1/*
2 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4 * Copyright (c) 2015, CloudFlare, Inc.
5 *
6 * Licensed under the Apache License 2.0 (the "License").  You may not use
7 * this file except in compliance with the License.  You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 *
11 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13 * (2) University of Haifa, Israel
14 * (3) CloudFlare, Inc.
15 *
16 * Reference:
17 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18 *                          256 Bit Primes"
19 */
20
21/*
22 * ECDSA low level APIs are deprecated for public use, but still ok for
23 * internal use.
24 */
25#include "internal/deprecated.h"
26
27#include <string.h>
28
29#include "internal/cryptlib.h"
30#include "crypto/bn.h"
31#include "ec_local.h"
32#include "internal/refcount.h"
33
34#if BN_BITS2 != 64
35# define TOBN(hi,lo)    lo,hi
36#else
37# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
38#endif
39
40#if defined(__GNUC__)
41# define ALIGN32        __attribute((aligned(32)))
42#elif defined(_MSC_VER)
43# define ALIGN32        __declspec(align(32))
44#else
45# define ALIGN32
46#endif
47
48#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
49#define P256_LIMBS      (256/BN_BITS2)
50
51typedef unsigned short u16;
52
53typedef struct {
54    BN_ULONG X[P256_LIMBS];
55    BN_ULONG Y[P256_LIMBS];
56    BN_ULONG Z[P256_LIMBS];
57} P256_POINT;
58
59typedef struct {
60    BN_ULONG X[P256_LIMBS];
61    BN_ULONG Y[P256_LIMBS];
62} P256_POINT_AFFINE;
63
64typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65
66/* structure for precomputed multiples of the generator */
67struct nistz256_pre_comp_st {
68    const EC_GROUP *group;      /* Parent EC_GROUP object */
69    size_t w;                   /* Window size */
70    /*
71     * Constant time access to the X and Y coordinates of the pre-computed,
72     * generator multiplies, in the Montgomery domain. Pre-calculated
73     * multiplies are stored in affine form.
74     */
75    PRECOMP256_ROW *precomp;
76    void *precomp_storage;
77    CRYPTO_REF_COUNT references;
78    CRYPTO_RWLOCK *lock;
79};
80
81/* Functions implemented in assembly */
82/*
83 * Most of below mentioned functions *preserve* the property of inputs
84 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
85 * inputs are fully reduced, then output is too. Note that reverse is
86 * not true, in sense that given partially reduced inputs output can be
87 * either, not unlikely reduced. And "most" in first sentence refers to
88 * the fact that given the calculations flow one can tolerate that
89 * addition, 1st function below, produces partially reduced result *if*
90 * multiplications by 2 and 3, which customarily use addition, fully
91 * reduce it. This effectively gives two options: a) addition produces
92 * fully reduced result [as long as inputs are, just like remaining
93 * functions]; b) addition is allowed to produce partially reduced
94 * result, but multiplications by 2 and 3 perform additional reduction
95 * step. Choice between the two can be platform-specific, but it was a)
96 * in all cases so far...
97 */
98/* Modular add: res = a+b mod P   */
99void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
100                      const BN_ULONG a[P256_LIMBS],
101                      const BN_ULONG b[P256_LIMBS]);
102/* Modular mul by 2: res = 2*a mod P */
103void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
104                           const BN_ULONG a[P256_LIMBS]);
105/* Modular mul by 3: res = 3*a mod P */
106void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
107                           const BN_ULONG a[P256_LIMBS]);
108
109/* Modular div by 2: res = a/2 mod P */
110void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
111                           const BN_ULONG a[P256_LIMBS]);
112/* Modular sub: res = a-b mod P   */
113void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
114                      const BN_ULONG a[P256_LIMBS],
115                      const BN_ULONG b[P256_LIMBS]);
116/* Modular neg: res = -a mod P    */
117void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
118/* Montgomery mul: res = a*b*2^-256 mod P */
119void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
120                           const BN_ULONG a[P256_LIMBS],
121                           const BN_ULONG b[P256_LIMBS]);
122/* Montgomery sqr: res = a*a*2^-256 mod P */
123void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
124                           const BN_ULONG a[P256_LIMBS]);
125/* Convert a number from Montgomery domain, by multiplying with 1 */
126void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
127                            const BN_ULONG in[P256_LIMBS]);
128/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
129void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
130                          const BN_ULONG in[P256_LIMBS]);
