;
1685      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1686        MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1687            = MI.VTableIndex - AddressPoint;
1688        MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1689            = MI.VTableIndex + 1 - AddressPoint;
1690      } else {
1691        MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1692      }
1693    }
1694  }
1695
1696  // Compute 'this' pointer adjustments.
1697  ComputeThisAdjustments();
1698
1699  // Add all address points.
1700  while (true) {
1701    AddressPoints.insert(
1702        std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1703                       VTableLayout::AddressPointLocation{
1704                           unsigned(VTableIndices.size() - 1),
1705                           unsigned(AddressPoint - VTableIndex)}));
1706
1707    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1708    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1709
1710    if (!PrimaryBase)
1711      break;
1712
1713    if (Layout.isPrimaryBaseVirtual()) {
1714      // Check if this virtual primary base is a primary base in the layout
1715      // class. If it's not, we don't want to add it.
1716      const ASTRecordLayout &LayoutClassLayout =
1717        Context.getASTRecordLayout(LayoutClass);
1718
1719      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1720          OffsetInLayoutClass) {
1721        // We don't want to add this class (or any of its primary bases).
1722        break;
1723      }
1724    }
1725
1726    RD = PrimaryBase;
1727  }
1728
1729  // Layout secondary vtables.
1730  LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1731}
1732
1733void
1734ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1735                                             bool BaseIsMorallyVirtual,
1736                                             CharUnits OffsetInLayoutClass) {
1737  // Itanium C++ ABI 2.5.2:
1738  //   Following the primary virtual table of a derived class are secondary
1739  //   virtual tables for each of its proper base classes, except any primary
1740  //   base(s) with which it shares its primary virtual table.
1741
1742  const CXXRecordDecl *RD = Base.getBase();
1743  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1744  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1745
1746  for (const auto &B : RD->bases()) {
1747    // Ignore virtual bases, we'll emit them later.
1748    if (B.isVirtual())
1749      continue;
1750
1751    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1752
1753    // Ignore bases that don't have a vtable.
1754    if (!BaseDecl->isDynamicClass())
1755      continue;
1756
1757    if (isBuildingConstructorVTable()) {
1758      // Itanium C++ ABI 2.6.4:
1759      //   Some of the base class subobjects may not need construction virtual
1760      //   tables, which will therefore not be present in the construction
1761      //   virtual table group, even though the subobject virtual tables are
1762      //   present in the main virtual table group for the complete object.
1763      if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1764        continue;
1765    }
1766
1767    // Get the base offset of this base.
1768    CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1769    CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1770
1771    CharUnits BaseOffsetInLayoutClass =
1772      OffsetInLayoutClass + RelativeBaseOffset;
1773
1774    // Don't emit a secondary vtable for a primary base. We might however want
1775    // to emit secondary vtables for other bases of this base.
1776    if (BaseDecl == PrimaryBase) {
1777      LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1778                             BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1779      continue;
1780    }
1781
1782    // Layout the primary vtable (and any secondary vtables) for this base.
1783    LayoutPrimaryAndSecondaryVTables(
1784      BaseSubobject(BaseDecl, BaseOffset),
1785      BaseIsMorallyVirtual,
1786      /*BaseIsVirtualInLayoutClass=*/false,
1787      BaseOffsetInLayoutClass);
1788  }
1789}
1790
1791void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1792    const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1793    VisitedVirtualBasesSetTy &VBases) {
1794  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1795
1796  // Check if this base has a primary base.
1797  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1798
1799    // Check if it's virtual.
1800    if (Layout.isPrimaryBaseVirtual()) {
1801      bool IsPrimaryVirtualBase = true;
1802
1803      if (isBuildingConstructorVTable()) {
1804        // Check if the base is actually a primary base in the class we use for
1805        // layout.
1806        const ASTRecordLayout &LayoutClassLayout =
1807          Context.getASTRecordLayout(LayoutClass);
1808
1809        CharUnits PrimaryBaseOffsetInLayoutClass =
1810          LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1811
1812        // We know that the base is not a primary base in the layout class if
1813        // the base offsets are different.
1814        if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1815          IsPrimaryVirtualBase = false;
1816      }
1817
1818      if (IsPrimaryVirtualBase)
1819        PrimaryVirtualBases.insert(PrimaryBase);
1820    }
1821  }
1822
1823  // Traverse bases, looking for more primary virtual bases.
1824  for (const auto &B : RD->bases()) {
1825    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1826
1827    CharUnits BaseOffsetInLayoutClass;
1828
1829    if (B.isVirtual()) {
1830      if (!VBases.insert(BaseDecl).second)
1831        continue;
1832
1833      const ASTRecordLayout &LayoutClassLayout =
1834        Context.getASTRecordLayout(LayoutClass);
1835
1836      BaseOffsetInLayoutClass =
1837        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1838    } else {
1839      BaseOffsetInLayoutClass =
1840        OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1841    }
1842
1843    DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1844  }
1845}
1846
1847void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1848    const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1849  // Itanium C++ ABI 2.5.2:
1850  //   Then come the virtual base virtual tables, also in inheritance graph
1851  //   order, and again excluding primary bases (which share virtual tables with
1852  //   the classes for which they are primary).
1853  for (const auto &B : RD->bases()) {
1854    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1855
1856    // Check if this base needs a vtable. (If it's virtual, not a primary base
1857    // of some other class, and we haven't visited it before).
1858    if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1859        !PrimaryVirtualBases.count(BaseDecl) &&
1860        VBases.insert(BaseDecl).second) {
1861      const ASTRecordLayout &MostDerivedClassLayout =
1862        Context.getASTRecordLayout(MostDerivedClass);
1863      CharUnits BaseOffset =
1864        MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1865
1866      const ASTRecordLayout &LayoutClassLayout =
1867        Context.getASTRecordLayout(LayoutClass);
1868      CharUnits BaseOffsetInLayoutClass =
1869        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1870
1871      LayoutPrimaryAndSecondaryVTables(
1872        BaseSubobject(BaseDecl, BaseOffset),
1873        /*BaseIsMorallyVirtual=*/true,
1874        /*BaseIsVirtualInLayoutClass=*/true,
1875        BaseOffsetInLayoutClass);
1876    }
1877
1878    // We only need to check the base for virtual base vtables if it actually
1879    // has virtual bases.
1880    if (BaseDecl->getNumVBases())
1881      LayoutVTablesForVirtualBases(BaseDecl, VBases);
1882  }
1883}
1884
1885/// dumpLayout - Dump the vtable layout.
1886void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1887  // FIXME: write more tests that actually use the dumpLayout output to prevent
1888  // ItaniumVTableBuilder regressions.
1889
1890  if (isBuildingConstructorVTable()) {
1891    Out << "Construction vtable for ('";
1892    MostDerivedClass->printQualifiedName(Out);
1893    Out << "', ";
1894    Out << MostDerivedClassOffset.getQuantity() << ") in '";
1895    LayoutClass->printQualifiedName(Out);
1896  } else {
1897    Out << "Vtable for '";
1898    MostDerivedClass->printQualifiedName(Out);
1899  }
1900  Out << "' (" << Components.size() << " entries).\n";
1901
1902  // Iterate through the address points and insert them into a new map where
1903  // they are keyed by the index and not the base object.
1904  // Since an address point can be shared by multiple subobjects, we use an
1905  // STL multimap.
1906  std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1907  for (const auto &AP : AddressPoints) {
1908    const BaseSubobject &Base = AP.first;
1909    uint64_t Index =
1910        VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1911
1912    AddressPointsByIndex.insert(std::make_pair(Index, Base));
1913  }
1914
1915  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1916    uint64_t Index = I;
1917
1918    Out << llvm::format("%4d | ", I);
1919
1920    const VTableComponent &Component = Components[I];
1921
1922    // Dump the component.
1923    switch (Component.getKind()) {
1924
1925    case VTableComponent::CK_VCallOffset:
1926      Out << "vcall_offset ("
1927          << Component.getVCallOffset().getQuantity()
1928          << ")";
1929      break;
1930
1931    case VTableComponent::CK_VBaseOffset:
1932      Out << "vbase_offset ("
1933          << Component.getVBaseOffset().getQuantity()
1934          << ")";
1935      break;
1936
1937    case VTableComponent::CK_OffsetToTop:
1938      Out << "offset_to_top ("
1939          << Component.getOffsetToTop().getQuantity()
1940          << ")";
1941      break;
1942
1943    case VTableComponent::CK_RTTI:
1944      Component.getRTTIDecl()->printQualifiedName(Out);
1945      Out << " RTTI";
1946      break;
1947
1948    case VTableComponent::CK_FunctionPointer: {
1949      const CXXMethodDecl *MD = Component.getFunctionDecl();
1950
1951      std::string Str =
1952        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1953                                    MD);
1954      Out << Str;
1955      if (MD->isPure())
1956        Out << " [pure]";
1957
1958      if (MD->isDeleted())
1959        Out << " [deleted]";
1960
1961      ThunkInfo Thunk = VTableThunks.lookup(I);
1962      if (!Thunk.isEmpty()) {
1963        // If this function pointer has a return adjustment, dump it.
