1//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements the ASTContext interface.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "CXXABI.h"
15#include "Interp/Context.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/ASTTypeTraits.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/AttrIterator.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/Comment.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/DeclBase.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclContextInternals.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/DeclOpenMP.h"
30#include "clang/AST/DeclTemplate.h"
31#include "clang/AST/DeclarationName.h"
32#include "clang/AST/DependenceFlags.h"
33#include "clang/AST/Expr.h"
34#include "clang/AST/ExprCXX.h"
35#include "clang/AST/ExprConcepts.h"
36#include "clang/AST/ExternalASTSource.h"
37#include "clang/AST/Mangle.h"
38#include "clang/AST/MangleNumberingContext.h"
39#include "clang/AST/NestedNameSpecifier.h"
40#include "clang/AST/ParentMapContext.h"
41#include "clang/AST/RawCommentList.h"
42#include "clang/AST/RecordLayout.h"
43#include "clang/AST/Stmt.h"
44#include "clang/AST/TemplateBase.h"
45#include "clang/AST/TemplateName.h"
46#include "clang/AST/Type.h"
47#include "clang/AST/TypeLoc.h"
48#include "clang/AST/UnresolvedSet.h"
49#include "clang/AST/VTableBuilder.h"
50#include "clang/Basic/AddressSpaces.h"
51#include "clang/Basic/Builtins.h"
52#include "clang/Basic/CommentOptions.h"
53#include "clang/Basic/ExceptionSpecificationType.h"
54#include "clang/Basic/IdentifierTable.h"
55#include "clang/Basic/LLVM.h"
56#include "clang/Basic/LangOptions.h"
57#include "clang/Basic/Linkage.h"
58#include "clang/Basic/Module.h"
59#include "clang/Basic/NoSanitizeList.h"
60#include "clang/Basic/ObjCRuntime.h"
61#include "clang/Basic/SourceLocation.h"
62#include "clang/Basic/SourceManager.h"
63#include "clang/Basic/Specifiers.h"
64#include "clang/Basic/TargetCXXABI.h"
65#include "clang/Basic/TargetInfo.h"
66#include "clang/Basic/XRayLists.h"
67#include "llvm/ADT/APFixedPoint.h"
68#include "llvm/ADT/APInt.h"
69#include "llvm/ADT/APSInt.h"
70#include "llvm/ADT/ArrayRef.h"
71#include "llvm/ADT/DenseMap.h"
72#include "llvm/ADT/DenseSet.h"
73#include "llvm/ADT/FoldingSet.h"
74#include "llvm/ADT/None.h"
75#include "llvm/ADT/Optional.h"
76#include "llvm/ADT/PointerUnion.h"
77#include "llvm/ADT/STLExtras.h"
78#include "llvm/ADT/SmallPtrSet.h"
79#include "llvm/ADT/SmallVector.h"
80#include "llvm/ADT/StringExtras.h"
81#include "llvm/ADT/StringRef.h"
82#include "llvm/ADT/Triple.h"
83#include "llvm/Support/Capacity.h"
84#include "llvm/Support/Casting.h"
85#include "llvm/Support/Compiler.h"
86#include "llvm/Support/ErrorHandling.h"
87#include "llvm/Support/MD5.h"
88#include "llvm/Support/MathExtras.h"
89#include "llvm/Support/raw_ostream.h"
90#include <algorithm>
91#include <cassert>
92#include <cstddef>
93#include <cstdint>
94#include <cstdlib>
95#include <map>
96#include <memory>
97#include <string>
98#include <tuple>
99#include <utility>
100
101using namespace clang;
102
103enum FloatingRank {
104  BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
105};
106
107/// \returns location that is relevant when searching for Doc comments related
108/// to \p D.
109static SourceLocation getDeclLocForCommentSearch(const Decl *D,
110                                                 SourceManager &SourceMgr) {
111  assert(D);
112
113  // User can not attach documentation to implicit declarations.
114  if (D->isImplicit())
115    return {};
116
117  // User can not attach documentation to implicit instantiations.
118  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
119    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
120      return {};
121  }
122
123  if (const auto *VD = dyn_cast<VarDecl>(D)) {
124    if (VD->isStaticDataMember() &&
125        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
126      return {};
127  }
128
129  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
130    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
131      return {};
132  }
133
134  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
135    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
136    if (TSK == TSK_ImplicitInstantiation ||
137        TSK == TSK_Undeclared)
138      return {};
139  }
140
141  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
142    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
143      return {};
144  }
145  if (const auto *TD = dyn_cast<TagDecl>(D)) {
146    // When tag declaration (but not definition!) is part of the
147    // decl-specifier-seq of some other declaration, it doesn't get comment
148    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
149      return {};
150  }
151  // TODO: handle comments for function parameters properly.
152  if (isa<ParmVarDecl>(D))
153    return {};
154
155  // TODO: we could look up template parameter documentation in the template
156  // documentation.
157  if (isa<TemplateTypeParmDecl>(D) ||
158      isa<NonTypeTemplateParmDecl>(D) ||
159      isa<TemplateTemplateParmDecl>(D))
160    return {};
161
162  // Find declaration location.
163  // For Objective-C declarations we generally don't expect to have multiple
164  // declarators, thus use declaration starting location as the "declaration
165  // location".
166  // For all other declarations multiple declarators are used quite frequently,
167  // so we use the location of the identifier as the "declaration location".
168  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
169      isa<ObjCPropertyDecl>(D) ||
170      isa<RedeclarableTemplateDecl>(D) ||
171      isa<ClassTemplateSpecializationDecl>(D) ||
172      // Allow association with Y across {} in `typedef struct X {} Y`.
173      isa<TypedefDecl>(D))
174    return D->getBeginLoc();
175  else {
176    const SourceLocation DeclLoc = D->getLocation();
177    if (DeclLoc.isMacroID()) {
178      if (isa<TypedefDecl>(D)) {
179        // If location of the typedef name is in a macro, it is because being
180        // declared via a macro. Try using declaration's starting location as
181        // the "declaration location".
182        return D->getBeginLoc();
183      } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
184        // If location of the tag decl is inside a macro, but the spelling of
185        // the tag name comes from a macro argument, it looks like a special
186        // macro like NS_ENUM is being used to define the tag decl.  In that
187        // case, adjust the source location to the expansion loc so that we can
188        // attach the comment to the tag decl.
189        if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
190            TD->isCompleteDefinition())
191          return SourceMgr.getExpansionLoc(DeclLoc);
192      }
193    }
194    return DeclLoc;
195  }
196
197  return {};
198}
199
200RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
201    const Decl *D, const SourceLocation RepresentativeLocForDecl,
202    const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
203  // If the declaration doesn't map directly to a location in a file, we
204  // can't find the comment.
205  if (RepresentativeLocForDecl.isInvalid() ||
206      !RepresentativeLocForDecl.isFileID())
207    return nullptr;
208
209  // If there are no comments anywhere, we won't find anything.
210  if (CommentsInTheFile.empty())
211    return nullptr;
212
213  // Decompose the location for the declaration and find the beginning of the
214  // file buffer.
215  const std::pair<FileID, unsigned> DeclLocDecomp =
216      SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
217
218  // Slow path.
219  auto OffsetCommentBehindDecl =
220      CommentsInTheFile.lower_bound(DeclLocDecomp.second);
221
222  // First check whether we have a trailing comment.
223  if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
224    RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
225    if ((CommentBehindDecl->isDocumentation() ||
226         LangOpts.CommentOpts.ParseAllComments) &&
227        CommentBehindDecl->isTrailingComment() &&
228        (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
229         isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
230
231      // Check that Doxygen trailing comment comes after the declaration, starts
232      // on the same line and in the same file as the declaration.
233      if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
234          Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
235                                       OffsetCommentBehindDecl->first)) {
236        return CommentBehindDecl;
237      }
238    }
239  }
240
241  // The comment just after the declaration was not a trailing comment.
242  // Let's look at the previous comment.
243  if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
244    return nullptr;
245
246  auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
247  RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
248
249  // Check that we actually have a non-member Doxygen comment.
250  if (!(CommentBeforeDecl->isDocumentation() ||
251        LangOpts.CommentOpts.ParseAllComments) ||
252      CommentBeforeDecl->isTrailingComment())
253    return nullptr;
254
255  // Decompose the end of the comment.
256  const unsigned CommentEndOffset =
257      Comments.getCommentEndOffset(CommentBeforeDecl);
258
259  // Get the corresponding buffer.
260  bool Invalid = false;
261  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
262                                               &Invalid).data();
263  if (Invalid)
264    return nullptr;
265
266  // Extract text between the comment and declaration.
267  StringRef Text(Buffer + CommentEndOffset,
268                 DeclLocDecomp.second - CommentEndOffset);
269
270  // There should be no other declarations or preprocessor directives between
271  // comment and declaration.
272  if (Text.find_first_of(";{}#@") != StringRef::npos)
273    return nullptr;
274
275  return CommentBeforeDecl;
276}
277
278RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
279  const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
280
281  // If the declaration doesn't map directly to a location in a file, we
282  // can't find the comment.
283  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
284    return nullptr;
285
286  if (ExternalSource && !CommentsLoaded) {
287    ExternalSource->ReadComments();
288    CommentsLoaded = true;
289  }
290
291  if (Comments.empty())
292    return nullptr;
293
294  const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
295  const auto CommentsInThisFile = Comments.getCommentsInFile(File);
296  if (!CommentsInThisFile || CommentsInThisFile->empty())
297    return nullptr;
298
299  return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
300}
301
302void ASTContext::addComment(const RawComment &RC) {
303  assert(LangOpts.RetainCommentsFromSystemHeaders ||
304         !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
305  Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
306}
307
308/// If we have a 'templated' declaration for a template, adjust 'D' to
309/// refer to the actual template.
310/// If we have an implicit instantiation, adjust 'D' to refer to template.
311static const Decl &adjustDeclToTemplate(const Decl &D) {
312  if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
313    // Is this function declaration part of a function template?
314    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
315      return *FTD;
316
317    // Nothing to do if function is not an implicit instantiation.
318    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
319      return D;
320
321    // Function is an implicit instantiation of a function template?
322    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
323      return *FTD;
324
325    // Function is instantiated from a member definition of a class template?
326    if (const FunctionDecl *MemberDecl =
327            FD->getInstantiatedFromMemberFunction())
328      return *MemberDecl;
329
330    return D;
331  }
332  if (const auto *VD = dyn_cast<VarDecl>(&D)) {
333    // Static data member is instantiated from a member definition of a class
334    // template?
335    if (VD->isStaticDataMember())
336      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
337        return *MemberDecl;
338
339    return D;
340  }
341  if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
342    // Is this class declaration part of a class template?
343    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
344      return *CTD;
345
346    // Class is an implicit instantiation of a class template or partial
347    // specialization?
348    if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
349      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
350        return D;
351      llvm::PointerUnion<ClassTemplateDecl *,
352                         ClassTemplatePartialSpecializationDecl *>
353          PU = CTSD->getSpecializedTemplateOrPartial();
354      return PU.is<ClassTemplateDecl *>()
355                 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
356                 : *static_cast<const Decl *>(
357                       PU.get<ClassTemplatePartialSpecializationDecl *>());
358    }
359
360    // Class is instantiated from a member definition of a class template?
361    if (const MemberSpecializationInfo *Info =
362            CRD->getMemberSpecializationInfo())
363      return *Info->getInstantiatedFrom();
364
365    return D;
366  }
367  if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
368    // Enum is instantiated from a member definition of a class template?
369    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
370      return *MemberDecl;
371
372    return D;
373  }
374  // FIXME: Adjust alias templates?
375  return D;
376}
377
378const RawComment *ASTContext::getRawCommentForAnyRedecl(
379                                                const Decl *D,
380                                                const Decl **OriginalDecl) const {
381  if (!D) {
382    if (OriginalDecl)
383      OriginalDecl = nullptr;
384    return nullptr;
385  }
386
387  D = &adjustDeclToTemplate(*D);
388
389  // Any comment directly attached to D?
390  {
391    auto DeclComment = DeclRawComments.find(D);
392    if (DeclComment != DeclRawComments.end()) {
393      if (OriginalDecl)
394        *OriginalDecl = D;
395      return DeclComment->second;
396    }
397  }
398
399  // Any comment attached to any redeclaration of D?
400  const Decl *CanonicalD = D->getCanonicalDecl();
401  if (!CanonicalD)
402    return nullptr;
403
404  {
405    auto RedeclComment = RedeclChainComments.find(CanonicalD);
406    if (RedeclComment != RedeclChainComments.end()) {
407      if (OriginalDecl)
408        *OriginalDecl = RedeclComment->second;
409      auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
410      assert(CommentAtRedecl != DeclRawComments.end() &&
411             "This decl is supposed to have comment attached.");
412      return CommentAtRedecl->second;
413    }
414  }
415
416  // Any redeclarations of D that we haven't checked for comments yet?
417  // We can't use DenseMap::iterator directly since it'd get invalid.
418  auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
419    auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
420    if (LookupRes != CommentlessRedeclChains.end())
421      return LookupRes->second;
422    return nullptr;
423  }();
424
425  for (const auto Redecl : D->redecls()) {
426    assert(Redecl);
427    // Skip all redeclarations that have been checked previously.
428    if (LastCheckedRedecl) {
429      if (LastCheckedRedecl == Redecl) {
430        LastCheckedRedecl = nullptr;
431      }
432      continue;
433    }
434    const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
435    if (RedeclComment) {
436      cacheRawCommentForDecl(*Redecl, *RedeclComment);
437      if (OriginalDecl)
438        *OriginalDecl = Redecl;
439      return RedeclComment;
440    }
441    CommentlessRedeclChains[CanonicalD] = Redecl;
442  }
443
444  if (OriginalDecl)
445    *OriginalDecl = nullptr;
446  return nullptr;
447}
448
449void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
450                                        const RawComment &Comment) const {
451  assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
452  DeclRawComments.try_emplace(&OriginalD, &Comment);
453  const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
454  RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
455  CommentlessRedeclChains.erase(CanonicalDecl);
456}
457
458static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
459                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
460  const DeclContext *DC = ObjCMethod->getDeclContext();
461  if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
462    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
463    if (!ID)
464      return;
465    // Add redeclared method here.
466    for (const auto *Ext : ID->known_extensions()) {
467      if (ObjCMethodDecl *RedeclaredMethod =
468            Ext->getMethod(ObjCMethod->getSelector(),
469                                  ObjCMethod->isInstanceMethod()))
470        Redeclared.push_back(RedeclaredMethod);
471    }
472  }
473}
474
475void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
476                                                 const Preprocessor *PP) {
477  if (Comments.empty() || Decls.empty())
478    return;
479
480  FileID File;
481  for (Decl *D : Decls) {
482    SourceLocation Loc = D->getLocation();
483    if (Loc.isValid()) {
484      // See if there are any new comments that are not attached to a decl.
485      // The location doesn't have to be precise - we care only about the file.
486      File = SourceMgr.getDecomposedLoc(Loc).first;
487      break;
488    }
489  }
490
491  if (File.isInvalid())
492    return;
493
494  auto CommentsInThisFile = Comments.getCommentsInFile(File);
495  if (!CommentsInThisFile || CommentsInThisFile->empty() ||
496      CommentsInThisFile->rbegin()->second->isAttached())
497    return;
498
499  // There is at least one comment not attached to a decl.
500  // Maybe it should be attached to one of Decls?
501  //
502  // Note that this way we pick up not only comments that precede the
503  // declaration, but also comments that *follow* the declaration -- thanks to
504  // the lookahead in the lexer: we've consumed the semicolon and looked
505  // ahead through comments.
506
507  for (const Decl *D : Decls) {
508    assert(D);
509    if (D->isInvalidDecl())
510      continue;
511
512    D = &adjustDeclToTemplate(*D);
513
514    const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
515
516    if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
517      continue;
518
519    if (DeclRawComments.count(D) > 0)
520      continue;
521
522    if (RawComment *const DocComment =
523            getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
524      cacheRawCommentForDecl(*D, *DocComment);
525      comments::FullComment *FC = DocComment->parse(*this, PP, D);
526      ParsedComments[D->getCanonicalDecl()] = FC;
527    }
528  }
529}
530
531comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
532                                                    const Decl *D) const {
533  auto *ThisDeclInfo = new (*this) comments::DeclInfo;
534  ThisDeclInfo->CommentDecl = D;
535  ThisDeclInfo->IsFilled = false;
536  ThisDeclInfo->fill();
537  ThisDeclInfo->CommentDecl = FC->getDecl();
538  if (!ThisDeclInfo->TemplateParameters)
539    ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
540  comments::FullComment *CFC =
541    new (*this) comments::FullComment(FC->getBlocks(),
542                                      ThisDeclInfo);
543  return CFC;
544}
545
546comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
547  const RawComment *RC = getRawCommentForDeclNoCache(D);
548  return RC ? RC->parse(*this, nullptr, D) : nullptr;
549}
550
551comments::FullComment *ASTContext::getCommentForDecl(
552                                              const Decl *D,
553                                              const Preprocessor *PP) const {
554  if (!D || D->isInvalidDecl())
555    return nullptr;
556  D = &adjustDeclToTemplate(*D);
557
558  const Decl *Canonical = D->getCanonicalDecl();
559  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
560      ParsedComments.find(Canonical);
561
562  if (Pos != ParsedComments.end()) {
563    if (Canonical != D) {
564      comments::FullComment *FC = Pos->second;
565      comments::FullComment *CFC = cloneFullComment(FC, D);
566      return CFC;
567    }
568    return Pos->second;
569  }
570
571  const Decl *OriginalDecl = nullptr;
572
573  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
574  if (!RC) {
575    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
576      SmallVector<const NamedDecl*, 8> Overridden;
577      const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
578      if (OMD && OMD->isPropertyAccessor())
579        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
580          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
581            return cloneFullComment(FC, D);
582      if (OMD)
583        addRedeclaredMethods(OMD, Overridden);
584      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
585      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
586        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
587          return cloneFullComment(FC, D);
588    }
589    else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
590      // Attach any tag type's documentation to its typedef if latter
591      // does not have one of its own.
592      QualType QT = TD->getUnderlyingType();
593      if (const auto *TT = QT->getAs<TagType>())
594        if (const Decl *TD = TT->getDecl())
595          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
596            return cloneFullComment(FC, D);
597    }
598    else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
599      while (IC->getSuperClass()) {
600        IC = IC->getSuperClass();
601        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
602          return cloneFullComment(FC, D);
603      }
604    }
605    else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
606      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
607        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608          return cloneFullComment(FC, D);
609    }
610    else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
611      if (!(RD = RD->getDefinition()))
612        return nullptr;
613      // Check non-virtual bases.
614      for (const auto &I : RD->bases()) {
615        if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
616          continue;
617        QualType Ty = I.getType();
618        if (Ty.isNull())
619          continue;
620        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
621          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
622            continue;
623
624          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
625            return cloneFullComment(FC, D);
626        }
627      }
628      // Check virtual bases.
629      for (const auto &I : RD->vbases()) {
630        if (I.getAccessSpecifier() != AS_public)
631          continue;
632        QualType Ty = I.getType();
633        if (Ty.isNull())
634          continue;
635        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
636          if (!(VirtualBase= VirtualBase->getDefinition()))
637            continue;
638          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
639            return cloneFullComment(FC, D);
640        }
641      }
642    }
643    return nullptr;
644  }
645
646  // If the RawComment was attached to other redeclaration of this Decl, we
647  // should parse the comment in context of that other Decl.  This is important
648  // because comments can contain references to parameter names which can be
649  // different across redeclarations.
650  if (D != OriginalDecl && OriginalDecl)
651    return getCommentForDecl(OriginalDecl, PP);
652
653  comments::FullComment *FC = RC->parse(*this, PP, D);
654  ParsedComments[Canonical] = FC;
655  return FC;
656}
657
658void
659ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
660                                                   const ASTContext &C,
661                                               TemplateTemplateParmDecl *Parm) {
662  ID.AddInteger(Parm->getDepth());
663  ID.AddInteger(Parm->getPosition());
664  ID.AddBoolean(Parm->isParameterPack());
665
666  TemplateParameterList *Params = Parm->getTemplateParameters();
667  ID.AddInteger(Params->size());
668  for (TemplateParameterList::const_iterator P = Params->begin(),
669                                          PEnd = Params->end();
670       P != PEnd; ++P) {
671    if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
672      ID.AddInteger(0);
673      ID.AddBoolean(TTP->isParameterPack());
674      const TypeConstraint *TC = TTP->getTypeConstraint();
675      ID.AddBoolean(TC != nullptr);
676      if (TC)
677        TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
678                                                        /*Canonical=*/true);
679      if (TTP->isExpandedParameterPack()) {
680        ID.AddBoolean(true);
681        ID.AddInteger(TTP->getNumExpansionParameters());
682      } else
683        ID.AddBoolean(false);
684      continue;
685    }
686
687    if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
688      ID.AddInteger(1);
689      ID.AddBoolean(NTTP->isParameterPack());
690      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
691      if (NTTP->isExpandedParameterPack()) {
692        ID.AddBoolean(true);
693        ID.AddInteger(NTTP->getNumExpansionTypes());
694        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
695          QualType T = NTTP->getExpansionType(I);
696          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
697        }
698      } else
699        ID.AddBoolean(false);
700      continue;
701    }
702
703    auto *TTP = cast<TemplateTemplateParmDecl>(*P);
704    ID.AddInteger(2);
705    Profile(ID, C, TTP);
706  }
707  Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
708  ID.AddBoolean(RequiresClause != nullptr);
709  if (RequiresClause)
710    RequiresClause->Profile(ID, C, /*Canonical=*/true);
711}
712
713static Expr *
714canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
715                                          QualType ConstrainedType) {
716  // This is a bit ugly - we need to form a new immediately-declared
717  // constraint that references the new parameter; this would ideally
718  // require semantic analysis (e.g. template<C T> struct S {}; - the
719  // converted arguments of C<T> could be an argument pack if C is
720  // declared as template<typename... T> concept C = ...).
721  // We don't have semantic analysis here so we dig deep into the
722  // ready-made constraint expr and change the thing manually.
723  ConceptSpecializationExpr *CSE;
724  if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
725    CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
726  else
727    CSE = cast<ConceptSpecializationExpr>(IDC);
728  ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
729  SmallVector<TemplateArgument, 3> NewConverted;
730  NewConverted.reserve(OldConverted.size());
731  if (OldConverted.front().getKind() == TemplateArgument::Pack) {
732    // The case:
733    // template<typename... T> concept C = true;
734    // template<C<int> T> struct S; -> constraint is C<{T, int}>
735    NewConverted.push_back(ConstrainedType);
736    for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
737      NewConverted.push_back(Arg);
738    TemplateArgument NewPack(NewConverted);
739
740    NewConverted.clear();
741    NewConverted.push_back(NewPack);
742    assert(OldConverted.size() == 1 &&
743           "Template parameter pack should be the last parameter");
744  } else {
745    assert(OldConverted.front().getKind() == TemplateArgument::Type &&
746           "Unexpected first argument kind for immediately-declared "
747           "constraint");
748    NewConverted.push_back(ConstrainedType);
749    for (auto &Arg : OldConverted.drop_front(1))
750      NewConverted.push_back(Arg);
751  }
752  Expr *NewIDC = ConceptSpecializationExpr::Create(
753      C, CSE->getNamedConcept(), NewConverted, nullptr,
754      CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
755
756  if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
757    NewIDC = new (C) CXXFoldExpr(
758        OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
759        BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
760        SourceLocation(), /*NumExpansions=*/None);
761  return NewIDC;
762}
763
764TemplateTemplateParmDecl *
765ASTContext::getCanonicalTemplateTemplateParmDecl(
766                                          TemplateTemplateParmDecl *TTP) const {
767  // Check if we already have a canonical template template parameter.
768  llvm::FoldingSetNodeID ID;
769  CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
770  void *InsertPos = nullptr;
771  CanonicalTemplateTemplateParm *Canonical
772    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
773  if (Canonical)
774    return Canonical->getParam();
775
776  // Build a canonical template parameter list.
777  TemplateParameterList *Params = TTP->getTemplateParameters();
778  SmallVector<NamedDecl *, 4> CanonParams;
779  CanonParams.reserve(Params->size());
780  for (TemplateParameterList::const_iterator P = Params->begin(),
781                                          PEnd = Params->end();
782       P != PEnd; ++P) {
783    if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
784      TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
785          getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
786          TTP->getDepth(), TTP->getIndex(), nullptr, false,
787          TTP->isParameterPack(), TTP->hasTypeConstraint(),
788          TTP->isExpandedParameterPack() ?
789          llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
790      if (const auto *TC = TTP->getTypeConstraint()) {
791        QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
792        Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
793                *this, TC->getImmediatelyDeclaredConstraint(),
794                ParamAsArgument);
795        TemplateArgumentListInfo CanonArgsAsWritten;
796        if (auto *Args = TC->getTemplateArgsAsWritten())
797          for (const auto &ArgLoc : Args->arguments())
798            CanonArgsAsWritten.addArgument(
799                TemplateArgumentLoc(ArgLoc.getArgument(),
800                                    TemplateArgumentLocInfo()));
801        NewTTP->setTypeConstraint(
802            NestedNameSpecifierLoc(),
803            DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
804                                SourceLocation()), /*FoundDecl=*/nullptr,
805            // Actually canonicalizing a TemplateArgumentLoc is difficult so we
806            // simply omit the ArgsAsWritten
807            TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
808      }
809      CanonParams.push_back(NewTTP);
810    } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
811      QualType T = getCanonicalType(NTTP->getType());
812      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
813      NonTypeTemplateParmDecl *Param;
814      if (NTTP->isExpandedParameterPack()) {
815        SmallVector<QualType, 2> ExpandedTypes;
816        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
817        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
818          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
819          ExpandedTInfos.push_back(
820                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
821        }
822
823        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
824                                                SourceLocation(),
825                                                SourceLocation(),
826                                                NTTP->getDepth(),
827                                                NTTP->getPosition(), nullptr,
828                                                T,
829                                                TInfo,
830                                                ExpandedTypes,
831                                                ExpandedTInfos);
832      } else {
833        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
834                                                SourceLocation(),
835                                                SourceLocation(),
836                                                NTTP->getDepth(),
837                                                NTTP->getPosition(), nullptr,
838                                                T,
839                                                NTTP->isParameterPack(),
840                                                TInfo);
841      }
842      if (AutoType *AT = T->getContainedAutoType()) {
843        if (AT->isConstrained()) {
844          Param->setPlaceholderTypeConstraint(
845              canonicalizeImmediatelyDeclaredConstraint(
846                  *this, NTTP->getPlaceholderTypeConstraint(), T));
847        }
848      }
849      CanonParams.push_back(Param);
850
851    } else
852      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
853                                           cast<TemplateTemplateParmDecl>(*P)));
854  }
855
856  Expr *CanonRequiresClause = nullptr;
857  if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
858    CanonRequiresClause = RequiresClause;
859
860  TemplateTemplateParmDecl *CanonTTP
861    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
862                                       SourceLocation(), TTP->getDepth(),
863                                       TTP->getPosition(),
864                                       TTP->isParameterPack(),
865                                       nullptr,
866                         TemplateParameterList::Create(*this, SourceLocation(),
867                                                       SourceLocation(),
868                                                       CanonParams,
869                                                       SourceLocation(),
870                                                       CanonRequiresClause));
871
872  // Get the new insert position for the node we care about.
873  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
874  assert(!Canonical && "Shouldn't be in the map!");
875  (void)Canonical;
876
877  // Create the canonical template template parameter entry.
878  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
879  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
880  return CanonTTP;
881}
882
883TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
884  auto Kind = getTargetInfo().getCXXABI().getKind();
885  return getLangOpts().CXXABI.getValueOr(Kind);
886}
887
888CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
889  if (!LangOpts.CPlusPlus) return nullptr;
890
891  switch (getCXXABIKind()) {
892  case TargetCXXABI::AppleARM64:
893  case TargetCXXABI::Fuchsia:
894  case TargetCXXABI::GenericARM: // Same as Itanium at this level
895  case TargetCXXABI::iOS:
896  case TargetCXXABI::WatchOS:
897  case TargetCXXABI::GenericAArch64:
898  case TargetCXXABI::GenericMIPS:
899  case TargetCXXABI::GenericItanium:
900  case TargetCXXABI::WebAssembly:
901  case TargetCXXABI::XL:
902    return CreateItaniumCXXABI(*this);
903  case TargetCXXABI::Microsoft:
904    return CreateMicrosoftCXXABI(*this);
905  }
906  llvm_unreachable("Invalid CXXABI type!");
907}
908
909interp::Context &ASTContext::getInterpContext() {
910  if (!InterpContext) {
911    InterpContext.reset(new interp::Context(*this));
912  }
913  return *InterpContext.get();
914}
915
916ParentMapContext &ASTContext::getParentMapContext() {
917  if (!ParentMapCtx)
918    ParentMapCtx.reset(new ParentMapContext(*this));
919  return *ParentMapCtx.get();
920}
921
922static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
923                                           const LangOptions &LOpts) {
924  if (LOpts.FakeAddressSpaceMap) {
925    // The fake address space map must have a distinct entry for each
926    // language-specific address space.
927    static const unsigned FakeAddrSpaceMap[] = {
928        0,  // Default
929        1,  // opencl_global
930        3,  // opencl_local
931        2,  // opencl_constant
932        0,  // opencl_private
933        4,  // opencl_generic
934        5,  // opencl_global_device
935        6,  // opencl_global_host
936        7,  // cuda_device
937        8,  // cuda_constant
938        9,  // cuda_shared
939        1,  // sycl_global
940        5,  // sycl_global_device
941        6,  // sycl_global_host
942        3,  // sycl_local
943        0,  // sycl_private
944        10, // ptr32_sptr
945        11, // ptr32_uptr
946        12  // ptr64
947    };
948    return &FakeAddrSpaceMap;
949  } else {
950    return &T.getAddressSpaceMap();
951  }
952}
953
954static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
955                                          const LangOptions &LangOpts) {
956  switch (LangOpts.getAddressSpaceMapMangling()) {
957  case LangOptions::ASMM_Target:
958    return TI.useAddressSpaceMapMangling();
959  case LangOptions::ASMM_On:
960    return true;
961  case LangOptions::ASMM_Off:
962    return false;
963  }
964  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
965}
966
967ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
968                       IdentifierTable &idents, SelectorTable &sels,
969                       Builtin::Context &builtins)
970    : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
971      TemplateSpecializationTypes(this_()),
972      DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
973      SubstTemplateTemplateParmPacks(this_()),
974      CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
975      NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
976      XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
977                                        LangOpts.XRayNeverInstrumentFiles,
978                                        LangOpts.XRayAttrListFiles, SM)),
979      ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
980      PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
981      BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
982      CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
983      CompCategories(this_()), LastSDM(nullptr, 0) {
984  TUDecl = TranslationUnitDecl::Create(*this);
985  TraversalScope = {TUDecl};
986}
987
988ASTContext::~ASTContext() {
989  // Release the DenseMaps associated with DeclContext objects.
990  // FIXME: Is this the ideal solution?
991  ReleaseDeclContextMaps();
992
993  // Call all of the deallocation functions on all of their targets.
994  for (auto &Pair : Deallocations)
995    (Pair.first)(Pair.second);
996
997  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
998  // because they can contain DenseMaps.
999  for (llvm::DenseMap<const ObjCContainerDecl*,
1000       const ASTRecordLayout*>::iterator
1001       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1002    // Increment in loop to prevent using deallocated memory.
1003    if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1004      R->Destroy(*this);
1005
1006  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1007       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1008    // Increment in loop to prevent using deallocated memory.
1009    if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1010      R->Destroy(*this);
1011  }
1012
1013  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1014                                                    AEnd = DeclAttrs.end();
1015       A != AEnd; ++A)
1016    A->second->~AttrVec();
1017
1018  for (const auto &Value : ModuleInitializers)
1019    Value.second->~PerModuleInitializers();
1020}
1021
1022void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1023  TraversalScope = TopLevelDecls;
1024  getParentMapContext().clear();
1025}
1026
1027void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1028  Deallocations.push_back({Callback, Data});
1029}
1030
1031void
1032ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1033  ExternalSource = std::move(Source);
1034}
1035
1036void ASTContext::PrintStats() const {
1037  llvm::errs() << "\n*** AST Context Stats:\n";
1038  llvm::errs() << "  " << Types.size() << " types total.\n";
1039
1040  unsigned counts[] = {
1041#define TYPE(Name, Parent) 0,
1042#define ABSTRACT_TYPE(Name, Parent)
1043#include "clang/AST/TypeNodes.inc"
1044    0 // Extra
1045  };
1046
1047  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1048    Type *T = Types[i];
1049    counts[(unsigned)T->getTypeClass()]++;
1050  }
1051
1052  unsigned Idx = 0;
1053  unsigned TotalBytes = 0;
1054#define TYPE(Name, Parent)                                              \
1055  if (counts[Idx])                                                      \
1056    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1057                 << " types, " << sizeof(Name##Type) << " each "        \
1058                 << "(" << counts[Idx] * sizeof(Name##Type)             \
1059                 << " bytes)\n";                                        \
1060  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1061  ++Idx;
1062#define ABSTRACT_TYPE(Name, Parent)
1063#include "clang/AST/TypeNodes.inc"
1064
1065  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1066
1067  // Implicit special member functions.
1068  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1069               << NumImplicitDefaultConstructors
1070               << " implicit default constructors created\n";
1071  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1072               << NumImplicitCopyConstructors
1073               << " implicit copy constructors created\n";
1074  if (getLangOpts().CPlusPlus)
1075    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1076                 << NumImplicitMoveConstructors
1077                 << " implicit move constructors created\n";
1078  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1079               << NumImplicitCopyAssignmentOperators
1080               << " implicit copy assignment operators created\n";
1081  if (getLangOpts().CPlusPlus)
1082    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1083                 << NumImplicitMoveAssignmentOperators
1084                 << " implicit move assignment operators created\n";
1085  llvm::errs() << NumImplicitDestructorsDeclared << "/"
1086               << NumImplicitDestructors
1087               << " implicit destructors created\n";
1088
1089  if (ExternalSource) {
1090    llvm::errs() << "\n";
1091    ExternalSource->PrintStats();
1092  }
1093
1094  BumpAlloc.PrintStats();
1095}
1096
1097void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1098                                           bool NotifyListeners) {
1099  if (NotifyListeners)
1100    if (auto *Listener = getASTMutationListener())
1101      Listener->RedefinedHiddenDefinition(ND, M);
1102
1103  MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1104}
1105
1106void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1107  auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1108  if (It == MergedDefModules.end())
1109    return;
1110
1111  auto &Merged = It->second;
1112  llvm::DenseSet<Module*> Found;
1113  for (Module *&M : Merged)
1114    if (!Found.insert(M).second)
1115      M = nullptr;
1116  Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1117}
1118
1119ArrayRef<Module *>
1120ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1121  auto MergedIt =
1122      MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1123  if (MergedIt == MergedDefModules.end())
1124    return None;
1125  return MergedIt->second;
1126}
1127
1128void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1129  if (LazyInitializers.empty())
1130    return;
1131
1132  auto *Source = Ctx.getExternalSource();
1133  assert(Source && "lazy initializers but no external source");
1134
1135  auto LazyInits = std::move(LazyInitializers);
1136  LazyInitializers.clear();
1137
1138  for (auto ID : LazyInits)
1139    Initializers.push_back(Source->GetExternalDecl(ID));
1140
1141  assert(LazyInitializers.empty() &&
1142         "GetExternalDecl for lazy module initializer added more inits");
1143}
1144
1145void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1146  // One special case: if we add a module initializer that imports another
1147  // module, and that module's only initializer is an ImportDecl, simplify.
1148  if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1149    auto It = ModuleInitializers.find(ID->getImportedModule());
1150
1151    // Maybe the ImportDecl does nothing at all. (Common case.)
1152    if (It == ModuleInitializers.end())
1153      return;
1154
1155    // Maybe the ImportDecl only imports another ImportDecl.
1156    auto &Imported = *It->second;
1157    if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1158      Imported.resolve(*this);
1159      auto *OnlyDecl = Imported.Initializers.front();
1160      if (isa<ImportDecl>(OnlyDecl))
1161        D = OnlyDecl;
1162    }
1163  }
1164
1165  auto *&Inits = ModuleInitializers[M];
1166  if (!Inits)
1167    Inits = new (*this) PerModuleInitializers;
1168  Inits->Initializers.push_back(D);
1169}
1170
1171void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1172  auto *&Inits = ModuleInitializers[M];
1173  if (!Inits)
1174    Inits = new (*this) PerModuleInitializers;
1175  Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1176                                 IDs.begin(), IDs.end());
1177}
1178
1179ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1180  auto It = ModuleInitializers.find(M);
1181  if (It == ModuleInitializers.end())
1182    return None;
1183
1184  auto *Inits = It->second;
1185  Inits->resolve(*this);
1186  return Inits->Initializers;
1187}
1188
1189ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1190  if (!ExternCContext)
1191    ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1192
1193  return ExternCContext;
1194}
1195
1196BuiltinTemplateDecl *
1197ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1198                                     const IdentifierInfo *II) const {
1199  auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1200  BuiltinTemplate->setImplicit();
1201  TUDecl->addDecl(BuiltinTemplate);
1202
1203  return BuiltinTemplate;
1204}
1205
1206BuiltinTemplateDecl *
1207ASTContext::getMakeIntegerSeqDecl() const {
1208  if (!MakeIntegerSeqDecl)
1209    MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1210                                                  getMakeIntegerSeqName());
1211  return MakeIntegerSeqDecl;
1212}
1213
1214BuiltinTemplateDecl *
1215ASTContext::getTypePackElementDecl() const {
1216  if (!TypePackElementDecl)
1217    TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1218                                                   getTypePackElementName());
1219  return TypePackElementDecl;
1220}
1221
1222RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1223                                            RecordDecl::TagKind TK) const {
1224  SourceLocation Loc;
1225  RecordDecl *NewDecl;
1226  if (getLangOpts().CPlusPlus)
1227    NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1228                                    Loc, &Idents.get(Name));
1229  else
1230    NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1231                                 &Idents.get(Name));
1232  NewDecl->setImplicit();
1233  NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1234      const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1235  return NewDecl;
1236}
1237
1238TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1239                                              StringRef Name) const {
1240  TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1241  TypedefDecl *NewDecl = TypedefDecl::Create(
1242      const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1243      SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1244  NewDecl->setImplicit();
1245  return NewDecl;
1246}
1247
1248TypedefDecl *ASTContext::getInt128Decl() const {
1249  if (!Int128Decl)
1250    Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1251  return Int128Decl;
1252}
1253
1254TypedefDecl *ASTContext::getUInt128Decl() const {
1255  if (!UInt128Decl)
1256    UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1257  return UInt128Decl;
1258}
1259
1260void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1261  auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1262  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1263  Types.push_back(Ty);
1264}
1265
1266void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1267                                  const TargetInfo *AuxTarget) {
1268  assert((!this->Target || this->Target == &Target) &&
1269         "Incorrect target reinitialization");
1270  assert(VoidTy.isNull() && "Context reinitialized?");
1271
1272  this->Target = &Target;
1273  this->AuxTarget = AuxTarget;
1274
1275  ABI.reset(createCXXABI(Target));
1276  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1277  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1278
1279  // C99 6.2.5p19.
1280  InitBuiltinType(VoidTy,              BuiltinType::Void);
1281
1282  // C99 6.2.5p2.
1283  InitBuiltinType(BoolTy,              BuiltinType::Bool);
1284  // C99 6.2.5p3.
1285  if (LangOpts.CharIsSigned)
1286    InitBuiltinType(CharTy,            BuiltinType::Char_S);
1287  else
1288    InitBuiltinType(CharTy,            BuiltinType::Char_U);
1289  // C99 6.2.5p4.
1290  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1291  InitBuiltinType(ShortTy,             BuiltinType::Short);
1292  InitBuiltinType(IntTy,               BuiltinType::Int);
1293  InitBuiltinType(LongTy,              BuiltinType::Long);
1294  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1295
1296  // C99 6.2.5p6.
1297  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1298  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1299  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1300  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1301  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1302
1303  // C99 6.2.5p10.
1304  InitBuiltinType(FloatTy,             BuiltinType::Float);
1305  InitBuiltinType(DoubleTy,            BuiltinType::Double);
1306  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1307
1308  // GNU extension, __float128 for IEEE quadruple precision
1309  InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1310
1311  // C11 extension ISO/IEC TS 18661-3
1312  InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1313
1314  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1315  InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1316  InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1317  InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1318  InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1319  InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1320  InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1321  InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1322  InitBuiltinType(FractTy,                 BuiltinType::Fract);
1323  InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1324  InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1325  InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1326  InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1327  InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1328  InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1329  InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1330  InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1331  InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1332  InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1333  InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1334  InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1335  InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1336  InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1337  InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1338  InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1339
1340  // GNU extension, 128-bit integers.
1341  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1342  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1343
1344  // C++ 3.9.1p5
1345  if (TargetInfo::isTypeSigned(Target.getWCharType()))
1346    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1347  else  // -fshort-wchar makes wchar_t be unsigned.
1348    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1349  if (LangOpts.CPlusPlus && LangOpts.WChar)
1350    WideCharTy = WCharTy;
1351  else {
1352    // C99 (or C++ using -fno-wchar).
1353    WideCharTy = getFromTargetType(Target.getWCharType());
1354  }
1355
1356  WIntTy = getFromTargetType(Target.getWIntType());
1357
1358  // C++20 (proposed)
1359  InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1360
1361  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1362    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1363  else // C99
1364    Char16Ty = getFromTargetType(Target.getChar16Type());
1365
1366  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1367    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1368  else // C99
1369    Char32Ty = getFromTargetType(Target.getChar32Type());
1370
1371  // Placeholder type for type-dependent expressions whose type is
1372  // completely unknown. No code should ever check a type against
1373  // DependentTy and users should never see it; however, it is here to
1374  // help diagnose failures to properly check for type-dependent
1375  // expressions.
1376  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1377
1378  // Placeholder type for functions.
1379  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1380
1381  // Placeholder type for bound members.
1382  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1383
1384  // Placeholder type for pseudo-objects.
1385  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1386
1387  // "any" type; useful for debugger-like clients.
1388  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1389
1390  // Placeholder type for unbridged ARC casts.
1391  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1392
1393  // Placeholder type for builtin functions.
1394  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1395
1396  // Placeholder type for OMP array sections.
1397  if (LangOpts.OpenMP) {
1398    InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1399    InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1400    InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1401  }
1402  if (LangOpts.MatrixTypes)
1403    InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1404
1405  // C99 6.2.5p11.
1406  FloatComplexTy      = getComplexType(FloatTy);
1407  DoubleComplexTy     = getComplexType(DoubleTy);
1408  LongDoubleComplexTy = getComplexType(LongDoubleTy);
1409  Float128ComplexTy   = getComplexType(Float128Ty);
1410
1411  // Builtin types for 'id', 'Class', and 'SEL'.
1412  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1413  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1414  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1415
1416  if (LangOpts.OpenCL) {
1417#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1418    InitBuiltinType(SingletonId, BuiltinType::Id);
1419#include "clang/Basic/OpenCLImageTypes.def"
1420
1421    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1422    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1423    InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1424    InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1425    InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1426
1427#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1428    InitBuiltinType(Id##Ty, BuiltinType::Id);
1429#include "clang/Basic/OpenCLExtensionTypes.def"
1430  }
1431
1432  if (Target.hasAArch64SVETypes()) {
1433#define SVE_TYPE(Name, Id, SingletonId) \
1434    InitBuiltinType(SingletonId, BuiltinType::Id);
1435#include "clang/Basic/AArch64SVEACLETypes.def"
1436  }
1437
1438  if (Target.getTriple().isPPC64() &&
1439      Target.hasFeature("paired-vector-memops")) {
1440    if (Target.hasFeature("mma")) {
1441#define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1442      InitBuiltinType(Id##Ty, BuiltinType::Id);
1443#include "clang/Basic/PPCTypes.def"
1444    }
1445#define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1446    InitBuiltinType(Id##Ty, BuiltinType::Id);
1447#include "clang/Basic/PPCTypes.def"
1448  }
1449
1450  if (Target.hasRISCVVTypes()) {
1451#define RVV_TYPE(Name, Id, SingletonId)                                        \
1452  InitBuiltinType(SingletonId, BuiltinType::Id);
1453#include "clang/Basic/RISCVVTypes.def"
1454  }
1455
1456  // Builtin type for __objc_yes and __objc_no
1457  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1458                       SignedCharTy : BoolTy);
1459
1460  ObjCConstantStringType = QualType();
1461
1462  ObjCSuperType = QualType();
1463
1464  // void * type
1465  if (LangOpts.OpenCLGenericAddressSpace) {
1466    auto Q = VoidTy.getQualifiers();
1467    Q.setAddressSpace(LangAS::opencl_generic);
1468    VoidPtrTy = getPointerType(getCanonicalType(
1469        getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1470  } else {
1471    VoidPtrTy = getPointerType(VoidTy);
1472  }
1473
1474  // nullptr type (C++0x 2.14.7)
1475  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1476
1477  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1478  InitBuiltinType(HalfTy, BuiltinType::Half);
1479
1480  InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1481
1482  // Builtin type used to help define __builtin_va_list.
1483  VaListTagDecl = nullptr;
1484
1485  // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1486  if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1487    MSGuidTagDecl = buildImplicitRecord("_GUID");
1488    TUDecl->addDecl(MSGuidTagDecl);
1489  }
1490}
1491
1492DiagnosticsEngine &ASTContext::getDiagnostics() const {
1493  return SourceMgr.getDiagnostics();
1494}
1495
1496AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1497  AttrVec *&Result = DeclAttrs[D];
1498  if (!Result) {
1499    void *Mem = Allocate(sizeof(AttrVec));
1500    Result = new (Mem) AttrVec;
1501  }
1502
1503  return *Result;
1504}
1505
1506/// Erase the attributes corresponding to the given declaration.
1507void ASTContext::eraseDeclAttrs(const Decl *D) {
1508  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1509  if (Pos != DeclAttrs.end()) {
1510    Pos->second->~AttrVec();
1511    DeclAttrs.erase(Pos);
1512  }
1513}
1514
1515// FIXME: Remove ?