131/* Functions that perform constant time access to the precomputed tables */
132void ecp_nistz256_scatter_w5(P256_POINT *val,
133                             const P256_POINT *in_t, int idx);
134void ecp_nistz256_gather_w5(P256_POINT *val,
135                            const P256_POINT *in_t, int idx);
136void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
137                             const P256_POINT_AFFINE *in_t, int idx);
138void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
139                            const P256_POINT_AFFINE *in_t, int idx);
140
141/* One converted into the Montgomery domain */
142static const BN_ULONG ONE[P256_LIMBS] = {
143    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
144    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
145};
146
147static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
148
149/* Precomputed tables for the default generator */
150extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
151
152/* Recode window to a signed digit, see ecp_nistputil.c for details */
153static unsigned int _booth_recode_w5(unsigned int in)
154{
155    unsigned int s, d;
156
157    s = ~((in >> 5) - 1);
158    d = (1 << 6) - in - 1;
159    d = (d & s) | (in & ~s);
160    d = (d >> 1) + (d & 1);
161
162    return (d << 1) + (s & 1);
163}
164
165static unsigned int _booth_recode_w7(unsigned int in)
166{
167    unsigned int s, d;
168
169    s = ~((in >> 7) - 1);
170    d = (1 << 8) - in - 1;
171    d = (d & s) | (in & ~s);
172    d = (d >> 1) + (d & 1);
173
174    return (d << 1) + (s & 1);
175}
176
177static void copy_conditional(BN_ULONG dst[P256_LIMBS],
178                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
179{
180    BN_ULONG mask1 = 0-move;
181    BN_ULONG mask2 = ~mask1;
182
183    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
184    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
185    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
186    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
187    if (P256_LIMBS == 8) {
188        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
189        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
190        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
191        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
192    }
193}
194
195static BN_ULONG is_zero(BN_ULONG in)
196{
197    in |= (0 - in);
198    in = ~in;
199    in >>= BN_BITS2 - 1;
200    return in;
201}
202
203static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
204                         const BN_ULONG b[P256_LIMBS])
205{
206    BN_ULONG res;
207
208    res = a[0] ^ b[0];
209    res |= a[1] ^ b[1];
210    res |= a[2] ^ b[2];
211    res |= a[3] ^ b[3];
212    if (P256_LIMBS == 8) {
213        res |= a[4] ^ b[4];
214        res |= a[5] ^ b[5];
215        res |= a[6] ^ b[6];
216        res |= a[7] ^ b[7];
217    }
218
219    return is_zero(res);
220}
221
222static BN_ULONG is_one(const BIGNUM *z)
223{
224    BN_ULONG res = 0;
225    BN_ULONG *a = bn_get_words(z);
226
227    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
228        res = a[0] ^ ONE[0];
229        res |= a[1] ^ ONE[1];
230        res |= a[2] ^ ONE[2];
231        res |= a[3] ^ ONE[3];
232        if (P256_LIMBS == 8) {
233            res |= a[4] ^ ONE[4];
234            res |= a[5] ^ ONE[5];
235            res |= a[6] ^ ONE[6];
236            /*
237             * no check for a[7] (being zero) on 32-bit platforms,
238             * because value of "one" takes only 7 limbs.
239             */
240        }
241        res = is_zero(res);
242    }
243
244    return res;
245}
246
247/*
248 * For reference, this macro is used only when new ecp_nistz256 assembly
249 * module is being developed.  For example, configure with
250 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
251 * performing simplest arithmetic operations on 256-bit vectors. Then
252 * work on implementation of higher-level functions performing point
253 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
254 * and never define it again. (The correct macro denoting presence of
255 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
256 */
257#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
258void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
259void ecp_nistz256_point_add(P256_POINT *r,
260                            const P256_POINT *a, const P256_POINT *b);
261void ecp_nistz256_point_add_affine(P256_POINT *r,
262                                   const P256_POINT *a,
263                                   const P256_POINT_AFFINE *b);
264#else
265/* Point double: r = 2*a */
266static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
267{
268    BN_ULONG S[P256_LIMBS];
269    BN_ULONG M[P256_LIMBS];
270    BN_ULONG Zsqr[P256_LIMBS];
271    BN_ULONG tmp0[P256_LIMBS];
272
273    const BN_ULONG *in_x = a->X;