1964        if (!Thunk.Return.isEmpty()) {
1965          Out << "\n       [return adjustment: ";
1966          Out << Thunk.Return.NonVirtual << " non-virtual";
1967
1968          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1969            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1970            Out << " vbase offset offset";
1971          }
1972
1973          Out << ']';
1974        }
1975
1976        // If this function pointer has a 'this' pointer adjustment, dump it.
1977        if (!Thunk.This.isEmpty()) {
1978          Out << "\n       [this adjustment: ";
1979          Out << Thunk.This.NonVirtual << " non-virtual";
1980
1981          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1982            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1983            Out << " vcall offset offset";
1984          }
1985
1986          Out << ']';
1987        }
1988      }
1989
1990      break;
1991    }
1992
1993    case VTableComponent::CK_CompleteDtorPointer:
1994    case VTableComponent::CK_DeletingDtorPointer: {
1995      bool IsComplete =
1996        Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1997
1998      const CXXDestructorDecl *DD = Component.getDestructorDecl();
1999
2000      DD->printQualifiedName(Out);
2001      if (IsComplete)
2002        Out << "() [complete]";
2003      else
2004        Out << "() [deleting]";
2005
2006      if (DD->isPure())
2007        Out << " [pure]";
2008
2009      ThunkInfo Thunk = VTableThunks.lookup(I);
2010      if (!Thunk.isEmpty()) {
2011        // If this destructor has a 'this' pointer adjustment, dump it.
2012        if (!Thunk.This.isEmpty()) {
2013          Out << "\n       [this adjustment: ";
2014          Out << Thunk.This.NonVirtual << " non-virtual";
2015
2016          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2017            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2018            Out << " vcall offset offset";
2019          }
2020
2021          Out << ']';
2022        }
2023      }
2024
2025      break;
2026    }
2027
2028    case VTableComponent::CK_UnusedFunctionPointer: {
2029      const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2030
2031      std::string Str =
2032        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2033                                    MD);
2034      Out << "[unused] " << Str;
2035      if (MD->isPure())
2036        Out << " [pure]";
2037    }
2038
2039    }
2040
2041    Out << '\n';
2042
2043    // Dump the next address point.
2044    uint64_t NextIndex = Index + 1;
2045    if (AddressPointsByIndex.count(NextIndex)) {
2046      if (AddressPointsByIndex.count(NextIndex) == 1) {
2047        const BaseSubobject &Base =
2048          AddressPointsByIndex.find(NextIndex)->second;
2049
2050        Out << "       -- (";
2051        Base.getBase()->printQualifiedName(Out);
2052        Out << ", " << Base.getBaseOffset().getQuantity();
2053        Out << ") vtable address --\n";
2054      } else {
2055        CharUnits BaseOffset =
2056          AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2057
2058        // We store the class names in a set to get a stable order.
2059        std::set<std::string> ClassNames;
2060        for (const auto &I :
2061             llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2062          assert(I.second.getBaseOffset() == BaseOffset &&
2063                 "Invalid base offset!");
2064          const CXXRecordDecl *RD = I.second.getBase();
2065          ClassNames.insert(RD->getQualifiedNameAsString());
2066        }
2067
2068        for (const std::string &Name : ClassNames) {
2069          Out << "       -- (" << Name;
2070          Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2071        }
2072      }
2073    }
2074  }
2075
2076  Out << '\n';
2077
2078  if (isBuildingConstructorVTable())
2079    return;
2080
2081  if (MostDerivedClass->getNumVBases()) {
2082    // We store the virtual base class names and their offsets in a map to get
2083    // a stable order.
2084
2085    std::map<std::string, CharUnits> ClassNamesAndOffsets;
2086    for (const auto &I : VBaseOffsetOffsets) {
2087      std::string ClassName = I.first->getQualifiedNameAsString();
2088      CharUnits OffsetOffset = I.second;
2089      ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2090    }
2091
2092    Out << "Virtual base offset offsets for '";
2093    MostDerivedClass->printQualifiedName(Out);
2094    Out << "' (";
2095    Out << ClassNamesAndOffsets.size();
2096    Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2097
2098    for (const auto &I : ClassNamesAndOffsets)
2099      Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2100
2101    Out << "\n";
2102  }
2103
2104  if (!Thunks.empty()) {
2105    // We store the method names in a map to get a stable order.
2106    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2107
2108    for (const auto &I : Thunks) {
2109      const CXXMethodDecl *MD = I.first;
2110      std::string MethodName =
2111        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2112                                    MD);
2113
2114      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2115    }
2116
2117    for (const auto &I : MethodNamesAndDecls) {
2118      const std::string &MethodName = I.first;
2119      const CXXMethodDecl *MD = I.second;
2120
2121      ThunkInfoVectorTy ThunksVector = Thunks[MD];
2122      llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2123        assert(LHS.Method == nullptr && RHS.Method == nullptr);
2124        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2125      });
2126
2127      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2128      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2129
2130      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2131        const ThunkInfo &Thunk = ThunksVector[I];
2132
2133        Out << llvm::format("%4d | ", I);
2134
2135        // If this function pointer has a return pointer adjustment, dump it.
2136        if (!Thunk.Return.isEmpty()) {
2137          Out << "return adjustment: " << Thunk.Return.NonVirtual;
2138          Out << " non-virtual";
2139          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2140            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2141            Out << " vbase offset offset";
2142          }
2143
2144          if (!Thunk.This.isEmpty())
2145            Out << "\n       ";
2146        }
2147
2148        // If this function pointer has a 'this' pointer adjustment, dump it.
2149        if (!Thunk.This.isEmpty()) {
2150          Out << "this adjustment: ";
2151          Out << Thunk.This.NonVirtual << " non-virtual";
2152
2153          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2154            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2155            Out << " vcall offset offset";
2156          }
2157        }
2158
2159        Out << '\n';
2160      }
2161
2162      Out << '\n';
2163    }
2164  }
2165
2166  // Compute the vtable indices for all the member functions.
2167  // Store them in a map keyed by the index so we'll get a sorted table.
2168  std::map<uint64_t, std::string> IndicesMap;
2169
2170  for (const auto *MD : MostDerivedClass->methods()) {
2171    // We only want virtual member functions.
2172    if (!ItaniumVTableContext::hasVtableSlot(MD))
2173      continue;
2174    MD = MD->getCanonicalDecl();
2175
2176    std::string MethodName =
2177      PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2178                                  MD);
2179
2180    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2181      GlobalDecl GD(DD, Dtor_Complete);
2182      assert(MethodVTableIndices.count(GD));
2183      uint64_t VTableIndex = MethodVTableIndices[GD];
2184      IndicesMap[VTableIndex] = MethodName + " [complete]";
2185      IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2186    } else {
2187      assert(MethodVTableIndices.count(MD));
2188      IndicesMap[MethodVTableIndices[MD]] = MethodName;
2189    }
2190  }
2191
2192  // Print the vtable indices for all the member functions.
2193  if (!IndicesMap.empty()) {
2194    Out << "VTable indices for '";
2195    MostDerivedClass->printQualifiedName(Out);
2196    Out << "' (" << IndicesMap.size() << " entries).\n";
2197
2198    for (const auto &I : IndicesMap) {
2199      uint64_t VTableIndex = I.first;
2200      const std::string &MethodName = I.second;
2201
2202      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2203          << '\n';
2204    }
2205  }
2206
2207  Out << '\n';
2208}
2209}
2210
2211static VTableLayout::AddressPointsIndexMapTy
2212MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2213                        unsigned numVTables) {
2214  VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2215
2216  for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2217    const auto &addressPointLoc = it->second;
2218    unsigned vtableIndex = addressPointLoc.VTableIndex;
2219    unsigned addressPoint = addressPointLoc.AddressPointIndex;
2220    if (indexMap[vtableIndex]) {
2221      // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2222      // every vtable index should have a unique address point.
2223      assert(indexMap[vtableIndex] == addressPoint &&
2224             "Every vtable index should have a unique address point. Found a "
2225             "vtable that has two different address points.");
2226    } else {
2227      indexMap[vtableIndex] = addressPoint;
2228    }
2229  }
2230
2231  // Note that by this point, not all the address may be initialized if the
2232  // AddressPoints map is empty. This is ok if the map isn't needed. See
2233  // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2234  // emprt map.