1516MemberSpecializationInfo *
1517ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1518  assert(Var->isStaticDataMember() && "Not a static data member");
1519  return getTemplateOrSpecializationInfo(Var)
1520      .dyn_cast<MemberSpecializationInfo *>();
1521}
1522
1523ASTContext::TemplateOrSpecializationInfo
1524ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1525  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1526      TemplateOrInstantiation.find(Var);
1527  if (Pos == TemplateOrInstantiation.end())
1528    return {};
1529
1530  return Pos->second;
1531}
1532
1533void
1534ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1535                                                TemplateSpecializationKind TSK,
1536                                          SourceLocation PointOfInstantiation) {
1537  assert(Inst->isStaticDataMember() && "Not a static data member");
1538  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1539  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1540                                            Tmpl, TSK, PointOfInstantiation));
1541}
1542
1543void
1544ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1545                                            TemplateOrSpecializationInfo TSI) {
1546  assert(!TemplateOrInstantiation[Inst] &&
1547         "Already noted what the variable was instantiated from");
1548  TemplateOrInstantiation[Inst] = TSI;
1549}
1550
1551NamedDecl *
1552ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1553  auto Pos = InstantiatedFromUsingDecl.find(UUD);
1554  if (Pos == InstantiatedFromUsingDecl.end())
1555    return nullptr;
1556
1557  return Pos->second;
1558}
1559
1560void
1561ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1562  assert((isa<UsingDecl>(Pattern) ||
1563          isa<UnresolvedUsingValueDecl>(Pattern) ||
1564          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1565         "pattern decl is not a using decl");
1566  assert((isa<UsingDecl>(Inst) ||
1567          isa<UnresolvedUsingValueDecl>(Inst) ||
1568          isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1569         "instantiation did not produce a using decl");
1570  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1571  InstantiatedFromUsingDecl[Inst] = Pattern;
1572}
1573
1574UsingShadowDecl *
1575ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1576  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1577    = InstantiatedFromUsingShadowDecl.find(Inst);
1578  if (Pos == InstantiatedFromUsingShadowDecl.end())
1579    return nullptr;
1580
1581  return Pos->second;
1582}
1583
1584void
1585ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1586                                               UsingShadowDecl *Pattern) {
1587  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1588  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1589}
1590
1591FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1592  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1593    = InstantiatedFromUnnamedFieldDecl.find(Field);
1594  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1595    return nullptr;
1596
1597  return Pos->second;
1598}
1599
1600void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1601                                                     FieldDecl *Tmpl) {
1602  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1603  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1604  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1605         "Already noted what unnamed field was instantiated from");
1606
1607  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1608}
1609
1610ASTContext::overridden_cxx_method_iterator
1611ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1612  return overridden_methods(Method).begin();
1613}
1614
1615ASTContext::overridden_cxx_method_iterator
1616ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1617  return overridden_methods(Method).end();
1618}
1619
1620unsigned
1621ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1622  auto Range = overridden_methods(Method);
1623  return Range.end() - Range.begin();
1624}
1625
1626ASTContext::overridden_method_range
1627ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1628  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1629      OverriddenMethods.find(Method->getCanonicalDecl());
1630  if (Pos == OverriddenMethods.end())
1631    return overridden_method_range(nullptr, nullptr);
1632  return overridden_method_range(Pos->second.begin(), Pos->second.end());
1633}
1634
1635void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1636                                     const CXXMethodDecl *Overridden) {
1637  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1638  OverriddenMethods[Method].push_back(Overridden);
1639}
1640
1641void ASTContext::getOverriddenMethods(
1642                      const NamedDecl *D,
1643                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1644  assert(D);
1645
1646  if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1647    Overridden.append(overridden_methods_begin(CXXMethod),
1648                      overridden_methods_end(CXXMethod));
1649    return;
1650  }
1651
1652  const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1653  if (!Method)
1654    return;
1655
1656  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1657  Method->getOverriddenMethods(OverDecls);
1658  Overridden.append(OverDecls.begin(), OverDecls.end());
1659}
1660
1661void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1662  assert(!Import->getNextLocalImport() &&
1663         "Import declaration already in the chain");
1664  assert(!Import->isFromASTFile() && "Non-local import declaration");
1665  if (!FirstLocalImport) {
1666    FirstLocalImport = Import;
1667    LastLocalImport = Import;
1668    return;
1669  }
1670
1671  LastLocalImport->setNextLocalImport(Import);
1672  LastLocalImport = Import;
1673}
1674
1675//===----------------------------------------------------------------------===//
1676//                         Type Sizing and Analysis
1677//===----------------------------------------------------------------------===//
1678
1679/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1680/// scalar floating point type.
1681const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1682  switch (T->castAs<BuiltinType>()->getKind()) {
1683  default:
1684    llvm_unreachable("Not a floating point type!");
1685  case BuiltinType::BFloat16:
1686    return Target->getBFloat16Format();
1687  case BuiltinType::Float16:
1688  case BuiltinType::Half:
1689    return Target->getHalfFormat();
1690  case BuiltinType::Float:      return Target->getFloatFormat();
1691  case BuiltinType::Double:     return Target->getDoubleFormat();
1692  case BuiltinType::LongDouble:
1693    if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1694      return AuxTarget->getLongDoubleFormat();
1695    return Target->getLongDoubleFormat();
1696  case BuiltinType::Float128:
1697    if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1698      return AuxTarget->getFloat128Format();
1699    return Target->getFloat128Format();
1700  }
1701}
1702
1703CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1704  unsigned Align = Target->getCharWidth();
1705
1706  bool UseAlignAttrOnly = false;
1707  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1708    Align = AlignFromAttr;
1709
1710    // __attribute__((aligned)) can increase or decrease alignment
1711    // *except* on a struct or struct member, where it only increases
1712    // alignment unless 'packed' is also specified.
1713    //
1714    // It is an error for alignas to decrease alignment, so we can
1715    // ignore that possibility;  Sema should diagnose it.
1716    if (isa<FieldDecl>(D)) {
1717      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1718        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1719    } else {
1720      UseAlignAttrOnly = true;
1721    }
1722  }
1723  else if (isa<FieldDecl>(D))
1724      UseAlignAttrOnly =
1725        D->hasAttr<PackedAttr>() ||
1726        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1727
1728  // If we're using the align attribute only, just ignore everything
1729  // else about the declaration and its type.
1730  if (UseAlignAttrOnly) {
1731    // do nothing
1732  } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1733    QualType T = VD->getType();
1734    if (const auto *RT = T->getAs<ReferenceType>()) {
1735      if (ForAlignof)
1736        T = RT->getPointeeType();
1737      else
1738        T = getPointerType(RT->getPointeeType());
1739    }
1740    QualType BaseT = getBaseElementType(T);
1741    if (T->isFunctionType())
1742      Align = getTypeInfoImpl(T.getTypePtr()).Align;
1743    else if (!BaseT->isIncompleteType()) {
1744      // Adjust alignments of declarations with array type by the
1745      // large-array alignment on the target.
1746      if (const ArrayType *arrayType = getAsArrayType(T)) {
1747        unsigned MinWidth = Target->getLargeArrayMinWidth();
1748        if (!ForAlignof && MinWidth) {
1749          if (isa<VariableArrayType>(arrayType))
1750            Align = std::max(Align, Target->getLargeArrayAlign());
1751          else if (isa<ConstantArrayType>(arrayType) &&
1752                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1753            Align = std::max(Align, Target->getLargeArrayAlign());
1754        }
1755      }
1756      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1757      if (BaseT.getQualifiers().hasUnaligned())
1758        Align = Target->getCharWidth();
1759      if (const auto *VD = dyn_cast<VarDecl>(D)) {
1760        if (VD->hasGlobalStorage() && !ForAlignof) {
1761          uint64_t TypeSize = getTypeSize(T.getTypePtr());
1762          Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1763        }
1764      }
1765    }
1766
1767    // Fields can be subject to extra alignment constraints, like if
1768    // the field is packed, the struct is packed, or the struct has a
1769    // a max-field-alignment constraint (#pragma pack).  So calculate
1770    // the actual alignment of the field within the struct, and then
1771    // (as we're expected to) constrain that by the alignment of the type.
1772    if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1773      const RecordDecl *Parent = Field->getParent();
1774      // We can only produce a sensible answer if the record is valid.
1775      if (!Parent->isInvalidDecl()) {
1776        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1777
1778        // Start with the record's overall alignment.
1779        unsigned FieldAlign = toBits(Layout.getAlignment());
1780
1781        // Use the GCD of that and the offset within the record.
1782        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1783        if (Offset > 0) {
1784          // Alignment is always a power of 2, so the GCD will be a power of 2,
1785          // which means we get to do this crazy thing instead of Euclid's.
1786          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1787          if (LowBitOfOffset < FieldAlign)
1788            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1789        }
1790
1791        Align = std::min(Align, FieldAlign);
1792      }
1793    }
1794  }
1795
1796  // Some targets have hard limitation on the maximum requestable alignment in
1797  // aligned attribute for static variables.
1798  const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1799  const auto *VD = dyn_cast<VarDecl>(D);
1800  if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1801    Align = std::min(Align, MaxAlignedAttr);
1802
1803  return toCharUnitsFromBits(Align);
1804}
1805
1806CharUnits ASTContext::getExnObjectAlignment() const {
1807  return toCharUnitsFromBits(Target->getExnObjectAlignment());
1808}
1809
1810// getTypeInfoDataSizeInChars - Return the size of a type, in
1811// chars. If the type is a record, its data size is returned.  This is
1812// the size of the memcpy that's performed when assigning this type
1813// using a trivial copy/move assignment operator.
1814TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1815  TypeInfoChars Info = getTypeInfoInChars(T);
1816
1817  // In C++, objects can sometimes be allocated into the tail padding
1818  // of a base-class subobject.  We decide whether that's possible
1819  // during class layout, so here we can just trust the layout results.
1820  if (getLangOpts().CPlusPlus) {
1821    if (const auto *RT = T->getAs<RecordType>()) {
1822      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1823      Info.Width = layout.getDataSize();
1824    }
1825  }
1826
1827  return Info;
1828}
1829
1830/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1831/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1832TypeInfoChars
1833static getConstantArrayInfoInChars(const ASTContext &Context,
1834                                   const ConstantArrayType *CAT) {
1835  TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1836  uint64_t Size = CAT->getSize().getZExtValue();
1837  assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1838              (uint64_t)(-1)/Size) &&
1839         "Overflow in array type char size evaluation");
1840  uint64_t Width = EltInfo.Width.getQuantity() * Size;
1841  unsigned Align = EltInfo.Align.getQuantity();
1842  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1843      Context.getTargetInfo().getPointerWidth(0) == 64)
1844    Width = llvm::alignTo(Width, Align);
1845  return TypeInfoChars(CharUnits::fromQuantity(Width),
1846                       CharUnits::fromQuantity(Align),
1847                       EltInfo.AlignIsRequired);
1848}
1849
1850TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1851  if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1852    return getConstantArrayInfoInChars(*this, CAT);
1853  TypeInfo Info = getTypeInfo(T);
1854  return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1855                       toCharUnitsFromBits(Info.Align),
1856                       Info.AlignIsRequired);
1857}
1858
1859TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1860  return getTypeInfoInChars(T.getTypePtr());
1861}
1862
1863bool ASTContext::isAlignmentRequired(const Type *T) const {
1864  return getTypeInfo(T).AlignIsRequired;
1865}
1866
1867bool ASTContext::isAlignmentRequired(QualType T) const {
1868  return isAlignmentRequired(T.getTypePtr());
1869}
1870
1871unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1872                                         bool NeedsPreferredAlignment) const {
1873  // An alignment on a typedef overrides anything else.
1874  if (const auto *TT = T->getAs<TypedefType>())
1875    if (unsigned Align = TT->getDecl()->getMaxAlignment())
1876      return Align;
1877
1878  // If we have an (array of) complete type, we're done.
1879  T = getBaseElementType(T);
1880  if (!T->isIncompleteType())
1881    return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1882
1883  // If we had an array type, its element type might be a typedef
1884  // type with an alignment attribute.
1885  if (const auto *TT = T->getAs<TypedefType>())
1886    if (unsigned Align = TT->getDecl()->getMaxAlignment())
1887      return Align;
1888
1889  // Otherwise, see if the declaration of the type had an attribute.
1890  if (const auto *TT = T->getAs<TagType>())
1891    return TT->getDecl()->getMaxAlignment();
1892
1893  return 0;
1894}
1895
1896TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1897  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1898  if (I != MemoizedTypeInfo.end())
1899    return I->second;
1900
1901  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1902  TypeInfo TI = getTypeInfoImpl(T);
1903  MemoizedTypeInfo[T] = TI;
1904  return TI;
1905}
1906
1907/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1908/// method does not work on incomplete types.
1909///
1910/// FIXME: Pointers into different addr spaces could have different sizes and
1911/// alignment requirements: getPointerInfo should take an AddrSpace, this
1912/// should take a QualType, &c.
1913TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1914  uint64_t Width = 0;
1915  unsigned Align = 8;
1916  bool AlignIsRequired = false;
1917  unsigned AS = 0;
1918  switch (T->getTypeClass()) {
1919#define TYPE(Class, Base)
1920#define ABSTRACT_TYPE(Class, Base)
1921#define NON_CANONICAL_TYPE(Class, Base)
1922#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1923#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1924  case Type::Class:                                                            \
1925  assert(!T->isDependentType() && "should not see dependent types here");      \
1926  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1927#include "clang/AST/TypeNodes.inc"
1928    llvm_unreachable("Should not see dependent types");
1929
1930  case Type::FunctionNoProto:
1931  case Type::FunctionProto:
1932    // GCC extension: alignof(function) = 32 bits
1933    Width = 0;
1934    Align = 32;
1935    break;
1936
1937  case Type::IncompleteArray:
1938  case Type::VariableArray:
1939  case Type::ConstantArray: {
1940    // Model non-constant sized arrays as size zero, but track the alignment.
1941    uint64_t Size = 0;
1942    if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1943      Size = CAT->getSize().getZExtValue();
1944
1945    TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1946    assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1947           "Overflow in array type bit size evaluation");
1948    Width = EltInfo.Width * Size;
1949    Align = EltInfo.Align;
1950    AlignIsRequired = EltInfo.AlignIsRequired;
1951    if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1952        getTargetInfo().getPointerWidth(0) == 64)
1953      Width = llvm::alignTo(Width, Align);
1954    break;
1955  }
1956
1957  case Type::ExtVector:
1958  case Type::Vector: {
1959    const auto *VT = cast<VectorType>(T);
1960    TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1961    Width = EltInfo.Width * VT->getNumElements();
1962    Align = Width;
1963    // If the alignment is not a power of 2, round up to the next power of 2.
1964    // This happens for non-power-of-2 length vectors.
1965    if (Align & (Align-1)) {
1966      Align = llvm::NextPowerOf2(Align);
1967      Width = llvm::alignTo(Width, Align);
1968    }
1969    // Adjust the alignment based on the target max.
1970    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1971    if (TargetVectorAlign && TargetVectorAlign < Align)
1972      Align = TargetVectorAlign;
1973    if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1974      // Adjust the alignment for fixed-length SVE vectors. This is important
1975      // for non-power-of-2 vector lengths.
1976      Align = 128;
1977    else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
1978      // Adjust the alignment for fixed-length SVE predicates.
1979      Align = 16;
1980    break;
1981  }
1982
1983  case Type::ConstantMatrix: {
1984    const auto *MT = cast<ConstantMatrixType>(T);
1985    TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
1986    // The internal layout of a matrix value is implementation defined.
1987    // Initially be ABI compatible with arrays with respect to alignment and
1988    // size.
1989    Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
1990    Align = ElementInfo.Align;
1991    break;
1992  }
1993
1994  case Type::Builtin:
1995    switch (cast<BuiltinType>(T)->getKind()) {
1996    default: llvm_unreachable("Unknown builtin type!");
1997    case BuiltinType::Void:
1998      // GCC extension: alignof(void) = 8 bits.
1999      Width = 0;
2000      Align = 8;
2001      break;
2002    case BuiltinType::Bool:
2003      Width = Target->getBoolWidth();
2004      Align = Target->getBoolAlign();
2005      break;
2006    case BuiltinType::Char_S:
2007    case BuiltinType::Char_U:
2008    case BuiltinType::UChar:
2009    case BuiltinType::SChar:
2010    case BuiltinType::Char8:
2011      Width = Target->getCharWidth();
2012      Align = Target->getCharAlign();
2013      break;
2014    case BuiltinType::WChar_S:
2015    case BuiltinType::WChar_U:
2016      Width = Target->getWCharWidth();
2017      Align = Target->getWCharAlign();
2018      break;
2019    case BuiltinType::Char16:
2020      Width = Target->getChar16Width();
2021      Align = Target->getChar16Align();
2022      break;
2023    case BuiltinType::Char32:
2024      Width = Target->getChar32Width();
2025      Align = Target->getChar32Align();
2026      break;
2027    case BuiltinType::UShort:
2028    case BuiltinType::Short:
2029      Width = Target->getShortWidth();
2030      Align = Target->getShortAlign();
2031      break;
2032    case BuiltinType::UInt:
2033    case BuiltinType::Int:
2034      Width = Target->getIntWidth();
2035      Align = Target->getIntAlign();
2036      break;
2037    case BuiltinType::ULong:
2038    case BuiltinType::Long:
2039      Width = Target->getLongWidth();
2040      Align = Target->getLongAlign();
2041      break;
2042    case BuiltinType::ULongLong:
2043    case BuiltinType::LongLong:
2044      Width = Target->getLongLongWidth();
2045      Align = Target->getLongLongAlign();
2046      break;
2047    case BuiltinType::Int128:
2048    case BuiltinType::UInt128:
2049      Width = 128;
2050      Align = 128; // int128_t is 128-bit aligned on all targets.
2051      break;
2052    case BuiltinType::ShortAccum:
2053    case BuiltinType::UShortAccum:
2054    case BuiltinType::SatShortAccum:
2055    case BuiltinType::SatUShortAccum:
2056      Width = Target->getShortAccumWidth();
2057      Align = Target->getShortAccumAlign();
2058      break;
2059    case BuiltinType::Accum:
2060    case BuiltinType::UAccum:
2061    case BuiltinType::SatAccum:
2062    case BuiltinType::SatUAccum:
2063      Width = Target->getAccumWidth();
2064      Align = Target->getAccumAlign();
2065      break;
2066    case BuiltinType::LongAccum:
2067    case BuiltinType::ULongAccum:
2068    case BuiltinType::SatLongAccum:
2069    case BuiltinType::SatULongAccum:
2070      Width = Target->getLongAccumWidth();
2071      Align = Target->getLongAccumAlign();
2072      break;
2073    case BuiltinType::ShortFract:
2074    case BuiltinType::UShortFract:
2075    case BuiltinType::SatShortFract:
2076    case BuiltinType::SatUShortFract:
2077      Width = Target->getShortFractWidth();
2078      Align = Target->getShortFractAlign();
2079      break;
2080    case BuiltinType::Fract:
2081    case BuiltinType::UFract:
2082    case BuiltinType::SatFract:
2083    case BuiltinType::SatUFract:
2084      Width = Target->getFractWidth();
2085      Align = Target->getFractAlign();
2086      break;
2087    case BuiltinType::LongFract:
2088    case BuiltinType::ULongFract:
2089    case BuiltinType::SatLongFract:
2090    case BuiltinType::SatULongFract:
2091      Width = Target->getLongFractWidth();
2092      Align = Target->getLongFractAlign();
2093      break;
2094    case BuiltinType::BFloat16:
2095      Width = Target->getBFloat16Width();
2096      Align = Target->getBFloat16Align();
2097      break;
2098    case BuiltinType::Float16:
2099    case BuiltinType::Half:
2100      if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2101          !getLangOpts().OpenMPIsDevice) {
2102        Width = Target->getHalfWidth();
2103        Align = Target->getHalfAlign();
2104      } else {
2105        assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2106               "Expected OpenMP device compilation.");
2107        Width = AuxTarget->getHalfWidth();
2108        Align = AuxTarget->getHalfAlign();
2109      }
2110      break;
2111    case BuiltinType::Float:
2112      Width = Target->getFloatWidth();
2113      Align = Target->getFloatAlign();
2114      break;
2115    case BuiltinType::Double:
2116      Width = Target->getDoubleWidth();
2117      Align = Target->getDoubleAlign();
2118      break;
2119    case BuiltinType::LongDouble:
2120      if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2121          (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2122           Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2123        Width = AuxTarget->getLongDoubleWidth();
2124        Align = AuxTarget->getLongDoubleAlign();
2125      } else {
2126        Width = Target->getLongDoubleWidth();
2127        Align = Target->getLongDoubleAlign();
2128      }
2129      break;
2130    case BuiltinType::Float128:
2131      if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2132          !getLangOpts().OpenMPIsDevice) {
2133        Width = Target->getFloat128Width();
2134        Align = Target->getFloat128Align();
2135      } else {
2136        assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2137               "Expected OpenMP device compilation.");
2138        Width = AuxTarget->getFloat128Width();
2139        Align = AuxTarget->getFloat128Align();
2140      }
2141      break;
2142    case BuiltinType::NullPtr:
2143      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2144      Align = Target->getPointerAlign(0); //   == sizeof(void*)
2145      break;
2146    case BuiltinType::ObjCId:
2147    case BuiltinType::ObjCClass:
2148    case BuiltinType::ObjCSel:
2149      Width = Target->getPointerWidth(0);
2150      Align = Target->getPointerAlign(0);
2151      break;
2152    case BuiltinType::OCLSampler:
2153    case BuiltinType::OCLEvent:
2154    case BuiltinType::OCLClkEvent:
2155    case BuiltinType::OCLQueue:
2156    case BuiltinType::OCLReserveID:
2157#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2158    case BuiltinType::Id:
2159#include "clang/Basic/OpenCLImageTypes.def"
2160#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2161  case BuiltinType::Id:
2162#include "clang/Basic/OpenCLExtensionTypes.def"
2163      AS = getTargetAddressSpace(
2164          Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2165      Width = Target->getPointerWidth(AS);
2166      Align = Target->getPointerAlign(AS);
2167      break;
2168    // The SVE types are effectively target-specific.  The length of an
2169    // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2170    // of 128 bits.  There is one predicate bit for each vector byte, so the
2171    // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2172    //
2173    // Because the length is only known at runtime, we use a dummy value
2174    // of 0 for the static length.  The alignment values are those defined
2175    // by the Procedure Call Standard for the Arm Architecture.
2176#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2177                        IsSigned, IsFP, IsBF)                                  \
2178  case BuiltinType::Id:                                                        \
2179    Width = 0;                                                                 \
2180    Align = 128;                                                               \
2181    break;
2182#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2183  case BuiltinType::Id:                                                        \
2184    Width = 0;                                                                 \
2185    Align = 16;                                                                \
2186    break;
2187#include "clang/Basic/AArch64SVEACLETypes.def"
2188#define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2189  case BuiltinType::Id:                                                        \
2190    Width = Size;                                                              \
2191    Align = Size;                                                              \
2192    break;
2193#include "clang/Basic/PPCTypes.def"
2194#define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2195                        IsFP)                                                  \
2196  case BuiltinType::Id:                                                        \
2197    Width = 0;                                                                 \
2198    Align = ElBits;                                                            \
2199    break;
2200#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2201  case BuiltinType::Id:                                                        \
2202    Width = 0;                                                                 \
2203    Align = 8;                                                                 \
2204    break;
2205#include "clang/Basic/RISCVVTypes.def"
2206    }
2207    break;
2208  case Type::ObjCObjectPointer:
2209    Width = Target->getPointerWidth(0);
2210    Align = Target->getPointerAlign(0);
2211    break;
2212  case Type::BlockPointer:
2213    AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2214    Width = Target->getPointerWidth(AS);
2215    Align = Target->getPointerAlign(AS);
2216    break;
2217  case Type::LValueReference:
2218  case Type::RValueReference:
2219    // alignof and sizeof should never enter this code path here, so we go
2220    // the pointer route.
2221    AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2222    Width = Target->getPointerWidth(AS);
2223    Align = Target->getPointerAlign(AS);
2224    break;
2225  case Type::Pointer:
2226    AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2227    Width = Target->getPointerWidth(AS);
2228    Align = Target->getPointerAlign(AS);
2229    break;
2230  case Type::MemberPointer: {
2231    const auto *MPT = cast<MemberPointerType>(T);
2232    CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2233    Width = MPI.Width;
2234    Align = MPI.Align;
2235    break;
2236  }
2237  case Type::Complex: {
2238    // Complex types have the same alignment as their elements, but twice the
2239    // size.
2240    TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2241    Width = EltInfo.Width * 2;
2242    Align = EltInfo.Align;
2243    break;
2244  }
2245  case Type::ObjCObject:
2246    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2247  case Type::Adjusted:
2248  case Type::Decayed:
2249    return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2250  case Type::ObjCInterface: {
2251    const auto *ObjCI = cast<ObjCInterfaceType>(T);
2252    if (ObjCI->getDecl()->isInvalidDecl()) {
2253      Width = 8;
2254      Align = 8;
2255      break;
2256    }
2257    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2258    Width = toBits(Layout.getSize());
2259    Align = toBits(Layout.getAlignment());
2260    break;
2261  }
2262  case Type::ExtInt: {
2263    const auto *EIT = cast<ExtIntType>(T);
2264    Align =
2265        std::min(static_cast<unsigned>(std::max(
2266                     getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2267                 Target->getLongLongAlign());
2268    Width = llvm::alignTo(EIT->getNumBits(), Align);
2269    break;
2270  }
2271  case Type::Record:
2272  case Type::Enum: {
2273    const auto *TT = cast<TagType>(T);
2274
2275    if (TT->getDecl()->isInvalidDecl()) {
2276      Width = 8;
2277      Align = 8;
2278      break;
2279    }
2280
2281    if (const auto *ET = dyn_cast<EnumType>(TT)) {
2282      const EnumDecl *ED = ET->getDecl();
2283      TypeInfo Info =
2284          getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2285      if (unsigned AttrAlign = ED->getMaxAlignment()) {
2286        Info.Align = AttrAlign;
2287        Info.AlignIsRequired = true;
2288      }
2289      return Info;
2290    }
2291
2292    const auto *RT = cast<RecordType>(TT);
2293    const RecordDecl *RD = RT->getDecl();
2294    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2295    Width = toBits(Layout.getSize());
2296    Align = toBits(Layout.getAlignment());
2297    AlignIsRequired = RD->hasAttr<AlignedAttr>();
2298    break;
2299  }
2300
2301  case Type::SubstTemplateTypeParm:
2302    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2303                       getReplacementType().getTypePtr());
2304
2305  case Type::Auto:
2306  case Type::DeducedTemplateSpecialization: {
2307    const auto *A = cast<DeducedType>(T);
2308    assert(!A->getDeducedType().isNull() &&
2309           "cannot request the size of an undeduced or dependent auto type");
2310    return getTypeInfo(A->getDeducedType().getTypePtr());
2311  }
2312
2313  case Type::Paren:
2314    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2315
2316  case Type::MacroQualified:
2317    return getTypeInfo(
2318        cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2319
2320  case Type::ObjCTypeParam:
2321    return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2322
2323  case Type::Typedef: {
2324    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2325    TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2326    // If the typedef has an aligned attribute on it, it overrides any computed
2327    // alignment we have.  This violates the GCC documentation (which says that
2328    // attribute(aligned) can only round up) but matches its implementation.
2329    if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2330      Align = AttrAlign;
2331      AlignIsRequired = true;
2332    } else {
2333      Align = Info.Align;
2334      AlignIsRequired = Info.AlignIsRequired;
2335    }
2336    Width = Info.Width;
2337    break;
2338  }
2339
2340  case Type::Elaborated:
2341    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2342
2343  case Type::Attributed:
2344    return getTypeInfo(
2345                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2346
2347  case Type::Atomic: {
2348    // Start with the base type information.
2349    TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2350    Width = Info.Width;
2351    Align = Info.Align;
2352
2353    if (!Width) {
2354      // An otherwise zero-sized type should still generate an
2355      // atomic operation.
2356      Width = Target->getCharWidth();
2357      assert(Align);
2358    } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2359      // If the size of the type doesn't exceed the platform's max
2360      // atomic promotion width, make the size and alignment more
2361      // favorable to atomic operations:
2362
2363      // Round the size up to a power of 2.
2364      if (!llvm::isPowerOf2_64(Width))
2365        Width = llvm::NextPowerOf2(Width);
2366
2367      // Set the alignment equal to the size.
2368      Align = static_cast<unsigned>(Width);
2369    }
2370  }
2371  break;
2372
2373  case Type::Pipe:
2374    Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2375    Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2376    break;
2377  }
2378
2379  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2380  return TypeInfo(Width, Align, AlignIsRequired);
2381}
2382
2383unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2384  UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2385  if (I != MemoizedUnadjustedAlign.end())
2386    return I->second;
2387
2388  unsigned UnadjustedAlign;
2389  if (const auto *RT = T->getAs<RecordType>()) {
2390    const RecordDecl *RD = RT->getDecl();
2391    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2392    UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2393  } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2394    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2395    UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2396  } else {
2397    UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2398  }
2399
2400  MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2401  return UnadjustedAlign;
2402}
2403
2404unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2405  unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2406  return SimdAlign;
2407}
2408
2409/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2410CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2411  return CharUnits::fromQuantity(BitSize / getCharWidth());
2412}
2413
2414/// toBits - Convert a size in characters to a size in characters.
2415int64_t ASTContext::toBits(CharUnits CharSize) const {
2416  return CharSize.getQuantity() * getCharWidth();
2417}
2418
2419/// getTypeSizeInChars - Return the size of the specified type, in characters.
2420/// This method does not work on incomplete types.
2421CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2422  return getTypeInfoInChars(T).Width;
2423}
2424CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2425  return getTypeInfoInChars(T).Width;
2426}
2427
2428/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2429/// characters. This method does not work on incomplete types.
2430CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2431  return toCharUnitsFromBits(getTypeAlign(T));
2432}
2433CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2434  return toCharUnitsFromBits(getTypeAlign(T));
2435}
2436
2437/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2438/// type, in characters, before alignment adustments. This method does
2439/// not work on incomplete types.
2440CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2441  return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2442}
2443CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2444  return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2445}
2446
2447/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2448/// type for the current target in bits.  This can be different than the ABI
2449/// alignment in cases where it is beneficial for performance or backwards
2450/// compatibility preserving to overalign a data type. (Note: despite the name,
2451/// the preferred alignment is ABI-impacting, and not an optimization.)
2452unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2453  TypeInfo TI = getTypeInfo(T);
2454  unsigned ABIAlign = TI.Align;
2455
2456  T = T->getBaseElementTypeUnsafe();
2457
2458  // The preferred alignment of member pointers is that of a pointer.
2459  if (T->isMemberPointerType())
2460    return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2461
2462  if (!Target->allowsLargerPreferedTypeAlignment())
2463    return ABIAlign;
2464
2465  if (const auto *RT = T->getAs<RecordType>()) {
2466    if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl())
2467      return ABIAlign;
2468
2469    unsigned PreferredAlign = static_cast<unsigned>(
2470        toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment));
2471    assert(PreferredAlign >= ABIAlign &&
2472           "PreferredAlign should be at least as large as ABIAlign.");
2473    return PreferredAlign;
2474  }
2475
2476  // Double (and, for targets supporting AIX `power` alignment, long double) and
2477  // long long should be naturally aligned (despite requiring less alignment) if
2478  // possible.
2479  if (const auto *CT = T->getAs<ComplexType>())
2480    T = CT->getElementType().getTypePtr();
2481  if (const auto *ET = T->getAs<EnumType>())
2482    T = ET->getDecl()->getIntegerType().getTypePtr();
2483  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2484      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2485      T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2486      (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2487       Target->defaultsToAIXPowerAlignment()))
2488    // Don't increase the alignment if an alignment attribute was specified on a
2489    // typedef declaration.
2490    if (!TI.AlignIsRequired)
2491      return std::max(ABIAlign, (unsigned)getTypeSize(T));
2492
2493  return ABIAlign;
2494}
2495
2496/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2497/// for __attribute__((aligned)) on this target, to be used if no alignment
2498/// value is specified.
2499unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2500  return getTargetInfo().getDefaultAlignForAttributeAligned();
2501}
2502
2503/// getAlignOfGlobalVar - Return the alignment in bits that should be given
2504/// to a global variable of the specified type.
2505unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2506  uint64_t TypeSize = getTypeSize(T.getTypePtr());
2507  return std::max(getPreferredTypeAlign(T),
2508                  getTargetInfo().getMinGlobalAlign(TypeSize));
2509}
2510
2511/// getAlignOfGlobalVarInChars - Return the alignment in characters that
2512/// should be given to a global variable of the specified type.
2513CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2514  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2515}
2516
2517CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2518  CharUnits Offset = CharUnits::Zero();
2519  const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2520  while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2521    Offset += Layout->getBaseClassOffset(Base);
2522    Layout = &getASTRecordLayout(Base);
2523  }
2524  return Offset;
2525}
2526
2527CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2528  const ValueDecl *MPD = MP.getMemberPointerDecl();
2529  CharUnits ThisAdjustment = CharUnits::Zero();
2530  ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2531  bool DerivedMember = MP.isMemberPointerToDerivedMember();
2532  const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2533  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2534    const CXXRecordDecl *Base = RD;
2535    const CXXRecordDecl *Derived = Path[I];
2536    if (DerivedMember)
2537      std::swap(Base, Derived);
2538    ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2539    RD = Path[I];
2540  }
2541  if (DerivedMember)
2542    ThisAdjustment = -ThisAdjustment;
2543  return ThisAdjustment;
2544}
2545
2546/// DeepCollectObjCIvars -
2547/// This routine first collects all declared, but not synthesized, ivars in
2548/// super class and then collects all ivars, including those synthesized for
2549/// current class. This routine is used for implementation of current class
2550/// when all ivars, declared and synthesized are known.
2551void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2552                                      bool leafClass,
2553                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2554  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2555    DeepCollectObjCIvars(SuperClass, false, Ivars);
2556  if (!leafClass) {
2557    for (const auto *I : OI->ivars())
2558      Ivars.push_back(I);
2559  } else {
2560    auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2561    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2562         Iv= Iv->getNextIvar())
2563      Ivars.push_back(Iv);
2564  }
2565}
2566
2567/// CollectInheritedProtocols - Collect all protocols in current class and
2568/// those inherited by it.
2569void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2570                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2571  if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2572    // We can use protocol_iterator here instead of
2573    // all_referenced_protocol_iterator since we are walking all categories.
2574    for (auto *Proto : OI->all_referenced_protocols()) {
2575      CollectInheritedProtocols(Proto, Protocols);
2576    }
2577
2578    // Categories of this Interface.
2579    for (const auto *Cat : OI->visible_categories())
2580      CollectInheritedProtocols(Cat, Protocols);
2581
2582    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2583      while (SD) {
2584        CollectInheritedProtocols(SD, Protocols);
2585        SD = SD->getSuperClass();
2586      }
2587  } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2588    for (auto *Proto : OC->protocols()) {
2589      CollectInheritedProtocols(Proto, Protocols);
2590    }
2591  } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2592    // Insert the protocol.
2593    if (!Protocols.insert(
2594          const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2595      return;
2596
2597    for (auto *Proto : OP->protocols())
2598      CollectInheritedProtocols(Proto, Protocols);
2599  }
2600}
2601
2602static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2603                                                const RecordDecl *RD) {
2604  assert(RD->isUnion() && "Must be union type");
2605  CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2606
2607  for (const auto *Field : RD->fields()) {
2608    if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2609      return false;
2610    CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2611    if (FieldSize != UnionSize)
2612      return false;
2613  }
2614  return !RD->field_empty();
2615}
2616
2617static bool isStructEmpty(QualType Ty) {
2618  const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2619
2620  if (!RD->field_empty())
2621    return false;
2622
2623  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2624    return ClassDecl->isEmpty();
2625
2626  return true;
2627}
2628
2629static llvm::Optional<int64_t>
2630structHasUniqueObjectRepresentations(const ASTContext &Context,
2631                                     const RecordDecl *RD) {
2632  assert(!RD->isUnion() && "Must be struct/class type");
2633  const auto &Layout = Context.getASTRecordLayout(RD);
2634
2635  int64_t CurOffsetInBits = 0;
2636  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2637    if (ClassDecl->isDynamicClass())
2638      return llvm::None;
2639
2640    SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2641    for (const auto &Base : ClassDecl->bases()) {
2642      // Empty types can be inherited from, and non-empty types can potentially
2643      // have tail padding, so just make sure there isn't an error.
2644      if (!isStructEmpty(Base.getType())) {
2645        llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2646            Context, Base.getType()->castAs<RecordType>()->getDecl());
2647        if (!Size)
2648          return llvm::None;
2649        Bases.emplace_back(Base.getType(), Size.getValue());
2650      }
2651    }
2652
2653    llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2654                          const std::pair<QualType, int64_t> &R) {
2655      return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2656             Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2657    });
2658
2659    for (const auto &Base : Bases) {
2660      int64_t BaseOffset = Context.toBits(
2661          Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2662      int64_t BaseSize = Base.second;
2663      if (BaseOffset != CurOffsetInBits)
2664        return llvm::None;
2665      CurOffsetInBits = BaseOffset + BaseSize;
2666    }
2667  }
2668
2669  for (const auto *Field : RD->fields()) {
2670    if (!Field->getType()->isReferenceType() &&
2671        !Context.hasUniqueObjectRepresentations(Field->getType()))
2672      return llvm::None;
2673
2674    int64_t FieldSizeInBits =
2675        Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2676    if (Field->isBitField()) {
2677      int64_t BitfieldSize = Field->getBitWidthValue(Context);
2678
2679      if (BitfieldSize > FieldSizeInBits)
2680        return llvm::None;
2681      FieldSizeInBits = BitfieldSize;
2682    }
2683
2684    int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2685
2686    if (FieldOffsetInBits != CurOffsetInBits)
2687      return llvm::None;
2688
2689    CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2690  }
2691
2692  return CurOffsetInBits;
2693}
2694
2695bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2696  // C++17 [meta.unary.prop]:
2697  //   The predicate condition for a template specialization
2698  //   has_unique_object_representations<T> shall be
2699  //   satisfied if and only if:
2700  //     (9.1) - T is trivially copyable, and
2701  //     (9.2) - any two objects of type T with the same value have the same
2702  //     object representation, where two objects
2703  //   of array or non-union class type are considered to have the same value
2704  //   if their respective sequences of
2705  //   direct subobjects have the same values, and two objects of union type
2706  //   are considered to have the same
2707  //   value if they have the same active member and the corresponding members
2708  //   have the same value.
2709  //   The set of scalar types for which this condition holds is
2710  //   implementation-defined. [ Note: If a type has padding
2711  //   bits, the condition does not hold; otherwise, the condition holds true
2712  //   for unsigned integral types. -- end note ]
2713  assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2714
2715  // Arrays are unique only if their element type is unique.
2716  if (Ty->isArrayType())
2717    return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2718
2719  // (9.1) - T is trivially copyable...
2720  if (!Ty.isTriviallyCopyableType(*this))
2721    return false;
2722
2723  // All integrals and enums are unique.
2724  if (Ty->isIntegralOrEnumerationType())
2725    return true;
2726
2727  // All other pointers are unique.
2728  if (Ty->isPointerType())
2729    return true;
2730
2731  if (Ty->isMemberPointerType()) {
2732    const auto *MPT = Ty->getAs<MemberPointerType>();
2733    return !ABI->getMemberPointerInfo(MPT).HasPadding;
2734  }
2735
2736  if (Ty->isRecordType()) {
2737    const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2738
2739    if (Record->isInvalidDecl())
2740      return false;
2741
2742    if (Record->isUnion())
2743      return unionHasUniqueObjectRepresentations(*this, Record);
2744
2745    Optional<int64_t> StructSize =
2746        structHasUniqueObjectRepresentations(*this, Record);
2747
2748    return StructSize &&
2749           StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2750  }
2751
2752  // FIXME: More cases to handle here (list by rsmith):
2753  // vectors (careful about, eg, vector of 3 foo)
2754  // _Complex int and friends
2755  // _Atomic T
2756  // Obj-C block pointers
2757  // Obj-C object pointers
2758  // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2759  // clk_event_t, queue_t, reserve_id_t)
2760  // There're also Obj-C class types and the Obj-C selector type, but I think it
2761  // makes sense for those to return false here.
2762
2763  return false;
2764}
2765
2766unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2767  unsigned count = 0;
2768  // Count ivars declared in class extension.
2769  for (const auto *Ext : OI->known_extensions())
2770    count += Ext->ivar_size();
2771
2772  // Count ivar defined in this class's implementation.  This
2773  // includes synthesized ivars.
2774  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2775    count += ImplDecl->ivar_size();
2776
2777  return count;
2778}
2779
2780bool ASTContext::isSentinelNullExpr(const Expr *E) {
2781  if (!E)
2782    return false;
2783
2784  // nullptr_t is always treated as null.
2785  if (E->getType()->isNullPtrType()) return true;
2786
2787  if (E->getType()->isAnyPointerType() &&
2788      E->IgnoreParenCasts()->isNullPointerConstant(*this,
2789                                                Expr::NPC_ValueDependentIsNull))
2790    return true;
2791
2792  // Unfortunately, __null has type 'int'.
2793  if (isa<GNUNullExpr>(E)) return true;
2794
2795  return false;
2796}
2797
2798/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2799/// exists.
2800ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2801  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2802    I = ObjCImpls.find(D);
2803  if (I != ObjCImpls.end())
2804    return cast<ObjCImplementationDecl>(I->second);
2805  return nullptr;
2806}
2807
2808/// Get the implementation of ObjCCategoryDecl, or nullptr if none
2809/// exists.
2810ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2811  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2812    I = ObjCImpls.find(D);
2813  if (I != ObjCImpls.end())
2814    return cast<ObjCCategoryImplDecl>(I->second);
2815  return nullptr;
2816}
2817
2818/// Set the implementation of ObjCInterfaceDecl.
2819void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2820                           ObjCImplementationDecl *ImplD) {
2821  assert(IFaceD && ImplD && "Passed null params");
2822  ObjCImpls[IFaceD] = ImplD;
2823}
2824
2825/// Set the implementation of ObjCCategoryDecl.
2826void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2827                           ObjCCategoryImplDecl *ImplD) {
2828  assert(CatD && ImplD && "Passed null params");
2829  ObjCImpls[CatD] = ImplD;
2830}
2831
2832const ObjCMethodDecl *
2833ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2834  return ObjCMethodRedecls.lookup(MD);
2835}
2836
2837void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2838                                            const ObjCMethodDecl *Redecl) {
2839  assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2840  ObjCMethodRedecls[MD] = Redecl;
2841}
2842
2843const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2844                                              const NamedDecl *ND) const {
2845  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2846    return ID;
2847  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2848    return CD->getClassInterface();
2849  if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2850    return IMD->getClassInterface();
2851
2852  return nullptr;
2853}
2854
2855/// Get the copy initialization expression of VarDecl, or nullptr if
2856/// none exists.
2857BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2858  assert(VD && "Passed null params");
2859  assert(VD->hasAttr<BlocksAttr>() &&
2860         "getBlockVarCopyInits - not __block var");
2861  auto I = BlockVarCopyInits.find(VD);
2862  if (I != BlockVarCopyInits.end())
2863    return I->second;
2864  return {nullptr, false};
2865}
2866
2867/// Set the copy initialization expression of a block var decl.
2868void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2869                                     bool CanThrow) {
2870  assert(VD && CopyExpr && "Passed null params");
2871  assert(VD->hasAttr<BlocksAttr>() &&
2872         "setBlockVarCopyInits - not __block var");
2873  BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2874}
2875
2876TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2877                                                 unsigned DataSize) const {
2878  if (!DataSize)
2879    DataSize = TypeLoc::getFullDataSizeForType(T);
2880  else
2881    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2882           "incorrect data size provided to CreateTypeSourceInfo!");
2883
2884  auto *TInfo =
2885    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2886  new (TInfo) TypeSourceInfo(T);
2887  return TInfo;
2888}
2889
2890TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2891                                                     SourceLocation L) const {
2892  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2893  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2894  return DI;
2895}
2896
2897const ASTRecordLayout &
2898ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2899  return getObjCLayout(D, nullptr);
2900}
2901
2902const ASTRecordLayout &
2903ASTContext::getASTObjCImplementationLayout(
2904                                        const ObjCImplementationDecl *D) const {
2905  return getObjCLayout(D->getClassInterface(), D);
2906}
2907
2908//===----------------------------------------------------------------------===//
2909//                   Type creation/memoization methods
2910//===----------------------------------------------------------------------===//
2911
2912QualType
2913ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2914  unsigned fastQuals = quals.getFastQualifiers();
2915  quals.removeFastQualifiers();
2916
2917  // Check if we've already instantiated this type.
2918  llvm::FoldingSetNodeID ID;
2919  ExtQuals::Profile(ID, baseType, quals);
2920  void *insertPos = nullptr;
2921  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2922    assert(eq->getQualifiers() == quals);
2923    return QualType(eq, fastQuals);
2924  }
2925
2926  // If the base type is not canonical, make the appropriate canonical type.
2927  QualType canon;
2928  if (!baseType->isCanonicalUnqualified()) {
2929    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2930    canonSplit.Quals.addConsistentQualifiers(quals);
2931    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2932
2933    // Re-find the insert position.
2934    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2935  }
2936
2937  auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2938  ExtQualNodes.InsertNode(eq, insertPos);
2939  return QualType(eq, fastQuals);
2940}
2941
2942QualType ASTContext::getAddrSpaceQualType(QualType T,
2943                                          LangAS AddressSpace) const {
2944  QualType CanT = getCanonicalType(T);
2945  if (CanT.getAddressSpace() == AddressSpace)
2946    return T;
2947
2948  // If we are composing extended qualifiers together, merge together
2949  // into one ExtQuals node.
2950  QualifierCollector Quals;
2951  const Type *TypeNode = Quals.strip(T);
2952
2953  // If this type already has an address space specified, it cannot get
2954  // another one.
2955  assert(!Quals.hasAddressSpace() &&
2956         "Type cannot be in multiple addr spaces!");
2957  Quals.addAddressSpace(AddressSpace);
2958
2959  return getExtQualType(TypeNode, Quals);
2960}
2961
2962QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2963  // If the type is not qualified with an address space, just return it
2964  // immediately.
2965  if (!T.hasAddressSpace())
2966    return T;
2967
2968  // If we are composing extended qualifiers together, merge together
2969  // into one ExtQuals node.
2970  QualifierCollector Quals;
2971  const Type *TypeNode;
2972
2973  while (T.hasAddressSpace()) {
2974    TypeNode = Quals.strip(T);
2975
2976    // If the type no longer has an address space after stripping qualifiers,
2977    // jump out.
2978    if (!QualType(TypeNode, 0).hasAddressSpace())
2979      break;
2980
2981    // There might be sugar in the way. Strip it and try again.
2982    T = T.getSingleStepDesugaredType(*this);
2983  }
2984
2985  Quals.removeAddressSpace();
2986
2987  // Removal of the address space can mean there are no longer any
2988  // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2989  // or required.
2990  if (Quals.hasNonFastQualifiers())
2991    return getExtQualType(TypeNode, Quals);
2992  else
2993    return QualType(TypeNode, Quals.getFastQualifiers());
2994}
2995
2996QualType ASTContext::getObjCGCQualType(QualType T,
2997                                       Qualifiers::GC GCAttr) const {
2998  QualType CanT = getCanonicalType(T);
2999  if (CanT.getObjCGCAttr() == GCAttr)
3000    return T;
3001
3002  if (const auto *ptr = T->getAs<PointerType>()) {
3003    QualType Pointee = ptr->getPointeeType();
3004    if (Pointee->isAnyPointerType()) {
3005      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3006      return getPointerType(ResultType);
3007    }
3008  }
3009
3010  // If we are composing extended qualifiers together, merge together
3011  // into one ExtQuals node.