274    const BN_ULONG *in_y = a->Y;
275    const BN_ULONG *in_z = a->Z;
276
277    BN_ULONG *res_x = r->X;
278    BN_ULONG *res_y = r->Y;
279    BN_ULONG *res_z = r->Z;
280
281    ecp_nistz256_mul_by_2(S, in_y);
282
283    ecp_nistz256_sqr_mont(Zsqr, in_z);
284
285    ecp_nistz256_sqr_mont(S, S);
286
287    ecp_nistz256_mul_mont(res_z, in_z, in_y);
288    ecp_nistz256_mul_by_2(res_z, res_z);
289
290    ecp_nistz256_add(M, in_x, Zsqr);
291    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
292
293    ecp_nistz256_sqr_mont(res_y, S);
294    ecp_nistz256_div_by_2(res_y, res_y);
295
296    ecp_nistz256_mul_mont(M, M, Zsqr);
297    ecp_nistz256_mul_by_3(M, M);
298
299    ecp_nistz256_mul_mont(S, S, in_x);
300    ecp_nistz256_mul_by_2(tmp0, S);
301
302    ecp_nistz256_sqr_mont(res_x, M);
303
304    ecp_nistz256_sub(res_x, res_x, tmp0);
305    ecp_nistz256_sub(S, S, res_x);
306
307    ecp_nistz256_mul_mont(S, S, M);
308    ecp_nistz256_sub(res_y, S, res_y);
309}
310
311/* Point addition: r = a+b */
312static void ecp_nistz256_point_add(P256_POINT *r,
313                                   const P256_POINT *a, const P256_POINT *b)
314{
315    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
316    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
317    BN_ULONG Z1sqr[P256_LIMBS];
318    BN_ULONG Z2sqr[P256_LIMBS];
319    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
320    BN_ULONG Hsqr[P256_LIMBS];
321    BN_ULONG Rsqr[P256_LIMBS];
322    BN_ULONG Hcub[P256_LIMBS];
323
324    BN_ULONG res_x[P256_LIMBS];
325    BN_ULONG res_y[P256_LIMBS];
326    BN_ULONG res_z[P256_LIMBS];
327
328    BN_ULONG in1infty, in2infty;
329
330    const BN_ULONG *in1_x = a->X;
331    const BN_ULONG *in1_y = a->Y;
332    const BN_ULONG *in1_z = a->Z;
333
334    const BN_ULONG *in2_x = b->X;
335    const BN_ULONG *in2_y = b->Y;
336    const BN_ULONG *in2_z = b->Z;
337
338    /*
339     * Infinity in encoded as (,,0)
340     */
341    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
342    if (P256_LIMBS == 8)
343        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
344
345    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
346    if (P256_LIMBS == 8)
347        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
348
349    in1infty = is_zero(in1infty);
350    in2infty = is_zero(in2infty);
351
352    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
353    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
354
355    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
356    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
357
358    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
359    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
360    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
361
362    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
363    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
364    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
365
366    /*
367     * The formulae are incorrect if the points are equal so we check for
368     * this and do doubling if this happens.
369     *
370     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
371     * that are bound to the affine coordinates (xi, yi) by the following
372     * equations:
373     *     - xi = Xi / (Zi)^2
374     *     - y1 = Yi / (Zi)^3
375     *
376     * For the sake of optimization, the algorithm operates over
377     * intermediate variables U1, U2 and S1, S2 that are derived from
378     * the projective coordinates:
379     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
380     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
381     *
382     * It is easy to prove that is_equal(U1, U2) implies that the affine
383     * x-coordinates are equal, or either point is at infinity.
384     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
385     * equal, or either point is at infinity.
386     *
387     * The special case of either point being the point at infinity (Z1 or Z2
388     * is zero), is handled separately later on in this function, so we avoid
389     * jumping to point_double here in those special cases.
390     *
391     * When both points are inverse of each other, we know that the affine
392     * x-coordinates are equal, and the y-coordinates have different sign.
393     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
394     * will equal 0, thus the result is infinity, if we simply let this
395     * function continue normally.
396     *
397     * We use bitwise operations to avoid potential side-channels introduced by
398     * the short-circuiting behaviour of boolean operators.
399     */
400    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
401        /*
402         * This is obviously not constant-time but it should never happen during
403         * single point multiplication, so there is no timing leak for ECDH or
404         * ECDSA signing.