2235  return indexMap;
2236}
2237
2238VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2239                           ArrayRef<VTableComponent> VTableComponents,
2240                           ArrayRef<VTableThunkTy> VTableThunks,
2241                           const AddressPointsMapTy &AddressPoints)
2242    : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2243      AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2244                                        AddressPoints, VTableIndices.size())) {
2245  if (VTableIndices.size() <= 1)
2246    assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2247  else
2248    this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2249
2250  llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2251                                    const VTableLayout::VTableThunkTy &RHS) {
2252    assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2253           "Different thunks should have unique indices!");
2254    return LHS.first < RHS.first;
2255  });
2256}
2257
2258VTableLayout::~VTableLayout() { }
2259
2260bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2261  return MD->isVirtual() && !MD->isConsteval();
2262}
2263
2264ItaniumVTableContext::ItaniumVTableContext(
2265    ASTContext &Context, VTableComponentLayout ComponentLayout)
2266    : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2267
2268ItaniumVTableContext::~ItaniumVTableContext() {}
2269
2270uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2271  GD = GD.getCanonicalDecl();
2272  MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2273  if (I != MethodVTableIndices.end())
2274    return I->second;
2275
2276  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2277
2278  computeVTableRelatedInformation(RD);
2279
2280  I = MethodVTableIndices.find(GD);
2281  assert(I != MethodVTableIndices.end() && "Did not find index!");
2282  return I->second;
2283}
2284
2285CharUnits
2286ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2287                                                 const CXXRecordDecl *VBase) {
2288  ClassPairTy ClassPair(RD, VBase);
2289
2290  VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2291    VirtualBaseClassOffsetOffsets.find(ClassPair);
2292  if (I != VirtualBaseClassOffsetOffsets.end())
2293    return I->second;
2294
2295  VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2296                                     BaseSubobject(RD, CharUnits::Zero()),
2297                                     /*BaseIsVirtual=*/false,
2298                                     /*OffsetInLayoutClass=*/CharUnits::Zero());
2299
2300  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2301    // Insert all types.
2302    ClassPairTy ClassPair(RD, I.first);
2303
2304    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2305  }
2306
2307  I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2308  assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2309
2310  return I->second;
2311}
2312
2313static std::unique_ptr<VTableLayout>
2314CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2315  SmallVector<VTableLayout::VTableThunkTy, 1>
2316    VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2317
2318  return std::make_unique<VTableLayout>(
2319      Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2320      Builder.getAddressPoints());
2321}
2322
2323void
2324ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2325  std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2326
2327  // Check if we've computed this information before.
2328  if (Entry)
2329    return;
2330
2331  ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2332                               /*MostDerivedClassIsVirtual=*/0, RD);
2333  Entry = CreateVTableLayout(Builder);
2334
2335  MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2336                             Builder.vtable_indices_end());
2337
2338  // Add the known thunks.
2339  Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2340
2341  // If we don't have the vbase information for this class, insert it.
2342  // getVirtualBaseOffsetOffset will compute it separately without computing
2343  // the rest of the vtable related information.
2344  if (!RD->getNumVBases())
2345    return;
2346
2347  const CXXRecordDecl *VBase =
2348    RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2349
2350  if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2351    return;
2352
2353  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2354    // Insert all types.
2355    ClassPairTy ClassPair(RD, I.first);
2356
2357    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2358  }
2359}
2360
2361std::unique_ptr<VTableLayout>
2362ItaniumVTableContext::createConstructionVTableLayout(
2363    const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2364    bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2365  ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2366                               MostDerivedClassIsVirtual, LayoutClass);
2367  return CreateVTableLayout(Builder);
2368}
2369
2370namespace {
2371
2372// Vtables in the Microsoft ABI are different from the Itanium ABI.
2373//
2374// The main differences are:
2375//  1. Separate vftable and vbtable.
2376//
2377//  2. Each subobject with a vfptr gets its own vftable rather than an address
2378//     point in a single vtable shared between all the subobjects.
2379//     Each vftable is represented by a separate section and virtual calls
2380//     must be done using the vftable which has a slot for the function to be
2381//     called.
2382//
2383//  3. Virtual method definitions expect their 'this' parameter to point to the
2384//     first vfptr whose table provides a compatible overridden method.  In many
2385//     cases, this permits the original vf-table entry to directly call
2386//     the method instead of passing through a thunk.
2387//     See example before VFTableBuilder::ComputeThisOffset below.
2388//
2389//     A compatible overridden method is one which does not have a non-trivial
2390//     covariant-return adjustment.
2391//
2392//     The first vfptr is the one with the lowest offset in the complete-object
2393//     layout of the defining class, and the method definition will subtract
2394//     that constant offset from the parameter value to get the real 'this'
2395//     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2396//     function defined in a virtual base is overridden in a more derived
2397//     virtual base and these bases have a reverse order in the complete
2398//     object), the vf-table may require a this-adjustment thunk.
2399//
2400//  4. vftables do not contain new entries for overrides that merely require
2401//     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2402//     eliminates the need for this-adjustment thunks in many cases, at the cost
2403//     of often requiring redundant work to adjust the "this" pointer.
2404//
2405//  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2406//     Vtordisps are emitted into the class layout if a class has
2407//      a) a user-defined ctor/dtor
2408//     and
2409//      b) a method overriding a method in a virtual base.
2410//
2411//  To get a better understanding of this code,
2412//  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2413
2414class VFTableBuilder {
2415public:
2416  typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2417    MethodVFTableLocationsTy;
2418
2419  typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2420    method_locations_range;
2421
2422private:
2423  /// VTables - Global vtable information.
2424  MicrosoftVTableContext &VTables;
2425
2426  /// Context - The ASTContext which we will use for layout information.
2427  ASTContext &Context;
2428
2429  /// MostDerivedClass - The most derived class for which we're building this
2430  /// vtable.
2431  const CXXRecordDecl *MostDerivedClass;
2432
2433  const ASTRecordLayout &MostDerivedClassLayout;
2434
2435  const VPtrInfo &WhichVFPtr;
2436
2437  /// FinalOverriders - The final overriders of the most derived class.
2438  const FinalOverriders Overriders;
2439
2440  /// Components - The components of the vftable being built.
2441  SmallVector<VTableComponent, 64> Components;
2442
2443  MethodVFTableLocationsTy MethodVFTableLocations;
2444
2445  /// Does this class have an RTTI component?
2446  bool HasRTTIComponent = false;
2447
2448  /// MethodInfo - Contains information about a method in a vtable.
2449  /// (Used for computing 'this' pointer adjustment thunks.
2450  struct MethodInfo {
2451    /// VBTableIndex - The nonzero index in the vbtable that
2452    /// this method's base has, or zero.
2453    const uint64_t VBTableIndex;
2454
2455    /// VFTableIndex - The index in the vftable that this method has.
2456    const uint64_t VFTableIndex;
2457
2458    /// Shadowed - Indicates if this vftable slot is shadowed by
2459    /// a slot for a covariant-return override. If so, it shouldn't be printed
2460    /// or used for vcalls in the most derived class.
2461    bool Shadowed;
2462
2463    /// UsesExtraSlot - Indicates if this vftable slot was created because
2464    /// any of the overridden slots required a return adjusting thunk.
2465    bool UsesExtraSlot;
2466
2467    MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2468               bool UsesExtraSlot = false)
2469        : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2470          Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2471
2472    MethodInfo()
2473        : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2474          UsesExtraSlot(false) {}
2475  };
2476
2477  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2478
2479  /// MethodInfoMap - The information for all methods in the vftable we're
2480  /// currently building.
2481  MethodInfoMapTy MethodInfoMap;
2482
2483  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2484
2485  /// VTableThunks - The thunks by vftable index in the vftable currently being
2486  /// built.
2487  VTableThunksMapTy VTableThunks;
2488
2489  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2490  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2491
2492  /// Thunks - A map that contains all the thunks needed for all methods in the
2493  /// most derived class for which the vftable is currently being built.
2494  ThunksMapTy Thunks;
2495
2496  /// AddThunk - Add a thunk for the given method.
2497  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2498    SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2499
2500    // Check if we have this thunk already.
2501    if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
2502      return;
2503
2504    ThunksVector.push_back(Thunk);
2505  }
2506
2507  /// ComputeThisOffset - Returns the 'this' argument offset for the given
2508  /// method, relative to the beginning of the MostDerivedClass.
2509  CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2510
2511  void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2512                                   CharUnits ThisOffset, ThisAdjustment &TA);
2513
2514  /// AddMethod - Add a single virtual member function to the vftable
2515  /// components vector.
2516  void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2517    if (!TI.isEmpty()) {
2518      VTableThunks[Components.size()] = TI;
2519      AddThunk(MD, TI);
2520    }
2521    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2522      assert(TI.Return.isEmpty() &&
2523             "Destructor can't have return adjustment!");
2524      Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2525    } else {
2526      Components.push_back(VTableComponent::MakeFunction(MD));
2527    }
2528  }
2529
2530  /// AddMethods - Add the methods of this base subobject and the relevant
2531  /// subbases to the vftable we're currently laying out.
2532  void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2533                  const CXXRecordDecl *LastVBase,
2534                  BasesSetVectorTy &VisitedBases);
2535
2536  void LayoutVFTable() {
2537    // RTTI data goes before all other entries.