3012  QualifierCollector Quals;
3013  const Type *TypeNode = Quals.strip(T);
3014
3015  // If this type already has an ObjCGC specified, it cannot get
3016  // another one.
3017  assert(!Quals.hasObjCGCAttr() &&
3018         "Type cannot have multiple ObjCGCs!");
3019  Quals.addObjCGCAttr(GCAttr);
3020
3021  return getExtQualType(TypeNode, Quals);
3022}
3023
3024QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3025  if (const PointerType *Ptr = T->getAs<PointerType>()) {
3026    QualType Pointee = Ptr->getPointeeType();
3027    if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3028      return getPointerType(removeAddrSpaceQualType(Pointee));
3029    }
3030  }
3031  return T;
3032}
3033
3034const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3035                                                   FunctionType::ExtInfo Info) {
3036  if (T->getExtInfo() == Info)
3037    return T;
3038
3039  QualType Result;
3040  if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3041    Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3042  } else {
3043    const auto *FPT = cast<FunctionProtoType>(T);
3044    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3045    EPI.ExtInfo = Info;
3046    Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3047  }
3048
3049  return cast<FunctionType>(Result.getTypePtr());
3050}
3051
3052void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3053                                                 QualType ResultType) {
3054  FD = FD->getMostRecentDecl();
3055  while (true) {
3056    const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3057    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3058    FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3059    if (FunctionDecl *Next = FD->getPreviousDecl())
3060      FD = Next;
3061    else
3062      break;
3063  }
3064  if (ASTMutationListener *L = getASTMutationListener())
3065    L->DeducedReturnType(FD, ResultType);
3066}
3067
3068/// Get a function type and produce the equivalent function type with the
3069/// specified exception specification. Type sugar that can be present on a
3070/// declaration of a function with an exception specification is permitted
3071/// and preserved. Other type sugar (for instance, typedefs) is not.
3072QualType ASTContext::getFunctionTypeWithExceptionSpec(
3073    QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3074  // Might have some parens.
3075  if (const auto *PT = dyn_cast<ParenType>(Orig))
3076    return getParenType(
3077        getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3078
3079  // Might be wrapped in a macro qualified type.
3080  if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3081    return getMacroQualifiedType(
3082        getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3083        MQT->getMacroIdentifier());
3084
3085  // Might have a calling-convention attribute.
3086  if (const auto *AT = dyn_cast<AttributedType>(Orig))
3087    return getAttributedType(
3088        AT->getAttrKind(),
3089        getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3090        getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3091
3092  // Anything else must be a function type. Rebuild it with the new exception
3093  // specification.
3094  const auto *Proto = Orig->castAs<FunctionProtoType>();
3095  return getFunctionType(
3096      Proto->getReturnType(), Proto->getParamTypes(),
3097      Proto->getExtProtoInfo().withExceptionSpec(ESI));
3098}
3099
3100bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3101                                                          QualType U) {
3102  return hasSameType(T, U) ||
3103         (getLangOpts().CPlusPlus17 &&
3104          hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3105                      getFunctionTypeWithExceptionSpec(U, EST_None)));
3106}
3107
3108QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3109  if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3110    QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3111    SmallVector<QualType, 16> Args(Proto->param_types());
3112    for (unsigned i = 0, n = Args.size(); i != n; ++i)
3113      Args[i] = removePtrSizeAddrSpace(Args[i]);
3114    return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3115  }
3116
3117  if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3118    QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3119    return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3120  }
3121
3122  return T;
3123}
3124
3125bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3126  return hasSameType(T, U) ||
3127         hasSameType(getFunctionTypeWithoutPtrSizes(T),
3128                     getFunctionTypeWithoutPtrSizes(U));
3129}
3130
3131void ASTContext::adjustExceptionSpec(
3132    FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3133    bool AsWritten) {
3134  // Update the type.
3135  QualType Updated =
3136      getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3137  FD->setType(Updated);
3138
3139  if (!AsWritten)
3140    return;
3141
3142  // Update the type in the type source information too.
3143  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3144    // If the type and the type-as-written differ, we may need to update
3145    // the type-as-written too.
3146    if (TSInfo->getType() != FD->getType())
3147      Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3148
3149    // FIXME: When we get proper type location information for exceptions,
3150    // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3151    // up the TypeSourceInfo;
3152    assert(TypeLoc::getFullDataSizeForType(Updated) ==
3153               TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3154           "TypeLoc size mismatch from updating exception specification");
3155    TSInfo->overrideType(Updated);
3156  }
3157}
3158
3159/// getComplexType - Return the uniqued reference to the type for a complex
3160/// number with the specified element type.
3161QualType ASTContext::getComplexType(QualType T) const {
3162  // Unique pointers, to guarantee there is only one pointer of a particular
3163  // structure.
3164  llvm::FoldingSetNodeID ID;
3165  ComplexType::Profile(ID, T);
3166
3167  void *InsertPos = nullptr;
3168  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3169    return QualType(CT, 0);
3170
3171  // If the pointee type isn't canonical, this won't be a canonical type either,
3172  // so fill in the canonical type field.
3173  QualType Canonical;
3174  if (!T.isCanonical()) {
3175    Canonical = getComplexType(getCanonicalType(T));
3176
3177    // Get the new insert position for the node we care about.
3178    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3179    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3180  }
3181  auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3182  Types.push_back(New);
3183  ComplexTypes.InsertNode(New, InsertPos);
3184  return QualType(New, 0);
3185}
3186
3187/// getPointerType - Return the uniqued reference to the type for a pointer to
3188/// the specified type.
3189QualType ASTContext::getPointerType(QualType T) const {
3190  // Unique pointers, to guarantee there is only one pointer of a particular
3191  // structure.
3192  llvm::FoldingSetNodeID ID;
3193  PointerType::Profile(ID, T);
3194
3195  void *InsertPos = nullptr;
3196  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3197    return QualType(PT, 0);
3198
3199  // If the pointee type isn't canonical, this won't be a canonical type either,
3200  // so fill in the canonical type field.
3201  QualType Canonical;
3202  if (!T.isCanonical()) {
3203    Canonical = getPointerType(getCanonicalType(T));
3204
3205    // Get the new insert position for the node we care about.
3206    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3207    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3208  }
3209  auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3210  Types.push_back(New);
3211  PointerTypes.InsertNode(New, InsertPos);
3212  return QualType(New, 0);
3213}
3214
3215QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3216  llvm::FoldingSetNodeID ID;
3217  AdjustedType::Profile(ID, Orig, New);
3218  void *InsertPos = nullptr;
3219  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3220  if (AT)
3221    return QualType(AT, 0);
3222
3223  QualType Canonical = getCanonicalType(New);
3224
3225  // Get the new insert position for the node we care about.
3226  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3227  assert(!AT && "Shouldn't be in the map!");
3228
3229  AT = new (*this, TypeAlignment)
3230      AdjustedType(Type::Adjusted, Orig, New, Canonical);
3231  Types.push_back(AT);
3232  AdjustedTypes.InsertNode(AT, InsertPos);
3233  return QualType(AT, 0);
3234}
3235
3236QualType ASTContext::getDecayedType(QualType T) const {
3237  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3238
3239  QualType Decayed;
3240
3241  // C99 6.7.5.3p7:
3242  //   A declaration of a parameter as "array of type" shall be
3243  //   adjusted to "qualified pointer to type", where the type
3244  //   qualifiers (if any) are those specified within the [ and ] of
3245  //   the array type derivation.
3246  if (T->isArrayType())
3247    Decayed = getArrayDecayedType(T);
3248
3249  // C99 6.7.5.3p8:
3250  //   A declaration of a parameter as "function returning type"
3251  //   shall be adjusted to "pointer to function returning type", as
3252  //   in 6.3.2.1.
3253  if (T->isFunctionType())
3254    Decayed = getPointerType(T);
3255
3256  llvm::FoldingSetNodeID ID;
3257  AdjustedType::Profile(ID, T, Decayed);
3258  void *InsertPos = nullptr;
3259  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3260  if (AT)
3261    return QualType(AT, 0);
3262
3263  QualType Canonical = getCanonicalType(Decayed);
3264
3265  // Get the new insert position for the node we care about.
3266  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3267  assert(!AT && "Shouldn't be in the map!");
3268
3269  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3270  Types.push_back(AT);
3271  AdjustedTypes.InsertNode(AT, InsertPos);
3272  return QualType(AT, 0);
3273}
3274
3275/// getBlockPointerType - Return the uniqued reference to the type for
3276/// a pointer to the specified block.
3277QualType ASTContext::getBlockPointerType(QualType T) const {
3278  assert(T->isFunctionType() && "block of function types only");
3279  // Unique pointers, to guarantee there is only one block of a particular
3280  // structure.
3281  llvm::FoldingSetNodeID ID;
3282  BlockPointerType::Profile(ID, T);
3283
3284  void *InsertPos = nullptr;
3285  if (BlockPointerType *PT =
3286        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3287    return QualType(PT, 0);
3288
3289  // If the block pointee type isn't canonical, this won't be a canonical
3290  // type either so fill in the canonical type field.
3291  QualType Canonical;
3292  if (!T.isCanonical()) {
3293    Canonical = getBlockPointerType(getCanonicalType(T));
3294
3295    // Get the new insert position for the node we care about.
3296    BlockPointerType *NewIP =
3297      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3298    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3299  }
3300  auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3301  Types.push_back(New);
3302  BlockPointerTypes.InsertNode(New, InsertPos);
3303  return QualType(New, 0);
3304}
3305
3306/// getLValueReferenceType - Return the uniqued reference to the type for an
3307/// lvalue reference to the specified type.
3308QualType
3309ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3310  assert(getCanonicalType(T) != OverloadTy &&
3311         "Unresolved overloaded function type");
3312
3313  // Unique pointers, to guarantee there is only one pointer of a particular
3314  // structure.
3315  llvm::FoldingSetNodeID ID;
3316  ReferenceType::Profile(ID, T, SpelledAsLValue);
3317
3318  void *InsertPos = nullptr;
3319  if (LValueReferenceType *RT =
3320        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3321    return QualType(RT, 0);
3322
3323  const auto *InnerRef = T->getAs<ReferenceType>();
3324
3325  // If the referencee type isn't canonical, this won't be a canonical type
3326  // either, so fill in the canonical type field.
3327  QualType Canonical;
3328  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3329    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3330    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3331
3332    // Get the new insert position for the node we care about.
3333    LValueReferenceType *NewIP =
3334      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3335    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3336  }
3337
3338  auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3339                                                             SpelledAsLValue);
3340  Types.push_back(New);
3341  LValueReferenceTypes.InsertNode(New, InsertPos);
3342
3343  return QualType(New, 0);
3344}
3345
3346/// getRValueReferenceType - Return the uniqued reference to the type for an
3347/// rvalue reference to the specified type.
3348QualType ASTContext::getRValueReferenceType(QualType T) const {
3349  // Unique pointers, to guarantee there is only one pointer of a particular
3350  // structure.
3351  llvm::FoldingSetNodeID ID;
3352  ReferenceType::Profile(ID, T, false);
3353
3354  void *InsertPos = nullptr;
3355  if (RValueReferenceType *RT =
3356        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3357    return QualType(RT, 0);
3358
3359  const auto *InnerRef = T->getAs<ReferenceType>();
3360
3361  // If the referencee type isn't canonical, this won't be a canonical type
3362  // either, so fill in the canonical type field.
3363  QualType Canonical;
3364  if (InnerRef || !T.isCanonical()) {
3365    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3366    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3367
3368    // Get the new insert position for the node we care about.
3369    RValueReferenceType *NewIP =
3370      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3371    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3372  }
3373
3374  auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3375  Types.push_back(New);
3376  RValueReferenceTypes.InsertNode(New, InsertPos);
3377  return QualType(New, 0);
3378}
3379
3380/// getMemberPointerType - Return the uniqued reference to the type for a
3381/// member pointer to the specified type, in the specified class.
3382QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3383  // Unique pointers, to guarantee there is only one pointer of a particular
3384  // structure.
3385  llvm::FoldingSetNodeID ID;
3386  MemberPointerType::Profile(ID, T, Cls);
3387
3388  void *InsertPos = nullptr;
3389  if (MemberPointerType *PT =
3390      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3391    return QualType(PT, 0);
3392
3393  // If the pointee or class type isn't canonical, this won't be a canonical
3394  // type either, so fill in the canonical type field.
3395  QualType Canonical;
3396  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3397    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3398
3399    // Get the new insert position for the node we care about.
3400    MemberPointerType *NewIP =
3401      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3402    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3403  }
3404  auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3405  Types.push_back(New);
3406  MemberPointerTypes.InsertNode(New, InsertPos);
3407  return QualType(New, 0);
3408}
3409
3410/// getConstantArrayType - Return the unique reference to the type for an
3411/// array of the specified element type.
3412QualType ASTContext::getConstantArrayType(QualType EltTy,
3413                                          const llvm::APInt &ArySizeIn,
3414                                          const Expr *SizeExpr,
3415                                          ArrayType::ArraySizeModifier ASM,
3416                                          unsigned IndexTypeQuals) const {
3417  assert((EltTy->isDependentType() ||
3418          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3419         "Constant array of VLAs is illegal!");
3420
3421  // We only need the size as part of the type if it's instantiation-dependent.
3422  if (SizeExpr && !SizeExpr->isInstantiationDependent())
3423    SizeExpr = nullptr;
3424
3425  // Convert the array size into a canonical width matching the pointer size for
3426  // the target.
3427  llvm::APInt ArySize(ArySizeIn);
3428  ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3429
3430  llvm::FoldingSetNodeID ID;
3431  ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3432                             IndexTypeQuals);
3433
3434  void *InsertPos = nullptr;
3435  if (ConstantArrayType *ATP =
3436      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3437    return QualType(ATP, 0);
3438
3439  // If the element type isn't canonical or has qualifiers, or the array bound
3440  // is instantiation-dependent, this won't be a canonical type either, so fill
3441  // in the canonical type field.
3442  QualType Canon;
3443  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3444    SplitQualType canonSplit = getCanonicalType(EltTy).split();
3445    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3446                                 ASM, IndexTypeQuals);
3447    Canon = getQualifiedType(Canon, canonSplit.Quals);
3448
3449    // Get the new insert position for the node we care about.
3450    ConstantArrayType *NewIP =
3451      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3452    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3453  }
3454
3455  void *Mem = Allocate(
3456      ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3457      TypeAlignment);
3458  auto *New = new (Mem)
3459    ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3460  ConstantArrayTypes.InsertNode(New, InsertPos);
3461  Types.push_back(New);
3462  return QualType(New, 0);
3463}
3464
3465/// getVariableArrayDecayedType - Turns the given type, which may be
3466/// variably-modified, into the corresponding type with all the known
3467/// sizes replaced with [*].
3468QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3469  // Vastly most common case.
3470  if (!type->isVariablyModifiedType()) return type;
3471
3472  QualType result;
3473
3474  SplitQualType split = type.getSplitDesugaredType();
3475  const Type *ty = split.Ty;
3476  switch (ty->getTypeClass()) {
3477#define TYPE(Class, Base)
3478#define ABSTRACT_TYPE(Class, Base)
3479#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3480#include "clang/AST/TypeNodes.inc"
3481    llvm_unreachable("didn't desugar past all non-canonical types?");
3482
3483  // These types should never be variably-modified.
3484  case Type::Builtin:
3485  case Type::Complex:
3486  case Type::Vector:
3487  case Type::DependentVector:
3488  case Type::ExtVector:
3489  case Type::DependentSizedExtVector:
3490  case Type::ConstantMatrix:
3491  case Type::DependentSizedMatrix:
3492  case Type::DependentAddressSpace:
3493  case Type::ObjCObject:
3494  case Type::ObjCInterface:
3495  case Type::ObjCObjectPointer:
3496  case Type::Record:
3497  case Type::Enum:
3498  case Type::UnresolvedUsing:
3499  case Type::TypeOfExpr:
3500  case Type::TypeOf:
3501  case Type::Decltype:
3502  case Type::UnaryTransform:
3503  case Type::DependentName:
3504  case Type::InjectedClassName:
3505  case Type::TemplateSpecialization:
3506  case Type::DependentTemplateSpecialization:
3507  case Type::TemplateTypeParm:
3508  case Type::SubstTemplateTypeParmPack:
3509  case Type::Auto:
3510  case Type::DeducedTemplateSpecialization:
3511  case Type::PackExpansion:
3512  case Type::ExtInt:
3513  case Type::DependentExtInt:
3514    llvm_unreachable("type should never be variably-modified");
3515
3516  // These types can be variably-modified but should never need to
3517  // further decay.
3518  case Type::FunctionNoProto:
3519  case Type::FunctionProto:
3520  case Type::BlockPointer:
3521  case Type::MemberPointer:
3522  case Type::Pipe:
3523    return type;
3524
3525  // These types can be variably-modified.  All these modifications
3526  // preserve structure except as noted by comments.
3527  // TODO: if we ever care about optimizing VLAs, there are no-op
3528  // optimizations available here.
3529  case Type::Pointer:
3530    result = getPointerType(getVariableArrayDecayedType(
3531                              cast<PointerType>(ty)->getPointeeType()));
3532    break;
3533
3534  case Type::LValueReference: {
3535    const auto *lv = cast<LValueReferenceType>(ty);
3536    result = getLValueReferenceType(
3537                 getVariableArrayDecayedType(lv->getPointeeType()),
3538                                    lv->isSpelledAsLValue());
3539    break;
3540  }
3541
3542  case Type::RValueReference: {
3543    const auto *lv = cast<RValueReferenceType>(ty);
3544    result = getRValueReferenceType(
3545                 getVariableArrayDecayedType(lv->getPointeeType()));
3546    break;
3547  }
3548
3549  case Type::Atomic: {
3550    const auto *at = cast<AtomicType>(ty);
3551    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3552    break;
3553  }
3554
3555  case Type::ConstantArray: {
3556    const auto *cat = cast<ConstantArrayType>(ty);
3557    result = getConstantArrayType(
3558                 getVariableArrayDecayedType(cat->getElementType()),
3559                                  cat->getSize(),
3560                                  cat->getSizeExpr(),
3561                                  cat->getSizeModifier(),
3562                                  cat->getIndexTypeCVRQualifiers());
3563    break;
3564  }
3565
3566  case Type::DependentSizedArray: {
3567    const auto *dat = cast<DependentSizedArrayType>(ty);
3568    result = getDependentSizedArrayType(
3569                 getVariableArrayDecayedType(dat->getElementType()),
3570                                        dat->getSizeExpr(),
3571                                        dat->getSizeModifier(),
3572                                        dat->getIndexTypeCVRQualifiers(),
3573                                        dat->getBracketsRange());
3574    break;
3575  }
3576
3577  // Turn incomplete types into [*] types.
3578  case Type::IncompleteArray: {
3579    const auto *iat = cast<IncompleteArrayType>(ty);
3580    result = getVariableArrayType(
3581                 getVariableArrayDecayedType(iat->getElementType()),
3582                                  /*size*/ nullptr,
3583                                  ArrayType::Normal,
3584                                  iat->getIndexTypeCVRQualifiers(),
3585                                  SourceRange());
3586    break;
3587  }
3588
3589  // Turn VLA types into [*] types.
3590  case Type::VariableArray: {
3591    const auto *vat = cast<VariableArrayType>(ty);
3592    result = getVariableArrayType(
3593                 getVariableArrayDecayedType(vat->getElementType()),
3594                                  /*size*/ nullptr,
3595                                  ArrayType::Star,
3596                                  vat->getIndexTypeCVRQualifiers(),
3597                                  vat->getBracketsRange());
3598    break;
3599  }
3600  }
3601
3602  // Apply the top-level qualifiers from the original.
3603  return getQualifiedType(result, split.Quals);
3604}
3605
3606/// getVariableArrayType - Returns a non-unique reference to the type for a
3607/// variable array of the specified element type.
3608QualType ASTContext::getVariableArrayType(QualType EltTy,
3609                                          Expr *NumElts,
3610                                          ArrayType::ArraySizeModifier ASM,
3611                                          unsigned IndexTypeQuals,
3612                                          SourceRange Brackets) const {
3613  // Since we don't unique expressions, it isn't possible to unique VLA's
3614  // that have an expression provided for their size.
3615  QualType Canon;
3616
3617  // Be sure to pull qualifiers off the element type.
3618  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3619    SplitQualType canonSplit = getCanonicalType(EltTy).split();
3620    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3621                                 IndexTypeQuals, Brackets);
3622    Canon = getQualifiedType(Canon, canonSplit.Quals);
3623  }
3624
3625  auto *New = new (*this, TypeAlignment)
3626    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3627
3628  VariableArrayTypes.push_back(New);
3629  Types.push_back(New);
3630  return QualType(New, 0);
3631}
3632
3633/// getDependentSizedArrayType - Returns a non-unique reference to
3634/// the type for a dependently-sized array of the specified element
3635/// type.
3636QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3637                                                Expr *numElements,
3638                                                ArrayType::ArraySizeModifier ASM,
3639                                                unsigned elementTypeQuals,
3640                                                SourceRange brackets) const {
3641  assert((!numElements || numElements->isTypeDependent() ||
3642          numElements->isValueDependent()) &&
3643         "Size must be type- or value-dependent!");
3644
3645  // Dependently-sized array types that do not have a specified number
3646  // of elements will have their sizes deduced from a dependent
3647  // initializer.  We do no canonicalization here at all, which is okay
3648  // because they can't be used in most locations.
3649  if (!numElements) {
3650    auto *newType
3651      = new (*this, TypeAlignment)
3652          DependentSizedArrayType(*this, elementType, QualType(),
3653                                  numElements, ASM, elementTypeQuals,
3654                                  brackets);
3655    Types.push_back(newType);
3656    return QualType(newType, 0);
3657  }
3658
3659  // Otherwise, we actually build a new type every time, but we
3660  // also build a canonical type.
3661
3662  SplitQualType canonElementType = getCanonicalType(elementType).split();
3663
3664  void *insertPos = nullptr;
3665  llvm::FoldingSetNodeID ID;
3666  DependentSizedArrayType::Profile(ID, *this,
3667                                   QualType(canonElementType.Ty, 0),
3668                                   ASM, elementTypeQuals, numElements);
3669
3670  // Look for an existing type with these properties.
3671  DependentSizedArrayType *canonTy =
3672    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3673
3674  // If we don't have one, build one.
3675  if (!canonTy) {
3676    canonTy = new (*this, TypeAlignment)
3677      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3678                              QualType(), numElements, ASM, elementTypeQuals,
3679                              brackets);
3680    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3681    Types.push_back(canonTy);
3682  }
3683
3684  // Apply qualifiers from the element type to the array.
3685  QualType canon = getQualifiedType(QualType(canonTy,0),
3686                                    canonElementType.Quals);
3687
3688  // If we didn't need extra canonicalization for the element type or the size
3689  // expression, then just use that as our result.
3690  if (QualType(canonElementType.Ty, 0) == elementType &&
3691      canonTy->getSizeExpr() == numElements)
3692    return canon;
3693
3694  // Otherwise, we need to build a type which follows the spelling
3695  // of the element type.
3696  auto *sugaredType
3697    = new (*this, TypeAlignment)
3698        DependentSizedArrayType(*this, elementType, canon, numElements,
3699                                ASM, elementTypeQuals, brackets);
3700  Types.push_back(sugaredType);
3701  return QualType(sugaredType, 0);
3702}
3703
3704QualType ASTContext::getIncompleteArrayType(QualType elementType,
3705                                            ArrayType::ArraySizeModifier ASM,
3706                                            unsigned elementTypeQuals) const {
3707  llvm::FoldingSetNodeID ID;
3708  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3709
3710  void *insertPos = nullptr;
3711  if (IncompleteArrayType *iat =
3712       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3713    return QualType(iat, 0);
3714
3715  // If the element type isn't canonical, this won't be a canonical type
3716  // either, so fill in the canonical type field.  We also have to pull
3717  // qualifiers off the element type.
3718  QualType canon;
3719
3720  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3721    SplitQualType canonSplit = getCanonicalType(elementType).split();
3722    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3723                                   ASM, elementTypeQuals);
3724    canon = getQualifiedType(canon, canonSplit.Quals);
3725
3726    // Get the new insert position for the node we care about.
3727    IncompleteArrayType *existing =
3728      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3729    assert(!existing && "Shouldn't be in the map!"); (void) existing;
3730  }
3731
3732  auto *newType = new (*this, TypeAlignment)
3733    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3734
3735  IncompleteArrayTypes.InsertNode(newType, insertPos);
3736  Types.push_back(newType);
3737  return QualType(newType, 0);
3738}
3739
3740ASTContext::BuiltinVectorTypeInfo
3741ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3742#define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3743  {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3744   NUMVECTORS};
3745
3746#define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3747  {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3748
3749  switch (Ty->getKind()) {
3750  default:
3751    llvm_unreachable("Unsupported builtin vector type");
3752  case BuiltinType::SveInt8:
3753    return SVE_INT_ELTTY(8, 16, true, 1);
3754  case BuiltinType::SveUint8:
3755    return SVE_INT_ELTTY(8, 16, false, 1);
3756  case BuiltinType::SveInt8x2:
3757    return SVE_INT_ELTTY(8, 16, true, 2);
3758  case BuiltinType::SveUint8x2:
3759    return SVE_INT_ELTTY(8, 16, false, 2);
3760  case BuiltinType::SveInt8x3:
3761    return SVE_INT_ELTTY(8, 16, true, 3);
3762  case BuiltinType::SveUint8x3:
3763    return SVE_INT_ELTTY(8, 16, false, 3);
3764  case BuiltinType::SveInt8x4:
3765    return SVE_INT_ELTTY(8, 16, true, 4);
3766  case BuiltinType::SveUint8x4:
3767    return SVE_INT_ELTTY(8, 16, false, 4);
3768  case BuiltinType::SveInt16:
3769    return SVE_INT_ELTTY(16, 8, true, 1);
3770  case BuiltinType::SveUint16:
3771    return SVE_INT_ELTTY(16, 8, false, 1);
3772  case BuiltinType::SveInt16x2:
3773    return SVE_INT_ELTTY(16, 8, true, 2);
3774  case BuiltinType::SveUint16x2:
3775    return SVE_INT_ELTTY(16, 8, false, 2);
3776  case BuiltinType::SveInt16x3:
3777    return SVE_INT_ELTTY(16, 8, true, 3);
3778  case BuiltinType::SveUint16x3:
3779    return SVE_INT_ELTTY(16, 8, false, 3);
3780  case BuiltinType::SveInt16x4:
3781    return SVE_INT_ELTTY(16, 8, true, 4);
3782  case BuiltinType::SveUint16x4:
3783    return SVE_INT_ELTTY(16, 8, false, 4);
3784  case BuiltinType::SveInt32:
3785    return SVE_INT_ELTTY(32, 4, true, 1);
3786  case BuiltinType::SveUint32:
3787    return SVE_INT_ELTTY(32, 4, false, 1);
3788  case BuiltinType::SveInt32x2:
3789    return SVE_INT_ELTTY(32, 4, true, 2);
3790  case BuiltinType::SveUint32x2:
3791    return SVE_INT_ELTTY(32, 4, false, 2);
3792  case BuiltinType::SveInt32x3:
3793    return SVE_INT_ELTTY(32, 4, true, 3);
3794  case BuiltinType::SveUint32x3:
3795    return SVE_INT_ELTTY(32, 4, false, 3);
3796  case BuiltinType::SveInt32x4:
3797    return SVE_INT_ELTTY(32, 4, true, 4);
3798  case BuiltinType::SveUint32x4:
3799    return SVE_INT_ELTTY(32, 4, false, 4);
3800  case BuiltinType::SveInt64:
3801    return SVE_INT_ELTTY(64, 2, true, 1);
3802  case BuiltinType::SveUint64:
3803    return SVE_INT_ELTTY(64, 2, false, 1);
3804  case BuiltinType::SveInt64x2:
3805    return SVE_INT_ELTTY(64, 2, true, 2);
3806  case BuiltinType::SveUint64x2:
3807    return SVE_INT_ELTTY(64, 2, false, 2);
3808  case BuiltinType::SveInt64x3:
3809    return SVE_INT_ELTTY(64, 2, true, 3);
3810  case BuiltinType::SveUint64x3:
3811    return SVE_INT_ELTTY(64, 2, false, 3);
3812  case BuiltinType::SveInt64x4:
3813    return SVE_INT_ELTTY(64, 2, true, 4);
3814  case BuiltinType::SveUint64x4:
3815    return SVE_INT_ELTTY(64, 2, false, 4);
3816  case BuiltinType::SveBool:
3817    return SVE_ELTTY(BoolTy, 16, 1);
3818  case BuiltinType::SveFloat16:
3819    return SVE_ELTTY(HalfTy, 8, 1);
3820  case BuiltinType::SveFloat16x2:
3821    return SVE_ELTTY(HalfTy, 8, 2);
3822  case BuiltinType::SveFloat16x3:
3823    return SVE_ELTTY(HalfTy, 8, 3);
3824  case BuiltinType::SveFloat16x4:
3825    return SVE_ELTTY(HalfTy, 8, 4);
3826  case BuiltinType::SveFloat32:
3827    return SVE_ELTTY(FloatTy, 4, 1);
3828  case BuiltinType::SveFloat32x2:
3829    return SVE_ELTTY(FloatTy, 4, 2);
3830  case BuiltinType::SveFloat32x3:
3831    return SVE_ELTTY(FloatTy, 4, 3);
3832  case BuiltinType::SveFloat32x4:
3833    return SVE_ELTTY(FloatTy, 4, 4);
3834  case BuiltinType::SveFloat64:
3835    return SVE_ELTTY(DoubleTy, 2, 1);
3836  case BuiltinType::SveFloat64x2:
3837    return SVE_ELTTY(DoubleTy, 2, 2);
3838  case BuiltinType::SveFloat64x3:
3839    return SVE_ELTTY(DoubleTy, 2, 3);
3840  case BuiltinType::SveFloat64x4:
3841    return SVE_ELTTY(DoubleTy, 2, 4);
3842  case BuiltinType::SveBFloat16:
3843    return SVE_ELTTY(BFloat16Ty, 8, 1);
3844  case BuiltinType::SveBFloat16x2:
3845    return SVE_ELTTY(BFloat16Ty, 8, 2);
3846  case BuiltinType::SveBFloat16x3:
3847    return SVE_ELTTY(BFloat16Ty, 8, 3);
3848  case BuiltinType::SveBFloat16x4:
3849    return SVE_ELTTY(BFloat16Ty, 8, 4);
3850#define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3851                            IsSigned)                                          \
3852  case BuiltinType::Id:                                                        \
3853    return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3854            llvm::ElementCount::getScalable(NumEls), NF};
3855#define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3856  case BuiltinType::Id:                                                        \
3857    return {ElBits == 16 ? HalfTy : (ElBits == 32 ? FloatTy : DoubleTy),       \
3858            llvm::ElementCount::getScalable(NumEls), NF};
3859#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3860  case BuiltinType::Id:                                                        \
3861    return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3862#include "clang/Basic/RISCVVTypes.def"
3863  }
3864}
3865
3866/// getScalableVectorType - Return the unique reference to a scalable vector
3867/// type of the specified element type and size. VectorType must be a built-in
3868/// type.
3869QualType ASTContext::getScalableVectorType(QualType EltTy,
3870                                           unsigned NumElts) const {
3871  if (Target->hasAArch64SVETypes()) {
3872    uint64_t EltTySize = getTypeSize(EltTy);
3873#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3874                        IsSigned, IsFP, IsBF)                                  \
3875  if (!EltTy->isBooleanType() &&                                               \
3876      ((EltTy->hasIntegerRepresentation() &&                                   \
3877        EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3878       (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3879        IsFP && !IsBF) ||                                                      \
3880       (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3881        IsBF && !IsFP)) &&                                                     \
3882      EltTySize == ElBits && NumElts == NumEls) {                              \
3883    return SingletonId;                                                        \
3884  }
3885#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3886  if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3887    return SingletonId;
3888#include "clang/Basic/AArch64SVEACLETypes.def"
3889  } else if (Target->hasRISCVVTypes()) {
3890    uint64_t EltTySize = getTypeSize(EltTy);
3891#define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3892                        IsFP)                                                  \
3893    if (!EltTy->isBooleanType() &&                                             \
3894        ((EltTy->hasIntegerRepresentation() &&                                 \
3895          EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3896         (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3897        EltTySize == ElBits && NumElts == NumEls)                              \
3898      return SingletonId;
3899#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3900    if (EltTy->isBooleanType() && NumElts == NumEls)                           \
3901      return SingletonId;
3902#include "clang/Basic/RISCVVTypes.def"
3903  }
3904  return QualType();
3905}
3906
3907/// getVectorType - Return the unique reference to a vector type of
3908/// the specified element type and size. VectorType must be a built-in type.
3909QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3910                                   VectorType::VectorKind VecKind) const {
3911  assert(vecType->isBuiltinType());
3912
3913  // Check if we've already instantiated a vector of this type.
3914  llvm::FoldingSetNodeID ID;
3915  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3916
3917  void *InsertPos = nullptr;
3918  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3919    return QualType(VTP, 0);
3920
3921  // If the element type isn't canonical, this won't be a canonical type either,
3922  // so fill in the canonical type field.
3923  QualType Canonical;
3924  if (!vecType.isCanonical()) {
3925    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3926
3927    // Get the new insert position for the node we care about.
3928    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3929    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3930  }
3931  auto *New = new (*this, TypeAlignment)
3932    VectorType(vecType, NumElts, Canonical, VecKind);
3933  VectorTypes.InsertNode(New, InsertPos);
3934  Types.push_back(New);
3935  return QualType(New, 0);
3936}
3937
3938QualType
3939ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3940                                   SourceLocation AttrLoc,
3941                                   VectorType::VectorKind VecKind) const {
3942  llvm::FoldingSetNodeID ID;
3943  DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3944                               VecKind);
3945  void *InsertPos = nullptr;
3946  DependentVectorType *Canon =
3947      DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3948  DependentVectorType *New;
3949
3950  if (Canon) {
3951    New = new (*this, TypeAlignment) DependentVectorType(
3952        *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3953  } else {
3954    QualType CanonVecTy = getCanonicalType(VecType);
3955    if (CanonVecTy == VecType) {
3956      New = new (*this, TypeAlignment) DependentVectorType(
3957          *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3958
3959      DependentVectorType *CanonCheck =
3960          DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3961      assert(!CanonCheck &&
3962             "Dependent-sized vector_size canonical type broken");
3963      (void)CanonCheck;
3964      DependentVectorTypes.InsertNode(New, InsertPos);
3965    } else {
3966      QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
3967                                                SourceLocation(), VecKind);
3968      New = new (*this, TypeAlignment) DependentVectorType(
3969          *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
3970    }
3971  }
3972
3973  Types.push_back(New);
3974  return QualType(New, 0);
3975}
3976
3977/// getExtVectorType - Return the unique reference to an extended vector type of
3978/// the specified element type and size. VectorType must be a built-in type.
3979QualType
3980ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3981  assert(vecType->isBuiltinType() || vecType->isDependentType());
3982
3983  // Check if we've already instantiated a vector of this type.
3984  llvm::FoldingSetNodeID ID;
3985  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3986                      VectorType::GenericVector);
3987  void *InsertPos = nullptr;
3988  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3989    return QualType(VTP, 0);
3990
3991  // If the element type isn't canonical, this won't be a canonical type either,
3992  // so fill in the canonical type field.
3993  QualType Canonical;
3994  if (!vecType.isCanonical()) {
3995    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3996
3997    // Get the new insert position for the node we care about.
3998    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3999    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4000  }
4001  auto *New = new (*this, TypeAlignment)
4002    ExtVectorType(vecType, NumElts, Canonical);
4003  VectorTypes.InsertNode(New, InsertPos);
4004  Types.push_back(New);
4005  return QualType(New, 0);
4006}
4007
4008QualType
4009ASTContext::getDependentSizedExtVectorType(QualType vecType,
4010                                           Expr *SizeExpr,
4011                                           SourceLocation AttrLoc) const {
4012  llvm::FoldingSetNodeID ID;
4013  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4014                                       SizeExpr);
4015
4016  void *InsertPos = nullptr;
4017  DependentSizedExtVectorType *Canon
4018    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4019  DependentSizedExtVectorType *New;
4020  if (Canon) {
4021    // We already have a canonical version of this array type; use it as
4022    // the canonical type for a newly-built type.
4023    New = new (*this, TypeAlignment)
4024      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4025                                  SizeExpr, AttrLoc);
4026  } else {
4027    QualType CanonVecTy = getCanonicalType(vecType);
4028    if (CanonVecTy == vecType) {
4029      New = new (*this, TypeAlignment)
4030        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4031                                    AttrLoc);
4032
4033      DependentSizedExtVectorType *CanonCheck
4034        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4035      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4036      (void)CanonCheck;
4037      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4038    } else {
4039      QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4040                                                           SourceLocation());
4041      New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4042          *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4043    }
4044  }
4045
4046  Types.push_back(New);
4047  return QualType(New, 0);
4048}
4049
4050QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4051                                           unsigned NumColumns) const {
4052  llvm::FoldingSetNodeID ID;
4053  ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4054                              Type::ConstantMatrix);
4055
4056  assert(MatrixType::isValidElementType(ElementTy) &&
4057         "need a valid element type");
4058  assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4059         ConstantMatrixType::isDimensionValid(NumColumns) &&
4060         "need valid matrix dimensions");
4061  void *InsertPos = nullptr;
4062  if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4063    return QualType(MTP, 0);
4064
4065  QualType Canonical;
4066  if (!ElementTy.isCanonical()) {
4067    Canonical =
4068        getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4069
4070    ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4071    assert(!NewIP && "Matrix type shouldn't already exist in the map");
4072    (void)NewIP;
4073  }
4074
4075  auto *New = new (*this, TypeAlignment)
4076      ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4077  MatrixTypes.InsertNode(New, InsertPos);
4078  Types.push_back(New);
4079  return QualType(New, 0);
4080}
4081
4082QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4083                                                 Expr *RowExpr,
4084                                                 Expr *ColumnExpr,
4085                                                 SourceLocation AttrLoc) const {
4086  QualType CanonElementTy = getCanonicalType(ElementTy);
4087  llvm::FoldingSetNodeID ID;
4088  DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4089                                    ColumnExpr);
4090
4091  void *InsertPos = nullptr;
4092  DependentSizedMatrixType *Canon =
4093      DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4094
4095  if (!Canon) {
4096    Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4097        *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4098#ifndef NDEBUG
4099    DependentSizedMatrixType *CanonCheck =
4100        DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4101    assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4102#endif
4103    DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4104    Types.push_back(Canon);
4105  }
4106
4107  // Already have a canonical version of the matrix type
4108  //
4109  // If it exactly matches the requested type, use it directly.
4110  if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4111      Canon->getRowExpr() == ColumnExpr)
4112    return QualType(Canon, 0);
4113
4114  // Use Canon as the canonical type for newly-built type.
4115  DependentSizedMatrixType *New = new (*this, TypeAlignment)
4116      DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4117                               ColumnExpr, AttrLoc);
4118  Types.push_back(New);
4119  return QualType(New, 0);
4120}
4121
4122QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4123                                                  Expr *AddrSpaceExpr,
4124                                                  SourceLocation AttrLoc) const {
4125  assert(AddrSpaceExpr->isInstantiationDependent());
4126
4127  QualType canonPointeeType = getCanonicalType(PointeeType);
4128
4129  void *insertPos = nullptr;
4130  llvm::FoldingSetNodeID ID;
4131  DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4132                                     AddrSpaceExpr);
4133
4134  DependentAddressSpaceType *canonTy =
4135    DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4136
4137  if (!canonTy) {
4138    canonTy = new (*this, TypeAlignment)
4139      DependentAddressSpaceType(*this, canonPointeeType,
4140                                QualType(), AddrSpaceExpr, AttrLoc);
4141    DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4142    Types.push_back(canonTy);
4143  }
4144
4145  if (canonPointeeType == PointeeType &&
4146      canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4147    return QualType(canonTy, 0);
4148
4149  auto *sugaredType
4150    = new (*this, TypeAlignment)
4151        DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4152                                  AddrSpaceExpr, AttrLoc);
4153  Types.push_back(sugaredType);
4154  return QualType(sugaredType, 0);
4155}
4156
4157/// Determine whether \p T is canonical as the result type of a function.
4158static bool isCanonicalResultType(QualType T) {
4159  return T.isCanonical() &&
4160         (T.getObjCLifetime() == Qualifiers::OCL_None ||
4161          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4162}
4163
4164/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4165QualType
4166ASTContext::getFunctionNoProtoType(QualType ResultTy,
4167                                   const FunctionType::ExtInfo &Info) const {
4168  // Unique functions, to guarantee there is only one function of a particular
4169  // structure.
4170  llvm::FoldingSetNodeID ID;
4171  FunctionNoProtoType::Profile(ID, ResultTy, Info);
4172
4173  void *InsertPos = nullptr;
4174  if (FunctionNoProtoType *FT =
4175        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4176    return QualType(FT, 0);
4177
4178  QualType Canonical;
4179  if (!isCanonicalResultType(ResultTy)) {
4180    Canonical =
4181      getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4182
4183    // Get the new insert position for the node we care about.
4184    FunctionNoProtoType *NewIP =
4185      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4186    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4187  }
4188
4189  auto *New = new (*this, TypeAlignment)
4190    FunctionNoProtoType(ResultTy, Canonical, Info);
4191  Types.push_back(New);
4192  FunctionNoProtoTypes.InsertNode(New, InsertPos);
4193  return QualType(New, 0);
4194}
4195
4196CanQualType
4197ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4198  CanQualType CanResultType = getCanonicalType(ResultType);
4199
4200  // Canonical result types do not have ARC lifetime qualifiers.
4201  if (CanResultType.getQualifiers().hasObjCLifetime()) {
4202    Qualifiers Qs = CanResultType.getQualifiers();
4203    Qs.removeObjCLifetime();
4204    return CanQualType::CreateUnsafe(
4205             getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4206  }
4207
4208  return CanResultType;
4209}
4210
4211static bool isCanonicalExceptionSpecification(
4212    const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4213  if (ESI.Type == EST_None)
4214    return true;
4215  if (!NoexceptInType)
4216    return false;
4217
4218  // C++17 onwards: exception specification is part of the type, as a simple
4219  // boolean "can this function type throw".
4220  if (ESI.Type == EST_BasicNoexcept)
4221    return true;
4222
4223  // A noexcept(expr) specification is (possibly) canonical if expr is
4224  // value-dependent.
4225  if (ESI.Type == EST_DependentNoexcept)
4226    return true;
4227
4228  // A dynamic exception specification is canonical if it only contains pack
4229  // expansions (so we can't tell whether it's non-throwing) and all its
4230  // contained types are canonical.
4231  if (ESI.Type == EST_Dynamic) {
4232    bool AnyPackExpansions = false;
4233    for (QualType ET : ESI.Exceptions) {
4234      if (!ET.isCanonical())
4235        return false;
4236      if (ET->getAs<PackExpansionType>())
4237        AnyPackExpansions = true;
4238    }
4239    return AnyPackExpansions;
4240  }
4241
4242  return false;
4243}
4244
4245QualType ASTContext::getFunctionTypeInternal(
4246    QualType ResultTy, ArrayRef<QualType> ArgArray,
4247    const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4248  size_t NumArgs = ArgArray.size();
4249
4250  // Unique functions, to guarantee there is only one function of a particular
4251  // structure.
4252  llvm::FoldingSetNodeID ID;
4253  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4254                             *this, true);
4255
4256  QualType Canonical;
4257  bool Unique = false;
4258
4259  void *InsertPos = nullptr;
4260  if (FunctionProtoType *FPT =
4261        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4262    QualType Existing = QualType(FPT, 0);
4263
4264    // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4265    // it so long as our exception specification doesn't contain a dependent
4266    // noexcept expression, or we're just looking for a canonical type.
4267    // Otherwise, we're going to need to create a type
4268    // sugar node to hold the concrete expression.
4269    if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4270        EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4271      return Existing;
4272
4273    // We need a new type sugar node for this one, to hold the new noexcept
4274    // expression. We do no canonicalization here, but that's OK since we don't
4275    // expect to see the same noexcept expression much more than once.
4276    Canonical = getCanonicalType(Existing);
4277    Unique = true;
4278  }
4279
4280  bool NoexceptInType = getLangOpts().CPlusPlus17;
4281  bool IsCanonicalExceptionSpec =
4282      isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4283
4284  // Determine whether the type being created is already canonical or not.
4285  bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4286                     isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4287  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4288    if (!ArgArray[i].isCanonicalAsParam())
4289      isCanonical = false;
4290
4291  if (OnlyWantCanonical)
4292    assert(isCanonical &&
4293           "given non-canonical parameters constructing canonical type");
4294
4295  // If this type isn't canonical, get the canonical version of it if we don't
4296  // already have it. The exception spec is only partially part of the
4297  // canonical type, and only in C++17 onwards.
4298  if (!isCanonical && Canonical.isNull()) {
4299    SmallVector<QualType, 16> CanonicalArgs;
4300    CanonicalArgs.reserve(NumArgs);
4301    for (unsigned i = 0; i != NumArgs; ++i)
4302      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4303
4304    llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4305    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4306    CanonicalEPI.HasTrailingReturn = false;
4307
4308    if (IsCanonicalExceptionSpec) {
4309      // Exception spec is already OK.
4310    } else if (NoexceptInType) {
4311      switch (EPI.ExceptionSpec.Type) {
4312      case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4313        // We don't know yet. It shouldn't matter what we pick here; no-one
4314        // should ever look at this.
4315        LLVM_FALLTHROUGH;
4316      case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4317        CanonicalEPI.ExceptionSpec.Type = EST_None;
4318        break;
4319
4320        // A dynamic exception specification is almost always "not noexcept",
4321        // with the exception that a pack expansion might expand to no types.
4322      case EST_Dynamic: {
4323        bool AnyPacks = false;
4324        for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4325          if (ET->getAs<PackExpansionType>())
4326            AnyPacks = true;
4327          ExceptionTypeStorage.push_back(getCanonicalType(ET));
4328        }
4329        if (!AnyPacks)
4330          CanonicalEPI.ExceptionSpec.Type = EST_None;
4331        else {
4332          CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4333          CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4334        }
4335        break;
4336      }
4337
4338      case EST_DynamicNone:
4339      case EST_BasicNoexcept:
4340      case EST_NoexceptTrue:
4341      case EST_NoThrow:
4342        CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4343        break;
4344
4345      case EST_DependentNoexcept:
4346        llvm_unreachable("dependent noexcept is already canonical");
4347      }
4348    } else {
4349      CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4350    }
4351
4352    // Adjust the canonical function result type.
4353    CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4354    Canonical =
4355        getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4356
4357    // Get the new insert position for the node we care about.
4358    FunctionProtoType *NewIP =
4359      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4360    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4361  }
4362
4363  // Compute the needed size to hold this FunctionProtoType and the
4364  // various trailing objects.