405         */
406        ecp_nistz256_point_double(r, a);
407        return;
408    }
409
410    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
411    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
412    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
413    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
414    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
415
416    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
417    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
418
419    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
420    ecp_nistz256_sub(res_x, res_x, Hcub);
421
422    ecp_nistz256_sub(res_y, U2, res_x);
423
424    ecp_nistz256_mul_mont(S2, S1, Hcub);
425    ecp_nistz256_mul_mont(res_y, R, res_y);
426    ecp_nistz256_sub(res_y, res_y, S2);
427
428    copy_conditional(res_x, in2_x, in1infty);
429    copy_conditional(res_y, in2_y, in1infty);
430    copy_conditional(res_z, in2_z, in1infty);
431
432    copy_conditional(res_x, in1_x, in2infty);
433    copy_conditional(res_y, in1_y, in2infty);
434    copy_conditional(res_z, in1_z, in2infty);
435
436    memcpy(r->X, res_x, sizeof(res_x));
437    memcpy(r->Y, res_y, sizeof(res_y));
438    memcpy(r->Z, res_z, sizeof(res_z));
439}
440
441/* Point addition when b is known to be affine: r = a+b */
442static void ecp_nistz256_point_add_affine(P256_POINT *r,
443                                          const P256_POINT *a,
444                                          const P256_POINT_AFFINE *b)
445{
446    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
447    BN_ULONG Z1sqr[P256_LIMBS];
448    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
449    BN_ULONG Hsqr[P256_LIMBS];
450    BN_ULONG Rsqr[P256_LIMBS];
451    BN_ULONG Hcub[P256_LIMBS];
452
453    BN_ULONG res_x[P256_LIMBS];
454    BN_ULONG res_y[P256_LIMBS];
455    BN_ULONG res_z[P256_LIMBS];
456
457    BN_ULONG in1infty, in2infty;
458
459    const BN_ULONG *in1_x = a->X;
460    const BN_ULONG *in1_y = a->Y;
461    const BN_ULONG *in1_z = a->Z;
462
463    const BN_ULONG *in2_x = b->X;
464    const BN_ULONG *in2_y = b->Y;
465
466    /*
467     * Infinity in encoded as (,,0)
468     */
469    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
470    if (P256_LIMBS == 8)
471        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
472
473    /*
474     * In affine representation we encode infinity as (0,0), which is
475     * not on the curve, so it is OK
476     */
477    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
478                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
479    if (P256_LIMBS == 8)
480        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
481                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
482
483    in1infty = is_zero(in1infty);
484    in2infty = is_zero(in2infty);
485
486    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
487
488    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
489    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
490
491    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
492
493    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
494
495    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
496    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
497
498    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
499    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
500    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
501
502    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
503    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
504
505    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
506    ecp_nistz256_sub(res_x, res_x, Hcub);
507    ecp_nistz256_sub(H, U2, res_x);
508
509    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
510    ecp_nistz256_mul_mont(H, H, R);
511    ecp_nistz256_sub(res_y, H, S2);
512
513    copy_conditional(res_x, in2_x, in1infty);
514    copy_conditional(res_x, in1_x, in2infty);
515
516    copy_conditional(res_y, in2_y, in1infty);
517    copy_conditional(res_y, in1_y, in2infty);
518
519    copy_conditional(res_z, ONE, in1infty);
520    copy_conditional(res_z, in1_z, in2infty);
521
522    memcpy(r->X, res_x, sizeof(res_x));
523    memcpy(r->Y, res_y, sizeof(res_y));
524    memcpy(r->Z, res_z, sizeof(res_z));
525}
526#endif
527
528/* r = in^-1 mod p */
529static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
530                                     const BN_ULONG in[P256_LIMBS])
531{
532    /*
533     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
534     * ffffffff ffffffff We use FLT and used poly-2 as exponent
535     */
536    BN_ULONG p2[P256_LIMBS];
537    BN_ULONG p4[P256_LIMBS];
538    BN_ULONG p8[P256_LIMBS];
539    BN_ULONG p16[P256_LIMBS];
540    BN_ULONG p32[P256_LIMBS];
541    BN_ULONG res[P256_LIMBS];
542    int i;
543
544    ecp_nistz256_sqr_mont(res, in);
545    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
546
547    ecp_nistz256_sqr_mont(res, p2);
548    ecp_nistz256_sqr_mont(res, res);
549    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
550
551    ecp_nistz256_sqr_mont(res, p4);
552    ecp_nistz256_sqr_mont(res, res);