2538    if (HasRTTIComponent)
2539      Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2540
2541    BasesSetVectorTy VisitedBases;
2542    AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2543               VisitedBases);
2544    // Note that it is possible for the vftable to contain only an RTTI
2545    // pointer, if all virtual functions are constewval.
2546    assert(!Components.empty() && "vftable can't be empty");
2547
2548    assert(MethodVFTableLocations.empty());
2549    for (const auto &I : MethodInfoMap) {
2550      const CXXMethodDecl *MD = I.first;
2551      const MethodInfo &MI = I.second;
2552      assert(MD == MD->getCanonicalDecl());
2553
2554      // Skip the methods that the MostDerivedClass didn't override
2555      // and the entries shadowed by return adjusting thunks.
2556      if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2557        continue;
2558      MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2559                                WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2560      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2561        MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2562      } else {
2563        MethodVFTableLocations[MD] = Loc;
2564      }
2565    }
2566  }
2567
2568public:
2569  VFTableBuilder(MicrosoftVTableContext &VTables,
2570                 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2571      : VTables(VTables),
2572        Context(MostDerivedClass->getASTContext()),
2573        MostDerivedClass(MostDerivedClass),
2574        MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2575        WhichVFPtr(Which),
2576        Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2577    // Provide the RTTI component if RTTIData is enabled. If the vftable would
2578    // be available externally, we should not provide the RTTI componenent. It
2579    // is currently impossible to get available externally vftables with either
2580    // dllimport or extern template instantiations, but eventually we may add a
2581    // flag to support additional devirtualization that needs this.
2582    if (Context.getLangOpts().RTTIData)
2583      HasRTTIComponent = true;
2584
2585    LayoutVFTable();
2586
2587    if (Context.getLangOpts().DumpVTableLayouts)
2588      dumpLayout(llvm::outs());
2589  }
2590
2591  uint64_t getNumThunks() const { return Thunks.size(); }
2592
2593  ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2594
2595  ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2596
2597  method_locations_range vtable_locations() const {
2598    return method_locations_range(MethodVFTableLocations.begin(),
2599                                  MethodVFTableLocations.end());
2600  }
2601
2602  ArrayRef<VTableComponent> vtable_components() const { return Components; }
2603
2604  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2605    return VTableThunks.begin();
2606  }
2607
2608  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2609    return VTableThunks.end();
2610  }
2611
2612  void dumpLayout(raw_ostream &);
2613};
2614
2615} // end namespace
2616
2617// Let's study one class hierarchy as an example:
2618//   struct A {
2619//     virtual void f();
2620//     int x;
2621//   };
2622//
2623//   struct B : virtual A {
2624//     virtual void f();
2625//   };
2626//
2627// Record layouts:
2628//   struct A:
2629//   0 |   (A vftable pointer)
2630//   4 |   int x
2631//
2632//   struct B:
2633//   0 |   (B vbtable pointer)
2634//   4 |   struct A (virtual base)
2635//   4 |     (A vftable pointer)
2636//   8 |     int x
2637//
2638// Let's assume we have a pointer to the A part of an object of dynamic type B:
2639//   B b;
2640//   A *a = (A*)&b;
2641//   a->f();
2642//
2643// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2644// "this" parameter to point at the A subobject, which is B+4.
2645// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2646// performed as a *static* adjustment.
2647//
2648// Interesting thing happens when we alter the relative placement of A and B
2649// subobjects in a class:
2650//   struct C : virtual B { };
2651//
2652//   C c;
2653//   A *a = (A*)&c;
2654//   a->f();
2655//
2656// Respective record layout is:
2657//   0 |   (C vbtable pointer)
2658//   4 |   struct A (virtual base)
2659//   4 |     (A vftable pointer)
2660//   8 |     int x
2661//  12 |   struct B (virtual base)
2662//  12 |     (B vbtable pointer)
2663//
2664// The final overrider of f() in class C is still B::f(), so B+4 should be
2665// passed as "this" to that code.  However, "a" points at B-8, so the respective
2666// vftable entry should hold a thunk that adds 12 to the "this" argument before
2667// performing a tail call to B::f().
2668//
2669// With this example in mind, we can now calculate the 'this' argument offset
2670// for the given method, relative to the beginning of the MostDerivedClass.
2671CharUnits
2672VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2673  BasesSetVectorTy Bases;
2674
2675  {
2676    // Find the set of least derived bases that define the given method.
2677    OverriddenMethodsSetTy VisitedOverriddenMethods;
2678    auto InitialOverriddenDefinitionCollector = [&](
2679        const CXXMethodDecl *OverriddenMD) {
2680      if (OverriddenMD->size_overridden_methods() == 0)
2681        Bases.insert(OverriddenMD->getParent());
2682      // Don't recurse on this method if we've already collected it.
2683      return VisitedOverriddenMethods.insert(OverriddenMD).second;
2684    };
2685    visitAllOverriddenMethods(Overrider.Method,
2686                              InitialOverriddenDefinitionCollector);
2687  }
2688
2689  // If there are no overrides then 'this' is located
2690  // in the base that defines the method.
2691  if (Bases.size() == 0)
2692    return Overrider.Offset;
2693
2694  CXXBasePaths Paths;
2695  Overrider.Method->getParent()->lookupInBases(
2696      [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2697        return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2698      },
2699      Paths);
2700
2701  // This will hold the smallest this offset among overridees of MD.
2702  // This implies that an offset of a non-virtual base will dominate an offset
2703  // of a virtual base to potentially reduce the number of thunks required
2704  // in the derived classes that inherit this method.
2705  CharUnits Ret;
2706  bool First = true;
2707
2708  const ASTRecordLayout &OverriderRDLayout =
2709      Context.getASTRecordLayout(Overrider.Method->getParent());
2710  for (const CXXBasePath &Path : Paths) {
2711    CharUnits ThisOffset = Overrider.Offset;
2712    CharUnits LastVBaseOffset;
2713
2714    // For each path from the overrider to the parents of the overridden
2715    // methods, traverse the path, calculating the this offset in the most
2716    // derived class.
2717    for (const CXXBasePathElement &Element : Path) {
2718      QualType CurTy = Element.Base->getType();
2719      const CXXRecordDecl *PrevRD = Element.Class,
2720                          *CurRD = CurTy->getAsCXXRecordDecl();
2721      const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2722
2723      if (Element.Base->isVirtual()) {
2724        // The interesting things begin when you have virtual inheritance.
2725        // The final overrider will use a static adjustment equal to the offset
2726        // of the vbase in the final overrider class.
2727        // For example, if the final overrider is in a vbase B of the most
2728        // derived class and it overrides a method of the B's own vbase A,
2729        // it uses A* as "this".  In its prologue, it can cast A* to B* with
2730        // a static offset.  This offset is used regardless of the actual
2731        // offset of A from B in the most derived class, requiring an
2732        // this-adjusting thunk in the vftable if A and B are laid out
2733        // differently in the most derived class.
2734        LastVBaseOffset = ThisOffset =
2735            Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2736      } else {
2737        ThisOffset += Layout.getBaseClassOffset(CurRD);
2738      }
2739    }
2740
2741    if (isa<CXXDestructorDecl>(Overrider.Method)) {
2742      if (LastVBaseOffset.isZero()) {
2743        // If a "Base" class has at least one non-virtual base with a virtual
2744        // destructor, the "Base" virtual destructor will take the address
2745        // of the "Base" subobject as the "this" argument.
2746        ThisOffset = Overrider.Offset;
2747      } else {
2748        // A virtual destructor of a virtual base takes the address of the
2749        // virtual base subobject as the "this" argument.
2750        ThisOffset = LastVBaseOffset;
2751      }
2752    }
2753
2754    if (Ret > ThisOffset || First) {
2755      First = false;
2756      Ret = ThisOffset;
2757    }
2758  }
2759
2760  assert(!First && "Method not found in the given subobject?");
2761  return Ret;
2762}
2763
2764// Things are getting even more complex when the "this" adjustment has to
2765// use a dynamic offset instead of a static one, or even two dynamic offsets.
2766// This is sometimes required when a virtual call happens in the middle of
2767// a non-most-derived class construction or destruction.
2768//
2769// Let's take a look at the following example:
2770//   struct A {
2771//     virtual void f();
2772//   };
2773//
2774//   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2775//
2776//   struct B : virtual A {
2777//     virtual void f();
2778//     B() {
2779//       foo(this);
2780//     }
2781//   };
2782//
2783//   struct C : virtual B {
2784//     virtual void f();
2785//   };
2786//
2787// Record layouts for these classes are:
2788//   struct A
2789//   0 |   (A vftable pointer)
2790//
2791//   struct B
2792//   0 |   (B vbtable pointer)
2793//   4 |   (vtordisp for vbase A)
2794//   8 |   struct A (virtual base)
2795//   8 |     (A vftable pointer)
2796//
2797//   struct C
2798//   0 |   (C vbtable pointer)
2799//   4 |   (vtordisp for vbase A)
2800//   8 |   struct A (virtual base)  // A precedes B!