4365  auto ESH = FunctionProtoType::getExceptionSpecSize(
4366      EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4367  size_t Size = FunctionProtoType::totalSizeToAlloc<
4368      QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4369      FunctionType::ExceptionType, Expr *, FunctionDecl *,
4370      FunctionProtoType::ExtParameterInfo, Qualifiers>(
4371      NumArgs, EPI.Variadic,
4372      FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4373      ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4374      EPI.ExtParameterInfos ? NumArgs : 0,
4375      EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4376
4377  auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4378  FunctionProtoType::ExtProtoInfo newEPI = EPI;
4379  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4380  Types.push_back(FTP);
4381  if (!Unique)
4382    FunctionProtoTypes.InsertNode(FTP, InsertPos);
4383  return QualType(FTP, 0);
4384}
4385
4386QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4387  llvm::FoldingSetNodeID ID;
4388  PipeType::Profile(ID, T, ReadOnly);
4389
4390  void *InsertPos = nullptr;
4391  if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4392    return QualType(PT, 0);
4393
4394  // If the pipe element type isn't canonical, this won't be a canonical type
4395  // either, so fill in the canonical type field.
4396  QualType Canonical;
4397  if (!T.isCanonical()) {
4398    Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4399
4400    // Get the new insert position for the node we care about.
4401    PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4402    assert(!NewIP && "Shouldn't be in the map!");
4403    (void)NewIP;
4404  }
4405  auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4406  Types.push_back(New);
4407  PipeTypes.InsertNode(New, InsertPos);
4408  return QualType(New, 0);
4409}
4410
4411QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4412  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4413  return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4414                         : Ty;
4415}
4416
4417QualType ASTContext::getReadPipeType(QualType T) const {
4418  return getPipeType(T, true);
4419}
4420
4421QualType ASTContext::getWritePipeType(QualType T) const {
4422  return getPipeType(T, false);
4423}
4424
4425QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
4426  llvm::FoldingSetNodeID ID;
4427  ExtIntType::Profile(ID, IsUnsigned, NumBits);
4428
4429  void *InsertPos = nullptr;
4430  if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4431    return QualType(EIT, 0);
4432
4433  auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
4434  ExtIntTypes.InsertNode(New, InsertPos);
4435  Types.push_back(New);
4436  return QualType(New, 0);
4437}
4438
4439QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
4440                                            Expr *NumBitsExpr) const {
4441  assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4442  llvm::FoldingSetNodeID ID;
4443  DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4444
4445  void *InsertPos = nullptr;
4446  if (DependentExtIntType *Existing =
4447          DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4448    return QualType(Existing, 0);
4449
4450  auto *New = new (*this, TypeAlignment)
4451      DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
4452  DependentExtIntTypes.InsertNode(New, InsertPos);
4453
4454  Types.push_back(New);
4455  return QualType(New, 0);
4456}
4457
4458#ifndef NDEBUG
4459static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4460  if (!isa<CXXRecordDecl>(D)) return false;
4461  const auto *RD = cast<CXXRecordDecl>(D);
4462  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4463    return true;
4464  if (RD->getDescribedClassTemplate() &&
4465      !isa<ClassTemplateSpecializationDecl>(RD))
4466    return true;
4467  return false;
4468}
4469#endif
4470
4471/// getInjectedClassNameType - Return the unique reference to the
4472/// injected class name type for the specified templated declaration.
4473QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4474                                              QualType TST) const {
4475  assert(NeedsInjectedClassNameType(Decl));
4476  if (Decl->TypeForDecl) {
4477    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4478  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4479    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4480    Decl->TypeForDecl = PrevDecl->TypeForDecl;
4481    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4482  } else {
4483    Type *newType =
4484      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4485    Decl->TypeForDecl = newType;
4486    Types.push_back(newType);
4487  }
4488  return QualType(Decl->TypeForDecl, 0);
4489}
4490
4491/// getTypeDeclType - Return the unique reference to the type for the
4492/// specified type declaration.
4493QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4494  assert(Decl && "Passed null for Decl param");
4495  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4496
4497  if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4498    return getTypedefType(Typedef);
4499
4500  assert(!isa<TemplateTypeParmDecl>(Decl) &&
4501         "Template type parameter types are always available.");
4502
4503  if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4504    assert(Record->isFirstDecl() && "struct/union has previous declaration");
4505    assert(!NeedsInjectedClassNameType(Record));
4506    return getRecordType(Record);
4507  } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4508    assert(Enum->isFirstDecl() && "enum has previous declaration");
4509    return getEnumType(Enum);
4510  } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4511    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4512    Decl->TypeForDecl = newType;
4513    Types.push_back(newType);
4514  } else
4515    llvm_unreachable("TypeDecl without a type?");
4516
4517  return QualType(Decl->TypeForDecl, 0);
4518}
4519
4520/// getTypedefType - Return the unique reference to the type for the
4521/// specified typedef name decl.
4522QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4523                                    QualType Underlying) const {
4524  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4525
4526  if (Underlying.isNull())
4527    Underlying = Decl->getUnderlyingType();
4528  QualType Canonical = getCanonicalType(Underlying);
4529  auto *newType = new (*this, TypeAlignment)
4530      TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4531  Decl->TypeForDecl = newType;
4532  Types.push_back(newType);
4533  return QualType(newType, 0);
4534}
4535
4536QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4537  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4538
4539  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4540    if (PrevDecl->TypeForDecl)
4541      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4542
4543  auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4544  Decl->TypeForDecl = newType;
4545  Types.push_back(newType);
4546  return QualType(newType, 0);
4547}
4548
4549QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4550  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4551
4552  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4553    if (PrevDecl->TypeForDecl)
4554      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4555
4556  auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4557  Decl->TypeForDecl = newType;
4558  Types.push_back(newType);
4559  return QualType(newType, 0);
4560}
4561
4562QualType ASTContext::getAttributedType(attr::Kind attrKind,
4563                                       QualType modifiedType,
4564                                       QualType equivalentType) {
4565  llvm::FoldingSetNodeID id;
4566  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4567
4568  void *insertPos = nullptr;
4569  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4570  if (type) return QualType(type, 0);
4571
4572  QualType canon = getCanonicalType(equivalentType);
4573  type = new (*this, TypeAlignment)
4574      AttributedType(canon, attrKind, modifiedType, equivalentType);
4575
4576  Types.push_back(type);
4577  AttributedTypes.InsertNode(type, insertPos);
4578
4579  return QualType(type, 0);
4580}
4581
4582/// Retrieve a substitution-result type.
4583QualType
4584ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4585                                         QualType Replacement) const {
4586  assert(Replacement.isCanonical()
4587         && "replacement types must always be canonical");
4588
4589  llvm::FoldingSetNodeID ID;
4590  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4591  void *InsertPos = nullptr;
4592  SubstTemplateTypeParmType *SubstParm
4593    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4594
4595  if (!SubstParm) {
4596    SubstParm = new (*this, TypeAlignment)
4597      SubstTemplateTypeParmType(Parm, Replacement);
4598    Types.push_back(SubstParm);
4599    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4600  }
4601
4602  return QualType(SubstParm, 0);
4603}
4604
4605/// Retrieve a
4606QualType ASTContext::getSubstTemplateTypeParmPackType(
4607                                          const TemplateTypeParmType *Parm,
4608                                              const TemplateArgument &ArgPack) {
4609#ifndef NDEBUG
4610  for (const auto &P : ArgPack.pack_elements()) {
4611    assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4612    assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4613  }
4614#endif
4615
4616  llvm::FoldingSetNodeID ID;
4617  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4618  void *InsertPos = nullptr;
4619  if (SubstTemplateTypeParmPackType *SubstParm
4620        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4621    return QualType(SubstParm, 0);
4622
4623  QualType Canon;
4624  if (!Parm->isCanonicalUnqualified()) {
4625    Canon = getCanonicalType(QualType(Parm, 0));
4626    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4627                                             ArgPack);
4628    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4629  }
4630
4631  auto *SubstParm
4632    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4633                                                               ArgPack);
4634  Types.push_back(SubstParm);
4635  SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4636  return QualType(SubstParm, 0);
4637}
4638
4639/// Retrieve the template type parameter type for a template
4640/// parameter or parameter pack with the given depth, index, and (optionally)
4641/// name.
4642QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4643                                             bool ParameterPack,
4644                                             TemplateTypeParmDecl *TTPDecl) const {
4645  llvm::FoldingSetNodeID ID;
4646  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4647  void *InsertPos = nullptr;
4648  TemplateTypeParmType *TypeParm
4649    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4650
4651  if (TypeParm)
4652    return QualType(TypeParm, 0);
4653
4654  if (TTPDecl) {
4655    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4656    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4657
4658    TemplateTypeParmType *TypeCheck
4659      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4660    assert(!TypeCheck && "Template type parameter canonical type broken");
4661    (void)TypeCheck;
4662  } else
4663    TypeParm = new (*this, TypeAlignment)
4664      TemplateTypeParmType(Depth, Index, ParameterPack);
4665
4666  Types.push_back(TypeParm);
4667  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4668
4669  return QualType(TypeParm, 0);
4670}
4671
4672TypeSourceInfo *
4673ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4674                                              SourceLocation NameLoc,
4675                                        const TemplateArgumentListInfo &Args,
4676                                              QualType Underlying) const {
4677  assert(!Name.getAsDependentTemplateName() &&
4678         "No dependent template names here!");
4679  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4680
4681  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4682  TemplateSpecializationTypeLoc TL =
4683      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4684  TL.setTemplateKeywordLoc(SourceLocation());
4685  TL.setTemplateNameLoc(NameLoc);
4686  TL.setLAngleLoc(Args.getLAngleLoc());
4687  TL.setRAngleLoc(Args.getRAngleLoc());
4688  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4689    TL.setArgLocInfo(i, Args[i].getLocInfo());
4690  return DI;
4691}
4692
4693QualType
4694ASTContext::getTemplateSpecializationType(TemplateName Template,
4695                                          const TemplateArgumentListInfo &Args,
4696                                          QualType Underlying) const {
4697  assert(!Template.getAsDependentTemplateName() &&
4698         "No dependent template names here!");
4699
4700  SmallVector<TemplateArgument, 4> ArgVec;
4701  ArgVec.reserve(Args.size());
4702  for (const TemplateArgumentLoc &Arg : Args.arguments())
4703    ArgVec.push_back(Arg.getArgument());
4704
4705  return getTemplateSpecializationType(Template, ArgVec, Underlying);
4706}
4707
4708#ifndef NDEBUG
4709static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4710  for (const TemplateArgument &Arg : Args)
4711    if (Arg.isPackExpansion())
4712      return true;
4713
4714  return true;
4715}
4716#endif
4717
4718QualType
4719ASTContext::getTemplateSpecializationType(TemplateName Template,
4720                                          ArrayRef<TemplateArgument> Args,
4721                                          QualType Underlying) const {
4722  assert(!Template.getAsDependentTemplateName() &&
4723         "No dependent template names here!");
4724  // Look through qualified template names.
4725  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4726    Template = TemplateName(QTN->getTemplateDecl());
4727
4728  bool IsTypeAlias =
4729    Template.getAsTemplateDecl() &&
4730    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4731  QualType CanonType;
4732  if (!Underlying.isNull())
4733    CanonType = getCanonicalType(Underlying);
4734  else {
4735    // We can get here with an alias template when the specialization contains
4736    // a pack expansion that does not match up with a parameter pack.
4737    assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4738           "Caller must compute aliased type");
4739    IsTypeAlias = false;
4740    CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4741  }
4742
4743  // Allocate the (non-canonical) template specialization type, but don't
4744  // try to unique it: these types typically have location information that
4745  // we don't unique and don't want to lose.
4746  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4747                       sizeof(TemplateArgument) * Args.size() +
4748                       (IsTypeAlias? sizeof(QualType) : 0),
4749                       TypeAlignment);
4750  auto *Spec
4751    = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4752                                         IsTypeAlias ? Underlying : QualType());
4753
4754  Types.push_back(Spec);
4755  return QualType(Spec, 0);
4756}
4757
4758QualType ASTContext::getCanonicalTemplateSpecializationType(
4759    TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4760  assert(!Template.getAsDependentTemplateName() &&
4761         "No dependent template names here!");
4762
4763  // Look through qualified template names.
4764  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4765    Template = TemplateName(QTN->getTemplateDecl());
4766
4767  // Build the canonical template specialization type.
4768  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4769  SmallVector<TemplateArgument, 4> CanonArgs;
4770  unsigned NumArgs = Args.size();
4771  CanonArgs.reserve(NumArgs);
4772  for (const TemplateArgument &Arg : Args)
4773    CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4774
4775  // Determine whether this canonical template specialization type already
4776  // exists.
4777  llvm::FoldingSetNodeID ID;
4778  TemplateSpecializationType::Profile(ID, CanonTemplate,
4779                                      CanonArgs, *this);
4780
4781  void *InsertPos = nullptr;
4782  TemplateSpecializationType *Spec
4783    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4784
4785  if (!Spec) {
4786    // Allocate a new canonical template specialization type.
4787    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4788                          sizeof(TemplateArgument) * NumArgs),
4789                         TypeAlignment);
4790    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4791                                                CanonArgs,
4792                                                QualType(), QualType());
4793    Types.push_back(Spec);
4794    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4795  }
4796
4797  assert(Spec->isDependentType() &&
4798         "Non-dependent template-id type must have a canonical type");
4799  return QualType(Spec, 0);
4800}
4801
4802QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4803                                       NestedNameSpecifier *NNS,
4804                                       QualType NamedType,
4805                                       TagDecl *OwnedTagDecl) const {
4806  llvm::FoldingSetNodeID ID;
4807  ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4808
4809  void *InsertPos = nullptr;
4810  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4811  if (T)
4812    return QualType(T, 0);
4813
4814  QualType Canon = NamedType;
4815  if (!Canon.isCanonical()) {
4816    Canon = getCanonicalType(NamedType);
4817    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4818    assert(!CheckT && "Elaborated canonical type broken");
4819    (void)CheckT;
4820  }
4821
4822  void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4823                       TypeAlignment);
4824  T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4825
4826  Types.push_back(T);
4827  ElaboratedTypes.InsertNode(T, InsertPos);
4828  return QualType(T, 0);
4829}
4830
4831QualType
4832ASTContext::getParenType(QualType InnerType) const {
4833  llvm::FoldingSetNodeID ID;
4834  ParenType::Profile(ID, InnerType);
4835
4836  void *InsertPos = nullptr;
4837  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4838  if (T)
4839    return QualType(T, 0);
4840
4841  QualType Canon = InnerType;
4842  if (!Canon.isCanonical()) {
4843    Canon = getCanonicalType(InnerType);
4844    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4845    assert(!CheckT && "Paren canonical type broken");
4846    (void)CheckT;
4847  }
4848
4849  T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4850  Types.push_back(T);
4851  ParenTypes.InsertNode(T, InsertPos);
4852  return QualType(T, 0);
4853}
4854
4855QualType
4856ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4857                                  const IdentifierInfo *MacroII) const {
4858  QualType Canon = UnderlyingTy;
4859  if (!Canon.isCanonical())
4860    Canon = getCanonicalType(UnderlyingTy);
4861
4862  auto *newType = new (*this, TypeAlignment)
4863      MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4864  Types.push_back(newType);
4865  return QualType(newType, 0);
4866}
4867
4868QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4869                                          NestedNameSpecifier *NNS,
4870                                          const IdentifierInfo *Name,
4871                                          QualType Canon) const {
4872  if (Canon.isNull()) {
4873    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4874    if (CanonNNS != NNS)
4875      Canon = getDependentNameType(Keyword, CanonNNS, Name);
4876  }
4877
4878  llvm::FoldingSetNodeID ID;
4879  DependentNameType::Profile(ID, Keyword, NNS, Name);
4880
4881  void *InsertPos = nullptr;
4882  DependentNameType *T
4883    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4884  if (T)
4885    return QualType(T, 0);
4886
4887  T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4888  Types.push_back(T);
4889  DependentNameTypes.InsertNode(T, InsertPos);
4890  return QualType(T, 0);
4891}
4892
4893QualType
4894ASTContext::getDependentTemplateSpecializationType(
4895                                 ElaboratedTypeKeyword Keyword,
4896                                 NestedNameSpecifier *NNS,
4897                                 const IdentifierInfo *Name,
4898                                 const TemplateArgumentListInfo &Args) const {
4899  // TODO: avoid this copy
4900  SmallVector<TemplateArgument, 16> ArgCopy;
4901  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4902    ArgCopy.push_back(Args[I].getArgument());
4903  return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4904}
4905
4906QualType
4907ASTContext::getDependentTemplateSpecializationType(
4908                                 ElaboratedTypeKeyword Keyword,
4909                                 NestedNameSpecifier *NNS,
4910                                 const IdentifierInfo *Name,
4911                                 ArrayRef<TemplateArgument> Args) const {
4912  assert((!NNS || NNS->isDependent()) &&
4913         "nested-name-specifier must be dependent");
4914
4915  llvm::FoldingSetNodeID ID;
4916  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4917                                               Name, Args);
4918
4919  void *InsertPos = nullptr;
4920  DependentTemplateSpecializationType *T
4921    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4922  if (T)
4923    return QualType(T, 0);
4924
4925  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4926
4927  ElaboratedTypeKeyword CanonKeyword = Keyword;
4928  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4929
4930  bool AnyNonCanonArgs = false;
4931  unsigned NumArgs = Args.size();
4932  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4933  for (unsigned I = 0; I != NumArgs; ++I) {
4934    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4935    if (!CanonArgs[I].structurallyEquals(Args[I]))
4936      AnyNonCanonArgs = true;
4937  }
4938
4939  QualType Canon;
4940  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4941    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4942                                                   Name,
4943                                                   CanonArgs);
4944
4945    // Find the insert position again.
4946    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4947  }
4948
4949  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4950                        sizeof(TemplateArgument) * NumArgs),
4951                       TypeAlignment);
4952  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4953                                                    Name, Args, Canon);
4954  Types.push_back(T);
4955  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4956  return QualType(T, 0);
4957}
4958
4959TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4960  TemplateArgument Arg;
4961  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4962    QualType ArgType = getTypeDeclType(TTP);
4963    if (TTP->isParameterPack())
4964      ArgType = getPackExpansionType(ArgType, None);
4965
4966    Arg = TemplateArgument(ArgType);
4967  } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4968    QualType T =
4969        NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
4970    // For class NTTPs, ensure we include the 'const' so the type matches that
4971    // of a real template argument.
4972    // FIXME: It would be more faithful to model this as something like an
4973    // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
4974    if (T->isRecordType())
4975      T.addConst();
4976    Expr *E = new (*this) DeclRefExpr(
4977        *this, NTTP, /*enclosing*/ false, T,
4978        Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4979
4980    if (NTTP->isParameterPack())
4981      E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4982                                        None);
4983    Arg = TemplateArgument(E);
4984  } else {
4985    auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4986    if (TTP->isParameterPack())
4987      Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4988    else
4989      Arg = TemplateArgument(TemplateName(TTP));
4990  }
4991
4992  if (Param->isTemplateParameterPack())
4993    Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4994
4995  return Arg;
4996}
4997
4998void
4999ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5000                                    SmallVectorImpl<TemplateArgument> &Args) {
5001  Args.reserve(Args.size() + Params->size());
5002
5003  for (NamedDecl *Param : *Params)
5004    Args.push_back(getInjectedTemplateArg(Param));
5005}
5006
5007QualType ASTContext::getPackExpansionType(QualType Pattern,
5008                                          Optional<unsigned> NumExpansions,
5009                                          bool ExpectPackInType) {
5010  assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5011         "Pack expansions must expand one or more parameter packs");
5012
5013  llvm::FoldingSetNodeID ID;
5014  PackExpansionType::Profile(ID, Pattern, NumExpansions);
5015
5016  void *InsertPos = nullptr;
5017  PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5018  if (T)
5019    return QualType(T, 0);
5020
5021  QualType Canon;
5022  if (!Pattern.isCanonical()) {
5023    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5024                                 /*ExpectPackInType=*/false);
5025
5026    // Find the insert position again, in case we inserted an element into
5027    // PackExpansionTypes and invalidated our insert position.
5028    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5029  }
5030
5031  T = new (*this, TypeAlignment)
5032      PackExpansionType(Pattern, Canon, NumExpansions);
5033  Types.push_back(T);
5034  PackExpansionTypes.InsertNode(T, InsertPos);
5035  return QualType(T, 0);
5036}
5037
5038/// CmpProtocolNames - Comparison predicate for sorting protocols
5039/// alphabetically.
5040static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5041                            ObjCProtocolDecl *const *RHS) {
5042  return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5043}
5044
5045static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5046  if (Protocols.empty()) return true;
5047
5048  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5049    return false;
5050
5051  for (unsigned i = 1; i != Protocols.size(); ++i)
5052    if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5053        Protocols[i]->getCanonicalDecl() != Protocols[i])
5054      return false;
5055  return true;
5056}
5057
5058static void
5059SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5060  // Sort protocols, keyed by name.
5061  llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5062
5063  // Canonicalize.
5064  for (ObjCProtocolDecl *&P : Protocols)
5065    P = P->getCanonicalDecl();
5066
5067  // Remove duplicates.
5068  auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5069  Protocols.erase(ProtocolsEnd, Protocols.end());
5070}
5071
5072QualType ASTContext::getObjCObjectType(QualType BaseType,
5073                                       ObjCProtocolDecl * const *Protocols,
5074                                       unsigned NumProtocols) const {
5075  return getObjCObjectType(BaseType, {},
5076                           llvm::makeArrayRef(Protocols, NumProtocols),
5077                           /*isKindOf=*/false);
5078}
5079
5080QualType ASTContext::getObjCObjectType(
5081           QualType baseType,
5082           ArrayRef<QualType> typeArgs,
5083           ArrayRef<ObjCProtocolDecl *> protocols,
5084           bool isKindOf) const {
5085  // If the base type is an interface and there aren't any protocols or
5086  // type arguments to add, then the interface type will do just fine.
5087  if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5088      isa<ObjCInterfaceType>(baseType))
5089    return baseType;
5090
5091  // Look in the folding set for an existing type.
5092  llvm::FoldingSetNodeID ID;
5093  ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5094  void *InsertPos = nullptr;
5095  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5096    return QualType(QT, 0);
5097
5098  // Determine the type arguments to be used for canonicalization,
5099  // which may be explicitly specified here or written on the base
5100  // type.
5101  ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5102  if (effectiveTypeArgs.empty()) {
5103    if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5104      effectiveTypeArgs = baseObject->getTypeArgs();
5105  }
5106
5107  // Build the canonical type, which has the canonical base type and a
5108  // sorted-and-uniqued list of protocols and the type arguments
5109  // canonicalized.
5110  QualType canonical;
5111  bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
5112                                          effectiveTypeArgs.end(),
5113                                          [&](QualType type) {
5114                                            return type.isCanonical();
5115                                          });
5116  bool protocolsSorted = areSortedAndUniqued(protocols);
5117  if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5118    // Determine the canonical type arguments.
5119    ArrayRef<QualType> canonTypeArgs;
5120    SmallVector<QualType, 4> canonTypeArgsVec;
5121    if (!typeArgsAreCanonical) {
5122      canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5123      for (auto typeArg : effectiveTypeArgs)
5124        canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5125      canonTypeArgs = canonTypeArgsVec;
5126    } else {
5127      canonTypeArgs = effectiveTypeArgs;
5128    }
5129
5130    ArrayRef<ObjCProtocolDecl *> canonProtocols;
5131    SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5132    if (!protocolsSorted) {
5133      canonProtocolsVec.append(protocols.begin(), protocols.end());
5134      SortAndUniqueProtocols(canonProtocolsVec);
5135      canonProtocols = canonProtocolsVec;
5136    } else {
5137      canonProtocols = protocols;
5138    }
5139
5140    canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5141                                  canonProtocols, isKindOf);
5142
5143    // Regenerate InsertPos.
5144    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5145  }
5146
5147  unsigned size = sizeof(ObjCObjectTypeImpl);
5148  size += typeArgs.size() * sizeof(QualType);
5149  size += protocols.size() * sizeof(ObjCProtocolDecl *);
5150  void *mem = Allocate(size, TypeAlignment);
5151  auto *T =
5152    new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5153                                 isKindOf);
5154
5155  Types.push_back(T);
5156  ObjCObjectTypes.InsertNode(T, InsertPos);
5157  return QualType(T, 0);
5158}
5159
5160/// Apply Objective-C protocol qualifiers to the given type.
5161/// If this is for the canonical type of a type parameter, we can apply
5162/// protocol qualifiers on the ObjCObjectPointerType.
5163QualType
5164ASTContext::applyObjCProtocolQualifiers(QualType type,
5165                  ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5166                  bool allowOnPointerType) const {
5167  hasError = false;
5168
5169  if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5170    return getObjCTypeParamType(objT->getDecl(), protocols);
5171  }
5172
5173  // Apply protocol qualifiers to ObjCObjectPointerType.
5174  if (allowOnPointerType) {
5175    if (const auto *objPtr =
5176            dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5177      const ObjCObjectType *objT = objPtr->getObjectType();
5178      // Merge protocol lists and construct ObjCObjectType.
5179      SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5180      protocolsVec.append(objT->qual_begin(),
5181                          objT->qual_end());
5182      protocolsVec.append(protocols.begin(), protocols.end());
5183      ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5184      type = getObjCObjectType(
5185             objT->getBaseType(),
5186             objT->getTypeArgsAsWritten(),
5187             protocols,
5188             objT->isKindOfTypeAsWritten());
5189      return getObjCObjectPointerType(type);
5190    }
5191  }
5192
5193  // Apply protocol qualifiers to ObjCObjectType.
5194  if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5195    // FIXME: Check for protocols to which the class type is already
5196    // known to conform.
5197
5198    return getObjCObjectType(objT->getBaseType(),
5199                             objT->getTypeArgsAsWritten(),
5200                             protocols,
5201                             objT->isKindOfTypeAsWritten());
5202  }
5203
5204  // If the canonical type is ObjCObjectType, ...
5205  if (type->isObjCObjectType()) {
5206    // Silently overwrite any existing protocol qualifiers.
5207    // TODO: determine whether that's the right thing to do.
5208
5209    // FIXME: Check for protocols to which the class type is already
5210    // known to conform.
5211    return getObjCObjectType(type, {}, protocols, false);
5212  }
5213
5214  // id<protocol-list>
5215  if (type->isObjCIdType()) {
5216    const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5217    type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5218                                 objPtr->isKindOfType());
5219    return getObjCObjectPointerType(type);
5220  }
5221
5222  // Class<protocol-list>
5223  if (type->isObjCClassType()) {
5224    const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5225    type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5226                                 objPtr->isKindOfType());
5227    return getObjCObjectPointerType(type);
5228  }
5229
5230  hasError = true;
5231  return type;
5232}
5233
5234QualType
5235ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5236                                 ArrayRef<ObjCProtocolDecl *> protocols) const {
5237  // Look in the folding set for an existing type.
5238  llvm::FoldingSetNodeID ID;
5239  ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5240  void *InsertPos = nullptr;
5241  if (ObjCTypeParamType *TypeParam =
5242      ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5243    return QualType(TypeParam, 0);
5244
5245  // We canonicalize to the underlying type.
5246  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5247  if (!protocols.empty()) {
5248    // Apply the protocol qualifers.
5249    bool hasError;
5250    Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5251        Canonical, protocols, hasError, true /*allowOnPointerType*/));
5252    assert(!hasError && "Error when apply protocol qualifier to bound type");
5253  }
5254
5255  unsigned size = sizeof(ObjCTypeParamType);
5256  size += protocols.size() * sizeof(ObjCProtocolDecl *);
5257  void *mem = Allocate(size, TypeAlignment);
5258  auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5259
5260  Types.push_back(newType);
5261  ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5262  return QualType(newType, 0);
5263}
5264
5265void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5266                                              ObjCTypeParamDecl *New) const {
5267  New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5268  // Update TypeForDecl after updating TypeSourceInfo.
5269  auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5270  SmallVector<ObjCProtocolDecl *, 8> protocols;
5271  protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5272  QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5273  New->setTypeForDecl(UpdatedTy.getTypePtr());
5274}
5275
5276/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5277/// protocol list adopt all protocols in QT's qualified-id protocol
5278/// list.
5279bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5280                                                ObjCInterfaceDecl *IC) {
5281  if (!QT->isObjCQualifiedIdType())
5282    return false;
5283
5284  if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5285    // If both the right and left sides have qualifiers.
5286    for (auto *Proto : OPT->quals()) {
5287      if (!IC->ClassImplementsProtocol(Proto, false))
5288        return false;
5289    }
5290    return true;
5291  }
5292  return false;
5293}
5294
5295/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5296/// QT's qualified-id protocol list adopt all protocols in IDecl's list
5297/// of protocols.
5298bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5299                                                ObjCInterfaceDecl *IDecl) {
5300  if (!QT->isObjCQualifiedIdType())
5301    return false;
5302  const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5303  if (!OPT)
5304    return false;
5305  if (!IDecl->hasDefinition())
5306    return false;
5307  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5308  CollectInheritedProtocols(IDecl, InheritedProtocols);
5309  if (InheritedProtocols.empty())
5310    return false;
5311  // Check that if every protocol in list of id<plist> conforms to a protocol
5312  // of IDecl's, then bridge casting is ok.
5313  bool Conforms = false;
5314  for (auto *Proto : OPT->quals()) {
5315    Conforms = false;
5316    for (auto *PI : InheritedProtocols) {
5317      if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5318        Conforms = true;
5319        break;
5320      }
5321    }
5322    if (!Conforms)
5323      break;
5324  }
5325  if (Conforms)
5326    return true;
5327
5328  for (auto *PI : InheritedProtocols) {
5329    // If both the right and left sides have qualifiers.
5330    bool Adopts = false;
5331    for (auto *Proto : OPT->quals()) {
5332      // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5333      if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5334        break;
5335    }
5336    if (!Adopts)
5337      return false;
5338  }
5339  return true;
5340}
5341
5342/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5343/// the given object type.
5344QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5345  llvm::FoldingSetNodeID ID;
5346  ObjCObjectPointerType::Profile(ID, ObjectT);
5347
5348  void *InsertPos = nullptr;
5349  if (ObjCObjectPointerType *QT =
5350              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5351    return QualType(QT, 0);
5352
5353  // Find the canonical object type.
5354  QualType Canonical;
5355  if (!ObjectT.isCanonical()) {
5356    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5357
5358    // Regenerate InsertPos.
5359    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5360  }
5361
5362  // No match.
5363  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5364  auto *QType =
5365    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5366
5367  Types.push_back(QType);
5368  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5369  return QualType(QType, 0);
5370}
5371
5372/// getObjCInterfaceType - Return the unique reference to the type for the
5373/// specified ObjC interface decl. The list of protocols is optional.
5374QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5375                                          ObjCInterfaceDecl *PrevDecl) const {
5376  if (Decl->TypeForDecl)
5377    return QualType(Decl->TypeForDecl, 0);
5378
5379  if (PrevDecl) {
5380    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5381    Decl->TypeForDecl = PrevDecl->TypeForDecl;
5382    return QualType(PrevDecl->TypeForDecl, 0);
5383  }
5384
5385  // Prefer the definition, if there is one.
5386  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5387    Decl = Def;
5388
5389  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5390  auto *T = new (Mem) ObjCInterfaceType(Decl);
5391  Decl->TypeForDecl = T;
5392  Types.push_back(T);
5393  return QualType(T, 0);
5394}
5395
5396/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5397/// TypeOfExprType AST's (since expression's are never shared). For example,
5398/// multiple declarations that refer to "typeof(x)" all contain different
5399/// DeclRefExpr's. This doesn't effect the type checker, since it operates
5400/// on canonical type's (which are always unique).
5401QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5402  TypeOfExprType *toe;
5403  if (tofExpr->isTypeDependent()) {
5404    llvm::FoldingSetNodeID ID;
5405    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5406
5407    void *InsertPos = nullptr;
5408    DependentTypeOfExprType *Canon
5409      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5410    if (Canon) {
5411      // We already have a "canonical" version of an identical, dependent
5412      // typeof(expr) type. Use that as our canonical type.
5413      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5414                                          QualType((TypeOfExprType*)Canon, 0));
5415    } else {
5416      // Build a new, canonical typeof(expr) type.
5417      Canon
5418        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5419      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5420      toe = Canon;
5421    }
5422  } else {
5423    QualType Canonical = getCanonicalType(tofExpr->getType());
5424    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5425  }
5426  Types.push_back(toe);
5427  return QualType(toe, 0);
5428}
5429
5430/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5431/// TypeOfType nodes. The only motivation to unique these nodes would be
5432/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5433/// an issue. This doesn't affect the type checker, since it operates
5434/// on canonical types (which are always unique).
5435QualType ASTContext::getTypeOfType(QualType tofType) const {
5436  QualType Canonical = getCanonicalType(tofType);
5437  auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5438  Types.push_back(tot);
5439  return QualType(tot, 0);
5440}
5441
5442/// Unlike many "get<Type>" functions, we don't unique DecltypeType
5443/// nodes. This would never be helpful, since each such type has its own
5444/// expression, and would not give a significant memory saving, since there
5445/// is an Expr tree under each such type.
5446QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5447  DecltypeType *dt;
5448
5449  // C++11 [temp.type]p2:
5450  //   If an expression e involves a template parameter, decltype(e) denotes a
5451  //   unique dependent type. Two such decltype-specifiers refer to the same
5452  //   type only if their expressions are equivalent (14.5.6.1).
5453  if (e->isInstantiationDependent()) {
5454    llvm::FoldingSetNodeID ID;
5455    DependentDecltypeType::Profile(ID, *this, e);
5456
5457    void *InsertPos = nullptr;
5458    DependentDecltypeType *Canon
5459      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5460    if (!Canon) {
5461      // Build a new, canonical decltype(expr) type.
5462      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5463      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5464    }
5465    dt = new (*this, TypeAlignment)
5466        DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5467  } else {
5468    dt = new (*this, TypeAlignment)
5469        DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5470  }
5471  Types.push_back(dt);
5472  return QualType(dt, 0);
5473}
5474
5475/// getUnaryTransformationType - We don't unique these, since the memory
5476/// savings are minimal and these are rare.
5477QualType ASTContext::getUnaryTransformType(QualType BaseType,
5478                                           QualType UnderlyingType,
5479                                           UnaryTransformType::UTTKind Kind)
5480    const {
5481  UnaryTransformType *ut = nullptr;
5482
5483  if (BaseType->isDependentType()) {
5484    // Look in the folding set for an existing type.
5485    llvm::FoldingSetNodeID ID;
5486    DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5487
5488    void *InsertPos = nullptr;
5489    DependentUnaryTransformType *Canon
5490      = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5491
5492    if (!Canon) {
5493      // Build a new, canonical __underlying_type(type) type.
5494      Canon = new (*this, TypeAlignment)
5495             DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5496                                         Kind);
5497      DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5498    }
5499    ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5500                                                        QualType(), Kind,
5501                                                        QualType(Canon, 0));
5502  } else {
5503    QualType CanonType = getCanonicalType(UnderlyingType);
5504    ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5505                                                        UnderlyingType, Kind,
5506                                                        CanonType);
5507  }
5508  Types.push_back(ut);
5509  return QualType(ut, 0);
5510}
5511
5512/// getAutoType - Return the uniqued reference to the 'auto' type which has been
5513/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5514/// canonical deduced-but-dependent 'auto' type.
5515QualType
5516ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5517                        bool IsDependent, bool IsPack,
5518                        ConceptDecl *TypeConstraintConcept,
5519                        ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5520  assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5521  if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5522      !TypeConstraintConcept && !IsDependent)
5523    return getAutoDeductType();
5524
5525  // Look in the folding set for an existing type.
5526  void *InsertPos = nullptr;
5527  llvm::FoldingSetNodeID ID;
5528  AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5529                    TypeConstraintConcept, TypeConstraintArgs);
5530  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5531    return QualType(AT, 0);
5532
5533  void *Mem = Allocate(sizeof(AutoType) +
5534                       sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5535                       TypeAlignment);
5536  auto *AT = new (Mem) AutoType(
5537      DeducedType, Keyword,
5538      (IsDependent ? TypeDependence::DependentInstantiation
5539                   : TypeDependence::None) |
5540          (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5541      TypeConstraintConcept, TypeConstraintArgs);
5542  Types.push_back(AT);
5543  if (InsertPos)
5544    AutoTypes.InsertNode(AT, InsertPos);
5545  return QualType(AT, 0);
5546}
5547
5548/// Return the uniqued reference to the deduced template specialization type
5549/// which has been deduced to the given type, or to the canonical undeduced
5550/// such type, or the canonical deduced-but-dependent such type.
5551QualType ASTContext::getDeducedTemplateSpecializationType(
5552    TemplateName Template, QualType DeducedType, bool IsDependent) const {
5553  // Look in the folding set for an existing type.
5554  void *InsertPos = nullptr;
5555  llvm::FoldingSetNodeID ID;
5556  DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5557                                             IsDependent);
5558  if (DeducedTemplateSpecializationType *DTST =
5559          DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5560    return QualType(DTST, 0);
5561
5562  auto *DTST = new (*this, TypeAlignment)
5563      DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5564  Types.push_back(DTST);
5565  if (InsertPos)
5566    DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5567  return QualType(DTST, 0);
5568}
5569
5570/// getAtomicType - Return the uniqued reference to the atomic type for
5571/// the given value type.
5572QualType ASTContext::getAtomicType(QualType T) const {
5573  // Unique pointers, to guarantee there is only one pointer of a particular
5574  // structure.
5575  llvm::FoldingSetNodeID ID;
5576  AtomicType::Profile(ID, T);
5577
5578  void *InsertPos = nullptr;
5579  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5580    return QualType(AT, 0);
5581
5582  // If the atomic value type isn't canonical, this won't be a canonical type
5583  // either, so fill in the canonical type field.
5584  QualType Canonical;
5585  if (!T.isCanonical()) {
5586    Canonical = getAtomicType(getCanonicalType(T));
5587
5588    // Get the new insert position for the node we care about.
5589    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5590    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5591  }
5592  auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5593  Types.push_back(New);
5594  AtomicTypes.InsertNode(New, InsertPos);
5595  return QualType(New, 0);
5596}
5597
5598/// getAutoDeductType - Get type pattern for deducing against 'auto'.
5599QualType ASTContext::getAutoDeductType() const {
5600  if (AutoDeductTy.isNull())
5601    AutoDeductTy = QualType(new (*this, TypeAlignment)
5602                                AutoType(QualType(), AutoTypeKeyword::Auto,
5603                                         TypeDependence::None,
5604                                         /*concept*/ nullptr, /*args*/ {}),
5605                            0);
5606  return AutoDeductTy;
5607}
5608
5609/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5610QualType ASTContext::getAutoRRefDeductType() const {
5611  if (AutoRRefDeductTy.isNull())
5612    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5613  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5614  return AutoRRefDeductTy;
5615}
5616
5617/// getTagDeclType - Return the unique reference to the type for the
5618/// specified TagDecl (struct/union/class/enum) decl.
5619QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5620  assert(Decl);
5621  // FIXME: What is the design on getTagDeclType when it requires casting
5622  // away const?  mutable?
5623  return getTypeDeclType(const_cast<TagDecl*>(Decl));
5624}
5625
5626/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5627/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5628/// needs to agree with the definition in <stddef.h>.
5629CanQualType ASTContext::getSizeType() const {
5630  return getFromTargetType(Target->getSizeType());
5631}
5632
5633/// Return the unique signed counterpart of the integer type
5634/// corresponding to size_t.
5635CanQualType ASTContext::getSignedSizeType() const {
5636  return getFromTargetType(Target->getSignedSizeType());
5637}
5638
5639/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5640CanQualType ASTContext::getIntMaxType() const {
5641  return getFromTargetType(Target->getIntMaxType());
5642}
5643
5644/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5645CanQualType ASTContext::getUIntMaxType() const {
5646  return getFromTargetType(Target->getUIntMaxType());
5647}
5648
5649/// getSignedWCharType - Return the type of "signed wchar_t".
5650/// Used when in C++, as a GCC extension.
5651QualType ASTContext::getSignedWCharType() const {
5652  // FIXME: derive from "Target" ?
5653  return WCharTy;
5654}
5655
5656/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5657/// Used when in C++, as a GCC extension.
5658QualType ASTContext::getUnsignedWCharType() const {
5659  // FIXME: derive from "Target" ?
5660  return UnsignedIntTy;
5661}
5662
5663QualType ASTContext::getIntPtrType() const {
5664  return getFromTargetType(Target->getIntPtrType());
5665}
5666
5667QualType ASTContext::getUIntPtrType() const {
5668  return getCorrespondingUnsignedType(getIntPtrType());
5669}
5670
5671/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5672/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5673QualType ASTContext::getPointerDiffType() const {
5674  return getFromTargetType(Target->getPtrDiffType(0));
5675}
5676
5677/// Return the unique unsigned counterpart of "ptrdiff_t"
5678/// integer type. The standard (C11 7.21.6.1p7) refers to this type
5679/// in the definition of %tu format specifier.
5680QualType ASTContext::getUnsignedPointerDiffType() const {
5681  return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5682}
5683
5684/// Return the unique type for "pid_t" defined in
5685/// <sys/types.h>. We need this to compute the correct type for vfork().
5686QualType ASTContext::getProcessIDType() const {
5687  return getFromTargetType(Target->getProcessIDType());
5688}
5689
5690//===----------------------------------------------------------------------===//
5691//                              Type Operators
5692//===----------------------------------------------------------------------===//
5693
5694CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5695  // Push qualifiers into arrays, and then discard any remaining
5696  // qualifiers.
5697  T = getCanonicalType(T);
5698  T = getVariableArrayDecayedType(T);
5699  const Type *Ty = T.getTypePtr();
5700  QualType Result;
5701  if (isa<ArrayType>(Ty)) {
5702    Result = getArrayDecayedType(QualType(Ty,0));
5703  } else if (isa<FunctionType>(Ty)) {
5704    Result = getPointerType(QualType(Ty, 0));
5705  } else {
5706    Result = QualType(Ty, 0);
5707  }
5708
5709  return CanQualType::CreateUnsafe(Result);
5710}
5711
5712QualType ASTContext::getUnqualifiedArrayType(QualType type,
5713                                             Qualifiers &quals) {
5714  SplitQualType splitType = type.getSplitUnqualifiedType();
5715
5716  // FIXME: getSplitUnqualifiedType() actually walks all the way to
5717  // the unqualified desugared type and then drops it on the floor.
5718  // We then have to strip that sugar back off with
5719  // getUnqualifiedDesugaredType(), which is silly.
5720  const auto *AT =
5721      dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5722
5723  // If we don't have an array, just use the results in splitType.
5724  if (!AT) {
5725    quals = splitType.Quals;
5726    return QualType(splitType.Ty, 0);
5727  }
5728
5729  // Otherwise, recurse on the array's element type.
5730  QualType elementType = AT->getElementType();
5731  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5732
5733  // If that didn't change the element type, AT has no qualifiers, so we
5734  // can just use the results in splitType.
5735  if (elementType == unqualElementType) {
5736    assert(quals.empty()); // from the recursive call
5737    quals = splitType.Quals;
5738    return QualType(splitType.Ty, 0);
5739  }
5740
5741  // Otherwise, add in the qualifiers from the outermost type, then
5742  // build the type back up.
5743  quals.addConsistentQualifiers(splitType.Quals);
5744
5745  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5746    return getConstantArrayType(unqualElementType, CAT->getSize(),
5747                                CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5748  }
5749
5750  if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5751    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5752  }
5753
5754  if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5755    return getVariableArrayType(unqualElementType,
5756                                VAT->getSizeExpr(),
5757                                VAT->getSizeModifier(),
5758                                VAT->getIndexTypeCVRQualifiers(),
5759                                VAT->getBracketsRange());
5760  }
5761
5762  const auto *DSAT = cast<DependentSizedArrayType>(AT);
5763  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5764                                    DSAT->getSizeModifier(), 0,
5765                                    SourceRange());
5766}
5767
5768/// Attempt to unwrap two types that may both be array types with the same bound
5769/// (or both be array types of unknown bound) for the purpose of comparing the
5770/// cv-decomposition of two types per C++ [conv.qual].
5771void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5772  while (true) {
5773    auto *AT1 = getAsArrayType(T1);
5774    if (!AT1)
5775      return;
5776
5777    auto *AT2 = getAsArrayType(T2);
5778    if (!AT2)
5779      return;
5780
5781    // If we don't have two array types with the same constant bound nor two
5782    // incomplete array types, we've unwrapped everything we can.
5783    if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5784      auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5785      if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5786        return;
5787    } else if (!isa<IncompleteArrayType>(AT1) ||
5788               !isa<IncompleteArrayType>(AT2)) {
5789      return;
5790    }
5791
5792    T1 = AT1->getElementType();
5793    T2 = AT2->getElementType();
5794  }
5795}
5796
5797/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5798///
5799/// If T1 and T2 are both pointer types of the same kind, or both array types
5800/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5801/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5802///
5803/// This function will typically be called in a loop that successively
5804/// "unwraps" pointer and pointer-to-member types to compare them at each
5805/// level.
5806///
5807/// \return \c true if a pointer type was unwrapped, \c false if we reached a
5808/// pair of types that can't be unwrapped further.
5809bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5810  UnwrapSimilarArrayTypes(T1, T2);
5811
5812  const auto *T1PtrType = T1->getAs<PointerType>();
5813  const auto *T2PtrType = T2->getAs<PointerType>();
5814  if (T1PtrType && T2PtrType) {
5815    T1 = T1PtrType->getPointeeType();
5816    T2 = T2PtrType->getPointeeType();
5817    return true;
5818  }
5819
5820  const auto *T1MPType = T1->getAs<MemberPointerType>();
5821  const auto *T2MPType = T2->getAs<MemberPointerType>();
5822  if (T1MPType && T2MPType &&
5823      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5824                             QualType(T2MPType->getClass(), 0))) {
5825    T1 = T1MPType->getPointeeType();
5826    T2 = T2MPType->getPointeeType();
5827    return true;
5828  }
5829
5830  if (getLangOpts().ObjC) {
5831    const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5832    const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5833    if (T1OPType && T2OPType) {
5834      T1 = T1OPType->getPointeeType();
5835      T2 = T2OPType->getPointeeType();
5836      return true;
5837    }
5838  }
5839
5840  // FIXME: Block pointers, too?
5841
5842  return false;
5843}
5844
5845bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5846  while (true) {
5847    Qualifiers Quals;
5848    T1 = getUnqualifiedArrayType(T1, Quals);
5849    T2 = getUnqualifiedArrayType(T2, Quals);
5850    if (hasSameType(T1, T2))
5851      return true;
5852    if (!UnwrapSimilarTypes(T1, T2))
5853      return false;
5854  }
5855}
5856
5857bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5858  while (true) {
5859    Qualifiers Quals1, Quals2;
5860    T1 = getUnqualifiedArrayType(T1, Quals1);
5861    T2 = getUnqualifiedArrayType(T2, Quals2);
5862
5863    Quals1.removeCVRQualifiers();
5864    Quals2.removeCVRQualifiers();
5865    if (Quals1 != Quals2)
5866      return false;
5867
5868    if (hasSameType(T1, T2))
5869      return true;
5870
5871    if (!UnwrapSimilarTypes(T1, T2))
5872      return false;
5873  }
5874}
5875
5876DeclarationNameInfo
5877ASTContext::getNameForTemplate(TemplateName Name,
5878                               SourceLocation NameLoc) const {
5879  switch (Name.getKind()) {
5880  case TemplateName::QualifiedTemplate:
5881  case TemplateName::Template:
5882    // DNInfo work in progress: CHECKME: what about DNLoc?