553    ecp_nistz256_sqr_mont(res, res);
554    ecp_nistz256_sqr_mont(res, res);
555    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
556
557    ecp_nistz256_sqr_mont(res, p8);
558    for (i = 0; i < 7; i++)
559        ecp_nistz256_sqr_mont(res, res);
560    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
561
562    ecp_nistz256_sqr_mont(res, p16);
563    for (i = 0; i < 15; i++)
564        ecp_nistz256_sqr_mont(res, res);
565    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
566
567    ecp_nistz256_sqr_mont(res, p32);
568    for (i = 0; i < 31; i++)
569        ecp_nistz256_sqr_mont(res, res);
570    ecp_nistz256_mul_mont(res, res, in);
571
572    for (i = 0; i < 32 * 4; i++)
573        ecp_nistz256_sqr_mont(res, res);
574    ecp_nistz256_mul_mont(res, res, p32);
575
576    for (i = 0; i < 32; i++)
577        ecp_nistz256_sqr_mont(res, res);
578    ecp_nistz256_mul_mont(res, res, p32);
579
580    for (i = 0; i < 16; i++)
581        ecp_nistz256_sqr_mont(res, res);
582    ecp_nistz256_mul_mont(res, res, p16);
583
584    for (i = 0; i < 8; i++)
585        ecp_nistz256_sqr_mont(res, res);
586    ecp_nistz256_mul_mont(res, res, p8);
587
588    ecp_nistz256_sqr_mont(res, res);
589    ecp_nistz256_sqr_mont(res, res);
590    ecp_nistz256_sqr_mont(res, res);
591    ecp_nistz256_sqr_mont(res, res);
592    ecp_nistz256_mul_mont(res, res, p4);
593
594    ecp_nistz256_sqr_mont(res, res);
595    ecp_nistz256_sqr_mont(res, res);
596    ecp_nistz256_mul_mont(res, res, p2);
597
598    ecp_nistz256_sqr_mont(res, res);
599    ecp_nistz256_sqr_mont(res, res);
600    ecp_nistz256_mul_mont(res, res, in);
601
602    memcpy(r, res, sizeof(res));
603}
604
605/*
606 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
607 * returns one if it fits. Otherwise it returns zero.
608 */
609__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
610                                                    const BIGNUM *in)
611{
612    return bn_copy_words(out, in, P256_LIMBS);
613}
614
615/* r = sum(scalar[i]*point[i]) */
616__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
617                                            P256_POINT *r,
618                                            const BIGNUM **scalar,
619                                            const EC_POINT **point,
620                                            size_t num, BN_CTX *ctx)
621{
622    size_t i;
623    int j, ret = 0;
624    unsigned int idx;
625    unsigned char (*p_str)[33] = NULL;
626    const unsigned int window_size = 5;
627    const unsigned int mask = (1 << (window_size + 1)) - 1;
628    unsigned int wvalue;
629    P256_POINT *temp;           /* place for 5 temporary points */
630    const BIGNUM **scalars = NULL;
631    P256_POINT (*table)[16] = NULL;
632    void *table_storage = NULL;
633
634    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
635        || (table_storage =
636            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
637        || (p_str =
638            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
639        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
640        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
641        goto err;
642    }
643
644    table = (void *)ALIGNPTR(table_storage, 64);
645    temp = (P256_POINT *)(table + num);
646
647    for (i = 0; i < num; i++) {
648        P256_POINT *row = table[i];
649
650        /* This is an unusual input, we don't guarantee constant-timeness. */
651        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
652            BIGNUM *mod;
653
654            if ((mod = BN_CTX_get(ctx)) == NULL)
655                goto err;
656            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
657                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
658                goto err;
659            }
660            scalars[i] = mod;
661        } else
662            scalars[i] = scalar[i];
663
664        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
665            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
666
667            p_str[i][j + 0] = (unsigned char)d;
668            p_str[i][j + 1] = (unsigned char)(d >> 8);
669            p_str[i][j + 2] = (unsigned char)(d >> 16);
670            p_str[i][j + 3] = (unsigned char)(d >>= 24);
671            if (BN_BYTES == 8) {
672                d >>= 8;
673                p_str[i][j + 4] = (unsigned char)d;
674                p_str[i][j + 5] = (unsigned char)(d >> 8);
675                p_str[i][j + 6] = (unsigned char)(d >> 16);
676                p_str[i][j + 7] = (unsigned char)(d >> 24);
677            }
678        }
679        for (; j < 33; j++)
680            p_str[i][j] = 0;
681
682        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
683            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
684            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
685            ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
686            goto err;
687        }
688
689        /*
690         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
691         * is not stored. All other values are actually stored with an offset
692         * of -1 in table.