2801//   8 |     (A vftable pointer)
2802//  12 |   struct B (virtual base)
2803//  12 |     (B vbtable pointer)
2804//
2805// When one creates an object of type C, the C constructor:
2806// - initializes all the vbptrs, then
2807// - calls the A subobject constructor
2808//   (initializes A's vfptr with an address of A vftable), then
2809// - calls the B subobject constructor
2810//   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2811//   that in turn calls foo(), then
2812// - initializes A's vfptr with an address of C vftable and zeroes out the
2813//   vtordisp
2814//   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2815//   without vtordisp thunks?
2816//   FIXME: how are vtordisp handled in the presence of nooverride/final?
2817//
2818// When foo() is called, an object with a layout of class C has a vftable
2819// referencing B::f() that assumes a B layout, so the "this" adjustments are
2820// incorrect, unless an extra adjustment is done.  This adjustment is called
2821// "vtordisp adjustment".  Vtordisp basically holds the difference between the
2822// actual location of a vbase in the layout class and the location assumed by
2823// the vftable of the class being constructed/destructed.  Vtordisp is only
2824// needed if "this" escapes a
2825// structor (or we can't prove otherwise).
2826// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2827// estimation of a dynamic adjustment]
2828//
2829// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2830// so it just passes that pointer as "this" in a virtual call.
2831// If there was no vtordisp, that would just dispatch to B::f().
2832// However, B::f() assumes B+8 is passed as "this",
2833// yet the pointer foo() passes along is B-4 (i.e. C+8).
2834// An extra adjustment is needed, so we emit a thunk into the B vftable.
2835// This vtordisp thunk subtracts the value of vtordisp
2836// from the "this" argument (-12) before making a tailcall to B::f().
2837//
2838// Let's consider an even more complex example:
2839//   struct D : virtual B, virtual C {
2840//     D() {
2841//       foo(this);
2842//     }
2843//   };
2844//
2845//   struct D
2846//   0 |   (D vbtable pointer)
2847//   4 |   (vtordisp for vbase A)
2848//   8 |   struct A (virtual base)  // A precedes both B and C!
2849//   8 |     (A vftable pointer)
2850//  12 |   struct B (virtual base)  // B precedes C!
2851//  12 |     (B vbtable pointer)
2852//  16 |   struct C (virtual base)
2853//  16 |     (C vbtable pointer)
2854//
2855// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2856// to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2857// passes along A, which is C-8.  The A vtordisp holds
2858//   "D.vbptr[index_of_A] - offset_of_A_in_D"
2859// and we statically know offset_of_A_in_D, so can get a pointer to D.
2860// When we know it, we can make an extra vbtable lookup to locate the C vbase
2861// and one extra static adjustment to calculate the expected value of C+8.
2862void VFTableBuilder::CalculateVtordispAdjustment(
2863    FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2864    ThisAdjustment &TA) {
2865  const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2866      MostDerivedClassLayout.getVBaseOffsetsMap();
2867  const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2868      VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2869  assert(VBaseMapEntry != VBaseMap.end());
2870
2871  // If there's no vtordisp or the final overrider is defined in the same vbase
2872  // as the initial declaration, we don't need any vtordisp adjustment.
2873  if (!VBaseMapEntry->second.hasVtorDisp() ||
2874      Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2875    return;
2876
2877  // OK, now we know we need to use a vtordisp thunk.
2878  // The implicit vtordisp field is located right before the vbase.
2879  CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2880  TA.Virtual.Microsoft.VtordispOffset =
2881      (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2882
2883  // A simple vtordisp thunk will suffice if the final overrider is defined
2884  // in either the most derived class or its non-virtual base.
2885  if (Overrider.Method->getParent() == MostDerivedClass ||
2886      !Overrider.VirtualBase)
2887    return;
2888
2889  // Otherwise, we need to do use the dynamic offset of the final overrider
2890  // in order to get "this" adjustment right.
2891  TA.Virtual.Microsoft.VBPtrOffset =
2892      (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2893       MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2894  TA.Virtual.Microsoft.VBOffsetOffset =
2895      Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2896      VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2897
2898  TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2899}
2900
2901static void GroupNewVirtualOverloads(
2902    const CXXRecordDecl *RD,
2903    SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2904  // Put the virtual methods into VirtualMethods in the proper order:
2905  // 1) Group overloads by declaration name. New groups are added to the
2906  //    vftable in the order of their first declarations in this class
2907  //    (including overrides, non-virtual methods and any other named decl that
2908  //    might be nested within the class).
2909  // 2) In each group, new overloads appear in the reverse order of declaration.
2910  typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2911  SmallVector<MethodGroup, 10> Groups;
2912  typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2913  VisitedGroupIndicesTy VisitedGroupIndices;
2914  for (const auto *D : RD->decls()) {
2915    const auto *ND = dyn_cast<NamedDecl>(D);
2916    if (!ND)
2917      continue;
2918    VisitedGroupIndicesTy::iterator J;
2919    bool Inserted;
2920    std::tie(J, Inserted) = VisitedGroupIndices.insert(
2921        std::make_pair(ND->getDeclName(), Groups.size()));
2922    if (Inserted)
2923      Groups.push_back(MethodGroup());
2924    if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2925      if (MicrosoftVTableContext::hasVtableSlot(MD))
2926        Groups[J->second].push_back(MD->getCanonicalDecl());
2927  }
2928
2929  for (const MethodGroup &Group : Groups)
2930    VirtualMethods.append(Group.rbegin(), Group.rend());
2931}
2932
2933static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2934  for (const auto &B : RD->bases()) {
2935    if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2936      return true;
2937  }
2938  return false;
2939}
2940
2941void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2942                                const CXXRecordDecl *LastVBase,
2943                                BasesSetVectorTy &VisitedBases) {
2944  const CXXRecordDecl *RD = Base.getBase();
2945  if (!RD->isPolymorphic())
2946    return;
2947
2948  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2949
2950  // See if this class expands a vftable of the base we look at, which is either
2951  // the one defined by the vfptr base path or the primary base of the current
2952  // class.
2953  const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2954  CharUnits NextBaseOffset;
2955  if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2956    NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2957    if (isDirectVBase(NextBase, RD)) {
2958      NextLastVBase = NextBase;
2959      NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2960    } else {
2961      NextBaseOffset =
2962          Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2963    }
2964  } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2965    assert(!Layout.isPrimaryBaseVirtual() &&
2966           "No primary virtual bases in this ABI");
2967    NextBase = PrimaryBase;
2968    NextBaseOffset = Base.getBaseOffset();
2969  }
2970
2971  if (NextBase) {
2972    AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2973               NextLastVBase, VisitedBases);
2974    if (!VisitedBases.insert(NextBase))
2975      llvm_unreachable("Found a duplicate primary base!");
2976  }
2977
2978  SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2979  // Put virtual methods in the proper order.
2980  GroupNewVirtualOverloads(RD, VirtualMethods);
2981
2982  // Now go through all virtual member functions and add them to the current
2983  // vftable. This is done by
2984  //  - replacing overridden methods in their existing slots, as long as they
2985  //    don't require return adjustment; calculating This adjustment if needed.
2986  //  - adding new slots for methods of the current base not present in any
2987  //    sub-bases;
2988  //  - adding new slots for methods that require Return adjustment.
2989  // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2990  for (const CXXMethodDecl *MD : VirtualMethods) {
2991    FinalOverriders::OverriderInfo FinalOverrider =
2992        Overriders.getOverrider(MD, Base.getBaseOffset());
2993    const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2994    const CXXMethodDecl *OverriddenMD =
2995        FindNearestOverriddenMethod(MD, VisitedBases);
2996
2997    ThisAdjustment ThisAdjustmentOffset;
2998    bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
2999    CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3000    ThisAdjustmentOffset.NonVirtual =
3001        (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3002    if ((OverriddenMD || FinalOverriderMD != MD) &&
3003        WhichVFPtr.getVBaseWithVPtr())
3004      CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3005                                  ThisAdjustmentOffset);
3006
3007    unsigned VBIndex =
3008        LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3009
3010    if (OverriddenMD) {
3011      // If MD overrides anything in this vftable, we need to update the
3012      // entries.
3013      MethodInfoMapTy::iterator OverriddenMDIterator =
3014          MethodInfoMap.find(OverriddenMD);
3015
3016      // If the overridden method went to a different vftable, skip it.
3017      if (OverriddenMDIterator == MethodInfoMap.end())
3018        continue;
3019
3020      MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3021
3022      VBIndex = OverriddenMethodInfo.VBTableIndex;
3023
3024      // Let's check if the overrider requires any return adjustments.
3025      // We must create a new slot if the MD's return type is not trivially
3026      // convertible to the OverriddenMD's one.