5883    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5884                               NameLoc);
5885
5886  case TemplateName::OverloadedTemplate: {
5887    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5888    // DNInfo work in progress: CHECKME: what about DNLoc?
5889    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5890  }
5891
5892  case TemplateName::AssumedTemplate: {
5893    AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5894    return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5895  }
5896
5897  case TemplateName::DependentTemplate: {
5898    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5899    DeclarationName DName;
5900    if (DTN->isIdentifier()) {
5901      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5902      return DeclarationNameInfo(DName, NameLoc);
5903    } else {
5904      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5905      // DNInfo work in progress: FIXME: source locations?
5906      DeclarationNameLoc DNLoc =
5907          DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
5908      return DeclarationNameInfo(DName, NameLoc, DNLoc);
5909    }
5910  }
5911
5912  case TemplateName::SubstTemplateTemplateParm: {
5913    SubstTemplateTemplateParmStorage *subst
5914      = Name.getAsSubstTemplateTemplateParm();
5915    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5916                               NameLoc);
5917  }
5918
5919  case TemplateName::SubstTemplateTemplateParmPack: {
5920    SubstTemplateTemplateParmPackStorage *subst
5921      = Name.getAsSubstTemplateTemplateParmPack();
5922    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5923                               NameLoc);
5924  }
5925  }
5926
5927  llvm_unreachable("bad template name kind!");
5928}
5929
5930TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5931  switch (Name.getKind()) {
5932  case TemplateName::QualifiedTemplate:
5933  case TemplateName::Template: {
5934    TemplateDecl *Template = Name.getAsTemplateDecl();
5935    if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5936      Template = getCanonicalTemplateTemplateParmDecl(TTP);
5937
5938    // The canonical template name is the canonical template declaration.
5939    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5940  }
5941
5942  case TemplateName::OverloadedTemplate:
5943  case TemplateName::AssumedTemplate:
5944    llvm_unreachable("cannot canonicalize unresolved template");
5945
5946  case TemplateName::DependentTemplate: {
5947    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5948    assert(DTN && "Non-dependent template names must refer to template decls.");
5949    return DTN->CanonicalTemplateName;
5950  }
5951
5952  case TemplateName::SubstTemplateTemplateParm: {
5953    SubstTemplateTemplateParmStorage *subst
5954      = Name.getAsSubstTemplateTemplateParm();
5955    return getCanonicalTemplateName(subst->getReplacement());
5956  }
5957
5958  case TemplateName::SubstTemplateTemplateParmPack: {
5959    SubstTemplateTemplateParmPackStorage *subst
5960                                  = Name.getAsSubstTemplateTemplateParmPack();
5961    TemplateTemplateParmDecl *canonParameter
5962      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5963    TemplateArgument canonArgPack
5964      = getCanonicalTemplateArgument(subst->getArgumentPack());
5965    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5966  }
5967  }
5968
5969  llvm_unreachable("bad template name!");
5970}
5971
5972bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5973  X = getCanonicalTemplateName(X);
5974  Y = getCanonicalTemplateName(Y);
5975  return X.getAsVoidPointer() == Y.getAsVoidPointer();
5976}
5977
5978TemplateArgument
5979ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5980  switch (Arg.getKind()) {
5981    case TemplateArgument::Null:
5982      return Arg;
5983
5984    case TemplateArgument::Expression:
5985      return Arg;
5986
5987    case TemplateArgument::Declaration: {
5988      auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5989      return TemplateArgument(D, Arg.getParamTypeForDecl());
5990    }
5991
5992    case TemplateArgument::NullPtr:
5993      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5994                              /*isNullPtr*/true);
5995
5996    case TemplateArgument::Template:
5997      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5998
5999    case TemplateArgument::TemplateExpansion:
6000      return TemplateArgument(getCanonicalTemplateName(
6001                                         Arg.getAsTemplateOrTemplatePattern()),
6002                              Arg.getNumTemplateExpansions());
6003
6004    case TemplateArgument::Integral:
6005      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6006
6007    case TemplateArgument::Type:
6008      return TemplateArgument(getCanonicalType(Arg.getAsType()));
6009
6010    case TemplateArgument::Pack: {
6011      if (Arg.pack_size() == 0)
6012        return Arg;
6013
6014      auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6015      unsigned Idx = 0;
6016      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6017                                        AEnd = Arg.pack_end();
6018           A != AEnd; (void)++A, ++Idx)
6019        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6020
6021      return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6022    }
6023  }
6024
6025  // Silence GCC warning
6026  llvm_unreachable("Unhandled template argument kind");
6027}
6028
6029NestedNameSpecifier *
6030ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6031  if (!NNS)
6032    return nullptr;
6033
6034  switch (NNS->getKind()) {
6035  case NestedNameSpecifier::Identifier:
6036    // Canonicalize the prefix but keep the identifier the same.
6037    return NestedNameSpecifier::Create(*this,
6038                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6039                                       NNS->getAsIdentifier());
6040
6041  case NestedNameSpecifier::Namespace:
6042    // A namespace is canonical; build a nested-name-specifier with
6043    // this namespace and no prefix.
6044    return NestedNameSpecifier::Create(*this, nullptr,
6045                                 NNS->getAsNamespace()->getOriginalNamespace());
6046
6047  case NestedNameSpecifier::NamespaceAlias:
6048    // A namespace is canonical; build a nested-name-specifier with
6049    // this namespace and no prefix.
6050    return NestedNameSpecifier::Create(*this, nullptr,
6051                                    NNS->getAsNamespaceAlias()->getNamespace()
6052                                                      ->getOriginalNamespace());
6053
6054  case NestedNameSpecifier::TypeSpec:
6055  case NestedNameSpecifier::TypeSpecWithTemplate: {
6056    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
6057
6058    // If we have some kind of dependent-named type (e.g., "typename T::type"),
6059    // break it apart into its prefix and identifier, then reconsititute those
6060    // as the canonical nested-name-specifier. This is required to canonicalize
6061    // a dependent nested-name-specifier involving typedefs of dependent-name
6062    // types, e.g.,
6063    //   typedef typename T::type T1;
6064    //   typedef typename T1::type T2;
6065    if (const auto *DNT = T->getAs<DependentNameType>())
6066      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
6067                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6068
6069    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
6070    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
6071    // first place?
6072    return NestedNameSpecifier::Create(*this, nullptr, false,
6073                                       const_cast<Type *>(T.getTypePtr()));
6074  }
6075
6076  case NestedNameSpecifier::Global:
6077  case NestedNameSpecifier::Super:
6078    // The global specifier and __super specifer are canonical and unique.
6079    return NNS;
6080  }
6081
6082  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6083}
6084
6085const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6086  // Handle the non-qualified case efficiently.
6087  if (!T.hasLocalQualifiers()) {
6088    // Handle the common positive case fast.
6089    if (const auto *AT = dyn_cast<ArrayType>(T))
6090      return AT;
6091  }
6092
6093  // Handle the common negative case fast.
6094  if (!isa<ArrayType>(T.getCanonicalType()))
6095    return nullptr;
6096
6097  // Apply any qualifiers from the array type to the element type.  This
6098  // implements C99 6.7.3p8: "If the specification of an array type includes
6099  // any type qualifiers, the element type is so qualified, not the array type."
6100
6101  // If we get here, we either have type qualifiers on the type, or we have
6102  // sugar such as a typedef in the way.  If we have type qualifiers on the type
6103  // we must propagate them down into the element type.
6104
6105  SplitQualType split = T.getSplitDesugaredType();
6106  Qualifiers qs = split.Quals;
6107
6108  // If we have a simple case, just return now.
6109  const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6110  if (!ATy || qs.empty())
6111    return ATy;
6112
6113  // Otherwise, we have an array and we have qualifiers on it.  Push the
6114  // qualifiers into the array element type and return a new array type.
6115  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6116
6117  if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6118    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6119                                                CAT->getSizeExpr(),
6120                                                CAT->getSizeModifier(),
6121                                           CAT->getIndexTypeCVRQualifiers()));
6122  if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6123    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6124                                                  IAT->getSizeModifier(),
6125                                           IAT->getIndexTypeCVRQualifiers()));
6126
6127  if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6128    return cast<ArrayType>(
6129                     getDependentSizedArrayType(NewEltTy,
6130                                                DSAT->getSizeExpr(),
6131                                                DSAT->getSizeModifier(),
6132                                              DSAT->getIndexTypeCVRQualifiers(),
6133                                                DSAT->getBracketsRange()));
6134
6135  const auto *VAT = cast<VariableArrayType>(ATy);
6136  return cast<ArrayType>(getVariableArrayType(NewEltTy,
6137                                              VAT->getSizeExpr(),
6138                                              VAT->getSizeModifier(),
6139                                              VAT->getIndexTypeCVRQualifiers(),
6140                                              VAT->getBracketsRange()));
6141}
6142
6143QualType ASTContext::getAdjustedParameterType(QualType T) const {
6144  if (T->isArrayType() || T->isFunctionType())
6145    return getDecayedType(T);
6146  return T;
6147}
6148
6149QualType ASTContext::getSignatureParameterType(QualType T) const {
6150  T = getVariableArrayDecayedType(T);
6151  T = getAdjustedParameterType(T);
6152  return T.getUnqualifiedType();
6153}
6154
6155QualType ASTContext::getExceptionObjectType(QualType T) const {
6156  // C++ [except.throw]p3:
6157  //   A throw-expression initializes a temporary object, called the exception
6158  //   object, the type of which is determined by removing any top-level
6159  //   cv-qualifiers from the static type of the operand of throw and adjusting
6160  //   the type from "array of T" or "function returning T" to "pointer to T"
6161  //   or "pointer to function returning T", [...]
6162  T = getVariableArrayDecayedType(T);
6163  if (T->isArrayType() || T->isFunctionType())
6164    T = getDecayedType(T);
6165  return T.getUnqualifiedType();
6166}
6167
6168/// getArrayDecayedType - Return the properly qualified result of decaying the
6169/// specified array type to a pointer.  This operation is non-trivial when
6170/// handling typedefs etc.  The canonical type of "T" must be an array type,
6171/// this returns a pointer to a properly qualified element of the array.
6172///
6173/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6174QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6175  // Get the element type with 'getAsArrayType' so that we don't lose any
6176  // typedefs in the element type of the array.  This also handles propagation
6177  // of type qualifiers from the array type into the element type if present
6178  // (C99 6.7.3p8).
6179  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6180  assert(PrettyArrayType && "Not an array type!");
6181
6182  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6183
6184  // int x[restrict 4] ->  int *restrict
6185  QualType Result = getQualifiedType(PtrTy,
6186                                     PrettyArrayType->getIndexTypeQualifiers());
6187
6188  // int x[_Nullable] -> int * _Nullable
6189  if (auto Nullability = Ty->getNullability(*this)) {
6190    Result = const_cast<ASTContext *>(this)->getAttributedType(
6191        AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6192  }
6193  return Result;
6194}
6195
6196QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6197  return getBaseElementType(array->getElementType());
6198}
6199
6200QualType ASTContext::getBaseElementType(QualType type) const {
6201  Qualifiers qs;
6202  while (true) {
6203    SplitQualType split = type.getSplitDesugaredType();
6204    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6205    if (!array) break;
6206
6207    type = array->getElementType();
6208    qs.addConsistentQualifiers(split.Quals);
6209  }
6210
6211  return getQualifiedType(type, qs);
6212}
6213
6214/// getConstantArrayElementCount - Returns number of constant array elements.
6215uint64_t
6216ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6217  uint64_t ElementCount = 1;
6218  do {
6219    ElementCount *= CA->getSize().getZExtValue();
6220    CA = dyn_cast_or_null<ConstantArrayType>(
6221      CA->getElementType()->getAsArrayTypeUnsafe());
6222  } while (CA);
6223  return ElementCount;
6224}
6225
6226/// getFloatingRank - Return a relative rank for floating point types.
6227/// This routine will assert if passed a built-in type that isn't a float.
6228static FloatingRank getFloatingRank(QualType T) {
6229  if (const auto *CT = T->getAs<ComplexType>())
6230    return getFloatingRank(CT->getElementType());
6231
6232  switch (T->castAs<BuiltinType>()->getKind()) {
6233  default: llvm_unreachable("getFloatingRank(): not a floating type");
6234  case BuiltinType::Float16:    return Float16Rank;
6235  case BuiltinType::Half:       return HalfRank;
6236  case BuiltinType::Float:      return FloatRank;
6237  case BuiltinType::Double:     return DoubleRank;
6238  case BuiltinType::LongDouble: return LongDoubleRank;
6239  case BuiltinType::Float128:   return Float128Rank;
6240  case BuiltinType::BFloat16:   return BFloat16Rank;
6241  }
6242}
6243
6244/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6245/// point or a complex type (based on typeDomain/typeSize).
6246/// 'typeDomain' is a real floating point or complex type.
6247/// 'typeSize' is a real floating point or complex type.
6248QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6249                                                       QualType Domain) const {
6250  FloatingRank EltRank = getFloatingRank(Size);
6251  if (Domain->isComplexType()) {
6252    switch (EltRank) {
6253    case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6254    case Float16Rank:
6255    case HalfRank: llvm_unreachable("Complex half is not supported");
6256    case FloatRank:      return FloatComplexTy;
6257    case DoubleRank:     return DoubleComplexTy;
6258    case LongDoubleRank: return LongDoubleComplexTy;
6259    case Float128Rank:   return Float128ComplexTy;
6260    }
6261  }
6262
6263  assert(Domain->isRealFloatingType() && "Unknown domain!");
6264  switch (EltRank) {
6265  case Float16Rank:    return HalfTy;
6266  case BFloat16Rank:   return BFloat16Ty;
6267  case HalfRank:       return HalfTy;
6268  case FloatRank:      return FloatTy;
6269  case DoubleRank:     return DoubleTy;
6270  case LongDoubleRank: return LongDoubleTy;
6271  case Float128Rank:   return Float128Ty;
6272  }
6273  llvm_unreachable("getFloatingRank(): illegal value for rank");
6274}
6275
6276/// getFloatingTypeOrder - Compare the rank of the two specified floating
6277/// point types, ignoring the domain of the type (i.e. 'double' ==
6278/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6279/// LHS < RHS, return -1.
6280int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6281  FloatingRank LHSR = getFloatingRank(LHS);
6282  FloatingRank RHSR = getFloatingRank(RHS);
6283
6284  if (LHSR == RHSR)
6285    return 0;
6286  if (LHSR > RHSR)
6287    return 1;
6288  return -1;
6289}
6290
6291int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6292  if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6293    return 0;
6294  return getFloatingTypeOrder(LHS, RHS);
6295}
6296
6297/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6298/// routine will assert if passed a built-in type that isn't an integer or enum,
6299/// or if it is not canonicalized.
6300unsigned ASTContext::getIntegerRank(const Type *T) const {
6301  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6302
6303  // Results in this 'losing' to any type of the same size, but winning if
6304  // larger.
6305  if (const auto *EIT = dyn_cast<ExtIntType>(T))
6306    return 0 + (EIT->getNumBits() << 3);
6307
6308  switch (cast<BuiltinType>(T)->getKind()) {
6309  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6310  case BuiltinType::Bool:
6311    return 1 + (getIntWidth(BoolTy) << 3);
6312  case BuiltinType::Char_S:
6313  case BuiltinType::Char_U:
6314  case BuiltinType::SChar:
6315  case BuiltinType::UChar:
6316    return 2 + (getIntWidth(CharTy) << 3);
6317  case BuiltinType::Short:
6318  case BuiltinType::UShort:
6319    return 3 + (getIntWidth(ShortTy) << 3);
6320  case BuiltinType::Int:
6321  case BuiltinType::UInt:
6322    return 4 + (getIntWidth(IntTy) << 3);
6323  case BuiltinType::Long:
6324  case BuiltinType::ULong:
6325    return 5 + (getIntWidth(LongTy) << 3);
6326  case BuiltinType::LongLong:
6327  case BuiltinType::ULongLong:
6328    return 6 + (getIntWidth(LongLongTy) << 3);
6329  case BuiltinType::Int128:
6330  case BuiltinType::UInt128:
6331    return 7 + (getIntWidth(Int128Ty) << 3);
6332  }
6333}
6334
6335/// Whether this is a promotable bitfield reference according
6336/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6337///
6338/// \returns the type this bit-field will promote to, or NULL if no
6339/// promotion occurs.
6340QualType ASTContext::isPromotableBitField(Expr *E) const {
6341  if (E->isTypeDependent() || E->isValueDependent())
6342    return {};
6343
6344  // C++ [conv.prom]p5:
6345  //    If the bit-field has an enumerated type, it is treated as any other
6346  //    value of that type for promotion purposes.
6347  if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6348    return {};
6349
6350  // FIXME: We should not do this unless E->refersToBitField() is true. This
6351  // matters in C where getSourceBitField() will find bit-fields for various
6352  // cases where the source expression is not a bit-field designator.
6353
6354  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6355  if (!Field)
6356    return {};
6357
6358  QualType FT = Field->getType();
6359
6360  uint64_t BitWidth = Field->getBitWidthValue(*this);
6361  uint64_t IntSize = getTypeSize(IntTy);
6362  // C++ [conv.prom]p5:
6363  //   A prvalue for an integral bit-field can be converted to a prvalue of type
6364  //   int if int can represent all the values of the bit-field; otherwise, it
6365  //   can be converted to unsigned int if unsigned int can represent all the
6366  //   values of the bit-field. If the bit-field is larger yet, no integral
6367  //   promotion applies to it.
6368  // C11 6.3.1.1/2:
6369  //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6370  //   If an int can represent all values of the original type (as restricted by
6371  //   the width, for a bit-field), the value is converted to an int; otherwise,
6372  //   it is converted to an unsigned int.
6373  //
6374  // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6375  //        We perform that promotion here to match GCC and C++.
6376  // FIXME: C does not permit promotion of an enum bit-field whose rank is
6377  //        greater than that of 'int'. We perform that promotion to match GCC.
6378  if (BitWidth < IntSize)
6379    return IntTy;
6380
6381  if (BitWidth == IntSize)
6382    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6383
6384  // Bit-fields wider than int are not subject to promotions, and therefore act
6385  // like the base type. GCC has some weird bugs in this area that we
6386  // deliberately do not follow (GCC follows a pre-standard resolution to
6387  // C's DR315 which treats bit-width as being part of the type, and this leaks
6388  // into their semantics in some cases).
6389  return {};
6390}
6391
6392/// getPromotedIntegerType - Returns the type that Promotable will
6393/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6394/// integer type.
6395QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6396  assert(!Promotable.isNull());
6397  assert(Promotable->isPromotableIntegerType());
6398  if (const auto *ET = Promotable->getAs<EnumType>())
6399    return ET->getDecl()->getPromotionType();
6400
6401  if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6402    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6403    // (3.9.1) can be converted to a prvalue of the first of the following
6404    // types that can represent all the values of its underlying type:
6405    // int, unsigned int, long int, unsigned long int, long long int, or
6406    // unsigned long long int [...]
6407    // FIXME: Is there some better way to compute this?
6408    if (BT->getKind() == BuiltinType::WChar_S ||
6409        BT->getKind() == BuiltinType::WChar_U ||
6410        BT->getKind() == BuiltinType::Char8 ||
6411        BT->getKind() == BuiltinType::Char16 ||
6412        BT->getKind() == BuiltinType::Char32) {
6413      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6414      uint64_t FromSize = getTypeSize(BT);
6415      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6416                                  LongLongTy, UnsignedLongLongTy };
6417      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6418        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6419        if (FromSize < ToSize ||
6420            (FromSize == ToSize &&
6421             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6422          return PromoteTypes[Idx];
6423      }
6424      llvm_unreachable("char type should fit into long long");
6425    }
6426  }
6427
6428  // At this point, we should have a signed or unsigned integer type.
6429  if (Promotable->isSignedIntegerType())
6430    return IntTy;
6431  uint64_t PromotableSize = getIntWidth(Promotable);
6432  uint64_t IntSize = getIntWidth(IntTy);
6433  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6434  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6435}
6436
6437/// Recurses in pointer/array types until it finds an objc retainable
6438/// type and returns its ownership.
6439Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6440  while (!T.isNull()) {
6441    if (T.getObjCLifetime() != Qualifiers::OCL_None)
6442      return T.getObjCLifetime();
6443    if (T->isArrayType())
6444      T = getBaseElementType(T);
6445    else if (const auto *PT = T->getAs<PointerType>())
6446      T = PT->getPointeeType();
6447    else if (const auto *RT = T->getAs<ReferenceType>())
6448      T = RT->getPointeeType();
6449    else
6450      break;
6451  }
6452
6453  return Qualifiers::OCL_None;
6454}
6455
6456static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6457  // Incomplete enum types are not treated as integer types.
6458  // FIXME: In C++, enum types are never integer types.
6459  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6460    return ET->getDecl()->getIntegerType().getTypePtr();
6461  return nullptr;
6462}
6463
6464/// getIntegerTypeOrder - Returns the highest ranked integer type:
6465/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6466/// LHS < RHS, return -1.
6467int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6468  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6469  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6470
6471  // Unwrap enums to their underlying type.
6472  if (const auto *ET = dyn_cast<EnumType>(LHSC))
6473    LHSC = getIntegerTypeForEnum(ET);
6474  if (const auto *ET = dyn_cast<EnumType>(RHSC))
6475    RHSC = getIntegerTypeForEnum(ET);
6476
6477  if (LHSC == RHSC) return 0;
6478
6479  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6480  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6481
6482  unsigned LHSRank = getIntegerRank(LHSC);
6483  unsigned RHSRank = getIntegerRank(RHSC);
6484
6485  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6486    if (LHSRank == RHSRank) return 0;
6487    return LHSRank > RHSRank ? 1 : -1;
6488  }
6489
6490  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6491  if (LHSUnsigned) {
6492    // If the unsigned [LHS] type is larger, return it.
6493    if (LHSRank >= RHSRank)
6494      return 1;
6495
6496    // If the signed type can represent all values of the unsigned type, it
6497    // wins.  Because we are dealing with 2's complement and types that are
6498    // powers of two larger than each other, this is always safe.
6499    return -1;
6500  }
6501
6502  // If the unsigned [RHS] type is larger, return it.
6503  if (RHSRank >= LHSRank)
6504    return -1;
6505
6506  // If the signed type can represent all values of the unsigned type, it
6507  // wins.  Because we are dealing with 2's complement and types that are
6508  // powers of two larger than each other, this is always safe.
6509  return 1;
6510}
6511
6512TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6513  if (CFConstantStringTypeDecl)
6514    return CFConstantStringTypeDecl;
6515
6516  assert(!CFConstantStringTagDecl &&
6517         "tag and typedef should be initialized together");
6518  CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6519  CFConstantStringTagDecl->startDefinition();
6520
6521  struct {
6522    QualType Type;
6523    const char *Name;
6524  } Fields[5];
6525  unsigned Count = 0;
6526
6527  /// Objective-C ABI
6528  ///
6529  ///    typedef struct __NSConstantString_tag {
6530  ///      const int *isa;
6531  ///      int flags;
6532  ///      const char *str;
6533  ///      long length;
6534  ///    } __NSConstantString;
6535  ///
6536  /// Swift ABI (4.1, 4.2)
6537  ///
6538  ///    typedef struct __NSConstantString_tag {
6539  ///      uintptr_t _cfisa;
6540  ///      uintptr_t _swift_rc;
6541  ///      _Atomic(uint64_t) _cfinfoa;
6542  ///      const char *_ptr;
6543  ///      uint32_t _length;
6544  ///    } __NSConstantString;
6545  ///
6546  /// Swift ABI (5.0)
6547  ///
6548  ///    typedef struct __NSConstantString_tag {
6549  ///      uintptr_t _cfisa;
6550  ///      uintptr_t _swift_rc;
6551  ///      _Atomic(uint64_t) _cfinfoa;
6552  ///      const char *_ptr;
6553  ///      uintptr_t _length;
6554  ///    } __NSConstantString;
6555
6556  const auto CFRuntime = getLangOpts().CFRuntime;
6557  if (static_cast<unsigned>(CFRuntime) <
6558      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6559    Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6560    Fields[Count++] = { IntTy, "flags" };
6561    Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6562    Fields[Count++] = { LongTy, "length" };
6563  } else {
6564    Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6565    Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6566    Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6567    Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6568    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6569        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6570      Fields[Count++] = { IntTy, "_ptr" };
6571    else
6572      Fields[Count++] = { getUIntPtrType(), "_ptr" };
6573  }
6574
6575  // Create fields
6576  for (unsigned i = 0; i < Count; ++i) {
6577    FieldDecl *Field =
6578        FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6579                          SourceLocation(), &Idents.get(Fields[i].Name),
6580                          Fields[i].Type, /*TInfo=*/nullptr,
6581                          /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6582    Field->setAccess(AS_public);
6583    CFConstantStringTagDecl->addDecl(Field);
6584  }
6585
6586  CFConstantStringTagDecl->completeDefinition();
6587  // This type is designed to be compatible with NSConstantString, but cannot
6588  // use the same name, since NSConstantString is an interface.
6589  auto tagType = getTagDeclType(CFConstantStringTagDecl);
6590  CFConstantStringTypeDecl =
6591      buildImplicitTypedef(tagType, "__NSConstantString");
6592
6593  return CFConstantStringTypeDecl;
6594}
6595
6596RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6597  if (!CFConstantStringTagDecl)
6598    getCFConstantStringDecl(); // Build the tag and the typedef.
6599  return CFConstantStringTagDecl;
6600}
6601
6602// getCFConstantStringType - Return the type used for constant CFStrings.
6603QualType ASTContext::getCFConstantStringType() const {
6604  return getTypedefType(getCFConstantStringDecl());
6605}
6606
6607QualType ASTContext::getObjCSuperType() const {
6608  if (ObjCSuperType.isNull()) {
6609    RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6610    TUDecl->addDecl(ObjCSuperTypeDecl);
6611    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6612  }
6613  return ObjCSuperType;
6614}
6615
6616void ASTContext::setCFConstantStringType(QualType T) {
6617  const auto *TD = T->castAs<TypedefType>();
6618  CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6619  const auto *TagType =
6620      CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6621  CFConstantStringTagDecl = TagType->getDecl();
6622}
6623
6624QualType ASTContext::getBlockDescriptorType() const {
6625  if (BlockDescriptorType)
6626    return getTagDeclType(BlockDescriptorType);
6627
6628  RecordDecl *RD;
6629  // FIXME: Needs the FlagAppleBlock bit.
6630  RD = buildImplicitRecord("__block_descriptor");
6631  RD->startDefinition();
6632
6633  QualType FieldTypes[] = {
6634    UnsignedLongTy,
6635    UnsignedLongTy,
6636  };
6637
6638  static const char *const FieldNames[] = {
6639    "reserved",
6640    "Size"
6641  };
6642
6643  for (size_t i = 0; i < 2; ++i) {
6644    FieldDecl *Field = FieldDecl::Create(
6645        *this, RD, SourceLocation(), SourceLocation(),
6646        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6647        /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6648    Field->setAccess(AS_public);
6649    RD->addDecl(Field);
6650  }
6651
6652  RD->completeDefinition();
6653
6654  BlockDescriptorType = RD;
6655
6656  return getTagDeclType(BlockDescriptorType);
6657}
6658
6659QualType ASTContext::getBlockDescriptorExtendedType() const {
6660  if (BlockDescriptorExtendedType)
6661    return getTagDeclType(BlockDescriptorExtendedType);
6662
6663  RecordDecl *RD;
6664  // FIXME: Needs the FlagAppleBlock bit.
6665  RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6666  RD->startDefinition();
6667
6668  QualType FieldTypes[] = {
6669    UnsignedLongTy,
6670    UnsignedLongTy,
6671    getPointerType(VoidPtrTy),
6672    getPointerType(VoidPtrTy)
6673  };
6674
6675  static const char *const FieldNames[] = {
6676    "reserved",
6677    "Size",
6678    "CopyFuncPtr",
6679    "DestroyFuncPtr"
6680  };
6681
6682  for (size_t i = 0; i < 4; ++i) {
6683    FieldDecl *Field = FieldDecl::Create(
6684        *this, RD, SourceLocation(), SourceLocation(),
6685        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6686        /*BitWidth=*/nullptr,
6687        /*Mutable=*/false, ICIS_NoInit);
6688    Field->setAccess(AS_public);
6689    RD->addDecl(Field);
6690  }
6691
6692  RD->completeDefinition();
6693
6694  BlockDescriptorExtendedType = RD;
6695  return getTagDeclType(BlockDescriptorExtendedType);
6696}
6697
6698OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6699  const auto *BT = dyn_cast<BuiltinType>(T);
6700
6701  if (!BT) {
6702    if (isa<PipeType>(T))
6703      return OCLTK_Pipe;
6704
6705    return OCLTK_Default;
6706  }
6707
6708  switch (BT->getKind()) {
6709#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6710  case BuiltinType::Id:                                                        \
6711    return OCLTK_Image;
6712#include "clang/Basic/OpenCLImageTypes.def"
6713
6714  case BuiltinType::OCLClkEvent:
6715    return OCLTK_ClkEvent;
6716
6717  case BuiltinType::OCLEvent:
6718    return OCLTK_Event;
6719
6720  case BuiltinType::OCLQueue:
6721    return OCLTK_Queue;
6722
6723  case BuiltinType::OCLReserveID:
6724    return OCLTK_ReserveID;
6725
6726  case BuiltinType::OCLSampler:
6727    return OCLTK_Sampler;
6728
6729  default:
6730    return OCLTK_Default;
6731  }
6732}
6733
6734LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6735  return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6736}
6737
6738/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6739/// requires copy/dispose. Note that this must match the logic
6740/// in buildByrefHelpers.
6741bool ASTContext::BlockRequiresCopying(QualType Ty,
6742                                      const VarDecl *D) {
6743  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6744    const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6745    if (!copyExpr && record->hasTrivialDestructor()) return false;
6746
6747    return true;
6748  }
6749
6750  // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6751  // move or destroy.
6752  if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6753    return true;
6754
6755  if (!Ty->isObjCRetainableType()) return false;
6756
6757  Qualifiers qs = Ty.getQualifiers();
6758
6759  // If we have lifetime, that dominates.
6760  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6761    switch (lifetime) {
6762      case Qualifiers::OCL_None: llvm_unreachable("impossible");
6763
6764      // These are just bits as far as the runtime is concerned.
6765      case Qualifiers::OCL_ExplicitNone:
6766      case Qualifiers::OCL_Autoreleasing:
6767        return false;
6768
6769      // These cases should have been taken care of when checking the type's
6770      // non-triviality.
6771      case Qualifiers::OCL_Weak:
6772      case Qualifiers::OCL_Strong:
6773        llvm_unreachable("impossible");
6774    }
6775    llvm_unreachable("fell out of lifetime switch!");
6776  }
6777  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6778          Ty->isObjCObjectPointerType());
6779}
6780
6781bool ASTContext::getByrefLifetime(QualType Ty,
6782                              Qualifiers::ObjCLifetime &LifeTime,
6783                              bool &HasByrefExtendedLayout) const {
6784  if (!getLangOpts().ObjC ||
6785      getLangOpts().getGC() != LangOptions::NonGC)
6786    return false;
6787
6788  HasByrefExtendedLayout = false;
6789  if (Ty->isRecordType()) {
6790    HasByrefExtendedLayout = true;
6791    LifeTime = Qualifiers::OCL_None;
6792  } else if ((LifeTime = Ty.getObjCLifetime())) {
6793    // Honor the ARC qualifiers.
6794  } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6795    // The MRR rule.
6796    LifeTime = Qualifiers::OCL_ExplicitNone;
6797  } else {
6798    LifeTime = Qualifiers::OCL_None;
6799  }
6800  return true;
6801}
6802
6803CanQualType ASTContext::getNSUIntegerType() const {
6804  assert(Target && "Expected target to be initialized");
6805  const llvm::Triple &T = Target->getTriple();
6806  // Windows is LLP64 rather than LP64
6807  if (T.isOSWindows() && T.isArch64Bit())
6808    return UnsignedLongLongTy;
6809  return UnsignedLongTy;
6810}
6811
6812CanQualType ASTContext::getNSIntegerType() const {
6813  assert(Target && "Expected target to be initialized");
6814  const llvm::Triple &T = Target->getTriple();
6815  // Windows is LLP64 rather than LP64
6816  if (T.isOSWindows() && T.isArch64Bit())
6817    return LongLongTy;
6818  return LongTy;
6819}
6820
6821TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6822  if (!ObjCInstanceTypeDecl)
6823    ObjCInstanceTypeDecl =
6824        buildImplicitTypedef(getObjCIdType(), "instancetype");
6825  return ObjCInstanceTypeDecl;
6826}
6827
6828// This returns true if a type has been typedefed to BOOL:
6829// typedef <type> BOOL;
6830static bool isTypeTypedefedAsBOOL(QualType T) {
6831  if (const auto *TT = dyn_cast<TypedefType>(T))
6832    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6833      return II->isStr("BOOL");
6834
6835  return false;
6836}
6837
6838/// getObjCEncodingTypeSize returns size of type for objective-c encoding
6839/// purpose.
6840CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6841  if (!type->isIncompleteArrayType() && type->isIncompleteType())
6842    return CharUnits::Zero();
6843
6844  CharUnits sz = getTypeSizeInChars(type);
6845
6846  // Make all integer and enum types at least as large as an int
6847  if (sz.isPositive() && type->isIntegralOrEnumerationType())
6848    sz = std::max(sz, getTypeSizeInChars(IntTy));
6849  // Treat arrays as pointers, since that's how they're passed in.
6850  else if (type->isArrayType())
6851    sz = getTypeSizeInChars(VoidPtrTy);
6852  return sz;
6853}
6854
6855bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6856  return getTargetInfo().getCXXABI().isMicrosoft() &&
6857         VD->isStaticDataMember() &&
6858         VD->getType()->isIntegralOrEnumerationType() &&
6859         !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6860}
6861
6862ASTContext::InlineVariableDefinitionKind
6863ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6864  if (!VD->isInline())
6865    return InlineVariableDefinitionKind::None;
6866
6867  // In almost all cases, it's a weak definition.
6868  auto *First = VD->getFirstDecl();
6869  if (First->isInlineSpecified() || !First->isStaticDataMember())
6870    return InlineVariableDefinitionKind::Weak;
6871
6872  // If there's a file-context declaration in this translation unit, it's a
6873  // non-discardable definition.
6874  for (auto *D : VD->redecls())
6875    if (D->getLexicalDeclContext()->isFileContext() &&
6876        !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6877      return InlineVariableDefinitionKind::Strong;
6878
6879  // If we've not seen one yet, we don't know.
6880  return InlineVariableDefinitionKind::WeakUnknown;
6881}
6882
6883static std::string charUnitsToString(const CharUnits &CU) {
6884  return llvm::itostr(CU.getQuantity());
6885}
6886
6887/// getObjCEncodingForBlock - Return the encoded type for this block
6888/// declaration.
6889std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6890  std::string S;
6891
6892  const BlockDecl *Decl = Expr->getBlockDecl();
6893  QualType BlockTy =
6894      Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6895  QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6896  // Encode result type.
6897  if (getLangOpts().EncodeExtendedBlockSig)
6898    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6899                                      true /*Extended*/);
6900  else
6901    getObjCEncodingForType(BlockReturnTy, S);
6902  // Compute size of all parameters.
6903  // Start with computing size of a pointer in number of bytes.
6904  // FIXME: There might(should) be a better way of doing this computation!
6905  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6906  CharUnits ParmOffset = PtrSize;
6907  for (auto PI : Decl->parameters()) {
6908    QualType PType = PI->getType();
6909    CharUnits sz = getObjCEncodingTypeSize(PType);
6910    if (sz.isZero())
6911      continue;
6912    assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6913    ParmOffset += sz;
6914  }
6915  // Size of the argument frame
6916  S += charUnitsToString(ParmOffset);
6917  // Block pointer and offset.
6918  S += "@?0";
6919
6920  // Argument types.
6921  ParmOffset = PtrSize;
6922  for (auto PVDecl : Decl->parameters()) {
6923    QualType PType = PVDecl->getOriginalType();
6924    if (const auto *AT =
6925            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6926      // Use array's original type only if it has known number of
6927      // elements.
6928      if (!isa<ConstantArrayType>(AT))
6929        PType = PVDecl->getType();
6930    } else if (PType->isFunctionType())
6931      PType = PVDecl->getType();
6932    if (getLangOpts().EncodeExtendedBlockSig)
6933      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6934                                      S, true /*Extended*/);
6935    else
6936      getObjCEncodingForType(PType, S);
6937    S += charUnitsToString(ParmOffset);
6938    ParmOffset += getObjCEncodingTypeSize(PType);
6939  }
6940
6941  return S;
6942}
6943
6944std::string
6945ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6946  std::string S;
6947  // Encode result type.
6948  getObjCEncodingForType(Decl->getReturnType(), S);
6949  CharUnits ParmOffset;
6950  // Compute size of all parameters.
6951  for (auto PI : Decl->parameters()) {
6952    QualType PType = PI->getType();
6953    CharUnits sz = getObjCEncodingTypeSize(PType);
6954    if (sz.isZero())
6955      continue;
6956
6957    assert(sz.isPositive() &&
6958           "getObjCEncodingForFunctionDecl - Incomplete param type");
6959    ParmOffset += sz;
6960  }
6961  S += charUnitsToString(ParmOffset);
6962  ParmOffset = CharUnits::Zero();
6963
6964  // Argument types.
6965  for (auto PVDecl : Decl->parameters()) {
6966    QualType PType = PVDecl->getOriginalType();
6967    if (const auto *AT =
6968            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6969      // Use array's original type only if it has known number of
6970      // elements.
6971      if (!isa<ConstantArrayType>(AT))
6972        PType = PVDecl->getType();
6973    } else if (PType->isFunctionType())
6974      PType = PVDecl->getType();
6975    getObjCEncodingForType(PType, S);
6976    S += charUnitsToString(ParmOffset);
6977    ParmOffset += getObjCEncodingTypeSize(PType);
6978  }
6979
6980  return S;
6981}
6982
6983/// getObjCEncodingForMethodParameter - Return the encoded type for a single
6984/// method parameter or return type. If Extended, include class names and
6985/// block object types.
6986void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6987                                                   QualType T, std::string& S,
6988                                                   bool Extended) const {
6989  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6990  getObjCEncodingForTypeQualifier(QT, S);
6991  // Encode parameter type.
6992  ObjCEncOptions Options = ObjCEncOptions()
6993                               .setExpandPointedToStructures()
6994                               .setExpandStructures()
6995                               .setIsOutermostType();
6996  if (Extended)
6997    Options.setEncodeBlockParameters().setEncodeClassNames();
6998  getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6999}
7000
7001/// getObjCEncodingForMethodDecl - Return the encoded type for this method
7002/// declaration.
7003std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7004                                                     bool Extended) const {
7005  // FIXME: This is not very efficient.
7006  // Encode return type.
7007  std::string S;
7008  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7009                                    Decl->getReturnType(), S, Extended);
7010  // Compute size of all parameters.
7011  // Start with computing size of a pointer in number of bytes.
7012  // FIXME: There might(should) be a better way of doing this computation!
7013  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7014  // The first two arguments (self and _cmd) are pointers; account for
7015  // their size.
7016  CharUnits ParmOffset = 2 * PtrSize;
7017  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7018       E = Decl->sel_param_end(); PI != E; ++PI) {
7019    QualType PType = (*PI)->getType();
7020    CharUnits sz = getObjCEncodingTypeSize(PType);
7021    if (sz.isZero())
7022      continue;
7023
7024    assert(sz.isPositive() &&
7025           "getObjCEncodingForMethodDecl - Incomplete param type");
7026    ParmOffset += sz;
7027  }
7028  S += charUnitsToString(ParmOffset);
7029  S += "@0:";
7030  S += charUnitsToString(PtrSize);
7031
7032  // Argument types.
7033  ParmOffset = 2 * PtrSize;
7034  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7035       E = Decl->sel_param_end(); PI != E; ++PI) {
7036    const ParmVarDecl *PVDecl = *PI;
7037    QualType PType = PVDecl->getOriginalType();
7038    if (const auto *AT =
7039            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7040      // Use array's original type only if it has known number of
7041      // elements.
7042      if (!isa<ConstantArrayType>(AT))
7043        PType = PVDecl->getType();
7044    } else if (PType->isFunctionType())
7045      PType = PVDecl->getType();
7046    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7047                                      PType, S, Extended);
7048    S += charUnitsToString(ParmOffset);
7049    ParmOffset += getObjCEncodingTypeSize(PType);
7050  }
7051
7052  return S;
7053}
7054
7055ObjCPropertyImplDecl *
7056ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7057                                      const ObjCPropertyDecl *PD,
7058                                      const Decl *Container) const {
7059  if (!Container)
7060    return nullptr;
7061  if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7062    for (auto *PID : CID->property_impls())
7063      if (PID->getPropertyDecl() == PD)
7064        return PID;
7065  } else {
7066    const auto *OID = cast<ObjCImplementationDecl>(Container);
7067    for (auto *PID : OID->property_impls())
7068      if (PID->getPropertyDecl() == PD)
7069        return PID;
7070  }
7071  return nullptr;
7072}
7073
7074/// getObjCEncodingForPropertyDecl - Return the encoded type for this
7075/// property declaration. If non-NULL, Container must be either an
7076/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7077/// NULL when getting encodings for protocol properties.
7078/// Property attributes are stored as a comma-delimited C string. The simple
7079/// attributes readonly and bycopy are encoded as single characters. The
7080/// parametrized attributes, getter=name, setter=name, and ivar=name, are
7081/// encoded as single characters, followed by an identifier. Property types
7082/// are also encoded as a parametrized attribute. The characters used to encode
7083/// these attributes are defined by the following enumeration:
7084/// @code
7085/// enum PropertyAttributes {
7086/// kPropertyReadOnly = 'R',   // property is read-only.
7087/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7088/// kPropertyByref = '&',  // property is a reference to the value last assigned
7089/// kPropertyDynamic = 'D',    // property is dynamic
7090/// kPropertyGetter = 'G',     // followed by getter selector name
7091/// kPropertySetter = 'S',     // followed by setter selector name
7092/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7093/// kPropertyType = 'T'              // followed by old-style type encoding.
7094/// kPropertyWeak = 'W'              // 'weak' property
7095/// kPropertyStrong = 'P'            // property GC'able
7096/// kPropertyNonAtomic = 'N'         // property non-atomic
7097/// };
7098/// @endcode
7099std::string
7100ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7101                                           const Decl *Container) const {
7102  // Collect information from the property implementation decl(s).
7103  bool Dynamic = false;
7104  ObjCPropertyImplDecl *SynthesizePID = nullptr;
7105
7106  if (ObjCPropertyImplDecl *PropertyImpDecl =
7107      getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7108    if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7109      Dynamic = true;
7110    else
7111      SynthesizePID = PropertyImpDecl;
7112  }
7113
7114  // FIXME: This is not very efficient.
7115  std::string S = "T";
7116
7117  // Encode result type.
7118  // GCC has some special rules regarding encoding of properties which
7119  // closely resembles encoding of ivars.
7120  getObjCEncodingForPropertyType(PD->getType(), S);
7121
7122  if (PD->isReadOnly()) {
7123    S += ",R";
7124    if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7125      S += ",C";
7126    if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7127      S += ",&";
7128    if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7129      S += ",W";
7130  } else {
7131    switch (PD->getSetterKind()) {
7132    case ObjCPropertyDecl::Assign: break;
7133    case ObjCPropertyDecl::Copy:   S += ",C"; break;
7134    case ObjCPropertyDecl::Retain: S += ",&"; break;
7135    case ObjCPropertyDecl::Weak:   S += ",W"; break;
7136    }
7137  }
7138
7139  // It really isn't clear at all what this means, since properties
7140  // are "dynamic by default".
7141  if (Dynamic)
7142    S += ",D";
7143
7144  if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7145    S += ",N";
7146
7147  if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7148    S += ",G";
7149    S += PD->getGetterName().getAsString();
7150  }
7151
7152  if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7153    S += ",S";
7154    S += PD->getSetterName().getAsString();
7155  }
7156
7157  if (SynthesizePID) {
7158    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7159    S += ",V";
7160    S += OID->getNameAsString();
7161  }
7162
7163  // FIXME: OBJCGC: weak & strong
7164  return S;
7165}
7166
7167/// getLegacyIntegralTypeEncoding -
7168/// Another legacy compatibility encoding: 32-bit longs are encoded as
7169/// 'l' or 'L' , but not always.  For typedefs, we need to use
7170/// 'i' or 'I' instead if encoding a struct field, or a pointer!
7171void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7172  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7173    if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7174      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7175        PointeeTy = UnsignedIntTy;
7176      else
7177        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7178          PointeeTy = IntTy;
7179    }
7180  }
7181}
7182
7183void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7184                                        const FieldDecl *Field,
7185                                        QualType *NotEncodedT) const {
7186  // We follow the behavior of gcc, expanding structures which are
7187  // directly pointed to, and expanding embedded structures. Note that
7188  // these rules are sufficient to prevent recursive encoding of the
7189  // same type.
7190  getObjCEncodingForTypeImpl(T, S,
7191                             ObjCEncOptions()
7192                                 .setExpandPointedToStructures()
7193                                 .setExpandStructures()
7194                                 .setIsOutermostType(),
7195                             Field, NotEncodedT);
7196}
7197
7198void ASTContext::getObjCEncodingForPropertyType(QualType T,
7199                                                std::string& S) const {
7200  // Encode result type.
7201  // GCC has some special rules regarding encoding of properties which
7202  // closely resembles encoding of ivars.