693         */
694
695        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
696        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
697        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
698        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
699        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
700        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
701        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
702        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
703        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
704        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
705        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
706        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
707        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
708        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
709        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
710        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
711        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
712        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
713        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
714        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
715        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
716        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
717        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
718        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
719        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
720        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
721        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
722        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
723        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
724        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
725        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
726    }
727
728    idx = 255;
729
730    wvalue = p_str[0][(idx - 1) / 8];
731    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
732
733    /*
734     * We gather to temp[0], because we know it's position relative
735     * to table
736     */
737    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
738    memcpy(r, &temp[0], sizeof(temp[0]));
739
740    while (idx >= 5) {
741        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
742            unsigned int off = (idx - 1) / 8;
743
744            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
745            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
746
747            wvalue = _booth_recode_w5(wvalue);
748
749            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
750
751            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
752            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
753
754            ecp_nistz256_point_add(r, r, &temp[0]);
755        }
756
757        idx -= window_size;
758
759        ecp_nistz256_point_double(r, r);
760        ecp_nistz256_point_double(r, r);
761        ecp_nistz256_point_double(r, r);
762        ecp_nistz256_point_double(r, r);
763        ecp_nistz256_point_double(r, r);
764    }
765
766    /* Final window */
767    for (i = 0; i < num; i++) {
768        wvalue = p_str[i][0];
769        wvalue = (wvalue << 1) & mask;
770
771        wvalue = _booth_recode_w5(wvalue);
772
773        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
774
775        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
776        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
777
778        ecp_nistz256_point_add(r, r, &temp[0]);
779    }
780
781    ret = 1;
782 err:
783    OPENSSL_free(table_storage);
784    OPENSSL_free(p_str);
785    OPENSSL_free(scalars);
786    return ret;
787}
788
789/* Coordinates of G, for which we have precomputed tables */
790static const BN_ULONG def_xG[P256_LIMBS] = {
791    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
792    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
793};
794
795static const BN_ULONG def_yG[P256_LIMBS] = {
796    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
797    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
798};
799
800/*
801 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
802 * generator.
803 */
804static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
805{
806    return (bn_get_top(generator->X) == P256_LIMBS) &&
807        (bn_get_top(generator->Y) == P256_LIMBS) &&
808        is_equal(bn_get_words(generator->X), def_xG) &&
809        is_equal(bn_get_words(generator->Y), def_yG) &&
810        is_one(generator->Z);
811}
812
813__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
814{
815    /*
816     * We precompute a table for a Booth encoded exponent (wNAF) based
817     * computation. Each table holds 64 values for safe access, with an
818     * implicit value of infinity at index zero. We use window of size 7, and
819     * therefore require ceil(256/7) = 37 tables.
820     */
821    const BIGNUM *order;
822    EC_POINT *P = NULL, *T = NULL;
823    const EC_POINT *generator;
824    NISTZ256_PRE_COMP *pre_comp;
825    BN_CTX *new_ctx = NULL;
826    int i, j, k, ret = 0;
827    size_t w;
828
829    PRECOMP256_ROW *preComputedTable = NULL;
830    unsigned char *precomp_storage = NULL;
831
832    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
833    EC_pre_comp_free(group);
834    generator = EC_GROUP_get0_generator(group);
835    if (generator == NULL) {
836        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
837        return 0;
838    }
839
840    if (ecp_nistz256_is_affine_G(generator)) {
841        /*
842         * No need to calculate tables for the standard generator because we
843         * have them statically.
844         */
845        return 1;
846    }
847
848    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
849        return 0;
850
851    if (ctx == NULL) {
852        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
853        if (ctx == NULL)
854            goto err;
855    }
856
857    BN_CTX_start(ctx);
858
859    order = EC_GROUP_get0_order(group);
860    if (order == NULL)
861        goto err;
862
863    if (BN_is_zero(order)) {
864        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
865        goto err;
866    }
867
868    w = 7;
869
870    if ((precomp_storage =
871         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
872        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
873        goto err;
874    }
875
876    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
877
878    P = EC_POINT_new(group);
879    T = EC_POINT_new(group);
880    if (P == NULL || T == NULL)
881        goto err;
882
883    /*
884     * The zero entry is implicitly infinity, and we skip it, storing other
885     * values with -1 offset.
886     */
887    if (!EC_POINT_copy(T, generator))
888        goto err;
889
890    for (k = 0; k < 64; k++) {
891        if (!EC_POINT_copy(P, T))
892            goto err;
893        for (j = 0; j < 37; j++) {
894            P256_POINT_AFFINE temp;
895            /*
896             * It would be faster to use EC_POINTs_make_affine and
897             * make multiple points affine at the same time.