3027      // Once a chain of method overrides adds a return adjusting vftable slot,
3028      // all subsequent overrides will also use an extra method slot.
3029      ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3030                                  Context, MD, OverriddenMD).isEmpty() ||
3031                             OverriddenMethodInfo.UsesExtraSlot;
3032
3033      if (!ReturnAdjustingThunk) {
3034        // No return adjustment needed - just replace the overridden method info
3035        // with the current info.
3036        MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3037        MethodInfoMap.erase(OverriddenMDIterator);
3038
3039        assert(!MethodInfoMap.count(MD) &&
3040               "Should not have method info for this method yet!");
3041        MethodInfoMap.insert(std::make_pair(MD, MI));
3042        continue;
3043      }
3044
3045      // In case we need a return adjustment, we'll add a new slot for
3046      // the overrider. Mark the overridden method as shadowed by the new slot.
3047      OverriddenMethodInfo.Shadowed = true;
3048
3049      // Force a special name mangling for a return-adjusting thunk
3050      // unless the method is the final overrider without this adjustment.
3051      ForceReturnAdjustmentMangling =
3052          !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3053    } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3054               MD->size_overridden_methods()) {
3055      // Skip methods that don't belong to the vftable of the current class,
3056      // e.g. each method that wasn't seen in any of the visited sub-bases
3057      // but overrides multiple methods of other sub-bases.
3058      continue;
3059    }
3060
3061    // If we got here, MD is a method not seen in any of the sub-bases or
3062    // it requires return adjustment. Insert the method info for this method.
3063    MethodInfo MI(VBIndex,
3064                  HasRTTIComponent ? Components.size() - 1 : Components.size(),
3065                  ReturnAdjustingThunk);
3066
3067    assert(!MethodInfoMap.count(MD) &&
3068           "Should not have method info for this method yet!");
3069    MethodInfoMap.insert(std::make_pair(MD, MI));
3070
3071    // Check if this overrider needs a return adjustment.
3072    // We don't want to do this for pure virtual member functions.
3073    BaseOffset ReturnAdjustmentOffset;
3074    ReturnAdjustment ReturnAdjustment;
3075    if (!FinalOverriderMD->isPure()) {
3076      ReturnAdjustmentOffset =
3077          ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3078    }
3079    if (!ReturnAdjustmentOffset.isEmpty()) {
3080      ForceReturnAdjustmentMangling = true;
3081      ReturnAdjustment.NonVirtual =
3082          ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3083      if (ReturnAdjustmentOffset.VirtualBase) {
3084        const ASTRecordLayout &DerivedLayout =
3085            Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3086        ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3087            DerivedLayout.getVBPtrOffset().getQuantity();
3088        ReturnAdjustment.Virtual.Microsoft.VBIndex =
3089            VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3090                                    ReturnAdjustmentOffset.VirtualBase);
3091      }
3092    }
3093
3094    AddMethod(FinalOverriderMD,
3095              ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3096                        ForceReturnAdjustmentMangling ? MD : nullptr));
3097  }
3098}
3099
3100static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3101  for (const CXXRecordDecl *Elem :
3102       llvm::make_range(Path.rbegin(), Path.rend())) {
3103    Out << "'";
3104    Elem->printQualifiedName(Out);
3105    Out << "' in ";
3106  }
3107}
3108
3109static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3110                                         bool ContinueFirstLine) {
3111  const ReturnAdjustment &R = TI.Return;
3112  bool Multiline = false;
3113  const char *LinePrefix = "\n       ";
3114  if (!R.isEmpty() || TI.Method) {
3115    if (!ContinueFirstLine)
3116      Out << LinePrefix;
3117    Out << "[return adjustment (to type '"
3118        << TI.Method->getReturnType().getCanonicalType().getAsString()
3119        << "'): ";
3120    if (R.Virtual.Microsoft.VBPtrOffset)
3121      Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3122    if (R.Virtual.Microsoft.VBIndex)
3123      Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3124    Out << R.NonVirtual << " non-virtual]";
3125    Multiline = true;
3126  }
3127
3128  const ThisAdjustment &T = TI.This;
3129  if (!T.isEmpty()) {
3130    if (Multiline || !ContinueFirstLine)
3131      Out << LinePrefix;
3132    Out << "[this adjustment: ";
3133    if (!TI.This.Virtual.isEmpty()) {
3134      assert(T.Virtual.Microsoft.VtordispOffset < 0);
3135      Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3136      if (T.Virtual.Microsoft.VBPtrOffset) {
3137        Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3138            << " to the left,";
3139        assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3140        Out << LinePrefix << " vboffset at "
3141            << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3142      }
3143    }
3144    Out << T.NonVirtual << " non-virtual]";
3145  }
3146}
3147
3148void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3149  Out << "VFTable for ";
3150  PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3151  Out << "'";
3152  MostDerivedClass->printQualifiedName(Out);
3153  Out << "' (" << Components.size()
3154      << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3155
3156  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3157    Out << llvm::format("%4d | ", I);
3158
3159    const VTableComponent &Component = Components[I];
3160
3161    // Dump the component.
3162    switch (Component.getKind()) {
3163    case VTableComponent::CK_RTTI:
3164      Component.getRTTIDecl()->printQualifiedName(Out);
3165      Out << " RTTI";
3166      break;
3167
3168    case VTableComponent::CK_FunctionPointer: {
3169      const CXXMethodDecl *MD = Component.getFunctionDecl();
3170
3171      // FIXME: Figure out how to print the real thunk type, since they can
3172      // differ in the return type.
3173      std::string Str = PredefinedExpr::ComputeName(
3174          PredefinedExpr::PrettyFunctionNoVirtual, MD);
3175      Out << Str;
3176      if (MD->isPure())
3177        Out << " [pure]";
3178
3179      if (MD->isDeleted())
3180        Out << " [deleted]";
3181
3182      ThunkInfo Thunk = VTableThunks.lookup(I);
3183      if (!Thunk.isEmpty())
3184        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3185
3186      break;
3187    }
3188
3189    case VTableComponent::CK_DeletingDtorPointer: {
3190      const CXXDestructorDecl *DD = Component.getDestructorDecl();
3191
3192      DD->printQualifiedName(Out);
3193      Out << "() [scalar deleting]";
3194
3195      if (DD->isPure())
3196        Out << " [pure]";
3197
3198      ThunkInfo Thunk = VTableThunks.lookup(I);
3199      if (!Thunk.isEmpty()) {
3200        assert(Thunk.Return.isEmpty() &&
3201               "No return adjustment needed for destructors!");
3202        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3203      }
3204
3205      break;
3206    }
3207
3208    default:
3209      DiagnosticsEngine &Diags = Context.getDiagnostics();
3210      unsigned DiagID = Diags.getCustomDiagID(
3211          DiagnosticsEngine::Error,
3212          "Unexpected vftable component type %0 for component number %1");
3213      Diags.Report(MostDerivedClass->getLocation(), DiagID)
3214          << I << Component.getKind();
3215    }
3216
3217    Out << '\n';
3218  }
3219
3220  Out << '\n';
3221
3222  if (!Thunks.empty()) {
3223    // We store the method names in a map to get a stable order.
3224    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3225
3226    for (const auto &I : Thunks) {
3227      const CXXMethodDecl *MD = I.first;
3228      std::string MethodName = PredefinedExpr::ComputeName(
3229          PredefinedExpr::PrettyFunctionNoVirtual, MD);
3230
3231      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3232    }
3233
3234    for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3235      const std::string &MethodName = MethodNameAndDecl.first;
3236      const CXXMethodDecl *MD = MethodNameAndDecl.second;
3237
3238      ThunkInfoVectorTy ThunksVector = Thunks[MD];
3239      llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3240                                         const ThunkInfo &RHS) {
3241        // Keep different thunks with the same adjustments in the order they
3242        // were put into the vector.
3243        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3244      });
3245
3246      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3247      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3248
3249      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3250        const ThunkInfo &Thunk = ThunksVector[I];
3251
3252        Out << llvm::format("%4d | ", I);
3253        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3254        Out << '\n';
3255      }
3256
3257      Out << '\n';
3258    }
3259  }
3260
3261  Out.flush();
3262}
3263
3264static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3265                          ArrayRef<const CXXRecordDecl *> B) {
3266  for (const CXXRecordDecl *Decl : B) {
3267    if (A.count(Decl))
3268      return true;
3269  }
3270  return false;
3271}
3272
3273static bool rebucketPaths(VPtrInfoVector &Paths);
3274
3275/// Produces MSVC-compatible vbtable data.  The symbols produced by this
3276/// algorithm match those produced by MSVC 2012 and newer, which is different
3277/// from MSVC 2010.
3278///
3279/// MSVC 2012 appears to minimize the vbtable names using the following
3280/// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3281/// left to right, to find all of the subobjects which contain a vbptr field.
3282/// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3283/// record with a vbptr creates an initially empty path.