7203  getObjCEncodingForTypeImpl(T, S,
7204                             ObjCEncOptions()
7205                                 .setExpandPointedToStructures()
7206                                 .setExpandStructures()
7207                                 .setIsOutermostType()
7208                                 .setEncodingProperty(),
7209                             /*Field=*/nullptr);
7210}
7211
7212static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7213                                            const BuiltinType *BT) {
7214    BuiltinType::Kind kind = BT->getKind();
7215    switch (kind) {
7216    case BuiltinType::Void:       return 'v';
7217    case BuiltinType::Bool:       return 'B';
7218    case BuiltinType::Char8:
7219    case BuiltinType::Char_U:
7220    case BuiltinType::UChar:      return 'C';
7221    case BuiltinType::Char16:
7222    case BuiltinType::UShort:     return 'S';
7223    case BuiltinType::Char32:
7224    case BuiltinType::UInt:       return 'I';
7225    case BuiltinType::ULong:
7226        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7227    case BuiltinType::UInt128:    return 'T';
7228    case BuiltinType::ULongLong:  return 'Q';
7229    case BuiltinType::Char_S:
7230    case BuiltinType::SChar:      return 'c';
7231    case BuiltinType::Short:      return 's';
7232    case BuiltinType::WChar_S:
7233    case BuiltinType::WChar_U:
7234    case BuiltinType::Int:        return 'i';
7235    case BuiltinType::Long:
7236      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7237    case BuiltinType::LongLong:   return 'q';
7238    case BuiltinType::Int128:     return 't';
7239    case BuiltinType::Float:      return 'f';
7240    case BuiltinType::Double:     return 'd';
7241    case BuiltinType::LongDouble: return 'D';
7242    case BuiltinType::NullPtr:    return '*'; // like char*
7243
7244    case BuiltinType::BFloat16:
7245    case BuiltinType::Float16:
7246    case BuiltinType::Float128:
7247    case BuiltinType::Half:
7248    case BuiltinType::ShortAccum:
7249    case BuiltinType::Accum:
7250    case BuiltinType::LongAccum:
7251    case BuiltinType::UShortAccum:
7252    case BuiltinType::UAccum:
7253    case BuiltinType::ULongAccum:
7254    case BuiltinType::ShortFract:
7255    case BuiltinType::Fract:
7256    case BuiltinType::LongFract:
7257    case BuiltinType::UShortFract:
7258    case BuiltinType::UFract:
7259    case BuiltinType::ULongFract:
7260    case BuiltinType::SatShortAccum:
7261    case BuiltinType::SatAccum:
7262    case BuiltinType::SatLongAccum:
7263    case BuiltinType::SatUShortAccum:
7264    case BuiltinType::SatUAccum:
7265    case BuiltinType::SatULongAccum:
7266    case BuiltinType::SatShortFract:
7267    case BuiltinType::SatFract:
7268    case BuiltinType::SatLongFract:
7269    case BuiltinType::SatUShortFract:
7270    case BuiltinType::SatUFract:
7271    case BuiltinType::SatULongFract:
7272      // FIXME: potentially need @encodes for these!
7273      return ' ';
7274
7275#define SVE_TYPE(Name, Id, SingletonId) \
7276    case BuiltinType::Id:
7277#include "clang/Basic/AArch64SVEACLETypes.def"
7278#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7279#include "clang/Basic/RISCVVTypes.def"
7280      {
7281        DiagnosticsEngine &Diags = C->getDiagnostics();
7282        unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7283                                                "cannot yet @encode type %0");
7284        Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7285        return ' ';
7286      }
7287
7288    case BuiltinType::ObjCId:
7289    case BuiltinType::ObjCClass:
7290    case BuiltinType::ObjCSel:
7291      llvm_unreachable("@encoding ObjC primitive type");
7292
7293    // OpenCL and placeholder types don't need @encodings.
7294#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7295    case BuiltinType::Id:
7296#include "clang/Basic/OpenCLImageTypes.def"
7297#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7298    case BuiltinType::Id:
7299#include "clang/Basic/OpenCLExtensionTypes.def"
7300    case BuiltinType::OCLEvent:
7301    case BuiltinType::OCLClkEvent:
7302    case BuiltinType::OCLQueue:
7303    case BuiltinType::OCLReserveID:
7304    case BuiltinType::OCLSampler:
7305    case BuiltinType::Dependent:
7306#define PPC_VECTOR_TYPE(Name, Id, Size) \
7307    case BuiltinType::Id:
7308#include "clang/Basic/PPCTypes.def"
7309#define BUILTIN_TYPE(KIND, ID)
7310#define PLACEHOLDER_TYPE(KIND, ID) \
7311    case BuiltinType::KIND:
7312#include "clang/AST/BuiltinTypes.def"
7313      llvm_unreachable("invalid builtin type for @encode");
7314    }
7315    llvm_unreachable("invalid BuiltinType::Kind value");
7316}
7317
7318static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7319  EnumDecl *Enum = ET->getDecl();
7320
7321  // The encoding of an non-fixed enum type is always 'i', regardless of size.
7322  if (!Enum->isFixed())
7323    return 'i';
7324
7325  // The encoding of a fixed enum type matches its fixed underlying type.
7326  const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7327  return getObjCEncodingForPrimitiveType(C, BT);
7328}
7329
7330static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7331                           QualType T, const FieldDecl *FD) {
7332  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7333  S += 'b';
7334  // The NeXT runtime encodes bit fields as b followed by the number of bits.
7335  // The GNU runtime requires more information; bitfields are encoded as b,
7336  // then the offset (in bits) of the first element, then the type of the
7337  // bitfield, then the size in bits.  For example, in this structure:
7338  //
7339  // struct
7340  // {
7341  //    int integer;
7342  //    int flags:2;
7343  // };
7344  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7345  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7346  // information is not especially sensible, but we're stuck with it for
7347  // compatibility with GCC, although providing it breaks anything that
7348  // actually uses runtime introspection and wants to work on both runtimes...
7349  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7350    uint64_t Offset;
7351
7352    if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7353      Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7354                                         IVD);
7355    } else {
7356      const RecordDecl *RD = FD->getParent();
7357      const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7358      Offset = RL.getFieldOffset(FD->getFieldIndex());
7359    }
7360
7361    S += llvm::utostr(Offset);
7362
7363    if (const auto *ET = T->getAs<EnumType>())
7364      S += ObjCEncodingForEnumType(Ctx, ET);
7365    else {
7366      const auto *BT = T->castAs<BuiltinType>();
7367      S += getObjCEncodingForPrimitiveType(Ctx, BT);
7368    }
7369  }
7370  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7371}
7372
7373// Helper function for determining whether the encoded type string would include
7374// a template specialization type.
7375static bool hasTemplateSpecializationInEncodedString(const Type *T,
7376                                                     bool VisitBasesAndFields) {
7377  T = T->getBaseElementTypeUnsafe();
7378
7379  if (auto *PT = T->getAs<PointerType>())
7380    return hasTemplateSpecializationInEncodedString(
7381        PT->getPointeeType().getTypePtr(), false);
7382
7383  auto *CXXRD = T->getAsCXXRecordDecl();
7384
7385  if (!CXXRD)
7386    return false;
7387
7388  if (isa<ClassTemplateSpecializationDecl>(CXXRD))
7389    return true;
7390
7391  if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
7392    return false;
7393
7394  for (auto B : CXXRD->bases())
7395    if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
7396                                                 true))
7397      return true;
7398
7399  for (auto *FD : CXXRD->fields())
7400    if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
7401                                                 true))
7402      return true;
7403
7404  return false;
7405}
7406
7407// FIXME: Use SmallString for accumulating string.
7408void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7409                                            const ObjCEncOptions Options,
7410                                            const FieldDecl *FD,
7411                                            QualType *NotEncodedT) const {
7412  CanQualType CT = getCanonicalType(T);
7413  switch (CT->getTypeClass()) {
7414  case Type::Builtin:
7415  case Type::Enum:
7416    if (FD && FD->isBitField())
7417      return EncodeBitField(this, S, T, FD);
7418    if (const auto *BT = dyn_cast<BuiltinType>(CT))
7419      S += getObjCEncodingForPrimitiveType(this, BT);
7420    else
7421      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7422    return;
7423
7424  case Type::Complex:
7425    S += 'j';
7426    getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7427                               ObjCEncOptions(),
7428                               /*Field=*/nullptr);
7429    return;
7430
7431  case Type::Atomic:
7432    S += 'A';
7433    getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7434                               ObjCEncOptions(),
7435                               /*Field=*/nullptr);
7436    return;
7437
7438  // encoding for pointer or reference types.
7439  case Type::Pointer:
7440  case Type::LValueReference:
7441  case Type::RValueReference: {
7442    QualType PointeeTy;
7443    if (isa<PointerType>(CT)) {
7444      const auto *PT = T->castAs<PointerType>();
7445      if (PT->isObjCSelType()) {
7446        S += ':';
7447        return;
7448      }
7449      PointeeTy = PT->getPointeeType();
7450    } else {
7451      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7452    }
7453
7454    bool isReadOnly = false;
7455    // For historical/compatibility reasons, the read-only qualifier of the
7456    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7457    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7458    // Also, do not emit the 'r' for anything but the outermost type!
7459    if (isa<TypedefType>(T.getTypePtr())) {
7460      if (Options.IsOutermostType() && T.isConstQualified()) {
7461        isReadOnly = true;
7462        S += 'r';
7463      }
7464    } else if (Options.IsOutermostType()) {
7465      QualType P = PointeeTy;
7466      while (auto PT = P->getAs<PointerType>())
7467        P = PT->getPointeeType();
7468      if (P.isConstQualified()) {
7469        isReadOnly = true;
7470        S += 'r';
7471      }
7472    }
7473    if (isReadOnly) {
7474      // Another legacy compatibility encoding. Some ObjC qualifier and type
7475      // combinations need to be rearranged.
7476      // Rewrite "in const" from "nr" to "rn"
7477      if (StringRef(S).endswith("nr"))
7478        S.replace(S.end()-2, S.end(), "rn");
7479    }
7480
7481    if (PointeeTy->isCharType()) {
7482      // char pointer types should be encoded as '*' unless it is a
7483      // type that has been typedef'd to 'BOOL'.
7484      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7485        S += '*';
7486        return;
7487      }
7488    } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7489      // GCC binary compat: Need to convert "struct objc_class *" to "#".
7490      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7491        S += '#';
7492        return;
7493      }
7494      // GCC binary compat: Need to convert "struct objc_object *" to "@".
7495      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7496        S += '@';
7497        return;
7498      }
7499      // If the encoded string for the class includes template names, just emit
7500      // "^v" for pointers to the class.
7501      if (getLangOpts().CPlusPlus &&
7502          (!getLangOpts().EncodeCXXClassTemplateSpec &&
7503           hasTemplateSpecializationInEncodedString(
7504               RTy, Options.ExpandPointedToStructures()))) {
7505        S += "^v";
7506        return;
7507      }
7508      // fall through...
7509    }
7510    S += '^';
7511    getLegacyIntegralTypeEncoding(PointeeTy);
7512
7513    ObjCEncOptions NewOptions;
7514    if (Options.ExpandPointedToStructures())
7515      NewOptions.setExpandStructures();
7516    getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7517                               /*Field=*/nullptr, NotEncodedT);
7518    return;
7519  }
7520
7521  case Type::ConstantArray:
7522  case Type::IncompleteArray:
7523  case Type::VariableArray: {
7524    const auto *AT = cast<ArrayType>(CT);
7525
7526    if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7527      // Incomplete arrays are encoded as a pointer to the array element.
7528      S += '^';
7529
7530      getObjCEncodingForTypeImpl(
7531          AT->getElementType(), S,
7532          Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7533    } else {
7534      S += '[';
7535
7536      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7537        S += llvm::utostr(CAT->getSize().getZExtValue());
7538      else {
7539        //Variable length arrays are encoded as a regular array with 0 elements.
7540        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7541               "Unknown array type!");
7542        S += '0';
7543      }
7544
7545      getObjCEncodingForTypeImpl(
7546          AT->getElementType(), S,
7547          Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7548          NotEncodedT);
7549      S += ']';
7550    }
7551    return;
7552  }
7553
7554  case Type::FunctionNoProto:
7555  case Type::FunctionProto:
7556    S += '?';
7557    return;
7558
7559  case Type::Record: {
7560    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7561    S += RDecl->isUnion() ? '(' : '{';
7562    // Anonymous structures print as '?'
7563    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7564      S += II->getName();
7565      if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7566        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7567        llvm::raw_string_ostream OS(S);
7568        printTemplateArgumentList(OS, TemplateArgs.asArray(),
7569                                  getPrintingPolicy());
7570      }
7571    } else {
7572      S += '?';
7573    }
7574    if (Options.ExpandStructures()) {
7575      S += '=';
7576      if (!RDecl->isUnion()) {
7577        getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7578      } else {
7579        for (const auto *Field : RDecl->fields()) {
7580          if (FD) {
7581            S += '"';
7582            S += Field->getNameAsString();
7583            S += '"';
7584          }
7585
7586          // Special case bit-fields.
7587          if (Field->isBitField()) {
7588            getObjCEncodingForTypeImpl(Field->getType(), S,
7589                                       ObjCEncOptions().setExpandStructures(),
7590                                       Field);
7591          } else {
7592            QualType qt = Field->getType();
7593            getLegacyIntegralTypeEncoding(qt);
7594            getObjCEncodingForTypeImpl(
7595                qt, S,
7596                ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7597                NotEncodedT);
7598          }
7599        }
7600      }
7601    }
7602    S += RDecl->isUnion() ? ')' : '}';
7603    return;
7604  }
7605
7606  case Type::BlockPointer: {
7607    const auto *BT = T->castAs<BlockPointerType>();
7608    S += "@?"; // Unlike a pointer-to-function, which is "^?".
7609    if (Options.EncodeBlockParameters()) {
7610      const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7611
7612      S += '<';
7613      // Block return type
7614      getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7615                                 Options.forComponentType(), FD, NotEncodedT);
7616      // Block self
7617      S += "@?";
7618      // Block parameters
7619      if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7620        for (const auto &I : FPT->param_types())
7621          getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7622                                     NotEncodedT);
7623      }
7624      S += '>';
7625    }
7626    return;
7627  }
7628
7629  case Type::ObjCObject: {
7630    // hack to match legacy encoding of *id and *Class
7631    QualType Ty = getObjCObjectPointerType(CT);
7632    if (Ty->isObjCIdType()) {
7633      S += "{objc_object=}";
7634      return;
7635    }
7636    else if (Ty->isObjCClassType()) {
7637      S += "{objc_class=}";
7638      return;
7639    }
7640    // TODO: Double check to make sure this intentionally falls through.
7641    LLVM_FALLTHROUGH;
7642  }
7643
7644  case Type::ObjCInterface: {
7645    // Ignore protocol qualifiers when mangling at this level.
7646    // @encode(class_name)
7647    ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7648    S += '{';
7649    S += OI->getObjCRuntimeNameAsString();
7650    if (Options.ExpandStructures()) {
7651      S += '=';
7652      SmallVector<const ObjCIvarDecl*, 32> Ivars;
7653      DeepCollectObjCIvars(OI, true, Ivars);
7654      for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7655        const FieldDecl *Field = Ivars[i];
7656        if (Field->isBitField())
7657          getObjCEncodingForTypeImpl(Field->getType(), S,
7658                                     ObjCEncOptions().setExpandStructures(),
7659                                     Field);
7660        else
7661          getObjCEncodingForTypeImpl(Field->getType(), S,
7662                                     ObjCEncOptions().setExpandStructures(), FD,
7663                                     NotEncodedT);
7664      }
7665    }
7666    S += '}';
7667    return;
7668  }
7669
7670  case Type::ObjCObjectPointer: {
7671    const auto *OPT = T->castAs<ObjCObjectPointerType>();
7672    if (OPT->isObjCIdType()) {
7673      S += '@';
7674      return;
7675    }
7676
7677    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7678      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7679      // Since this is a binary compatibility issue, need to consult with
7680      // runtime folks. Fortunately, this is a *very* obscure construct.
7681      S += '#';
7682      return;
7683    }
7684
7685    if (OPT->isObjCQualifiedIdType()) {
7686      getObjCEncodingForTypeImpl(
7687          getObjCIdType(), S,
7688          Options.keepingOnly(ObjCEncOptions()
7689                                  .setExpandPointedToStructures()
7690                                  .setExpandStructures()),
7691          FD);
7692      if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7693        // Note that we do extended encoding of protocol qualifer list
7694        // Only when doing ivar or property encoding.
7695        S += '"';
7696        for (const auto *I : OPT->quals()) {
7697          S += '<';
7698          S += I->getObjCRuntimeNameAsString();
7699          S += '>';
7700        }
7701        S += '"';
7702      }
7703      return;
7704    }
7705
7706    S += '@';
7707    if (OPT->getInterfaceDecl() &&
7708        (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7709      S += '"';
7710      S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7711      for (const auto *I : OPT->quals()) {
7712        S += '<';
7713        S += I->getObjCRuntimeNameAsString();
7714        S += '>';
7715      }
7716      S += '"';
7717    }
7718    return;
7719  }
7720
7721  // gcc just blithely ignores member pointers.
7722  // FIXME: we should do better than that.  'M' is available.
7723  case Type::MemberPointer:
7724  // This matches gcc's encoding, even though technically it is insufficient.
7725  //FIXME. We should do a better job than gcc.
7726  case Type::Vector:
7727  case Type::ExtVector:
7728  // Until we have a coherent encoding of these three types, issue warning.
7729    if (NotEncodedT)
7730      *NotEncodedT = T;
7731    return;
7732
7733  case Type::ConstantMatrix:
7734    if (NotEncodedT)
7735      *NotEncodedT = T;
7736    return;
7737
7738  // We could see an undeduced auto type here during error recovery.
7739  // Just ignore it.
7740  case Type::Auto:
7741  case Type::DeducedTemplateSpecialization:
7742    return;
7743
7744  case Type::Pipe:
7745  case Type::ExtInt:
7746#define ABSTRACT_TYPE(KIND, BASE)
7747#define TYPE(KIND, BASE)
7748#define DEPENDENT_TYPE(KIND, BASE) \
7749  case Type::KIND:
7750#define NON_CANONICAL_TYPE(KIND, BASE) \
7751  case Type::KIND:
7752#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7753  case Type::KIND:
7754#include "clang/AST/TypeNodes.inc"
7755    llvm_unreachable("@encode for dependent type!");
7756  }
7757  llvm_unreachable("bad type kind!");
7758}
7759
7760void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7761                                                 std::string &S,
7762                                                 const FieldDecl *FD,
7763                                                 bool includeVBases,
7764                                                 QualType *NotEncodedT) const {
7765  assert(RDecl && "Expected non-null RecordDecl");
7766  assert(!RDecl->isUnion() && "Should not be called for unions");
7767  if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7768    return;
7769
7770  const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7771  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7772  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7773
7774  if (CXXRec) {
7775    for (const auto &BI : CXXRec->bases()) {
7776      if (!BI.isVirtual()) {
7777        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7778        if (base->isEmpty())
7779          continue;
7780        uint64_t offs = toBits(layout.getBaseClassOffset(base));
7781        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7782                                  std::make_pair(offs, base));
7783      }
7784    }
7785  }
7786
7787  unsigned i = 0;
7788  for (FieldDecl *Field : RDecl->fields()) {
7789    if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
7790      continue;
7791    uint64_t offs = layout.getFieldOffset(i);
7792    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7793                              std::make_pair(offs, Field));
7794    ++i;
7795  }
7796
7797  if (CXXRec && includeVBases) {
7798    for (const auto &BI : CXXRec->vbases()) {
7799      CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7800      if (base->isEmpty())
7801        continue;
7802      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7803      if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7804          FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7805        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7806                                  std::make_pair(offs, base));
7807    }
7808  }
7809
7810  CharUnits size;
7811  if (CXXRec) {
7812    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7813  } else {
7814    size = layout.getSize();
7815  }
7816
7817#ifndef NDEBUG
7818  uint64_t CurOffs = 0;
7819#endif
7820  std::multimap<uint64_t, NamedDecl *>::iterator
7821    CurLayObj = FieldOrBaseOffsets.begin();
7822
7823  if (CXXRec && CXXRec->isDynamicClass() &&
7824      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7825    if (FD) {
7826      S += "\"_vptr$";
7827      std::string recname = CXXRec->getNameAsString();
7828      if (recname.empty()) recname = "?";
7829      S += recname;
7830      S += '"';
7831    }
7832    S += "^^?";
7833#ifndef NDEBUG
7834    CurOffs += getTypeSize(VoidPtrTy);
7835#endif
7836  }
7837
7838  if (!RDecl->hasFlexibleArrayMember()) {
7839    // Mark the end of the structure.
7840    uint64_t offs = toBits(size);
7841    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7842                              std::make_pair(offs, nullptr));
7843  }
7844
7845  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7846#ifndef NDEBUG
7847    assert(CurOffs <= CurLayObj->first);
7848    if (CurOffs < CurLayObj->first) {
7849      uint64_t padding = CurLayObj->first - CurOffs;
7850      // FIXME: There doesn't seem to be a way to indicate in the encoding that
7851      // packing/alignment of members is different that normal, in which case
7852      // the encoding will be out-of-sync with the real layout.
7853      // If the runtime switches to just consider the size of types without
7854      // taking into account alignment, we could make padding explicit in the
7855      // encoding (e.g. using arrays of chars). The encoding strings would be
7856      // longer then though.
7857      CurOffs += padding;
7858    }
7859#endif
7860
7861    NamedDecl *dcl = CurLayObj->second;
7862    if (!dcl)
7863      break; // reached end of structure.
7864
7865    if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7866      // We expand the bases without their virtual bases since those are going
7867      // in the initial structure. Note that this differs from gcc which
7868      // expands virtual bases each time one is encountered in the hierarchy,
7869      // making the encoding type bigger than it really is.
7870      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7871                                      NotEncodedT);
7872      assert(!base->isEmpty());
7873#ifndef NDEBUG
7874      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7875#endif
7876    } else {
7877      const auto *field = cast<FieldDecl>(dcl);
7878      if (FD) {
7879        S += '"';
7880        S += field->getNameAsString();
7881        S += '"';
7882      }
7883
7884      if (field->isBitField()) {
7885        EncodeBitField(this, S, field->getType(), field);
7886#ifndef NDEBUG
7887        CurOffs += field->getBitWidthValue(*this);
7888#endif
7889      } else {
7890        QualType qt = field->getType();
7891        getLegacyIntegralTypeEncoding(qt);
7892        getObjCEncodingForTypeImpl(
7893            qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7894            FD, NotEncodedT);
7895#ifndef NDEBUG
7896        CurOffs += getTypeSize(field->getType());
7897#endif
7898      }
7899    }
7900  }
7901}
7902
7903void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7904                                                 std::string& S) const {
7905  if (QT & Decl::OBJC_TQ_In)
7906    S += 'n';
7907  if (QT & Decl::OBJC_TQ_Inout)
7908    S += 'N';
7909  if (QT & Decl::OBJC_TQ_Out)
7910    S += 'o';
7911  if (QT & Decl::OBJC_TQ_Bycopy)
7912    S += 'O';
7913  if (QT & Decl::OBJC_TQ_Byref)
7914    S += 'R';
7915  if (QT & Decl::OBJC_TQ_Oneway)
7916    S += 'V';
7917}
7918
7919TypedefDecl *ASTContext::getObjCIdDecl() const {
7920  if (!ObjCIdDecl) {
7921    QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7922    T = getObjCObjectPointerType(T);
7923    ObjCIdDecl = buildImplicitTypedef(T, "id");
7924  }
7925  return ObjCIdDecl;
7926}
7927
7928TypedefDecl *ASTContext::getObjCSelDecl() const {
7929  if (!ObjCSelDecl) {
7930    QualType T = getPointerType(ObjCBuiltinSelTy);
7931    ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7932  }
7933  return ObjCSelDecl;
7934}
7935
7936TypedefDecl *ASTContext::getObjCClassDecl() const {
7937  if (!ObjCClassDecl) {
7938    QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7939    T = getObjCObjectPointerType(T);
7940    ObjCClassDecl = buildImplicitTypedef(T, "Class");
7941  }
7942  return ObjCClassDecl;
7943}
7944
7945ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7946  if (!ObjCProtocolClassDecl) {
7947    ObjCProtocolClassDecl
7948      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7949                                  SourceLocation(),
7950                                  &Idents.get("Protocol"),
7951                                  /*typeParamList=*/nullptr,
7952                                  /*PrevDecl=*/nullptr,
7953                                  SourceLocation(), true);
7954  }
7955
7956  return ObjCProtocolClassDecl;
7957}
7958
7959//===----------------------------------------------------------------------===//
7960// __builtin_va_list Construction Functions
7961//===----------------------------------------------------------------------===//
7962
7963static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7964                                                 StringRef Name) {
7965  // typedef char* __builtin[_ms]_va_list;
7966  QualType T = Context->getPointerType(Context->CharTy);
7967  return Context->buildImplicitTypedef(T, Name);
7968}
7969
7970static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7971  return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7972}
7973
7974static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7975  return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7976}
7977
7978static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7979  // typedef void* __builtin_va_list;
7980  QualType T = Context->getPointerType(Context->VoidTy);
7981  return Context->buildImplicitTypedef(T, "__builtin_va_list");
7982}
7983
7984static TypedefDecl *
7985CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7986  // struct __va_list
7987  RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7988  if (Context->getLangOpts().CPlusPlus) {
7989    // namespace std { struct __va_list {
7990    NamespaceDecl *NS;
7991    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7992                               Context->getTranslationUnitDecl(),
7993                               /*Inline*/ false, SourceLocation(),
7994                               SourceLocation(), &Context->Idents.get("std"),
7995                               /*PrevDecl*/ nullptr);
7996    NS->setImplicit();
7997    VaListTagDecl->setDeclContext(NS);
7998  }
7999
8000  VaListTagDecl->startDefinition();
8001
8002  const size_t NumFields = 5;
8003  QualType FieldTypes[NumFields];
8004  const char *FieldNames[NumFields];
8005
8006  // void *__stack;
8007  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8008  FieldNames[0] = "__stack";
8009
8010  // void *__gr_top;
8011  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8012  FieldNames[1] = "__gr_top";
8013
8014  // void *__vr_top;
8015  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8016  FieldNames[2] = "__vr_top";
8017
8018  // int __gr_offs;
8019  FieldTypes[3] = Context->IntTy;
8020  FieldNames[3] = "__gr_offs";
8021
8022  // int __vr_offs;
8023  FieldTypes[4] = Context->IntTy;
8024  FieldNames[4] = "__vr_offs";
8025
8026  // Create fields
8027  for (unsigned i = 0; i < NumFields; ++i) {
8028    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8029                                         VaListTagDecl,
8030                                         SourceLocation(),
8031                                         SourceLocation(),
8032                                         &Context->Idents.get(FieldNames[i]),
8033                                         FieldTypes[i], /*TInfo=*/nullptr,
8034                                         /*BitWidth=*/nullptr,
8035                                         /*Mutable=*/false,
8036                                         ICIS_NoInit);
8037    Field->setAccess(AS_public);
8038    VaListTagDecl->addDecl(Field);
8039  }
8040  VaListTagDecl->completeDefinition();
8041  Context->VaListTagDecl = VaListTagDecl;
8042  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8043
8044  // } __builtin_va_list;
8045  return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8046}
8047
8048static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8049  // typedef struct __va_list_tag {
8050  RecordDecl *VaListTagDecl;
8051
8052  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8053  VaListTagDecl->startDefinition();
8054
8055  const size_t NumFields = 5;
8056  QualType FieldTypes[NumFields];
8057  const char *FieldNames[NumFields];
8058
8059  //   unsigned char gpr;
8060  FieldTypes[0] = Context->UnsignedCharTy;
8061  FieldNames[0] = "gpr";
8062
8063  //   unsigned char fpr;
8064  FieldTypes[1] = Context->UnsignedCharTy;
8065  FieldNames[1] = "fpr";
8066
8067  //   unsigned short reserved;
8068  FieldTypes[2] = Context->UnsignedShortTy;
8069  FieldNames[2] = "reserved";
8070
8071  //   void* overflow_arg_area;
8072  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8073  FieldNames[3] = "overflow_arg_area";
8074
8075  //   void* reg_save_area;
8076  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8077  FieldNames[4] = "reg_save_area";
8078
8079  // Create fields
8080  for (unsigned i = 0; i < NumFields; ++i) {
8081    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8082                                         SourceLocation(),
8083                                         SourceLocation(),
8084                                         &Context->Idents.get(FieldNames[i]),
8085                                         FieldTypes[i], /*TInfo=*/nullptr,
8086                                         /*BitWidth=*/nullptr,
8087                                         /*Mutable=*/false,
8088                                         ICIS_NoInit);
8089    Field->setAccess(AS_public);
8090    VaListTagDecl->addDecl(Field);
8091  }
8092  VaListTagDecl->completeDefinition();
8093  Context->VaListTagDecl = VaListTagDecl;
8094  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8095
8096  // } __va_list_tag;
8097  TypedefDecl *VaListTagTypedefDecl =
8098      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8099
8100  QualType VaListTagTypedefType =
8101    Context->getTypedefType(VaListTagTypedefDecl);
8102
8103  // typedef __va_list_tag __builtin_va_list[1];
8104  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8105  QualType VaListTagArrayType
8106    = Context->getConstantArrayType(VaListTagTypedefType,
8107                                    Size, nullptr, ArrayType::Normal, 0);
8108  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8109}
8110
8111static TypedefDecl *
8112CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8113  // struct __va_list_tag {
8114  RecordDecl *VaListTagDecl;
8115  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8116  VaListTagDecl->startDefinition();
8117
8118  const size_t NumFields = 4;
8119  QualType FieldTypes[NumFields];
8120  const char *FieldNames[NumFields];
8121
8122  //   unsigned gp_offset;
8123  FieldTypes[0] = Context->UnsignedIntTy;
8124  FieldNames[0] = "gp_offset";
8125
8126  //   unsigned fp_offset;
8127  FieldTypes[1] = Context->UnsignedIntTy;
8128  FieldNames[1] = "fp_offset";
8129
8130  //   void* overflow_arg_area;
8131  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8132  FieldNames[2] = "overflow_arg_area";
8133
8134  //   void* reg_save_area;
8135  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8136  FieldNames[3] = "reg_save_area";
8137
8138  // Create fields
8139  for (unsigned i = 0; i < NumFields; ++i) {
8140    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8141                                         VaListTagDecl,
8142                                         SourceLocation(),
8143                                         SourceLocation(),
8144                                         &Context->Idents.get(FieldNames[i]),
8145                                         FieldTypes[i], /*TInfo=*/nullptr,
8146                                         /*BitWidth=*/nullptr,
8147                                         /*Mutable=*/false,
8148                                         ICIS_NoInit);
8149    Field->setAccess(AS_public);
8150    VaListTagDecl->addDecl(Field);
8151  }
8152  VaListTagDecl->completeDefinition();
8153  Context->VaListTagDecl = VaListTagDecl;
8154  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8155
8156  // };
8157
8158  // typedef struct __va_list_tag __builtin_va_list[1];
8159  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8160  QualType VaListTagArrayType = Context->getConstantArrayType(
8161      VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8162  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8163}
8164
8165static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8166  // typedef int __builtin_va_list[4];
8167  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8168  QualType IntArrayType = Context->getConstantArrayType(
8169      Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8170  return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8171}
8172
8173static TypedefDecl *
8174CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8175  // struct __va_list
8176  RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8177  if (Context->getLangOpts().CPlusPlus) {
8178    // namespace std { struct __va_list {
8179    NamespaceDecl *NS;
8180    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8181                               Context->getTranslationUnitDecl(),
8182                               /*Inline*/false, SourceLocation(),
8183                               SourceLocation(), &Context->Idents.get("std"),
8184                               /*PrevDecl*/ nullptr);
8185    NS->setImplicit();
8186    VaListDecl->setDeclContext(NS);
8187  }
8188
8189  VaListDecl->startDefinition();
8190
8191  // void * __ap;
8192  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8193                                       VaListDecl,
8194                                       SourceLocation(),
8195                                       SourceLocation(),
8196                                       &Context->Idents.get("__ap"),
8197                                       Context->getPointerType(Context->VoidTy),
8198                                       /*TInfo=*/nullptr,
8199                                       /*BitWidth=*/nullptr,
8200                                       /*Mutable=*/false,
8201                                       ICIS_NoInit);
8202  Field->setAccess(AS_public);
8203  VaListDecl->addDecl(Field);
8204
8205  // };
8206  VaListDecl->completeDefinition();
8207  Context->VaListTagDecl = VaListDecl;
8208
8209  // typedef struct __va_list __builtin_va_list;
8210  QualType T = Context->getRecordType(VaListDecl);
8211  return Context->buildImplicitTypedef(T, "__builtin_va_list");
8212}
8213
8214static TypedefDecl *
8215CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8216  // struct __va_list_tag {
8217  RecordDecl *VaListTagDecl;
8218  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8219  VaListTagDecl->startDefinition();
8220
8221  const size_t NumFields = 4;
8222  QualType FieldTypes[NumFields];
8223  const char *FieldNames[NumFields];
8224
8225  //   long __gpr;
8226  FieldTypes[0] = Context->LongTy;
8227  FieldNames[0] = "__gpr";
8228
8229  //   long __fpr;
8230  FieldTypes[1] = Context->LongTy;
8231  FieldNames[1] = "__fpr";
8232
8233  //   void *__overflow_arg_area;
8234  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8235  FieldNames[2] = "__overflow_arg_area";
8236
8237  //   void *__reg_save_area;
8238  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8239  FieldNames[3] = "__reg_save_area";
8240
8241  // Create fields
8242  for (unsigned i = 0; i < NumFields; ++i) {
8243    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8244                                         VaListTagDecl,
8245                                         SourceLocation(),
8246                                         SourceLocation(),
8247                                         &Context->Idents.get(FieldNames[i]),
8248                                         FieldTypes[i], /*TInfo=*/nullptr,
8249                                         /*BitWidth=*/nullptr,
8250                                         /*Mutable=*/false,
8251                                         ICIS_NoInit);
8252    Field->setAccess(AS_public);
8253    VaListTagDecl->addDecl(Field);
8254  }
8255  VaListTagDecl->completeDefinition();
8256  Context->VaListTagDecl = VaListTagDecl;
8257  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8258
8259  // };
8260
8261  // typedef __va_list_tag __builtin_va_list[1];
8262  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8263  QualType VaListTagArrayType = Context->getConstantArrayType(
8264      VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8265
8266  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8267}
8268
8269static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8270  // typedef struct __va_list_tag {
8271  RecordDecl *VaListTagDecl;
8272  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8273  VaListTagDecl->startDefinition();
8274
8275  const size_t NumFields = 3;
8276  QualType FieldTypes[NumFields];
8277  const char *FieldNames[NumFields];
8278
8279  //   void *CurrentSavedRegisterArea;
8280  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8281  FieldNames[0] = "__current_saved_reg_area_pointer";
8282
8283  //   void *SavedRegAreaEnd;
8284  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8285  FieldNames[1] = "__saved_reg_area_end_pointer";
8286
8287  //   void *OverflowArea;
8288  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8289  FieldNames[2] = "__overflow_area_pointer";
8290
8291  // Create fields
8292  for (unsigned i = 0; i < NumFields; ++i) {
8293    FieldDecl *Field = FieldDecl::Create(
8294        const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8295        SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8296        /*TInfo=*/0,
8297        /*BitWidth=*/0,
8298        /*Mutable=*/false, ICIS_NoInit);
8299    Field->setAccess(AS_public);
8300    VaListTagDecl->addDecl(Field);
8301  }
8302  VaListTagDecl->completeDefinition();
8303  Context->VaListTagDecl = VaListTagDecl;
8304  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8305
8306  // } __va_list_tag;
8307  TypedefDecl *VaListTagTypedefDecl =
8308      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8309
8310  QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8311
8312  // typedef __va_list_tag __builtin_va_list[1];
8313  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8314  QualType VaListTagArrayType = Context->getConstantArrayType(
8315      VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8316
8317  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8318}
8319
8320static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8321                                     TargetInfo::BuiltinVaListKind Kind) {
8322  switch (Kind) {
8323  case TargetInfo::CharPtrBuiltinVaList:
8324    return CreateCharPtrBuiltinVaListDecl(Context);
8325  case TargetInfo::VoidPtrBuiltinVaList:
8326    return CreateVoidPtrBuiltinVaListDecl(Context);
8327  case TargetInfo::AArch64ABIBuiltinVaList:
8328    return CreateAArch64ABIBuiltinVaListDecl(Context);
8329  case TargetInfo::PowerABIBuiltinVaList:
8330    return CreatePowerABIBuiltinVaListDecl(Context);
8331  case TargetInfo::X86_64ABIBuiltinVaList:
8332    return CreateX86_64ABIBuiltinVaListDecl(Context);
8333  case TargetInfo::PNaClABIBuiltinVaList:
8334    return CreatePNaClABIBuiltinVaListDecl(Context);
8335  case TargetInfo::AAPCSABIBuiltinVaList:
8336    return CreateAAPCSABIBuiltinVaListDecl(Context);
8337  case TargetInfo::SystemZBuiltinVaList:
8338    return CreateSystemZBuiltinVaListDecl(Context);
8339  case TargetInfo::HexagonBuiltinVaList:
8340    return CreateHexagonBuiltinVaListDecl(Context);
8341  }
8342
8343  llvm_unreachable("Unhandled __builtin_va_list type kind");
8344}
8345
8346TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8347  if (!BuiltinVaListDecl) {
8348    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8349    assert(BuiltinVaListDecl->isImplicit());
8350  }
8351
8352  return BuiltinVaListDecl;
8353}
8354
8355Decl *ASTContext::getVaListTagDecl() const {
8356  // Force the creation of VaListTagDecl by building the __builtin_va_list
8357  // declaration.
8358  if (!VaListTagDecl)
8359    (void)getBuiltinVaListDecl();
8360
8361  return VaListTagDecl;
8362}
8363
8364TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8365  if (!BuiltinMSVaListDecl)
8366    BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8367
8368  return BuiltinMSVaListDecl;
8369}
8370
8371bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8372  return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8373}
8374
8375void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8376  assert(ObjCConstantStringType.isNull() &&
8377         "'NSConstantString' type already set!");
8378
8379  ObjCConstantStringType = getObjCInterfaceType(Decl);
8380}
8381
8382/// Retrieve the template name that corresponds to a non-empty
8383/// lookup.
8384TemplateName
8385ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8386                                      UnresolvedSetIterator End) const {
8387  unsigned size = End - Begin;
8388  assert(size > 1 && "set is not overloaded!");
8389
8390  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8391                          size * sizeof(FunctionTemplateDecl*));
8392  auto *OT = new (memory) OverloadedTemplateStorage(size);
8393
8394  NamedDecl **Storage = OT->getStorage();
8395  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8396    NamedDecl *D = *I;
8397    assert(isa<FunctionTemplateDecl>(D) ||
8398           isa<UnresolvedUsingValueDecl>(D) ||
8399           (isa<UsingShadowDecl>(D) &&
8400            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8401    *Storage++ = D;
8402  }
8403
8404  return TemplateName(OT);
8405}
8406
8407/// Retrieve a template name representing an unqualified-id that has been
8408/// assumed to name a template for ADL purposes.
8409TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8410  auto *OT = new (*this) AssumedTemplateStorage(Name);
8411  return TemplateName(OT);
8412}
8413
8414/// Retrieve the template name that represents a qualified
8415/// template name such as \c std::vector.
8416TemplateName
8417ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8418                                     bool TemplateKeyword,
8419                                     TemplateDecl *Template) const {
8420  assert(NNS && "Missing nested-name-specifier in qualified template name");
8421
8422  // FIXME: Canonicalization?
8423  llvm::FoldingSetNodeID ID;
8424  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8425
8426  void *InsertPos = nullptr;
8427  QualifiedTemplateName *QTN =
8428    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8429  if (!QTN) {
8430    QTN = new (*this, alignof(QualifiedTemplateName))
8431        QualifiedTemplateName(NNS, TemplateKeyword, Template);
8432    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8433  }
8434
8435  return TemplateName(QTN);
8436}
8437
8438/// Retrieve the template name that represents a dependent
8439/// template name such as \c MetaFun::template apply.
8440TemplateName
8441ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8442                                     const IdentifierInfo *Name) const {
8443  assert((!NNS || NNS->isDependent()) &&
8444         "Nested name specifier must be dependent");
8445
8446  llvm::FoldingSetNodeID ID;
8447  DependentTemplateName::Profile(ID, NNS, Name);
8448
8449  void *InsertPos = nullptr;
8450  DependentTemplateName *QTN =
8451    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8452
8453  if (QTN)
8454    return TemplateName(QTN);
8455
8456  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8457  if (CanonNNS == NNS) {
8458    QTN = new (*this, alignof(DependentTemplateName))
8459        DependentTemplateName(NNS, Name);
8460  } else {
8461    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
8462    QTN = new (*this, alignof(DependentTemplateName))
8463        DependentTemplateName(NNS, Name, Canon);
8464    DependentTemplateName *CheckQTN =
8465      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8466    assert(!CheckQTN && "Dependent type name canonicalization broken");
8467    (void)CheckQTN;
8468  }
8469
8470  DependentTemplateNames.InsertNode(QTN, InsertPos);
8471  return TemplateName(QTN);
8472}
8473
8474/// Retrieve the template name that represents a dependent
8475/// template name such as \c MetaFun::template operator+.
8476TemplateName
8477ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8478                                     OverloadedOperatorKind Operator) const {
8479  assert((!NNS || NNS->isDependent()) &&
8480         "Nested name specifier must be dependent");
8481
8482  llvm::FoldingSetNodeID ID;
8483  DependentTemplateName::Profile(ID, NNS, Operator);
8484
8485  void *InsertPos = nullptr;
8486  DependentTemplateName *QTN
8487    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8488
8489  if (QTN)
8490    return TemplateName(QTN);
8491
8492  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8493  if (CanonNNS == NNS) {
8494    QTN = new (*this, alignof(DependentTemplateName))
8495        DependentTemplateName(NNS, Operator);
8496  } else {
8497    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
8498    QTN = new (*this, alignof(DependentTemplateName))
8499        DependentTemplateName(NNS, Operator, Canon);
8500
8501    DependentTemplateName *CheckQTN
8502      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8503    assert(!CheckQTN && "Dependent template name canonicalization broken");
8504    (void)CheckQTN;
8505  }
8506
8507  DependentTemplateNames.InsertNode(QTN, InsertPos);
8508  return TemplateName(QTN);
8509}
8510
8511TemplateName
8512ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
8513                                         TemplateName replacement) const {
8514  llvm::FoldingSetNodeID ID;
8515  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8516
8517  void *insertPos = nullptr;
8518  SubstTemplateTemplateParmStorage *subst
8519    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8520
8521  if (!subst) {
8522    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8523    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8524  }
8525
8526  return TemplateName(subst);
8527}
8528
8529TemplateName
8530ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8531                                       const TemplateArgument &ArgPack) const {
8532  auto &Self = const_cast<ASTContext &>(*this);
8533  llvm::FoldingSetNodeID ID;
8534  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8535
8536  void *InsertPos = nullptr;
8537  SubstTemplateTemplateParmPackStorage *Subst
8538    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8539
8540  if (!Subst) {
8541    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8542                                                           ArgPack.pack_size(),
8543                                                         ArgPack.pack_begin());
8544    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8545  }
8546
8547  return TemplateName(Subst);
8548}
8549
8550/// getFromTargetType - Given one of the integer types provided by
8551/// TargetInfo, produce the corresponding type. The unsigned @p Type
8552/// is actually a value of type @c TargetInfo::IntType.
8553CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8554  switch (Type) {
8555  case TargetInfo::NoInt: return {};
8556  case TargetInfo::SignedChar: return SignedCharTy;
8557  case TargetInfo::UnsignedChar: return UnsignedCharTy;
8558  case TargetInfo::SignedShort: return ShortTy;
8559  case TargetInfo::UnsignedShort: return UnsignedShortTy;
8560  case TargetInfo::SignedInt: return IntTy;
8561  case TargetInfo::UnsignedInt: return UnsignedIntTy;
8562  case TargetInfo::SignedLong: return LongTy;
8563  case TargetInfo::UnsignedLong: return UnsignedLongTy;
8564  case TargetInfo::SignedLongLong: return LongLongTy;
8565  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8566  }
8567
8568  llvm_unreachable("Unhandled TargetInfo::IntType value");
8569}
8570
8571//===----------------------------------------------------------------------===//
8572//                        Type Predicates.
8573//===----------------------------------------------------------------------===//
8574
8575/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8576/// garbage collection attribute.
8577///
8578Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8579  if (getLangOpts().getGC() == LangOptions::NonGC)
8580    return Qualifiers::GCNone;
8581
8582  assert(getLangOpts().ObjC);
8583  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8584
8585  // Default behaviour under objective-C's gc is for ObjC pointers
8586  // (or pointers to them) be treated as though they were declared
8587  // as __strong.
8588  if (GCAttrs == Qualifiers::GCNone) {
8589    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8590      return Qualifiers::Strong;
8591    else if (Ty->isPointerType())
8592      return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8593  } else {
8594    // It's not valid to set GC attributes on anything that isn't a
8595    // pointer.
8596#ifndef NDEBUG
8597    QualType CT = Ty->getCanonicalTypeInternal();
8598    while (const auto *AT = dyn_cast<ArrayType>(CT))
8599      CT = AT->getElementType();
8600    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8601#endif
8602  }
8603  return GCAttrs;
8604}
8605
8606//===----------------------------------------------------------------------===//
8607//                        Type Compatibility Testing
8608//===----------------------------------------------------------------------===//
8609
8610/// areCompatVectorTypes - Return true if the two specified vector types are
8611/// compatible.
8612static bool areCompatVectorTypes(const VectorType *LHS,
8613                                 const VectorType *RHS) {
8614  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8615  return LHS->getElementType() == RHS->getElementType() &&
8616         LHS->getNumElements() == RHS->getNumElements();
8617}
8618
8619/// areCompatMatrixTypes - Return true if the two specified matrix types are
8620/// compatible.
8621static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
8622                                 const ConstantMatrixType *RHS) {
8623  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8624  return LHS->getElementType() == RHS->getElementType() &&
8625         LHS->getNumRows() == RHS->getNumRows() &&
8626         LHS->getNumColumns() == RHS->getNumColumns();
8627}
8628
8629bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8630                                          QualType SecondVec) {
8631  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8632  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8633
8634  if (hasSameUnqualifiedType(FirstVec, SecondVec))
8635    return true;
8636
8637  // Treat Neon vector types and most AltiVec vector types as if they are the
8638  // equivalent GCC vector types.
8639  const auto *First = FirstVec->castAs<VectorType>();
8640  const auto *Second = SecondVec->castAs<VectorType>();
8641  if (First->getNumElements() == Second->getNumElements() &&
8642      hasSameType(First->getElementType(), Second->getElementType()) &&
8643      First->getVectorKind() != VectorType::AltiVecPixel &&
8644      First->getVectorKind() != VectorType::AltiVecBool &&
8645      Second->getVectorKind() != VectorType::AltiVecPixel &&
8646      Second->getVectorKind() != VectorType::AltiVecBool &&
8647      First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8648      First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
8649      Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8650      Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
8651    return true;
8652
8653  return false;
8654}
8655
8656bool ASTContext::areCompatibleSveTypes(QualType FirstType,
8657                                       QualType SecondType) {
8658  assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8659          (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8660         "Expected SVE builtin type and vector type!");
8661
8662  auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
8663    if (const auto *BT = FirstType->getAs<BuiltinType>()) {
8664      if (const auto *VT = SecondType->getAs<VectorType>()) {
8665        // Predicates have the same representation as uint8 so we also have to
8666        // check the kind to make these types incompatible.