898             */
899            if (group->meth->make_affine == NULL
900                || !group->meth->make_affine(group, P, ctx))
901                goto err;
902            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
903                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
904                ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
905                goto err;
906            }
907            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
908            for (i = 0; i < 7; i++) {
909                if (!EC_POINT_dbl(group, P, P, ctx))
910                    goto err;
911            }
912        }
913        if (!EC_POINT_add(group, T, T, generator, ctx))
914            goto err;
915    }
916
917    pre_comp->group = group;
918    pre_comp->w = w;
919    pre_comp->precomp = preComputedTable;
920    pre_comp->precomp_storage = precomp_storage;
921    precomp_storage = NULL;
922    SETPRECOMP(group, nistz256, pre_comp);
923    pre_comp = NULL;
924    ret = 1;
925
926 err:
927    BN_CTX_end(ctx);
928    BN_CTX_free(new_ctx);
929
930    EC_nistz256_pre_comp_free(pre_comp);
931    OPENSSL_free(precomp_storage);
932    EC_POINT_free(P);
933    EC_POINT_free(T);
934    return ret;
935}
936
937__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
938                                               const P256_POINT_AFFINE *in,
939                                               BN_CTX *ctx)
940{
941    int ret = 0;
942
943    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
944        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
945        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
946        out->Z_is_one = 1;
947
948    return ret;
949}
950
951/* r = scalar*G + sum(scalars[i]*points[i]) */
952__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
953                                          EC_POINT *r,
954                                          const BIGNUM *scalar,
955                                          size_t num,
956                                          const EC_POINT *points[],
957                                          const BIGNUM *scalars[], BN_CTX *ctx)
958{
959    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
960    unsigned char p_str[33] = { 0 };
961    const PRECOMP256_ROW *preComputedTable = NULL;
962    const NISTZ256_PRE_COMP *pre_comp = NULL;
963    const EC_POINT *generator = NULL;
964    const BIGNUM **new_scalars = NULL;
965    const EC_POINT **new_points = NULL;
966    unsigned int idx = 0;
967    const unsigned int window_size = 7;
968    const unsigned int mask = (1 << (window_size + 1)) - 1;
969    unsigned int wvalue;
970    ALIGN32 union {
971        P256_POINT p;
972        P256_POINT_AFFINE a;
973    } t, p;
974    BIGNUM *tmp_scalar;
975
976    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
977        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
978        return 0;
979    }
980
981    memset(&p, 0, sizeof(p));
982    BN_CTX_start(ctx);
983
984    if (scalar) {
985        generator = EC_GROUP_get0_generator(group);
986        if (generator == NULL) {
987            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
988            goto err;
989        }
990
991        /* look if we can use precomputed multiples of generator */
992        pre_comp = group->pre_comp.nistz256;
993
994        if (pre_comp) {
995            /*
996             * If there is a precomputed table for the generator, check that
997             * it was generated with the same generator.
998             */
999            EC_POINT *pre_comp_generator = EC_POINT_new(group);
1000            if (pre_comp_generator == NULL)
1001                goto err;
1002
1003            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
1004            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1005                                              group, &p.a, ctx)) {
1006                EC_POINT_free(pre_comp_generator);
1007                goto err;
1008            }
1009
1010            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1011                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1012
1013            EC_POINT_free(pre_comp_generator);
1014        }
1015
1016        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1017            /*
1018             * If there is no precomputed data, but the generator is the
1019             * default, a hardcoded table of precomputed data is used. This
1020             * is because applications, such as Apache, do not use
1021             * EC_KEY_precompute_mult.
1022             */
1023            preComputedTable = ecp_nistz256_precomputed;
1024        }
1025
1026        if (preComputedTable) {
1027            BN_ULONG infty;
1028
1029            if ((BN_num_bits(scalar) > 256)
1030                || BN_is_negative(scalar)) {
1031                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1032                    goto err;
1033
1034                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1035                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1036                    goto err;
1037                }
1038                scalar = tmp_scalar;
1039            }
1040
1041            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1042                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1043
1044                p_str[i + 0] = (unsigned char)d;
1045                p_str[i + 1] = (unsigned char)(d >> 8);
1046                p_str[i + 2] = (unsigned char)(d >> 16);
1047                p_str[i + 3] = (unsigned char)(d >>= 24);
1048                if (BN_BYTES == 8) {
1049                    d >>= 8;
1050                    p_str[i + 4] = (unsigned char)d;
1051                    p_str[i + 5] = (unsigned char)(d >> 8);
1052                    p_str[i + 6] = (unsigned char)(d >> 16);
1053                    p_str[i + 7] = (unsigned char)(d >> 24);
1054                }
1055            }
1056
1057            for (; i < 33; i++)
1058                p_str[i] = 0;
1059
1060            /* First window */
1061            wvalue = (p_str[0] << 1) & mask;
1062            idx += window_size;
1063
1064            wvalue = _booth_recode_w7(wvalue);
1065
1066            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1067                                   wvalue >> 1);
1068
1069            ecp_nistz256_neg(p.p.Z, p.p.Y);
1070            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1071
1072            /*
1073             * Since affine infinity is encoded as (0,0) and
1074             * Jacobian is (,,0), we need to harmonize them
1075             * by assigning "one" or zero to Z.