3284///
3285/// To combine paths from child nodes, the paths are compared to check for
3286/// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3287/// components in the same order.  Each group of ambiguous paths is extended by
3288/// appending the class of the base from which it came.  If the current class
3289/// node produced an ambiguous path, its path is extended with the current class.
3290/// After extending paths, MSVC again checks for ambiguity, and extends any
3291/// ambiguous path which wasn't already extended.  Because each node yields an
3292/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3293/// to produce an unambiguous set of paths.
3294///
3295/// TODO: Presumably vftables use the same algorithm.
3296void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3297                                                const CXXRecordDecl *RD,
3298                                                VPtrInfoVector &Paths) {
3299  assert(Paths.empty());
3300  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3301
3302  // Base case: this subobject has its own vptr.
3303  if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3304    Paths.push_back(std::make_unique<VPtrInfo>(RD));
3305
3306  // Recursive case: get all the vbtables from our bases and remove anything
3307  // that shares a virtual base.
3308  llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3309  for (const auto &B : RD->bases()) {
3310    const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3311    if (B.isVirtual() && VBasesSeen.count(Base))
3312      continue;
3313
3314    if (!Base->isDynamicClass())
3315      continue;
3316
3317    const VPtrInfoVector &BasePaths =
3318        ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3319
3320    for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3321      // Don't include the path if it goes through a virtual base that we've
3322      // already included.
3323      if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3324        continue;
3325
3326      // Copy the path and adjust it as necessary.
3327      auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3328
3329      // We mangle Base into the path if the path would've been ambiguous and it
3330      // wasn't already extended with Base.
3331      if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3332        P->NextBaseToMangle = Base;
3333
3334      // Keep track of which vtable the derived class is going to extend with
3335      // new methods or bases.  We append to either the vftable of our primary
3336      // base, or the first non-virtual base that has a vbtable.
3337      if (P->ObjectWithVPtr == Base &&
3338          Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3339                               : Layout.getPrimaryBase()))
3340        P->ObjectWithVPtr = RD;
3341
3342      // Keep track of the full adjustment from the MDC to this vtable.  The
3343      // adjustment is captured by an optional vbase and a non-virtual offset.
3344      if (B.isVirtual())
3345        P->ContainingVBases.push_back(Base);
3346      else if (P->ContainingVBases.empty())
3347        P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3348
3349      // Update the full offset in the MDC.
3350      P->FullOffsetInMDC = P->NonVirtualOffset;
3351      if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3352        P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3353
3354      Paths.push_back(std::move(P));
3355    }
3356
3357    if (B.isVirtual())
3358      VBasesSeen.insert(Base);
3359
3360    // After visiting any direct base, we've transitively visited all of its
3361    // morally virtual bases.
3362    for (const auto &VB : Base->vbases())
3363      VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3364  }
3365
3366  // Sort the paths into buckets, and if any of them are ambiguous, extend all
3367  // paths in ambiguous buckets.
3368  bool Changed = true;
3369  while (Changed)
3370    Changed = rebucketPaths(Paths);
3371}
3372
3373static bool extendPath(VPtrInfo &P) {
3374  if (P.NextBaseToMangle) {
3375    P.MangledPath.push_back(P.NextBaseToMangle);
3376    P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3377    return true;
3378  }
3379  return false;
3380}
3381
3382static bool rebucketPaths(VPtrInfoVector &Paths) {
3383  // What we're essentially doing here is bucketing together ambiguous paths.
3384  // Any bucket with more than one path in it gets extended by NextBase, which
3385  // is usually the direct base of the inherited the vbptr.  This code uses a
3386  // sorted vector to implement a multiset to form the buckets.  Note that the
3387  // ordering is based on pointers, but it doesn't change our output order.  The
3388  // current algorithm is designed to match MSVC 2012's names.
3389  llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted;
3390  PathsSorted.reserve(Paths.size());
3391  for (auto& P : Paths)
3392    PathsSorted.push_back(*P);
3393  llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3394    return LHS.MangledPath < RHS.MangledPath;
3395  });
3396  bool Changed = false;
3397  for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3398    // Scan forward to find the end of the bucket.
3399    size_t BucketStart = I;
3400    do {
3401      ++I;
3402    } while (I != E &&
3403             PathsSorted[BucketStart].get().MangledPath ==
3404                 PathsSorted[I].get().MangledPath);
3405
3406    // If this bucket has multiple paths, extend them all.
3407    if (I - BucketStart > 1) {
3408      for (size_t II = BucketStart; II != I; ++II)
3409        Changed |= extendPath(PathsSorted[II]);
3410      assert(Changed && "no paths were extended to fix ambiguity");
3411    }
3412  }
3413  return Changed;
3414}
3415
3416MicrosoftVTableContext::~MicrosoftVTableContext() {}
3417
3418namespace {
3419typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3420                        llvm::DenseSet<BaseSubobject>> FullPathTy;
3421}
3422
3423// This recursive function finds all paths from a subobject centered at
3424// (RD, Offset) to the subobject located at IntroducingObject.
3425static void findPathsToSubobject(ASTContext &Context,
3426                                 const ASTRecordLayout &MostDerivedLayout,
3427                                 const CXXRecordDecl *RD, CharUnits Offset,
3428                                 BaseSubobject IntroducingObject,
3429                                 FullPathTy &FullPath,
3430                                 std::list<FullPathTy> &Paths) {
3431  if (BaseSubobject(RD, Offset) == IntroducingObject) {
3432    Paths.push_back(FullPath);
3433    return;
3434  }
3435
3436  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3437
3438  for (const CXXBaseSpecifier &BS : RD->bases()) {
3439    const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3440    CharUnits NewOffset = BS.isVirtual()
3441                              ? MostDerivedLayout.getVBaseClassOffset(Base)
3442                              : Offset + Layout.getBaseClassOffset(Base);
3443    FullPath.insert(BaseSubobject(Base, NewOffset));
3444    findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3445                         IntroducingObject, FullPath, Paths);
3446    FullPath.pop_back();
3447  }
3448}
3449
3450// Return the paths which are not subsets of other paths.
3451static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3452  FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3453    for (const FullPathTy &OtherPath : FullPaths) {
3454      if (&SpecificPath == &OtherPath)
3455        continue;
3456      if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3457            return OtherPath.count(BSO) != 0;
3458          })) {
3459        return true;
3460      }
3461    }
3462    return false;
3463  });
3464}
3465
3466static CharUnits getOffsetOfFullPath(ASTContext &Context,
3467                                     const CXXRecordDecl *RD,
3468                                     const FullPathTy &FullPath) {
3469  const ASTRecordLayout &MostDerivedLayout =
3470      Context.getASTRecordLayout(RD);
3471  CharUnits Offset = CharUnits::fromQuantity(-1);
3472  for (const BaseSubobject &BSO : FullPath) {
3473    const CXXRecordDecl *Base = BSO.getBase();
3474    // The first entry in the path is always the most derived record, skip it.
3475    if (Base == RD) {
3476      assert(Offset.getQuantity() == -1);
3477      Offset = CharUnits::Zero();
3478      continue;
3479    }
3480    assert(Offset.getQuantity() != -1);
3481    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3482    // While we know which base has to be traversed, we don't know if that base
3483    // was a virtual base.
3484    const CXXBaseSpecifier *BaseBS = std::find_if(
3485        RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3486          return BS.getType()->getAsCXXRecordDecl() == Base;
3487        });
3488    Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3489                                 : Offset + Layout.getBaseClassOffset(Base);
3490    RD = Base;
3491  }
3492  return Offset;
3493}
3494
3495// We want to select the path which introduces the most covariant overrides.  If
3496// two paths introduce overrides which the other path doesn't contain, issue a
3497// diagnostic.
3498static const FullPathTy *selectBestPath(ASTContext &Context,
3499                                        const CXXRecordDecl *RD,
3500                                        const VPtrInfo &Info,
3501                                        std::list<FullPathTy> &FullPaths) {
3502  // Handle some easy cases first.
3503  if (FullPaths.empty())
3504    return nullptr;
3505  if (FullPaths.size() == 1)
3506    return &FullPaths.front();
3507
3508  const FullPathTy *BestPath = nullptr;
3509  typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3510  OverriderSetTy LastOverrides;
3511  for (const FullPathTy &SpecificPath : FullPaths) {
3512    assert(!SpecificPath.empty());
3513    OverriderSetTy CurrentOverrides;
3514    const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3515    // Find the distance from the start of the path to the subobject with the
3516    // VPtr.
3517    CharUnits BaseOffset =
3518        getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3519    FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3520    for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3521      if (!MicrosoftVTableContext::hasVtableSlot(MD))
3522        continue;
3523      FinalOverriders::OverriderInfo OI =
3524          Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3525      const CXXMethodDecl *OverridingMethod = OI.Method;
3526      // Only overriders which have a return adjustment introduce problematic
3527      // thunks.
3528      if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3529              .isEmpty())
3530        continue;
3531      // It's possible that the overrider isn't in this path.  If so, skip it
3532      // because this path didn't introduce it.