8667        if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
8668          return BT->getKind() == BuiltinType::SveBool;
8669        else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
8670          return VT->getElementType().getCanonicalType() ==
8671                 FirstType->getSveEltType(*this);
8672        else if (VT->getVectorKind() == VectorType::GenericVector)
8673          return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits &&
8674                 hasSameType(VT->getElementType(),
8675                             getBuiltinVectorTypeInfo(BT).ElementType);
8676      }
8677    }
8678    return false;
8679  };
8680
8681  return IsValidCast(FirstType, SecondType) ||
8682         IsValidCast(SecondType, FirstType);
8683}
8684
8685bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
8686                                          QualType SecondType) {
8687  assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8688          (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8689         "Expected SVE builtin type and vector type!");
8690
8691  auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
8692    if (!FirstType->getAs<BuiltinType>())
8693      return false;
8694
8695    const auto *VecTy = SecondType->getAs<VectorType>();
8696    if (VecTy &&
8697        (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
8698         VecTy->getVectorKind() == VectorType::GenericVector)) {
8699      const LangOptions::LaxVectorConversionKind LVCKind =
8700          getLangOpts().getLaxVectorConversions();
8701
8702      // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
8703      // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
8704      // converts to VLAT and VLAT implicitly converts to GNUT."
8705      // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
8706      // predicates.
8707      if (VecTy->getVectorKind() == VectorType::GenericVector &&
8708          getTypeSize(SecondType) != getLangOpts().ArmSveVectorBits)
8709        return false;
8710
8711      // If -flax-vector-conversions=all is specified, the types are
8712      // certainly compatible.
8713      if (LVCKind == LangOptions::LaxVectorConversionKind::All)
8714        return true;
8715
8716      // If -flax-vector-conversions=integer is specified, the types are
8717      // compatible if the elements are integer types.
8718      if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
8719        return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
8720               FirstType->getSveEltType(*this)->isIntegerType();
8721    }
8722
8723    return false;
8724  };
8725
8726  return IsLaxCompatible(FirstType, SecondType) ||
8727         IsLaxCompatible(SecondType, FirstType);
8728}
8729
8730bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8731  while (true) {
8732    // __strong id
8733    if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8734      if (Attr->getAttrKind() == attr::ObjCOwnership)
8735        return true;
8736
8737      Ty = Attr->getModifiedType();
8738
8739    // X *__strong (...)
8740    } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8741      Ty = Paren->getInnerType();
8742
8743    // We do not want to look through typedefs, typeof(expr),
8744    // typeof(type), or any other way that the type is somehow
8745    // abstracted.
8746    } else {
8747      return false;
8748    }
8749  }
8750}
8751
8752//===----------------------------------------------------------------------===//
8753// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8754//===----------------------------------------------------------------------===//
8755
8756/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8757/// inheritance hierarchy of 'rProto'.
8758bool
8759ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8760                                           ObjCProtocolDecl *rProto) const {
8761  if (declaresSameEntity(lProto, rProto))
8762    return true;
8763  for (auto *PI : rProto->protocols())
8764    if (ProtocolCompatibleWithProtocol(lProto, PI))
8765      return true;
8766  return false;
8767}
8768
8769/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8770/// Class<pr1, ...>.
8771bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8772    const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8773  for (auto *lhsProto : lhs->quals()) {
8774    bool match = false;
8775    for (auto *rhsProto : rhs->quals()) {
8776      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8777        match = true;
8778        break;
8779      }
8780    }
8781    if (!match)
8782      return false;
8783  }
8784  return true;
8785}
8786
8787/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8788/// ObjCQualifiedIDType.
8789bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8790    const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8791    bool compare) {
8792  // Allow id<P..> and an 'id' in all cases.
8793  if (lhs->isObjCIdType() || rhs->isObjCIdType())
8794    return true;
8795
8796  // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8797  if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8798      rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8799    return false;
8800
8801  if (lhs->isObjCQualifiedIdType()) {
8802    if (rhs->qual_empty()) {
8803      // If the RHS is a unqualified interface pointer "NSString*",
8804      // make sure we check the class hierarchy.
8805      if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8806        for (auto *I : lhs->quals()) {
8807          // when comparing an id<P> on lhs with a static type on rhs,
8808          // see if static class implements all of id's protocols, directly or
8809          // through its super class and categories.
8810          if (!rhsID->ClassImplementsProtocol(I, true))
8811            return false;
8812        }
8813      }
8814      // If there are no qualifiers and no interface, we have an 'id'.
8815      return true;
8816    }
8817    // Both the right and left sides have qualifiers.
8818    for (auto *lhsProto : lhs->quals()) {
8819      bool match = false;
8820
8821      // when comparing an id<P> on lhs with a static type on rhs,
8822      // see if static class implements all of id's protocols, directly or
8823      // through its super class and categories.
8824      for (auto *rhsProto : rhs->quals()) {
8825        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8826            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8827          match = true;
8828          break;
8829        }
8830      }
8831      // If the RHS is a qualified interface pointer "NSString<P>*",
8832      // make sure we check the class hierarchy.
8833      if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8834        for (auto *I : lhs->quals()) {
8835          // when comparing an id<P> on lhs with a static type on rhs,
8836          // see if static class implements all of id's protocols, directly or
8837          // through its super class and categories.
8838          if (rhsID->ClassImplementsProtocol(I, true)) {
8839            match = true;
8840            break;
8841          }
8842        }
8843      }
8844      if (!match)
8845        return false;
8846    }
8847
8848    return true;
8849  }
8850
8851  assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8852
8853  if (lhs->getInterfaceType()) {
8854    // If both the right and left sides have qualifiers.
8855    for (auto *lhsProto : lhs->quals()) {
8856      bool match = false;
8857
8858      // when comparing an id<P> on rhs with a static type on lhs,
8859      // see if static class implements all of id's protocols, directly or
8860      // through its super class and categories.
8861      // First, lhs protocols in the qualifier list must be found, direct
8862      // or indirect in rhs's qualifier list or it is a mismatch.
8863      for (auto *rhsProto : rhs->quals()) {
8864        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8865            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8866          match = true;
8867          break;
8868        }
8869      }
8870      if (!match)
8871        return false;
8872    }
8873
8874    // Static class's protocols, or its super class or category protocols
8875    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8876    if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8877      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8878      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8879      // This is rather dubious but matches gcc's behavior. If lhs has
8880      // no type qualifier and its class has no static protocol(s)
8881      // assume that it is mismatch.
8882      if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8883        return false;
8884      for (auto *lhsProto : LHSInheritedProtocols) {
8885        bool match = false;
8886        for (auto *rhsProto : rhs->quals()) {
8887          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8888              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8889            match = true;
8890            break;
8891          }
8892        }
8893        if (!match)
8894          return false;
8895      }
8896    }
8897    return true;
8898  }
8899  return false;
8900}
8901
8902/// canAssignObjCInterfaces - Return true if the two interface types are
8903/// compatible for assignment from RHS to LHS.  This handles validation of any
8904/// protocol qualifiers on the LHS or RHS.
8905bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8906                                         const ObjCObjectPointerType *RHSOPT) {
8907  const ObjCObjectType* LHS = LHSOPT->getObjectType();
8908  const ObjCObjectType* RHS = RHSOPT->getObjectType();
8909
8910  // If either type represents the built-in 'id' type, return true.
8911  if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8912    return true;
8913
8914  // Function object that propagates a successful result or handles
8915  // __kindof types.
8916  auto finish = [&](bool succeeded) -> bool {
8917    if (succeeded)
8918      return true;
8919
8920    if (!RHS->isKindOfType())
8921      return false;
8922
8923    // Strip off __kindof and protocol qualifiers, then check whether
8924    // we can assign the other way.
8925    return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8926                                   LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8927  };
8928
8929  // Casts from or to id<P> are allowed when the other side has compatible
8930  // protocols.
8931  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8932    return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8933  }
8934
8935  // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8936  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8937    return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8938  }
8939
8940  // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8941  if (LHS->isObjCClass() && RHS->isObjCClass()) {
8942    return true;
8943  }
8944
8945  // If we have 2 user-defined types, fall into that path.
8946  if (LHS->getInterface() && RHS->getInterface()) {
8947    return finish(canAssignObjCInterfaces(LHS, RHS));
8948  }
8949
8950  return false;
8951}
8952
8953/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8954/// for providing type-safety for objective-c pointers used to pass/return
8955/// arguments in block literals. When passed as arguments, passing 'A*' where
8956/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8957/// not OK. For the return type, the opposite is not OK.
8958bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8959                                         const ObjCObjectPointerType *LHSOPT,
8960                                         const ObjCObjectPointerType *RHSOPT,
8961                                         bool BlockReturnType) {
8962
8963  // Function object that propagates a successful result or handles
8964  // __kindof types.
8965  auto finish = [&](bool succeeded) -> bool {
8966    if (succeeded)
8967      return true;
8968
8969    const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8970    if (!Expected->isKindOfType())
8971      return false;
8972
8973    // Strip off __kindof and protocol qualifiers, then check whether
8974    // we can assign the other way.
8975    return canAssignObjCInterfacesInBlockPointer(
8976             RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8977             LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8978             BlockReturnType);
8979  };
8980
8981  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8982    return true;
8983
8984  if (LHSOPT->isObjCBuiltinType()) {
8985    return finish(RHSOPT->isObjCBuiltinType() ||
8986                  RHSOPT->isObjCQualifiedIdType());
8987  }
8988
8989  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
8990    if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
8991      // Use for block parameters previous type checking for compatibility.
8992      return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
8993                    // Or corrected type checking as in non-compat mode.
8994                    (!BlockReturnType &&
8995                     ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
8996    else
8997      return finish(ObjCQualifiedIdTypesAreCompatible(
8998          (BlockReturnType ? LHSOPT : RHSOPT),
8999          (BlockReturnType ? RHSOPT : LHSOPT), false));
9000  }
9001
9002  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9003  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9004  if (LHS && RHS)  { // We have 2 user-defined types.
9005    if (LHS != RHS) {
9006      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9007        return finish(BlockReturnType);
9008      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9009        return finish(!BlockReturnType);
9010    }
9011    else
9012      return true;
9013  }
9014  return false;
9015}
9016
9017/// Comparison routine for Objective-C protocols to be used with
9018/// llvm::array_pod_sort.
9019static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9020                                      ObjCProtocolDecl * const *rhs) {
9021  return (*lhs)->getName().compare((*rhs)->getName());
9022}
9023
9024/// getIntersectionOfProtocols - This routine finds the intersection of set
9025/// of protocols inherited from two distinct objective-c pointer objects with
9026/// the given common base.
9027/// It is used to build composite qualifier list of the composite type of
9028/// the conditional expression involving two objective-c pointer objects.
9029static
9030void getIntersectionOfProtocols(ASTContext &Context,
9031                                const ObjCInterfaceDecl *CommonBase,
9032                                const ObjCObjectPointerType *LHSOPT,
9033                                const ObjCObjectPointerType *RHSOPT,
9034      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9035
9036  const ObjCObjectType* LHS = LHSOPT->getObjectType();
9037  const ObjCObjectType* RHS = RHSOPT->getObjectType();
9038  assert(LHS->getInterface() && "LHS must have an interface base");
9039  assert(RHS->getInterface() && "RHS must have an interface base");
9040
9041  // Add all of the protocols for the LHS.
9042  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9043
9044  // Start with the protocol qualifiers.
9045  for (auto proto : LHS->quals()) {
9046    Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9047  }
9048
9049  // Also add the protocols associated with the LHS interface.
9050  Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9051
9052  // Add all of the protocols for the RHS.
9053  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9054
9055  // Start with the protocol qualifiers.
9056  for (auto proto : RHS->quals()) {
9057    Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9058  }
9059
9060  // Also add the protocols associated with the RHS interface.
9061  Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9062
9063  // Compute the intersection of the collected protocol sets.
9064  for (auto proto : LHSProtocolSet) {
9065    if (RHSProtocolSet.count(proto))
9066      IntersectionSet.push_back(proto);
9067  }
9068
9069  // Compute the set of protocols that is implied by either the common type or
9070  // the protocols within the intersection.
9071  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9072  Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9073
9074  // Remove any implied protocols from the list of inherited protocols.
9075  if (!ImpliedProtocols.empty()) {
9076    IntersectionSet.erase(
9077      std::remove_if(IntersectionSet.begin(),
9078                     IntersectionSet.end(),
9079                     [&](ObjCProtocolDecl *proto) -> bool {
9080                       return ImpliedProtocols.count(proto) > 0;
9081                     }),
9082      IntersectionSet.end());
9083  }
9084
9085  // Sort the remaining protocols by name.
9086  llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9087                       compareObjCProtocolsByName);
9088}
9089
9090/// Determine whether the first type is a subtype of the second.
9091static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9092                                     QualType rhs) {
9093  // Common case: two object pointers.
9094  const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9095  const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9096  if (lhsOPT && rhsOPT)
9097    return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9098
9099  // Two block pointers.
9100  const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9101  const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9102  if (lhsBlock && rhsBlock)
9103    return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9104
9105  // If either is an unqualified 'id' and the other is a block, it's
9106  // acceptable.
9107  if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9108      (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9109    return true;
9110
9111  return false;
9112}
9113
9114// Check that the given Objective-C type argument lists are equivalent.
9115static bool sameObjCTypeArgs(ASTContext &ctx,
9116                             const ObjCInterfaceDecl *iface,
9117                             ArrayRef<QualType> lhsArgs,
9118                             ArrayRef<QualType> rhsArgs,
9119                             bool stripKindOf) {
9120  if (lhsArgs.size() != rhsArgs.size())
9121    return false;
9122
9123  ObjCTypeParamList *typeParams = iface->getTypeParamList();
9124  for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9125    if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9126      continue;
9127
9128    switch (typeParams->begin()[i]->getVariance()) {
9129    case ObjCTypeParamVariance::Invariant:
9130      if (!stripKindOf ||
9131          !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9132                           rhsArgs[i].stripObjCKindOfType(ctx))) {
9133        return false;
9134      }
9135      break;
9136
9137    case ObjCTypeParamVariance::Covariant:
9138      if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9139        return false;
9140      break;
9141
9142    case ObjCTypeParamVariance::Contravariant:
9143      if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9144        return false;
9145      break;
9146    }
9147  }
9148
9149  return true;
9150}
9151
9152QualType ASTContext::areCommonBaseCompatible(
9153           const ObjCObjectPointerType *Lptr,
9154           const ObjCObjectPointerType *Rptr) {
9155  const ObjCObjectType *LHS = Lptr->getObjectType();
9156  const ObjCObjectType *RHS = Rptr->getObjectType();
9157  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9158  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9159
9160  if (!LDecl || !RDecl)
9161    return {};
9162
9163  // When either LHS or RHS is a kindof type, we should return a kindof type.
9164  // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9165  // kindof(A).
9166  bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9167
9168  // Follow the left-hand side up the class hierarchy until we either hit a
9169  // root or find the RHS. Record the ancestors in case we don't find it.
9170  llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9171    LHSAncestors;
9172  while (true) {
9173    // Record this ancestor. We'll need this if the common type isn't in the
9174    // path from the LHS to the root.
9175    LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9176
9177    if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9178      // Get the type arguments.
9179      ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9180      bool anyChanges = false;
9181      if (LHS->isSpecialized() && RHS->isSpecialized()) {
9182        // Both have type arguments, compare them.
9183        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9184                              LHS->getTypeArgs(), RHS->getTypeArgs(),
9185                              /*stripKindOf=*/true))
9186          return {};
9187      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9188        // If only one has type arguments, the result will not have type
9189        // arguments.
9190        LHSTypeArgs = {};
9191        anyChanges = true;
9192      }
9193
9194      // Compute the intersection of protocols.
9195      SmallVector<ObjCProtocolDecl *, 8> Protocols;
9196      getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9197                                 Protocols);
9198      if (!Protocols.empty())
9199        anyChanges = true;
9200
9201      // If anything in the LHS will have changed, build a new result type.
9202      // If we need to return a kindof type but LHS is not a kindof type, we
9203      // build a new result type.
9204      if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9205        QualType Result = getObjCInterfaceType(LHS->getInterface());
9206        Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9207                                   anyKindOf || LHS->isKindOfType());
9208        return getObjCObjectPointerType(Result);
9209      }
9210
9211      return getObjCObjectPointerType(QualType(LHS, 0));
9212    }
9213
9214    // Find the superclass.
9215    QualType LHSSuperType = LHS->getSuperClassType();
9216    if (LHSSuperType.isNull())
9217      break;
9218
9219    LHS = LHSSuperType->castAs<ObjCObjectType>();
9220  }
9221
9222  // We didn't find anything by following the LHS to its root; now check
9223  // the RHS against the cached set of ancestors.
9224  while (true) {
9225    auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9226    if (KnownLHS != LHSAncestors.end()) {
9227      LHS = KnownLHS->second;
9228
9229      // Get the type arguments.
9230      ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9231      bool anyChanges = false;
9232      if (LHS->isSpecialized() && RHS->isSpecialized()) {
9233        // Both have type arguments, compare them.
9234        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9235                              LHS->getTypeArgs(), RHS->getTypeArgs(),
9236                              /*stripKindOf=*/true))
9237          return {};
9238      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9239        // If only one has type arguments, the result will not have type
9240        // arguments.
9241        RHSTypeArgs = {};
9242        anyChanges = true;
9243      }
9244
9245      // Compute the intersection of protocols.
9246      SmallVector<ObjCProtocolDecl *, 8> Protocols;
9247      getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9248                                 Protocols);
9249      if (!Protocols.empty())
9250        anyChanges = true;
9251
9252      // If we need to return a kindof type but RHS is not a kindof type, we
9253      // build a new result type.
9254      if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9255        QualType Result = getObjCInterfaceType(RHS->getInterface());
9256        Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9257                                   anyKindOf || RHS->isKindOfType());
9258        return getObjCObjectPointerType(Result);
9259      }
9260
9261      return getObjCObjectPointerType(QualType(RHS, 0));
9262    }
9263
9264    // Find the superclass of the RHS.
9265    QualType RHSSuperType = RHS->getSuperClassType();
9266    if (RHSSuperType.isNull())
9267      break;
9268
9269    RHS = RHSSuperType->castAs<ObjCObjectType>();
9270  }
9271
9272  return {};
9273}
9274
9275bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9276                                         const ObjCObjectType *RHS) {
9277  assert(LHS->getInterface() && "LHS is not an interface type");
9278  assert(RHS->getInterface() && "RHS is not an interface type");
9279
9280  // Verify that the base decls are compatible: the RHS must be a subclass of
9281  // the LHS.
9282  ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9283  bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9284  if (!IsSuperClass)
9285    return false;
9286
9287  // If the LHS has protocol qualifiers, determine whether all of them are
9288  // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9289  // LHS).
9290  if (LHS->getNumProtocols() > 0) {
9291    // OK if conversion of LHS to SuperClass results in narrowing of types
9292    // ; i.e., SuperClass may implement at least one of the protocols
9293    // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9294    // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9295    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9296    CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9297    // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9298    // qualifiers.
9299    for (auto *RHSPI : RHS->quals())
9300      CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9301    // If there is no protocols associated with RHS, it is not a match.
9302    if (SuperClassInheritedProtocols.empty())
9303      return false;
9304
9305    for (const auto *LHSProto : LHS->quals()) {
9306      bool SuperImplementsProtocol = false;
9307      for (auto *SuperClassProto : SuperClassInheritedProtocols)
9308        if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9309          SuperImplementsProtocol = true;
9310          break;
9311        }
9312      if (!SuperImplementsProtocol)
9313        return false;
9314    }
9315  }
9316
9317  // If the LHS is specialized, we may need to check type arguments.
9318  if (LHS->isSpecialized()) {
9319    // Follow the superclass chain until we've matched the LHS class in the
9320    // hierarchy. This substitutes type arguments through.
9321    const ObjCObjectType *RHSSuper = RHS;
9322    while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9323      RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9324
9325    // If the RHS is specializd, compare type arguments.
9326    if (RHSSuper->isSpecialized() &&
9327        !sameObjCTypeArgs(*this, LHS->getInterface(),
9328                          LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9329                          /*stripKindOf=*/true)) {
9330      return false;
9331    }
9332  }
9333
9334  return true;
9335}
9336
9337bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9338  // get the "pointed to" types
9339  const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9340  const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9341
9342  if (!LHSOPT || !RHSOPT)
9343    return false;
9344
9345  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9346         canAssignObjCInterfaces(RHSOPT, LHSOPT);
9347}
9348
9349bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9350  return canAssignObjCInterfaces(
9351      getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9352      getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9353}
9354
9355/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9356/// both shall have the identically qualified version of a compatible type.
9357/// C99 6.2.7p1: Two types have compatible types if their types are the
9358/// same. See 6.7.[2,3,5] for additional rules.
9359bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9360                                    bool CompareUnqualified) {
9361  if (getLangOpts().CPlusPlus)
9362    return hasSameType(LHS, RHS);
9363
9364  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9365}
9366
9367bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9368  return typesAreCompatible(LHS, RHS);
9369}
9370
9371bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9372  return !mergeTypes(LHS, RHS, true).isNull();
9373}
9374
9375/// mergeTransparentUnionType - if T is a transparent union type and a member
9376/// of T is compatible with SubType, return the merged type, else return
9377/// QualType()
9378QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9379                                               bool OfBlockPointer,
9380                                               bool Unqualified) {
9381  if (const RecordType *UT = T->getAsUnionType()) {
9382    RecordDecl *UD = UT->getDecl();
9383    if (UD->hasAttr<TransparentUnionAttr>()) {
9384      for (const auto *I : UD->fields()) {
9385        QualType ET = I->getType().getUnqualifiedType();
9386        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9387        if (!MT.isNull())
9388          return MT;
9389      }
9390    }
9391  }
9392
9393  return {};
9394}
9395
9396/// mergeFunctionParameterTypes - merge two types which appear as function
9397/// parameter types
9398QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9399                                                 bool OfBlockPointer,
9400                                                 bool Unqualified) {
9401  // GNU extension: two types are compatible if they appear as a function
9402  // argument, one of the types is a transparent union type and the other
9403  // type is compatible with a union member
9404  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9405                                              Unqualified);
9406  if (!lmerge.isNull())
9407    return lmerge;
9408
9409  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9410                                              Unqualified);
9411  if (!rmerge.isNull())
9412    return rmerge;
9413
9414  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9415}
9416
9417QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9418                                        bool OfBlockPointer, bool Unqualified,
9419                                        bool AllowCXX) {
9420  const auto *lbase = lhs->castAs<FunctionType>();
9421  const auto *rbase = rhs->castAs<FunctionType>();
9422  const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9423  const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9424  bool allLTypes = true;
9425  bool allRTypes = true;
9426
9427  // Check return type
9428  QualType retType;
9429  if (OfBlockPointer) {
9430    QualType RHS = rbase->getReturnType();
9431    QualType LHS = lbase->getReturnType();
9432    bool UnqualifiedResult = Unqualified;
9433    if (!UnqualifiedResult)
9434      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
9435    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
9436  }
9437  else
9438    retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
9439                         Unqualified);
9440  if (retType.isNull())
9441    return {};
9442
9443  if (Unqualified)
9444    retType = retType.getUnqualifiedType();
9445
9446  CanQualType LRetType = getCanonicalType(lbase->getReturnType());
9447  CanQualType RRetType = getCanonicalType(rbase->getReturnType());
9448  if (Unqualified) {
9449    LRetType = LRetType.getUnqualifiedType();
9450    RRetType = RRetType.getUnqualifiedType();
9451  }
9452
9453  if (getCanonicalType(retType) != LRetType)
9454    allLTypes = false;
9455  if (getCanonicalType(retType) != RRetType)
9456    allRTypes = false;
9457
9458  // FIXME: double check this
9459  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
9460  //                           rbase->getRegParmAttr() != 0 &&
9461  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
9462  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
9463  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
9464
9465  // Compatible functions must have compatible calling conventions
9466  if (lbaseInfo.getCC() != rbaseInfo.getCC())
9467    return {};
9468
9469  // Regparm is part of the calling convention.
9470  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
9471    return {};
9472  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
9473    return {};
9474
9475  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
9476    return {};
9477  if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
9478    return {};
9479  if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
9480    return {};
9481
9482  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
9483  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
9484
9485  if (lbaseInfo.getNoReturn() != NoReturn)
9486    allLTypes = false;
9487  if (rbaseInfo.getNoReturn() != NoReturn)
9488    allRTypes = false;
9489
9490  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
9491
9492  if (lproto && rproto) { // two C99 style function prototypes
9493    assert((AllowCXX ||
9494            (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
9495           "C++ shouldn't be here");
9496    // Compatible functions must have the same number of parameters
9497    if (lproto->getNumParams() != rproto->getNumParams())
9498      return {};
9499
9500    // Variadic and non-variadic functions aren't compatible
9501    if (lproto->isVariadic() != rproto->isVariadic())
9502      return {};
9503
9504    if (lproto->getMethodQuals() != rproto->getMethodQuals())
9505      return {};
9506
9507    SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
9508    bool canUseLeft, canUseRight;
9509    if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
9510                               newParamInfos))
9511      return {};
9512
9513    if (!canUseLeft)
9514      allLTypes = false;
9515    if (!canUseRight)
9516      allRTypes = false;
9517
9518    // Check parameter type compatibility
9519    SmallVector<QualType, 10> types;
9520    for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
9521      QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
9522      QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
9523      QualType paramType = mergeFunctionParameterTypes(
9524          lParamType, rParamType, OfBlockPointer, Unqualified);
9525      if (paramType.isNull())
9526        return {};
9527
9528      if (Unqualified)
9529        paramType = paramType.getUnqualifiedType();
9530
9531      types.push_back(paramType);
9532      if (Unqualified) {
9533        lParamType = lParamType.getUnqualifiedType();
9534        rParamType = rParamType.getUnqualifiedType();
9535      }
9536
9537      if (getCanonicalType(paramType) != getCanonicalType(lParamType))
9538        allLTypes = false;
9539      if (getCanonicalType(paramType) != getCanonicalType(rParamType))
9540        allRTypes = false;
9541    }
9542
9543    if (allLTypes) return lhs;
9544    if (allRTypes) return rhs;
9545
9546    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
9547    EPI.ExtInfo = einfo;
9548    EPI.ExtParameterInfos =
9549        newParamInfos.empty() ? nullptr : newParamInfos.data();
9550    return getFunctionType(retType, types, EPI);
9551  }
9552
9553  if (lproto) allRTypes = false;
9554  if (rproto) allLTypes = false;
9555
9556  const FunctionProtoType *proto = lproto ? lproto : rproto;
9557  if (proto) {
9558    assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
9559    if (proto->isVariadic())
9560      return {};
9561    // Check that the types are compatible with the types that
9562    // would result from default argument promotions (C99 6.7.5.3p15).
9563    // The only types actually affected are promotable integer
9564    // types and floats, which would be passed as a different
9565    // type depending on whether the prototype is visible.
9566    for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
9567      QualType paramTy = proto->getParamType(i);
9568
9569      // Look at the converted type of enum types, since that is the type used
9570      // to pass enum values.
9571      if (const auto *Enum = paramTy->getAs<EnumType>()) {
9572        paramTy = Enum->getDecl()->getIntegerType();
9573        if (paramTy.isNull())
9574          return {};
9575      }
9576
9577      if (paramTy->isPromotableIntegerType() ||
9578          getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
9579        return {};
9580    }
9581
9582    if (allLTypes) return lhs;
9583    if (allRTypes) return rhs;
9584
9585    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
9586    EPI.ExtInfo = einfo;
9587    return getFunctionType(retType, proto->getParamTypes(), EPI);
9588  }
9589
9590  if (allLTypes) return lhs;
9591  if (allRTypes) return rhs;
9592  return getFunctionNoProtoType(retType, einfo);
9593}
9594
9595/// Given that we have an enum type and a non-enum type, try to merge them.
9596static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
9597                                     QualType other, bool isBlockReturnType) {
9598  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
9599  // a signed integer type, or an unsigned integer type.
9600  // Compatibility is based on the underlying type, not the promotion
9601  // type.
9602  QualType underlyingType = ET->getDecl()->getIntegerType();
9603  if (underlyingType.isNull())
9604    return {};
9605  if (Context.hasSameType(underlyingType, other))
9606    return other;
9607
9608  // In block return types, we're more permissive and accept any
9609  // integral type of the same size.
9610  if (isBlockReturnType && other->isIntegerType() &&
9611      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9612    return other;
9613
9614  return {};
9615}
9616
9617QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9618                                bool OfBlockPointer,
9619                                bool Unqualified, bool BlockReturnType) {
9620  // C++ [expr]: If an expression initially has the type "reference to T", the
9621  // type is adjusted to "T" prior to any further analysis, the expression
9622  // designates the object or function denoted by the reference, and the
9623  // expression is an lvalue unless the reference is an rvalue reference and
9624  // the expression is a function call (possibly inside parentheses).
9625  if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>())
9626    return {};
9627
9628  if (Unqualified) {
9629    LHS = LHS.getUnqualifiedType();
9630    RHS = RHS.getUnqualifiedType();
9631  }
9632
9633  QualType LHSCan = getCanonicalType(LHS),
9634           RHSCan = getCanonicalType(RHS);
9635
9636  // If two types are identical, they are compatible.
9637  if (LHSCan == RHSCan)
9638    return LHS;
9639
9640  // If the qualifiers are different, the types aren't compatible... mostly.
9641  Qualifiers LQuals = LHSCan.getLocalQualifiers();
9642  Qualifiers RQuals = RHSCan.getLocalQualifiers();
9643  if (LQuals != RQuals) {
9644    // If any of these qualifiers are different, we have a type
9645    // mismatch.
9646    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9647        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9648        LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9649        LQuals.hasUnaligned() != RQuals.hasUnaligned())
9650      return {};
9651
9652    // Exactly one GC qualifier difference is allowed: __strong is
9653    // okay if the other type has no GC qualifier but is an Objective
9654    // C object pointer (i.e. implicitly strong by default).  We fix
9655    // this by pretending that the unqualified type was actually
9656    // qualified __strong.
9657    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9658    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9659    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9660
9661    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9662      return {};
9663
9664    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9665      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9666    }
9667    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9668      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9669    }
9670    return {};
9671  }
9672
9673  // Okay, qualifiers are equal.
9674
9675  Type::TypeClass LHSClass = LHSCan->getTypeClass();
9676  Type::TypeClass RHSClass = RHSCan->getTypeClass();
9677
9678  // We want to consider the two function types to be the same for these
9679  // comparisons, just force one to the other.
9680  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9681  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9682
9683  // Same as above for arrays
9684  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9685    LHSClass = Type::ConstantArray;
9686  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9687    RHSClass = Type::ConstantArray;
9688
9689  // ObjCInterfaces are just specialized ObjCObjects.
9690  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9691  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9692
9693  // Canonicalize ExtVector -> Vector.
9694  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9695  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9696
9697  // If the canonical type classes don't match.
9698  if (LHSClass != RHSClass) {
9699    // Note that we only have special rules for turning block enum
9700    // returns into block int returns, not vice-versa.
9701    if (const auto *ETy = LHS->getAs<EnumType>()) {
9702      return mergeEnumWithInteger(*this, ETy, RHS, false);
9703    }
9704    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9705      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9706    }
9707    // allow block pointer type to match an 'id' type.
9708    if (OfBlockPointer && !BlockReturnType) {
9709       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9710         return LHS;
9711      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9712        return RHS;
9713    }
9714
9715    return {};
9716  }
9717
9718  // The canonical type classes match.
9719  switch (LHSClass) {
9720#define TYPE(Class, Base)
9721#define ABSTRACT_TYPE(Class, Base)
9722#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9723#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9724#define DEPENDENT_TYPE(Class, Base) case Type::Class:
9725#include "clang/AST/TypeNodes.inc"
9726    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9727
9728  case Type::Auto:
9729  case Type::DeducedTemplateSpecialization:
9730  case Type::LValueReference:
9731  case Type::RValueReference:
9732  case Type::MemberPointer:
9733    llvm_unreachable("C++ should never be in mergeTypes");
9734
9735  case Type::ObjCInterface:
9736  case Type::IncompleteArray:
9737  case Type::VariableArray:
9738  case Type::FunctionProto:
9739  case Type::ExtVector:
9740    llvm_unreachable("Types are eliminated above");
9741
9742  case Type::Pointer:
9743  {
9744    // Merge two pointer types, while trying to preserve typedef info
9745    QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9746    QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9747    if (Unqualified) {
9748      LHSPointee = LHSPointee.getUnqualifiedType();
9749      RHSPointee = RHSPointee.getUnqualifiedType();
9750    }
9751    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9752                                     Unqualified);
9753    if (ResultType.isNull())
9754      return {};
9755    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9756      return LHS;
9757    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9758      return RHS;
9759    return getPointerType(ResultType);
9760  }
9761  case Type::BlockPointer:
9762  {
9763    // Merge two block pointer types, while trying to preserve typedef info
9764    QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9765    QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9766    if (Unqualified) {
9767      LHSPointee = LHSPointee.getUnqualifiedType();
9768      RHSPointee = RHSPointee.getUnqualifiedType();
9769    }
9770    if (getLangOpts().OpenCL) {
9771      Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9772      Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9773      // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9774      // 6.12.5) thus the following check is asymmetric.
9775      if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9776        return {};
9777      LHSPteeQual.removeAddressSpace();
9778      RHSPteeQual.removeAddressSpace();
9779      LHSPointee =
9780          QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9781      RHSPointee =
9782          QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9783    }
9784    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9785                                     Unqualified);
9786    if (ResultType.isNull())
9787      return {};
9788    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9789      return LHS;
9790    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9791      return RHS;
9792    return getBlockPointerType(ResultType);
9793  }
9794  case Type::Atomic:
9795  {
9796    // Merge two pointer types, while trying to preserve typedef info
9797    QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9798    QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9799    if (Unqualified) {
9800      LHSValue = LHSValue.getUnqualifiedType();
9801      RHSValue = RHSValue.getUnqualifiedType();
9802    }
9803    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9804                                     Unqualified);
9805    if (ResultType.isNull())
9806      return {};
9807    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9808      return LHS;
9809    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9810      return RHS;
9811    return getAtomicType(ResultType);
9812  }
9813  case Type::ConstantArray:
9814  {
9815    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9816    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9817    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9818      return {};
9819
9820    QualType LHSElem = getAsArrayType(LHS)->getElementType();
9821    QualType RHSElem = getAsArrayType(RHS)->getElementType();
9822    if (Unqualified) {
9823      LHSElem = LHSElem.getUnqualifiedType();
9824      RHSElem = RHSElem.getUnqualifiedType();
9825    }
9826
9827    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9828    if (ResultType.isNull())
9829      return {};
9830
9831    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9832    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9833
9834    // If either side is a variable array, and both are complete, check whether
9835    // the current dimension is definite.
9836    if (LVAT || RVAT) {
9837      auto SizeFetch = [this](const VariableArrayType* VAT,
9838          const ConstantArrayType* CAT)
9839          -> std::pair<bool,llvm::APInt> {
9840        if (VAT) {
9841          Optional<llvm::APSInt> TheInt;
9842          Expr *E = VAT->getSizeExpr();
9843          if (E && (TheInt = E->getIntegerConstantExpr(*this)))
9844            return std::make_pair(true, *TheInt);
9845          return std::make_pair(false, llvm::APSInt());
9846        }
9847        if (CAT)
9848          return std::make_pair(true, CAT->getSize());
9849        return std::make_pair(false, llvm::APInt());
9850      };
9851
9852      bool HaveLSize, HaveRSize;
9853      llvm::APInt LSize, RSize;
9854      std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9855      std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9856      if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9857        return {}; // Definite, but unequal, array dimension
9858    }
9859
9860    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9861      return LHS;
9862    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9863      return RHS;
9864    if (LCAT)
9865      return getConstantArrayType(ResultType, LCAT->getSize(),
9866                                  LCAT->getSizeExpr(),
9867                                  ArrayType::ArraySizeModifier(), 0);
9868    if (RCAT)
9869      return getConstantArrayType(ResultType, RCAT->getSize(),
9870                                  RCAT->getSizeExpr(),
9871                                  ArrayType::ArraySizeModifier(), 0);
9872    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9873      return LHS;
9874    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9875      return RHS;
9876    if (LVAT) {
9877      // FIXME: This isn't correct! But tricky to implement because
9878      // the array's size has to be the size of LHS, but the type
9879      // has to be different.
9880      return LHS;
9881    }
9882    if (RVAT) {
9883      // FIXME: This isn't correct! But tricky to implement because
9884      // the array's size has to be the size of RHS, but the type
9885      // has to be different.
9886      return RHS;
9887    }
9888    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9889    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9890    return getIncompleteArrayType(ResultType,
9891                                  ArrayType::ArraySizeModifier(), 0);
9892  }
9893  case Type::FunctionNoProto:
9894    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9895  case Type::Record:
9896  case Type::Enum:
9897    return {};
9898  case Type::Builtin:
9899    // Only exactly equal builtin types are compatible, which is tested above.
9900    return {};
9901  case Type::Complex:
9902    // Distinct complex types are incompatible.
9903    return {};
9904  case Type::Vector:
9905    // FIXME: The merged type should be an ExtVector!
9906    if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9907                             RHSCan->castAs<VectorType>()))
9908      return LHS;
9909    return {};
9910  case Type::ConstantMatrix:
9911    if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
9912                             RHSCan->castAs<ConstantMatrixType>()))
9913      return LHS;
9914    return {};
9915  case Type::ObjCObject: {
9916    // Check if the types are assignment compatible.
9917    // FIXME: This should be type compatibility, e.g. whether
9918    // "LHS x; RHS x;" at global scope is legal.
9919    if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9920                                RHS->castAs<ObjCObjectType>()))
9921      return LHS;
9922    return {};
9923  }
9924  case Type::ObjCObjectPointer:
9925    if (OfBlockPointer) {
9926      if (canAssignObjCInterfacesInBlockPointer(
9927              LHS->castAs<ObjCObjectPointerType>(),
9928              RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9929        return LHS;
9930      return {};
9931    }
9932    if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9933                                RHS->castAs<ObjCObjectPointerType>()))
9934      return LHS;
9935    return {};
9936  case Type::Pipe:
9937    assert(LHS != RHS &&
9938           "Equivalent pipe types should have already been handled!");
9939    return {};
9940  case Type::ExtInt: {
9941    // Merge two ext-int types, while trying to preserve typedef info.
9942    bool LHSUnsigned  = LHS->castAs<ExtIntType>()->isUnsigned();
9943    bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
9944    unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
9945    unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
9946
9947    // Like unsigned/int, shouldn't have a type if they dont match.
9948    if (LHSUnsigned != RHSUnsigned)
9949      return {};
9950
9951    if (LHSBits != RHSBits)
9952      return {};
9953    return LHS;
9954  }
9955  }
9956
9957  llvm_unreachable("Invalid Type::Class!");
9958}
9959
9960bool ASTContext::mergeExtParameterInfo(
9961    const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9962    bool &CanUseFirst, bool &CanUseSecond,
9963    SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9964  assert(NewParamInfos.empty() && "param info list not empty");
9965  CanUseFirst = CanUseSecond = true;
9966  bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9967  bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9968
9969  // Fast path: if the first type doesn't have ext parameter infos,
9970  // we match if and only if the second type also doesn't have them.
9971  if (!FirstHasInfo && !SecondHasInfo)
9972    return true;
9973
9974  bool NeedParamInfo = false;
9975  size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9976                          : SecondFnType->getExtParameterInfos().size();
9977
9978  for (size_t I = 0; I < E; ++I) {
9979    FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9980    if (FirstHasInfo)
9981      FirstParam = FirstFnType->getExtParameterInfo(I);
9982    if (SecondHasInfo)
9983      SecondParam = SecondFnType->getExtParameterInfo(I);
9984
9985    // Cannot merge unless everything except the noescape flag matches.
9986    if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9987      return false;
9988
9989    bool FirstNoEscape = FirstParam.isNoEscape();
9990    bool SecondNoEscape = SecondParam.isNoEscape();
9991    bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9992    NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9993    if (NewParamInfos.back().getOpaqueValue())
9994      NeedParamInfo = true;
9995    if (FirstNoEscape != IsNoEscape)
9996      CanUseFirst = false;
9997    if (SecondNoEscape != IsNoEscape)
9998      CanUseSecond = false;
9999  }
10000
10001  if (!NeedParamInfo)
10002    NewParamInfos.clear();
10003
10004  return true;
10005}
10006
10007void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10008  ObjCLayouts[CD] = nullptr;
10009}
10010
10011/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10012/// 'RHS' attributes and returns the merged version; including for function
10013/// return types.
10014QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10015  QualType LHSCan = getCanonicalType(LHS),
10016  RHSCan = getCanonicalType(RHS);
10017  // If two types are identical, they are compatible.
10018  if (LHSCan == RHSCan)
10019    return LHS;
10020  if (RHSCan->isFunctionType()) {
10021    if (!LHSCan->isFunctionType())
10022      return {};
10023    QualType OldReturnType =
10024        cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10025    QualType NewReturnType =
10026        cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10027    QualType ResReturnType =
10028      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10029    if (ResReturnType.isNull())
10030      return {};
10031    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10032      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10033      // In either case, use OldReturnType to build the new function type.
10034      const auto *F = LHS->castAs<FunctionType>();
10035      if (const auto *FPT = cast<FunctionProtoType>(F)) {
10036        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10037        EPI.ExtInfo = getFunctionExtInfo(LHS);
10038        QualType ResultType =
10039            getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10040        return ResultType;
10041      }
10042    }
10043    return {};
10044  }
10045
10046  // If the qualifiers are different, the types can still be merged.
10047  Qualifiers LQuals = LHSCan.getLocalQualifiers();
10048  Qualifiers RQuals = RHSCan.getLocalQualifiers();
10049  if (LQuals != RQuals) {
10050    // If any of these qualifiers are different, we have a type mismatch.
10051    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10052        LQuals.getAddressSpace() != RQuals.getAddressSpace())
10053      return {};
10054
10055    // Exactly one GC qualifier difference is allowed: __strong is
10056    // okay if the other type has no GC qualifier but is an Objective
10057    // C object pointer (i.e. implicitly strong by default).  We fix
10058    // this by pretending that the unqualified type was actually
10059    // qualified __strong.
10060    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10061    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10062    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10063
10064    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10065      return {};
10066
10067    if (GC_L == Qualifiers::Strong)
10068      return LHS;
10069    if (GC_R == Qualifiers::Strong)
10070      return RHS;
10071    return {};
10072  }
10073
10074  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10075    QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10076    QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10077    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10078    if (ResQT == LHSBaseQT)
10079      return LHS;
10080    if (ResQT == RHSBaseQT)
10081      return RHS;
10082  }
10083  return {};
10084}
10085
10086//===----------------------------------------------------------------------===//
10087//                         Integer Predicates
10088//===----------------------------------------------------------------------===//
10089
10090unsigned ASTContext::getIntWidth(QualType T) const {
10091  if (const auto *ET = T->getAs<EnumType>())
10092    T = ET->getDecl()->getIntegerType();
10093  if (T->isBooleanType())
10094    return 1;
10095  if(const auto *EIT = T->getAs<ExtIntType>())
10096    return EIT->getNumBits();
10097  // For builtin types, just use the standard type sizing method
10098  return (unsigned)getTypeSize(T);
10099}
10100
10101QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10102  assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10103         "Unexpected type");
10104
10105  // Turn <4 x signed int> -> <4 x unsigned int>
10106  if (const auto *VTy = T->getAs<VectorType>())
10107    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10108                         VTy->getNumElements(), VTy->getVectorKind());
10109
10110  // For _ExtInt, return an unsigned _ExtInt with same width.
10111  if (const auto *EITy = T->getAs<ExtIntType>())
10112    return getExtIntType(/*IsUnsigned=*/true, EITy->getNumBits());
10113
10114  // For enums, get the underlying integer type of the enum, and let the general
10115  // integer type signchanging code handle it.
10116  if (const auto *ETy = T->getAs<EnumType>())
10117    T = ETy->getDecl()->getIntegerType();
10118
10119  switch (T->castAs<BuiltinType>()->getKind()) {
10120  case BuiltinType::Char_S:
10121  case BuiltinType::SChar:
10122    return UnsignedCharTy;
10123  case BuiltinType::Short:
10124    return UnsignedShortTy;
10125  case BuiltinType::Int:
10126    return UnsignedIntTy;
10127  case BuiltinType::Long:
10128    return UnsignedLongTy;
10129  case BuiltinType::LongLong:
10130    return UnsignedLongLongTy;
10131  case BuiltinType::Int128:
10132    return UnsignedInt128Ty;
10133  // wchar_t is special. It is either signed or not, but when it's signed,
10134  // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10135  // version of it's underlying type instead.
10136  case BuiltinType::WChar_S:
10137    return getUnsignedWCharType();
10138
10139  case BuiltinType::ShortAccum:
10140    return UnsignedShortAccumTy;
10141  case BuiltinType::Accum:
10142    return UnsignedAccumTy;
10143  case BuiltinType::LongAccum:
10144    return UnsignedLongAccumTy;
10145  case BuiltinType::SatShortAccum:
10146    return SatUnsignedShortAccumTy;
10147  case BuiltinType::SatAccum:
10148    return SatUnsignedAccumTy;
10149  case BuiltinType::SatLongAccum:
10150    return SatUnsignedLongAccumTy;
10151  case BuiltinType::ShortFract:
10152    return UnsignedShortFractTy;
10153  case BuiltinType::Fract:
10154    return UnsignedFractTy;
10155  case BuiltinType::LongFract:
10156    return UnsignedLongFractTy;
10157  case BuiltinType::SatShortFract:
10158    return SatUnsignedShortFractTy;
10159  case BuiltinType::SatFract:
10160    return SatUnsignedFractTy;
10161  case BuiltinType::SatLongFract:
10162    return SatUnsignedLongFractTy;
10163  default:
10164    llvm_unreachable("Unexpected signed integer or fixed point type");
10165  }
10166}
10167
10168QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10169  assert((T->hasUnsignedIntegerRepresentation() ||
10170          T->isUnsignedFixedPointType()) &&
10171         "Unexpected type");
10172
10173  // Turn <4 x unsigned int> -> <4 x signed int>
10174  if (const auto *VTy = T->getAs<VectorType>())
10175    return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10176                         VTy->getNumElements(), VTy->getVectorKind());
10177
10178  // For _ExtInt, return a signed _ExtInt with same width.
10179  if (const auto *EITy = T->getAs<ExtIntType>())
10180    return getExtIntType(/*IsUnsigned=*/false, EITy->getNumBits());
10181
10182  // For enums, get the underlying integer type of the enum, and let the general
10183  // integer type signchanging code handle it.
10184  if (const auto *ETy = T->getAs<EnumType>())
10185    T = ETy->getDecl()->getIntegerType();
10186
10187  switch (T->castAs<BuiltinType>()->getKind()) {
10188  case BuiltinType::Char_U:
10189  case BuiltinType::UChar:
10190    return SignedCharTy;
10191  case BuiltinType::UShort:
10192    return ShortTy;
10193  case BuiltinType::UInt:
10194    return IntTy;
10195  case BuiltinType::ULong:
10196    return LongTy;
10197  case BuiltinType::ULongLong:
10198    return LongLongTy;
10199  case BuiltinType::UInt128:
10200    return Int128Ty;
10201  // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10202  // there's no matching "signed wchar_t". Therefore we return the signed
10203  // version of it's underlying type instead.