3533      const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3534      if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3535            return BSO.getBase() == OverridingParent;
3536          }))
3537        continue;
3538      CurrentOverrides.insert(OverridingMethod);
3539    }
3540    OverriderSetTy NewOverrides =
3541        llvm::set_difference(CurrentOverrides, LastOverrides);
3542    if (NewOverrides.empty())
3543      continue;
3544    OverriderSetTy MissingOverrides =
3545        llvm::set_difference(LastOverrides, CurrentOverrides);
3546    if (MissingOverrides.empty()) {
3547      // This path is a strict improvement over the last path, let's use it.
3548      BestPath = &SpecificPath;
3549      std::swap(CurrentOverrides, LastOverrides);
3550    } else {
3551      // This path introduces an overrider with a conflicting covariant thunk.
3552      DiagnosticsEngine &Diags = Context.getDiagnostics();
3553      const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3554      const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3555      Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3556          << RD;
3557      Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3558          << CovariantMD;
3559      Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3560          << ConflictMD;
3561    }
3562  }
3563  // Go with the path that introduced the most covariant overrides.  If there is
3564  // no such path, pick the first path.
3565  return BestPath ? BestPath : &FullPaths.front();
3566}
3567
3568static void computeFullPathsForVFTables(ASTContext &Context,
3569                                        const CXXRecordDecl *RD,
3570                                        VPtrInfoVector &Paths) {
3571  const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3572  FullPathTy FullPath;
3573  std::list<FullPathTy> FullPaths;
3574  for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3575    findPathsToSubobject(
3576        Context, MostDerivedLayout, RD, CharUnits::Zero(),
3577        BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3578        FullPaths);
3579    FullPath.clear();
3580    removeRedundantPaths(FullPaths);
3581    Info->PathToIntroducingObject.clear();
3582    if (const FullPathTy *BestPath =
3583            selectBestPath(Context, RD, *Info, FullPaths))
3584      for (const BaseSubobject &BSO : *BestPath)
3585        Info->PathToIntroducingObject.push_back(BSO.getBase());
3586    FullPaths.clear();
3587  }
3588}
3589
3590static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3591                                const MethodVFTableLocation &LHS,
3592                                const MethodVFTableLocation &RHS) {
3593  CharUnits L = LHS.VFPtrOffset;
3594  CharUnits R = RHS.VFPtrOffset;
3595  if (LHS.VBase)
3596    L += Layout.getVBaseClassOffset(LHS.VBase);
3597  if (RHS.VBase)
3598    R += Layout.getVBaseClassOffset(RHS.VBase);
3599  return L < R;
3600}
3601
3602void MicrosoftVTableContext::computeVTableRelatedInformation(
3603    const CXXRecordDecl *RD) {
3604  assert(RD->isDynamicClass());
3605
3606  // Check if we've computed this information before.
3607  if (VFPtrLocations.count(RD))
3608    return;
3609
3610  const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3611
3612  {
3613    auto VFPtrs = std::make_unique<VPtrInfoVector>();
3614    computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3615    computeFullPathsForVFTables(Context, RD, *VFPtrs);
3616    VFPtrLocations[RD] = std::move(VFPtrs);
3617  }
3618
3619  MethodVFTableLocationsTy NewMethodLocations;
3620  for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3621    VFTableBuilder Builder(*this, RD, *VFPtr);
3622
3623    VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3624    assert(VFTableLayouts.count(id) == 0);
3625    SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3626        Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3627    VFTableLayouts[id] = std::make_unique<VTableLayout>(
3628        ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3629        EmptyAddressPointsMap);
3630    Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3631
3632    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3633    for (const auto &Loc : Builder.vtable_locations()) {
3634      auto Insert = NewMethodLocations.insert(Loc);
3635      if (!Insert.second) {
3636        const MethodVFTableLocation &NewLoc = Loc.second;
3637        MethodVFTableLocation &OldLoc = Insert.first->second;
3638        if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3639          OldLoc = NewLoc;
3640      }
3641    }
3642  }
3643
3644  MethodVFTableLocations.insert(NewMethodLocations.begin(),
3645                                NewMethodLocations.end());
3646  if (Context.getLangOpts().DumpVTableLayouts)
3647    dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3648}
3649
3650void MicrosoftVTableContext::dumpMethodLocations(
3651    const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3652    raw_ostream &Out) {
3653  // Compute the vtable indices for all the member functions.
3654  // Store them in a map keyed by the location so we'll get a sorted table.
3655  std::map<MethodVFTableLocation, std::string> IndicesMap;
3656  bool HasNonzeroOffset = false;
3657
3658  for (const auto &I : NewMethods) {
3659    const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3660    assert(hasVtableSlot(MD));
3661
3662    std::string MethodName = PredefinedExpr::ComputeName(
3663        PredefinedExpr::PrettyFunctionNoVirtual, MD);
3664
3665    if (isa<CXXDestructorDecl>(MD)) {
3666      IndicesMap[I.second] = MethodName + " [scalar deleting]";
3667    } else {
3668      IndicesMap[I.second] = MethodName;
3669    }
3670
3671    if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3672      HasNonzeroOffset = true;
3673  }
3674
3675  // Print the vtable indices for all the member functions.
3676  if (!IndicesMap.empty()) {
3677    Out << "VFTable indices for ";
3678    Out << "'";
3679    RD->printQualifiedName(Out);
3680    Out << "' (" << IndicesMap.size()
3681        << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3682
3683    CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3684    uint64_t LastVBIndex = 0;
3685    for (const auto &I : IndicesMap) {
3686      CharUnits VFPtrOffset = I.first.VFPtrOffset;
3687      uint64_t VBIndex = I.first.VBTableIndex;
3688      if (HasNonzeroOffset &&
3689          (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3690        assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3691        Out << " -- accessible via ";
3692        if (VBIndex)
3693          Out << "vbtable index " << VBIndex << ", ";
3694        Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3695        LastVFPtrOffset = VFPtrOffset;
3696        LastVBIndex = VBIndex;
3697      }
3698
3699      uint64_t VTableIndex = I.first.Index;
3700      const std::string &MethodName = I.second;
3701      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3702    }
3703    Out << '\n';
3704  }
3705
3706  Out.flush();
3707}
3708
3709const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3710    const CXXRecordDecl *RD) {
3711  VirtualBaseInfo *VBI;
3712
3713  {
3714    // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3715    // as it may be modified and rehashed under us.
3716    std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3717    if (Entry)
3718      return *Entry;
3719    Entry = std::make_unique<VirtualBaseInfo>();
3720    VBI = Entry.get();
3721  }
3722
3723  computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3724
3725  // First, see if the Derived class shared the vbptr with a non-virtual base.
3726  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3727  if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3728    // If the Derived class shares the vbptr with a non-virtual base, the shared
3729    // virtual bases come first so that the layout is the same.
3730    const VirtualBaseInfo &BaseInfo =
3731        computeVBTableRelatedInformation(VBPtrBase);
3732    VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3733                               BaseInfo.VBTableIndices.end());
3734  }
3735
3736  // New vbases are added to the end of the vbtable.
3737  // Skip the self entry and vbases visited in the non-virtual base, if any.
3738  unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3739  for (const auto &VB : RD->vbases()) {
3740    const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3741    if (!VBI->VBTableIndices.count(CurVBase))
3742      VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3743  }
3744
3745  return *VBI;
3746}
3747
3748unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3749                                                 const CXXRecordDecl *VBase) {
3750  const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3751  assert(VBInfo.VBTableIndices.count(VBase));
3752  return VBInfo.VBTableIndices.find(VBase)->second;
3753}
3754
3755const VPtrInfoVector &
3756MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3757  return computeVBTableRelatedInformation(RD).VBPtrPaths;
3758}
3759
3760const VPtrInfoVector &
3761MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3762  computeVTableRelatedInformation(RD);
3763
3764  assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3765  return *VFPtrLocations[RD];
3766}
3767
3768const VTableLayout &
3769MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3770                                         CharUnits VFPtrOffset) {
3771  computeVTableRelatedInformation(RD);
3772
3773  VFTableIdTy id(RD, VFPtrOffset);
3774  assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3775  return *VFTableLayouts[id];
3776}
3777
3778MethodVFTableLocation
3779MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3780  assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3781         "Only use this method for virtual methods or dtors");
3782  if (isa<CXXDestructorDecl>(GD.getDecl()))
3783    assert(GD.getDtorType() == Dtor_Deleting);
3784
3785  GD = GD.getCanonicalDecl();
3786
3787  MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3788  if (I != MethodVFTableLocations.end())
3789    return I->second;
3790
3791  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3792
3793  computeVTableRelatedInformation(RD);
3794
3795  I = MethodVFTableLocations.find(GD);
3796  assert(I != MethodVFTableLocations.end() && "Did not find index!");
3797  return I->second;
3798}
3799