10204  case BuiltinType::WChar_U:
10205    return getSignedWCharType();
10206
10207  case BuiltinType::UShortAccum:
10208    return ShortAccumTy;
10209  case BuiltinType::UAccum:
10210    return AccumTy;
10211  case BuiltinType::ULongAccum:
10212    return LongAccumTy;
10213  case BuiltinType::SatUShortAccum:
10214    return SatShortAccumTy;
10215  case BuiltinType::SatUAccum:
10216    return SatAccumTy;
10217  case BuiltinType::SatULongAccum:
10218    return SatLongAccumTy;
10219  case BuiltinType::UShortFract:
10220    return ShortFractTy;
10221  case BuiltinType::UFract:
10222    return FractTy;
10223  case BuiltinType::ULongFract:
10224    return LongFractTy;
10225  case BuiltinType::SatUShortFract:
10226    return SatShortFractTy;
10227  case BuiltinType::SatUFract:
10228    return SatFractTy;
10229  case BuiltinType::SatULongFract:
10230    return SatLongFractTy;
10231  default:
10232    llvm_unreachable("Unexpected unsigned integer or fixed point type");
10233  }
10234}
10235
10236ASTMutationListener::~ASTMutationListener() = default;
10237
10238void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10239                                            QualType ReturnType) {}
10240
10241//===----------------------------------------------------------------------===//
10242//                          Builtin Type Computation
10243//===----------------------------------------------------------------------===//
10244
10245/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10246/// pointer over the consumed characters.  This returns the resultant type.  If
10247/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10248/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10249/// a vector of "i*".
10250///
10251/// RequiresICE is filled in on return to indicate whether the value is required
10252/// to be an Integer Constant Expression.
10253static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10254                                  ASTContext::GetBuiltinTypeError &Error,
10255                                  bool &RequiresICE,
10256                                  bool AllowTypeModifiers) {
10257  // Modifiers.
10258  int HowLong = 0;
10259  bool Signed = false, Unsigned = false;
10260  RequiresICE = false;
10261
10262  // Read the prefixed modifiers first.
10263  bool Done = false;
10264  #ifndef NDEBUG
10265  bool IsSpecial = false;
10266  #endif
10267  while (!Done) {
10268    switch (*Str++) {
10269    default: Done = true; --Str; break;
10270    case 'I':
10271      RequiresICE = true;
10272      break;
10273    case 'S':
10274      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10275      assert(!Signed && "Can't use 'S' modifier multiple times!");
10276      Signed = true;
10277      break;
10278    case 'U':
10279      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10280      assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10281      Unsigned = true;
10282      break;
10283    case 'L':
10284      assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10285      assert(HowLong <= 2 && "Can't have LLLL modifier");
10286      ++HowLong;
10287      break;
10288    case 'N':
10289      // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10290      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10291      assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10292      #ifndef NDEBUG
10293      IsSpecial = true;
10294      #endif
10295      if (Context.getTargetInfo().getLongWidth() == 32)
10296        ++HowLong;
10297      break;
10298    case 'W':
10299      // This modifier represents int64 type.
10300      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10301      assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10302      #ifndef NDEBUG
10303      IsSpecial = true;
10304      #endif
10305      switch (Context.getTargetInfo().getInt64Type()) {
10306      default:
10307        llvm_unreachable("Unexpected integer type");
10308      case TargetInfo::SignedLong:
10309        HowLong = 1;
10310        break;
10311      case TargetInfo::SignedLongLong:
10312        HowLong = 2;
10313        break;
10314      }
10315      break;
10316    case 'Z':
10317      // This modifier represents int32 type.
10318      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10319      assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10320      #ifndef NDEBUG
10321      IsSpecial = true;
10322      #endif
10323      switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10324      default:
10325        llvm_unreachable("Unexpected integer type");
10326      case TargetInfo::SignedInt:
10327        HowLong = 0;
10328        break;
10329      case TargetInfo::SignedLong:
10330        HowLong = 1;
10331        break;
10332      case TargetInfo::SignedLongLong:
10333        HowLong = 2;
10334        break;
10335      }
10336      break;
10337    case 'O':
10338      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10339      assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10340      #ifndef NDEBUG
10341      IsSpecial = true;
10342      #endif
10343      if (Context.getLangOpts().OpenCL)
10344        HowLong = 1;
10345      else
10346        HowLong = 2;
10347      break;
10348    }
10349  }
10350
10351  QualType Type;
10352
10353  // Read the base type.
10354  switch (*Str++) {
10355  default: llvm_unreachable("Unknown builtin type letter!");
10356  case 'y':
10357    assert(HowLong == 0 && !Signed && !Unsigned &&
10358           "Bad modifiers used with 'y'!");
10359    Type = Context.BFloat16Ty;
10360    break;
10361  case 'v':
10362    assert(HowLong == 0 && !Signed && !Unsigned &&
10363           "Bad modifiers used with 'v'!");
10364    Type = Context.VoidTy;
10365    break;
10366  case 'h':
10367    assert(HowLong == 0 && !Signed && !Unsigned &&
10368           "Bad modifiers used with 'h'!");
10369    Type = Context.HalfTy;
10370    break;
10371  case 'f':
10372    assert(HowLong == 0 && !Signed && !Unsigned &&
10373           "Bad modifiers used with 'f'!");
10374    Type = Context.FloatTy;
10375    break;
10376  case 'd':
10377    assert(HowLong < 3 && !Signed && !Unsigned &&
10378           "Bad modifiers used with 'd'!");
10379    if (HowLong == 1)
10380      Type = Context.LongDoubleTy;
10381    else if (HowLong == 2)
10382      Type = Context.Float128Ty;
10383    else
10384      Type = Context.DoubleTy;
10385    break;
10386  case 's':
10387    assert(HowLong == 0 && "Bad modifiers used with 's'!");
10388    if (Unsigned)
10389      Type = Context.UnsignedShortTy;
10390    else
10391      Type = Context.ShortTy;
10392    break;
10393  case 'i':
10394    if (HowLong == 3)
10395      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10396    else if (HowLong == 2)
10397      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10398    else if (HowLong == 1)
10399      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10400    else
10401      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10402    break;
10403  case 'c':
10404    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10405    if (Signed)
10406      Type = Context.SignedCharTy;
10407    else if (Unsigned)
10408      Type = Context.UnsignedCharTy;
10409    else
10410      Type = Context.CharTy;
10411    break;
10412  case 'b': // boolean
10413    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
10414    Type = Context.BoolTy;
10415    break;
10416  case 'z':  // size_t.
10417    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
10418    Type = Context.getSizeType();
10419    break;
10420  case 'w':  // wchar_t.
10421    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
10422    Type = Context.getWideCharType();
10423    break;
10424  case 'F':
10425    Type = Context.getCFConstantStringType();
10426    break;
10427  case 'G':
10428    Type = Context.getObjCIdType();
10429    break;
10430  case 'H':
10431    Type = Context.getObjCSelType();
10432    break;
10433  case 'M':
10434    Type = Context.getObjCSuperType();
10435    break;
10436  case 'a':
10437    Type = Context.getBuiltinVaListType();
10438    assert(!Type.isNull() && "builtin va list type not initialized!");
10439    break;
10440  case 'A':
10441    // This is a "reference" to a va_list; however, what exactly
10442    // this means depends on how va_list is defined. There are two
10443    // different kinds of va_list: ones passed by value, and ones
10444    // passed by reference.  An example of a by-value va_list is
10445    // x86, where va_list is a char*. An example of by-ref va_list
10446    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
10447    // we want this argument to be a char*&; for x86-64, we want
10448    // it to be a __va_list_tag*.
10449    Type = Context.getBuiltinVaListType();
10450    assert(!Type.isNull() && "builtin va list type not initialized!");
10451    if (Type->isArrayType())
10452      Type = Context.getArrayDecayedType(Type);
10453    else
10454      Type = Context.getLValueReferenceType(Type);
10455    break;
10456  case 'q': {
10457    char *End;
10458    unsigned NumElements = strtoul(Str, &End, 10);
10459    assert(End != Str && "Missing vector size");
10460    Str = End;
10461
10462    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10463                                             RequiresICE, false);
10464    assert(!RequiresICE && "Can't require vector ICE");
10465
10466    Type = Context.getScalableVectorType(ElementType, NumElements);
10467    break;
10468  }
10469  case 'V': {
10470    char *End;
10471    unsigned NumElements = strtoul(Str, &End, 10);
10472    assert(End != Str && "Missing vector size");
10473    Str = End;
10474
10475    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10476                                             RequiresICE, false);
10477    assert(!RequiresICE && "Can't require vector ICE");
10478
10479    // TODO: No way to make AltiVec vectors in builtins yet.
10480    Type = Context.getVectorType(ElementType, NumElements,
10481                                 VectorType::GenericVector);
10482    break;
10483  }
10484  case 'E': {
10485    char *End;
10486
10487    unsigned NumElements = strtoul(Str, &End, 10);
10488    assert(End != Str && "Missing vector size");
10489
10490    Str = End;
10491
10492    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10493                                             false);
10494    Type = Context.getExtVectorType(ElementType, NumElements);
10495    break;
10496  }
10497  case 'X': {
10498    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10499                                             false);
10500    assert(!RequiresICE && "Can't require complex ICE");
10501    Type = Context.getComplexType(ElementType);
10502    break;
10503  }
10504  case 'Y':
10505    Type = Context.getPointerDiffType();
10506    break;
10507  case 'P':
10508    Type = Context.getFILEType();
10509    if (Type.isNull()) {
10510      Error = ASTContext::GE_Missing_stdio;
10511      return {};
10512    }
10513    break;
10514  case 'J':
10515    if (Signed)
10516      Type = Context.getsigjmp_bufType();
10517    else
10518      Type = Context.getjmp_bufType();
10519
10520    if (Type.isNull()) {
10521      Error = ASTContext::GE_Missing_setjmp;
10522      return {};
10523    }
10524    break;
10525  case 'K':
10526    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
10527    Type = Context.getucontext_tType();
10528
10529    if (Type.isNull()) {
10530      Error = ASTContext::GE_Missing_ucontext;
10531      return {};
10532    }
10533    break;
10534  case 'p':
10535    Type = Context.getProcessIDType();
10536    break;
10537  }
10538
10539  // If there are modifiers and if we're allowed to parse them, go for it.
10540  Done = !AllowTypeModifiers;
10541  while (!Done) {
10542    switch (char c = *Str++) {
10543    default: Done = true; --Str; break;
10544    case '*':
10545    case '&': {
10546      // Both pointers and references can have their pointee types
10547      // qualified with an address space.
10548      char *End;
10549      unsigned AddrSpace = strtoul(Str, &End, 10);
10550      if (End != Str) {
10551        // Note AddrSpace == 0 is not the same as an unspecified address space.
10552        Type = Context.getAddrSpaceQualType(
10553          Type,
10554          Context.getLangASForBuiltinAddressSpace(AddrSpace));
10555        Str = End;
10556      }
10557      if (c == '*')
10558        Type = Context.getPointerType(Type);
10559      else
10560        Type = Context.getLValueReferenceType(Type);
10561      break;
10562    }
10563    // FIXME: There's no way to have a built-in with an rvalue ref arg.
10564    case 'C':
10565      Type = Type.withConst();
10566      break;
10567    case 'D':
10568      Type = Context.getVolatileType(Type);
10569      break;
10570    case 'R':
10571      Type = Type.withRestrict();
10572      break;
10573    }
10574  }
10575
10576  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
10577         "Integer constant 'I' type must be an integer");
10578
10579  return Type;
10580}
10581
10582// On some targets such as PowerPC, some of the builtins are defined with custom
10583// type decriptors for target-dependent types. These descriptors are decoded in
10584// other functions, but it may be useful to be able to fall back to default
10585// descriptor decoding to define builtins mixing target-dependent and target-
10586// independent types. This function allows decoding one type descriptor with
10587// default decoding.
10588QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
10589                                   GetBuiltinTypeError &Error, bool &RequireICE,
10590                                   bool AllowTypeModifiers) const {
10591  return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
10592}
10593
10594/// GetBuiltinType - Return the type for the specified builtin.
10595QualType ASTContext::GetBuiltinType(unsigned Id,
10596                                    GetBuiltinTypeError &Error,
10597                                    unsigned *IntegerConstantArgs) const {
10598  const char *TypeStr = BuiltinInfo.getTypeString(Id);
10599  if (TypeStr[0] == '\0') {
10600    Error = GE_Missing_type;
10601    return {};
10602  }
10603
10604  SmallVector<QualType, 8> ArgTypes;
10605
10606  bool RequiresICE = false;
10607  Error = GE_None;
10608  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
10609                                       RequiresICE, true);
10610  if (Error != GE_None)
10611    return {};
10612
10613  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
10614
10615  while (TypeStr[0] && TypeStr[0] != '.') {
10616    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
10617    if (Error != GE_None)
10618      return {};
10619
10620    // If this argument is required to be an IntegerConstantExpression and the
10621    // caller cares, fill in the bitmask we return.
10622    if (RequiresICE && IntegerConstantArgs)
10623      *IntegerConstantArgs |= 1 << ArgTypes.size();
10624
10625    // Do array -> pointer decay.  The builtin should use the decayed type.
10626    if (Ty->isArrayType())
10627      Ty = getArrayDecayedType(Ty);
10628
10629    ArgTypes.push_back(Ty);
10630  }
10631
10632  if (Id == Builtin::BI__GetExceptionInfo)
10633    return {};
10634
10635  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
10636         "'.' should only occur at end of builtin type list!");
10637
10638  bool Variadic = (TypeStr[0] == '.');
10639
10640  FunctionType::ExtInfo EI(getDefaultCallingConvention(
10641      Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
10642  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
10643
10644
10645  // We really shouldn't be making a no-proto type here.
10646  if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
10647    return getFunctionNoProtoType(ResType, EI);
10648
10649  FunctionProtoType::ExtProtoInfo EPI;
10650  EPI.ExtInfo = EI;
10651  EPI.Variadic = Variadic;
10652  if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
10653    EPI.ExceptionSpec.Type =
10654        getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
10655
10656  return getFunctionType(ResType, ArgTypes, EPI);
10657}
10658
10659static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
10660                                             const FunctionDecl *FD) {
10661  if (!FD->isExternallyVisible())
10662    return GVA_Internal;
10663
10664  // Non-user-provided functions get emitted as weak definitions with every
10665  // use, no matter whether they've been explicitly instantiated etc.
10666  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
10667    if (!MD->isUserProvided())
10668      return GVA_DiscardableODR;
10669
10670  GVALinkage External;
10671  switch (FD->getTemplateSpecializationKind()) {
10672  case TSK_Undeclared:
10673  case TSK_ExplicitSpecialization:
10674    External = GVA_StrongExternal;
10675    break;
10676
10677  case TSK_ExplicitInstantiationDefinition:
10678    return GVA_StrongODR;
10679
10680  // C++11 [temp.explicit]p10:
10681  //   [ Note: The intent is that an inline function that is the subject of
10682  //   an explicit instantiation declaration will still be implicitly
10683  //   instantiated when used so that the body can be considered for
10684  //   inlining, but that no out-of-line copy of the inline function would be
10685  //   generated in the translation unit. -- end note ]
10686  case TSK_ExplicitInstantiationDeclaration:
10687    return GVA_AvailableExternally;
10688
10689  case TSK_ImplicitInstantiation:
10690    External = GVA_DiscardableODR;
10691    break;
10692  }
10693
10694  if (!FD->isInlined())
10695    return External;
10696
10697  if ((!Context.getLangOpts().CPlusPlus &&
10698       !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10699       !FD->hasAttr<DLLExportAttr>()) ||
10700      FD->hasAttr<GNUInlineAttr>()) {
10701    // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
10702
10703    // GNU or C99 inline semantics. Determine whether this symbol should be
10704    // externally visible.
10705    if (FD->isInlineDefinitionExternallyVisible())
10706      return External;
10707
10708    // C99 inline semantics, where the symbol is not externally visible.
10709    return GVA_AvailableExternally;
10710  }
10711
10712  // Functions specified with extern and inline in -fms-compatibility mode
10713  // forcibly get emitted.  While the body of the function cannot be later
10714  // replaced, the function definition cannot be discarded.
10715  if (FD->isMSExternInline())
10716    return GVA_StrongODR;
10717
10718  return GVA_DiscardableODR;
10719}
10720
10721static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
10722                                                const Decl *D, GVALinkage L) {
10723  // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
10724  // dllexport/dllimport on inline functions.
10725  if (D->hasAttr<DLLImportAttr>()) {
10726    if (L == GVA_DiscardableODR || L == GVA_StrongODR)
10727      return GVA_AvailableExternally;
10728  } else if (D->hasAttr<DLLExportAttr>()) {
10729    if (L == GVA_DiscardableODR)
10730      return GVA_StrongODR;
10731  } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
10732    // Device-side functions with __global__ attribute must always be
10733    // visible externally so they can be launched from host.
10734    if (D->hasAttr<CUDAGlobalAttr>() &&
10735        (L == GVA_DiscardableODR || L == GVA_Internal))
10736      return GVA_StrongODR;
10737    // Single source offloading languages like CUDA/HIP need to be able to
10738    // access static device variables from host code of the same compilation
10739    // unit. This is done by externalizing the static variable with a shared
10740    // name between the host and device compilation which is the same for the
10741    // same compilation unit whereas different among different compilation
10742    // units.
10743    if (Context.shouldExternalizeStaticVar(D))
10744      return GVA_StrongExternal;
10745  }
10746  return L;
10747}
10748
10749/// Adjust the GVALinkage for a declaration based on what an external AST source
10750/// knows about whether there can be other definitions of this declaration.
10751static GVALinkage
10752adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10753                                          GVALinkage L) {
10754  ExternalASTSource *Source = Ctx.getExternalSource();
10755  if (!Source)
10756    return L;
10757
10758  switch (Source->hasExternalDefinitions(D)) {
10759  case ExternalASTSource::EK_Never:
10760    // Other translation units rely on us to provide the definition.
10761    if (L == GVA_DiscardableODR)
10762      return GVA_StrongODR;
10763    break;
10764
10765  case ExternalASTSource::EK_Always:
10766    return GVA_AvailableExternally;
10767
10768  case ExternalASTSource::EK_ReplyHazy:
10769    break;
10770  }
10771  return L;
10772}
10773
10774GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10775  return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10776           adjustGVALinkageForAttributes(*this, FD,
10777             basicGVALinkageForFunction(*this, FD)));
10778}
10779
10780static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10781                                             const VarDecl *VD) {
10782  if (!VD->isExternallyVisible())
10783    return GVA_Internal;
10784
10785  if (VD->isStaticLocal()) {
10786    const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10787    while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10788      LexicalContext = LexicalContext->getLexicalParent();
10789
10790    // ObjC Blocks can create local variables that don't have a FunctionDecl
10791    // LexicalContext.
10792    if (!LexicalContext)
10793      return GVA_DiscardableODR;
10794
10795    // Otherwise, let the static local variable inherit its linkage from the
10796    // nearest enclosing function.
10797    auto StaticLocalLinkage =
10798        Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10799
10800    // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10801    // be emitted in any object with references to the symbol for the object it
10802    // contains, whether inline or out-of-line."
10803    // Similar behavior is observed with MSVC. An alternative ABI could use
10804    // StrongODR/AvailableExternally to match the function, but none are
10805    // known/supported currently.
10806    if (StaticLocalLinkage == GVA_StrongODR ||
10807        StaticLocalLinkage == GVA_AvailableExternally)
10808      return GVA_DiscardableODR;
10809    return StaticLocalLinkage;
10810  }
10811
10812  // MSVC treats in-class initialized static data members as definitions.
10813  // By giving them non-strong linkage, out-of-line definitions won't
10814  // cause link errors.
10815  if (Context.isMSStaticDataMemberInlineDefinition(VD))
10816    return GVA_DiscardableODR;
10817
10818  // Most non-template variables have strong linkage; inline variables are
10819  // linkonce_odr or (occasionally, for compatibility) weak_odr.
10820  GVALinkage StrongLinkage;
10821  switch (Context.getInlineVariableDefinitionKind(VD)) {
10822  case ASTContext::InlineVariableDefinitionKind::None:
10823    StrongLinkage = GVA_StrongExternal;
10824    break;
10825  case ASTContext::InlineVariableDefinitionKind::Weak:
10826  case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10827    StrongLinkage = GVA_DiscardableODR;
10828    break;
10829  case ASTContext::InlineVariableDefinitionKind::Strong:
10830    StrongLinkage = GVA_StrongODR;
10831    break;
10832  }
10833
10834  switch (VD->getTemplateSpecializationKind()) {
10835  case TSK_Undeclared:
10836    return StrongLinkage;
10837
10838  case TSK_ExplicitSpecialization:
10839    return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10840                   VD->isStaticDataMember()
10841               ? GVA_StrongODR
10842               : StrongLinkage;
10843
10844  case TSK_ExplicitInstantiationDefinition:
10845    return GVA_StrongODR;
10846
10847  case TSK_ExplicitInstantiationDeclaration:
10848    return GVA_AvailableExternally;
10849
10850  case TSK_ImplicitInstantiation:
10851    return GVA_DiscardableODR;
10852  }
10853
10854  llvm_unreachable("Invalid Linkage!");
10855}
10856
10857GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10858  return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10859           adjustGVALinkageForAttributes(*this, VD,
10860             basicGVALinkageForVariable(*this, VD)));
10861}
10862
10863bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10864  if (const auto *VD = dyn_cast<VarDecl>(D)) {
10865    if (!VD->isFileVarDecl())
10866      return false;
10867    // Global named register variables (GNU extension) are never emitted.
10868    if (VD->getStorageClass() == SC_Register)
10869      return false;
10870    if (VD->getDescribedVarTemplate() ||
10871        isa<VarTemplatePartialSpecializationDecl>(VD))
10872      return false;
10873  } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10874    // We never need to emit an uninstantiated function template.
10875    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10876      return false;
10877  } else if (isa<PragmaCommentDecl>(D))
10878    return true;
10879  else if (isa<PragmaDetectMismatchDecl>(D))
10880    return true;
10881  else if (isa<OMPRequiresDecl>(D))
10882    return true;
10883  else if (isa<OMPThreadPrivateDecl>(D))
10884    return !D->getDeclContext()->isDependentContext();
10885  else if (isa<OMPAllocateDecl>(D))
10886    return !D->getDeclContext()->isDependentContext();
10887  else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10888    return !D->getDeclContext()->isDependentContext();
10889  else if (isa<ImportDecl>(D))
10890    return true;
10891  else
10892    return false;
10893
10894  // If this is a member of a class template, we do not need to emit it.
10895  if (D->getDeclContext()->isDependentContext())
10896    return false;
10897
10898  // Weak references don't produce any output by themselves.
10899  if (D->hasAttr<WeakRefAttr>())
10900    return false;
10901
10902  // Aliases and used decls are required.
10903  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10904    return true;
10905
10906  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10907    // Forward declarations aren't required.
10908    if (!FD->doesThisDeclarationHaveABody())
10909      return FD->doesDeclarationForceExternallyVisibleDefinition();
10910
10911    // Constructors and destructors are required.
10912    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10913      return true;
10914
10915    // The key function for a class is required.  This rule only comes
10916    // into play when inline functions can be key functions, though.
10917    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10918      if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10919        const CXXRecordDecl *RD = MD->getParent();
10920        if (MD->isOutOfLine() && RD->isDynamicClass()) {
10921          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10922          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10923            return true;
10924        }
10925      }
10926    }
10927
10928    GVALinkage Linkage = GetGVALinkageForFunction(FD);
10929
10930    // static, static inline, always_inline, and extern inline functions can
10931    // always be deferred.  Normal inline functions can be deferred in C99/C++.
10932    // Implicit template instantiations can also be deferred in C++.
10933    return !isDiscardableGVALinkage(Linkage);
10934  }
10935
10936  const auto *VD = cast<VarDecl>(D);
10937  assert(VD->isFileVarDecl() && "Expected file scoped var");
10938
10939  // If the decl is marked as `declare target to`, it should be emitted for the
10940  // host and for the device.
10941  if (LangOpts.OpenMP &&
10942      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10943    return true;
10944
10945  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10946      !isMSStaticDataMemberInlineDefinition(VD))
10947    return false;
10948
10949  // Variables that can be needed in other TUs are required.
10950  auto Linkage = GetGVALinkageForVariable(VD);
10951  if (!isDiscardableGVALinkage(Linkage))
10952    return true;
10953
10954  // We never need to emit a variable that is available in another TU.
10955  if (Linkage == GVA_AvailableExternally)
10956    return false;
10957
10958  // Variables that have destruction with side-effects are required.
10959  if (VD->needsDestruction(*this))
10960    return true;
10961
10962  // Variables that have initialization with side-effects are required.
10963  if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10964      // We can get a value-dependent initializer during error recovery.
10965      (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10966    return true;
10967
10968  // Likewise, variables with tuple-like bindings are required if their
10969  // bindings have side-effects.
10970  if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10971    for (const auto *BD : DD->bindings())
10972      if (const auto *BindingVD = BD->getHoldingVar())
10973        if (DeclMustBeEmitted(BindingVD))
10974          return true;
10975
10976  return false;
10977}
10978
10979void ASTContext::forEachMultiversionedFunctionVersion(
10980    const FunctionDecl *FD,
10981    llvm::function_ref<void(FunctionDecl *)> Pred) const {
10982  assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10983  llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10984  FD = FD->getMostRecentDecl();
10985  // FIXME: The order of traversal here matters and depends on the order of
10986  // lookup results, which happens to be (mostly) oldest-to-newest, but we
10987  // shouldn't rely on that.
10988  for (auto *CurDecl :
10989       FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10990    FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10991    if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10992        std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10993      SeenDecls.insert(CurFD);
10994      Pred(CurFD);
10995    }
10996  }
10997}
10998
10999CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11000                                                    bool IsCXXMethod,
11001                                                    bool IsBuiltin) const {
11002  // Pass through to the C++ ABI object
11003  if (IsCXXMethod)
11004    return ABI->getDefaultMethodCallConv(IsVariadic);
11005
11006  // Builtins ignore user-specified default calling convention and remain the
11007  // Target's default calling convention.
11008  if (!IsBuiltin) {
11009    switch (LangOpts.getDefaultCallingConv()) {
11010    case LangOptions::DCC_None:
11011      break;
11012    case LangOptions::DCC_CDecl:
11013      return CC_C;
11014    case LangOptions::DCC_FastCall:
11015      if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11016        return CC_X86FastCall;
11017      break;
11018    case LangOptions::DCC_StdCall:
11019      if (!IsVariadic)
11020        return CC_X86StdCall;
11021      break;
11022    case LangOptions::DCC_VectorCall:
11023      // __vectorcall cannot be applied to variadic functions.
11024      if (!IsVariadic)
11025        return CC_X86VectorCall;
11026      break;
11027    case LangOptions::DCC_RegCall:
11028      // __regcall cannot be applied to variadic functions.
11029      if (!IsVariadic)
11030        return CC_X86RegCall;
11031      break;
11032    }
11033  }
11034  return Target->getDefaultCallingConv();
11035}
11036
11037bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11038  // Pass through to the C++ ABI object
11039  return ABI->isNearlyEmpty(RD);
11040}
11041
11042VTableContextBase *ASTContext::getVTableContext() {
11043  if (!VTContext.get()) {
11044    auto ABI = Target->getCXXABI();
11045    if (ABI.isMicrosoft())
11046      VTContext.reset(new MicrosoftVTableContext(*this));
11047    else {
11048      auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11049                                 ? ItaniumVTableContext::Relative
11050                                 : ItaniumVTableContext::Pointer;
11051      VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11052    }
11053  }
11054  return VTContext.get();
11055}
11056
11057MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11058  if (!T)
11059    T = Target;
11060  switch (T->getCXXABI().getKind()) {
11061  case TargetCXXABI::AppleARM64:
11062  case TargetCXXABI::Fuchsia:
11063  case TargetCXXABI::GenericAArch64:
11064  case TargetCXXABI::GenericItanium:
11065  case TargetCXXABI::GenericARM:
11066  case TargetCXXABI::GenericMIPS:
11067  case TargetCXXABI::iOS:
11068  case TargetCXXABI::WebAssembly:
11069  case TargetCXXABI::WatchOS:
11070  case TargetCXXABI::XL:
11071    return ItaniumMangleContext::create(*this, getDiagnostics());
11072  case TargetCXXABI::Microsoft:
11073    return MicrosoftMangleContext::create(*this, getDiagnostics());
11074  }
11075  llvm_unreachable("Unsupported ABI");
11076}
11077
11078CXXABI::~CXXABI() = default;
11079
11080size_t ASTContext::getSideTableAllocatedMemory() const {
11081  return ASTRecordLayouts.getMemorySize() +
11082         llvm::capacity_in_bytes(ObjCLayouts) +
11083         llvm::capacity_in_bytes(KeyFunctions) +
11084         llvm::capacity_in_bytes(ObjCImpls) +
11085         llvm::capacity_in_bytes(BlockVarCopyInits) +
11086         llvm::capacity_in_bytes(DeclAttrs) +
11087         llvm::capacity_in_bytes(TemplateOrInstantiation) +
11088         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11089         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11090         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11091         llvm::capacity_in_bytes(OverriddenMethods) +
11092         llvm::capacity_in_bytes(Types) +
11093         llvm::capacity_in_bytes(VariableArrayTypes);
11094}
11095
11096/// getIntTypeForBitwidth -
11097/// sets integer QualTy according to specified details:
11098/// bitwidth, signed/unsigned.
11099/// Returns empty type if there is no appropriate target types.
11100QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11101                                           unsigned Signed) const {
11102  TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11103  CanQualType QualTy = getFromTargetType(Ty);
11104  if (!QualTy && DestWidth == 128)
11105    return Signed ? Int128Ty : UnsignedInt128Ty;
11106  return QualTy;
11107}
11108
11109/// getRealTypeForBitwidth -
11110/// sets floating point QualTy according to specified bitwidth.
11111/// Returns empty type if there is no appropriate target types.
11112QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11113                                            bool ExplicitIEEE) const {
11114  TargetInfo::RealType Ty =
11115      getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
11116  switch (Ty) {
11117  case TargetInfo::Float:
11118    return FloatTy;
11119  case TargetInfo::Double:
11120    return DoubleTy;
11121  case TargetInfo::LongDouble:
11122    return LongDoubleTy;
11123  case TargetInfo::Float128:
11124    return Float128Ty;
11125  case TargetInfo::NoFloat:
11126    return {};
11127  }
11128
11129  llvm_unreachable("Unhandled TargetInfo::RealType value");
11130}
11131
11132void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11133  if (Number > 1)
11134    MangleNumbers[ND] = Number;
11135}
11136
11137unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
11138  auto I = MangleNumbers.find(ND);
11139  return I != MangleNumbers.end() ? I->second : 1;
11140}
11141
11142void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11143  if (Number > 1)
11144    StaticLocalNumbers[VD] = Number;
11145}
11146
11147unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11148  auto I = StaticLocalNumbers.find(VD);
11149  return I != StaticLocalNumbers.end() ? I->second : 1;
11150}
11151
11152MangleNumberingContext &
11153ASTContext::getManglingNumberContext(const DeclContext *DC) {
11154  assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11155  std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11156  if (!MCtx)
11157    MCtx = createMangleNumberingContext();
11158  return *MCtx;
11159}
11160
11161MangleNumberingContext &
11162ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11163  assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11164  std::unique_ptr<MangleNumberingContext> &MCtx =
11165      ExtraMangleNumberingContexts[D];
11166  if (!MCtx)
11167    MCtx = createMangleNumberingContext();
11168  return *MCtx;
11169}
11170
11171std::unique_ptr<MangleNumberingContext>
11172ASTContext::createMangleNumberingContext() const {
11173  return ABI->createMangleNumberingContext();
11174}
11175
11176const CXXConstructorDecl *
11177ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11178  return ABI->getCopyConstructorForExceptionObject(
11179      cast<CXXRecordDecl>(RD->getFirstDecl()));
11180}
11181
11182void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11183                                                      CXXConstructorDecl *CD) {
11184  return ABI->addCopyConstructorForExceptionObject(
11185      cast<CXXRecordDecl>(RD->getFirstDecl()),
11186      cast<CXXConstructorDecl>(CD->getFirstDecl()));
11187}
11188
11189void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11190                                                 TypedefNameDecl *DD) {
11191  return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11192}
11193
11194TypedefNameDecl *
11195ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11196  return ABI->getTypedefNameForUnnamedTagDecl(TD);
11197}
11198
11199void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11200                                                DeclaratorDecl *DD) {
11201  return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11202}
11203
11204DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11205  return ABI->getDeclaratorForUnnamedTagDecl(TD);
11206}
11207
11208void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11209  ParamIndices[D] = index;
11210}
11211
11212unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11213  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11214  assert(I != ParamIndices.end() &&
11215         "ParmIndices lacks entry set by ParmVarDecl");
11216  return I->second;
11217}
11218
11219QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11220                                               unsigned Length) const {
11221  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11222  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11223    EltTy = EltTy.withConst();
11224
11225  EltTy = adjustStringLiteralBaseType(EltTy);
11226
11227  // Get an array type for the string, according to C99 6.4.5. This includes
11228  // the null terminator character.
11229  return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11230                              ArrayType::Normal, /*IndexTypeQuals*/ 0);
11231}
11232
11233StringLiteral *
11234ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11235  StringLiteral *&Result = StringLiteralCache[Key];
11236  if (!Result)
11237    Result = StringLiteral::Create(
11238        *this, Key, StringLiteral::Ascii,
11239        /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11240        SourceLocation());
11241  return Result;
11242}
11243
11244MSGuidDecl *
11245ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11246  assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11247
11248  llvm::FoldingSetNodeID ID;
11249  MSGuidDecl::Profile(ID, Parts);
11250
11251  void *InsertPos;
11252  if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11253    return Existing;
11254
11255  QualType GUIDType = getMSGuidType().withConst();
11256  MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11257  MSGuidDecls.InsertNode(New, InsertPos);
11258  return New;
11259}
11260
11261TemplateParamObjectDecl *
11262ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11263  assert(T->isRecordType() && "template param object of unexpected type");
11264
11265  // C++ [temp.param]p8:
11266  //   [...] a static storage duration object of type 'const T' [...]
11267  T.addConst();
11268
11269  llvm::FoldingSetNodeID ID;
11270  TemplateParamObjectDecl::Profile(ID, T, V);
11271
11272  void *InsertPos;
11273  if (TemplateParamObjectDecl *Existing =
11274          TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11275    return Existing;
11276
11277  TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11278  TemplateParamObjectDecls.InsertNode(New, InsertPos);
11279  return New;
11280}
11281
11282bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11283  const llvm::Triple &T = getTargetInfo().getTriple();
11284  if (!T.isOSDarwin())
11285    return false;
11286
11287  if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11288      !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11289    return false;
11290
11291  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11292  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11293  uint64_t Size = sizeChars.getQuantity();
11294  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11295  unsigned Align = alignChars.getQuantity();
11296  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11297  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11298}
11299
11300bool
11301ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11302                                const ObjCMethodDecl *MethodImpl) {
11303  // No point trying to match an unavailable/deprecated mothod.
11304  if (MethodDecl->hasAttr<UnavailableAttr>()
11305      || MethodDecl->hasAttr<DeprecatedAttr>())
11306    return false;
11307  if (MethodDecl->getObjCDeclQualifier() !=
11308      MethodImpl->getObjCDeclQualifier())
11309    return false;
11310  if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11311    return false;
11312
11313  if (MethodDecl->param_size() != MethodImpl->param_size())
11314    return false;
11315
11316  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11317       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11318       EF = MethodDecl->param_end();
11319       IM != EM && IF != EF; ++IM, ++IF) {
11320    const ParmVarDecl *DeclVar = (*IF);
11321    const ParmVarDecl *ImplVar = (*IM);
11322    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11323      return false;
11324    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11325      return false;
11326  }
11327
11328  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
11329}
11330
11331uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
11332  LangAS AS;
11333  if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
11334    AS = LangAS::Default;
11335  else
11336    AS = QT->getPointeeType().getAddressSpace();
11337
11338  return getTargetInfo().getNullPointerValue(AS);
11339}
11340
11341unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
11342  if (isTargetAddressSpace(AS))
11343    return toTargetAddressSpace(AS);
11344  else
11345    return (*AddrSpaceMap)[(unsigned)AS];
11346}
11347
11348QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11349  assert(Ty->isFixedPointType());
11350
11351  if (Ty->isSaturatedFixedPointType()) return Ty;
11352
11353  switch (Ty->castAs<BuiltinType>()->getKind()) {
11354    default:
11355      llvm_unreachable("Not a fixed point type!");
11356    case BuiltinType::ShortAccum:
11357      return SatShortAccumTy;
11358    case BuiltinType::Accum:
11359      return SatAccumTy;
11360    case BuiltinType::LongAccum:
11361      return SatLongAccumTy;
11362    case BuiltinType::UShortAccum:
11363      return SatUnsignedShortAccumTy;
11364    case BuiltinType::UAccum:
11365      return SatUnsignedAccumTy;
11366    case BuiltinType::ULongAccum:
11367      return SatUnsignedLongAccumTy;
11368    case BuiltinType::ShortFract:
11369      return SatShortFractTy;
11370    case BuiltinType::Fract:
11371      return SatFractTy;
11372    case BuiltinType::LongFract:
11373      return SatLongFractTy;
11374    case BuiltinType::UShortFract:
11375      return SatUnsignedShortFractTy;
11376    case BuiltinType::UFract:
11377      return SatUnsignedFractTy;
11378    case BuiltinType::ULongFract:
11379      return SatUnsignedLongFractTy;
11380  }
11381}
11382
11383LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
11384  if (LangOpts.OpenCL)
11385    return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
11386
11387  if (LangOpts.CUDA)
11388    return getTargetInfo().getCUDABuiltinAddressSpace(AS);
11389
11390  return getLangASFromTargetAS(AS);
11391}
11392
11393// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
11394// doesn't include ASTContext.h
11395template
11396clang::LazyGenerationalUpdatePtr<
11397    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
11398clang::LazyGenerationalUpdatePtr<
11399    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
11400        const clang::ASTContext &Ctx, Decl *Value);
11401
11402unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
11403  assert(Ty->isFixedPointType());
11404
11405  const TargetInfo &Target = getTargetInfo();
11406  switch (Ty->castAs<BuiltinType>()->getKind()) {
11407    default:
11408      llvm_unreachable("Not a fixed point type!");
11409    case BuiltinType::ShortAccum:
11410    case BuiltinType::SatShortAccum:
11411      return Target.getShortAccumScale();
11412    case BuiltinType::Accum:
11413    case BuiltinType::SatAccum:
11414      return Target.getAccumScale();
11415    case BuiltinType::LongAccum:
11416    case BuiltinType::SatLongAccum:
11417      return Target.getLongAccumScale();
11418    case BuiltinType::UShortAccum:
11419    case BuiltinType::SatUShortAccum:
11420      return Target.getUnsignedShortAccumScale();
11421    case BuiltinType::UAccum:
11422    case BuiltinType::SatUAccum:
11423      return Target.getUnsignedAccumScale();
11424    case BuiltinType::ULongAccum:
11425    case BuiltinType::SatULongAccum:
11426      return Target.getUnsignedLongAccumScale();
11427    case BuiltinType::ShortFract:
11428    case BuiltinType::SatShortFract:
11429      return Target.getShortFractScale();
11430    case BuiltinType::Fract:
11431    case BuiltinType::SatFract:
11432      return Target.getFractScale();
11433    case BuiltinType::LongFract:
11434    case BuiltinType::SatLongFract:
11435      return Target.getLongFractScale();
11436    case BuiltinType::UShortFract:
11437    case BuiltinType::SatUShortFract:
11438      return Target.getUnsignedShortFractScale();
11439    case BuiltinType::UFract:
11440    case BuiltinType::SatUFract:
11441      return Target.getUnsignedFractScale();
11442    case BuiltinType::ULongFract:
11443    case BuiltinType::SatULongFract:
11444      return Target.getUnsignedLongFractScale();
11445  }
11446}
11447
11448unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
11449  assert(Ty->isFixedPointType());
11450
11451  const TargetInfo &Target = getTargetInfo();
11452  switch (Ty->castAs<BuiltinType>()->getKind()) {
11453    default:
11454      llvm_unreachable("Not a fixed point type!");
11455    case BuiltinType::ShortAccum:
11456    case BuiltinType::SatShortAccum:
11457      return Target.getShortAccumIBits();
11458    case BuiltinType::Accum:
11459    case BuiltinType::SatAccum:
11460      return Target.getAccumIBits();
11461    case BuiltinType::LongAccum:
11462    case BuiltinType::SatLongAccum:
11463      return Target.getLongAccumIBits();
11464    case BuiltinType::UShortAccum:
11465    case BuiltinType::SatUShortAccum:
11466      return Target.getUnsignedShortAccumIBits();
11467    case BuiltinType::UAccum:
11468    case BuiltinType::SatUAccum:
11469      return Target.getUnsignedAccumIBits();
11470    case BuiltinType::ULongAccum:
11471    case BuiltinType::SatULongAccum:
11472      return Target.getUnsignedLongAccumIBits();
11473    case BuiltinType::ShortFract:
11474    case BuiltinType::SatShortFract:
11475    case BuiltinType::Fract:
11476    case BuiltinType::SatFract:
11477    case BuiltinType::LongFract:
11478    case BuiltinType::SatLongFract:
11479    case BuiltinType::UShortFract:
11480    case BuiltinType::SatUShortFract:
11481    case BuiltinType::UFract:
11482    case BuiltinType::SatUFract:
11483    case BuiltinType::ULongFract:
11484    case BuiltinType::SatULongFract:
11485      return 0;
11486  }
11487}
11488
11489llvm::FixedPointSemantics
11490ASTContext::getFixedPointSemantics(QualType Ty) const {
11491  assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
11492         "Can only get the fixed point semantics for a "
11493         "fixed point or integer type.");
11494  if (Ty->isIntegerType())
11495    return llvm::FixedPointSemantics::GetIntegerSemantics(
11496        getIntWidth(Ty), Ty->isSignedIntegerType());
11497
11498  bool isSigned = Ty->isSignedFixedPointType();
11499  return llvm::FixedPointSemantics(
11500      static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
11501      Ty->isSaturatedFixedPointType(),
11502      !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
11503}
11504
11505llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
11506  assert(Ty->isFixedPointType());
11507  return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
11508}
11509
11510llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
11511  assert(Ty->isFixedPointType());
11512  return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
11513}
11514
11515QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
11516  assert(Ty->isUnsignedFixedPointType() &&
11517         "Expected unsigned fixed point type");
11518
11519  switch (Ty->castAs<BuiltinType>()->getKind()) {
11520  case BuiltinType::UShortAccum:
11521    return ShortAccumTy;
11522  case BuiltinType::UAccum:
11523    return AccumTy;
11524  case BuiltinType::ULongAccum:
11525    return LongAccumTy;
11526  case BuiltinType::SatUShortAccum:
11527    return SatShortAccumTy;
11528  case BuiltinType::SatUAccum:
11529    return SatAccumTy;
11530  case BuiltinType::SatULongAccum:
11531    return SatLongAccumTy;
11532  case BuiltinType::UShortFract:
11533    return ShortFractTy;
11534  case BuiltinType::UFract:
11535    return FractTy;
11536  case BuiltinType::ULongFract:
11537    return LongFractTy;
11538  case BuiltinType::SatUShortFract:
11539    return SatShortFractTy;
11540  case BuiltinType::SatUFract:
11541    return SatFractTy;
11542  case BuiltinType::SatULongFract:
11543    return SatLongFractTy;
11544  default:
11545    llvm_unreachable("Unexpected unsigned fixed point type");
11546  }
11547}
11548
11549ParsedTargetAttr
11550ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
11551  assert(TD != nullptr);
11552  ParsedTargetAttr ParsedAttr = TD->parse();
11553
11554  ParsedAttr.Features.erase(
11555      llvm::remove_if(ParsedAttr.Features,
11556                      [&](const std::string &Feat) {
11557                        return !Target->isValidFeatureName(
11558                            StringRef{Feat}.substr(1));
11559                      }),
11560      ParsedAttr.Features.end());
11561  return ParsedAttr;
11562}
11563
11564void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11565                                       const FunctionDecl *FD) const {
11566  if (FD)
11567    getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
11568  else
11569    Target->initFeatureMap(FeatureMap, getDiagnostics(),
11570                           Target->getTargetOpts().CPU,
11571                           Target->getTargetOpts().Features);
11572}
11573
11574// Fills in the supplied string map with the set of target features for the
11575// passed in function.
11576void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11577                                       GlobalDecl GD) const {
11578  StringRef TargetCPU = Target->getTargetOpts().CPU;
11579  const FunctionDecl *FD = GD.getDecl()->getAsFunction();
11580  if (const auto *TD = FD->getAttr<TargetAttr>()) {
11581    ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
11582
11583    // Make a copy of the features as passed on the command line into the
11584    // beginning of the additional features from the function to override.
11585    ParsedAttr.Features.insert(
11586        ParsedAttr.Features.begin(),
11587        Target->getTargetOpts().FeaturesAsWritten.begin(),
11588        Target->getTargetOpts().FeaturesAsWritten.end());
11589
11590    if (ParsedAttr.Architecture != "" &&
11591        Target->isValidCPUName(ParsedAttr.Architecture))
11592      TargetCPU = ParsedAttr.Architecture;
11593
11594    // Now populate the feature map, first with the TargetCPU which is either
11595    // the default or a new one from the target attribute string. Then we'll use
11596    // the passed in features (FeaturesAsWritten) along with the new ones from
11597    // the attribute.
11598    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
11599                           ParsedAttr.Features);
11600  } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
11601    llvm::SmallVector<StringRef, 32> FeaturesTmp;
11602    Target->getCPUSpecificCPUDispatchFeatures(
11603        SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
11604    std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
11605    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
11606  } else {
11607    FeatureMap = Target->getTargetOpts().FeatureMap;
11608  }
11609}
11610
11611OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
11612  OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
11613  return *OMPTraitInfoVector.back();
11614}
11615
11616const StreamingDiagnostic &clang::
11617operator<<(const StreamingDiagnostic &DB,
11618           const ASTContext::SectionInfo &Section) {
11619  if (Section.Decl)
11620    return DB << Section.Decl;
11621  return DB << "a prior #pragma section";
11622}
11623
11624bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
11625  bool IsStaticVar =
11626      isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
11627  bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
11628                              !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
11629                             (D->hasAttr<CUDAConstantAttr>() &&
11630                              !D->getAttr<CUDAConstantAttr>()->isImplicit());
11631  // CUDA/HIP: static managed variables need to be externalized since it is
11632  // a declaration in IR, therefore cannot have internal linkage.
11633  return IsStaticVar &&
11634         (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar);
11635}
11636
11637bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
11638  return mayExternalizeStaticVar(D) &&
11639         (D->hasAttr<HIPManagedAttr>() ||
11640          CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
11641}
11642
11643StringRef ASTContext::getCUIDHash() const {
11644  if (!CUIDHash.empty())
11645    return CUIDHash;
11646  if (LangOpts.CUID.empty())
11647    return StringRef();
11648  CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
11649  return CUIDHash;
11650}
11651