1076             */
1077            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1078                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1079            if (P256_LIMBS == 8)
1080                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1081                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1082
1083            infty = 0 - is_zero(infty);
1084            infty = ~infty;
1085
1086            p.p.Z[0] = ONE[0] & infty;
1087            p.p.Z[1] = ONE[1] & infty;
1088            p.p.Z[2] = ONE[2] & infty;
1089            p.p.Z[3] = ONE[3] & infty;
1090            if (P256_LIMBS == 8) {
1091                p.p.Z[4] = ONE[4] & infty;
1092                p.p.Z[5] = ONE[5] & infty;
1093                p.p.Z[6] = ONE[6] & infty;
1094                p.p.Z[7] = ONE[7] & infty;
1095            }
1096
1097            for (i = 1; i < 37; i++) {
1098                unsigned int off = (idx - 1) / 8;
1099                wvalue = p_str[off] | p_str[off + 1] << 8;
1100                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1101                idx += window_size;
1102
1103                wvalue = _booth_recode_w7(wvalue);
1104
1105                ecp_nistz256_gather_w7(&t.a,
1106                                       preComputedTable[i], wvalue >> 1);
1107
1108                ecp_nistz256_neg(t.p.Z, t.a.Y);
1109                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1110
1111                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1112            }
1113        } else {
1114            p_is_infinity = 1;
1115            no_precomp_for_generator = 1;
1116        }
1117    } else
1118        p_is_infinity = 1;
1119
1120    if (no_precomp_for_generator) {
1121        /*
1122         * Without a precomputed table for the generator, it has to be
1123         * handled like a normal point.
1124         */
1125        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1126        if (new_scalars == NULL) {
1127            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1128            goto err;
1129        }
1130
1131        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1132        if (new_points == NULL) {
1133            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1134            goto err;
1135        }
1136
1137        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1138        new_scalars[num] = scalar;
1139        memcpy(new_points, points, num * sizeof(EC_POINT *));
1140        new_points[num] = generator;
1141
1142        scalars = new_scalars;
1143        points = new_points;
1144        num++;
1145    }
1146
1147    if (num) {
1148        P256_POINT *out = &t.p;
1149        if (p_is_infinity)
1150            out = &p.p;
1151
1152        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1153            goto err;
1154
1155        if (!p_is_infinity)
1156            ecp_nistz256_point_add(&p.p, &p.p, out);
1157    }
1158
1159    /* Not constant-time, but we're only operating on the public output. */
1160    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1161        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1162        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1163        goto err;
1164    }
1165    r->Z_is_one = is_one(r->Z) & 1;
1166
1167    ret = 1;
1168
1169err:
1170    BN_CTX_end(ctx);
1171    OPENSSL_free(new_points);
1172    OPENSSL_free(new_scalars);
1173    return ret;
1174}
1175
1176__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1177                                          const EC_POINT *point,
1178                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1179{
1180    BN_ULONG z_inv2[P256_LIMBS];
1181    BN_ULONG z_inv3[P256_LIMBS];
1182    BN_ULONG x_aff[P256_LIMBS];
1183    BN_ULONG y_aff[P256_LIMBS];
1184    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1185    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1186
1187    if (EC_POINT_is_at_infinity(group, point)) {
1188        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1189        return 0;
1190    }
1191
1192    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1193        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1194        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1195        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1196        return 0;
1197    }
1198
1199    ecp_nistz256_mod_inverse(z_inv3, point_z);
1200    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1201    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1202
1203    if (x != NULL) {
1204        ecp_nistz256_from_mont(x_ret, x_aff);
1205        if (!bn_set_words(x, x_ret, P256_LIMBS))
1206            return 0;
1207    }
1208
1209    if (y != NULL) {
1210        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1211        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1212        ecp_nistz256_from_mont(y_ret, y_aff);
1213        if (!bn_set_words(y, y_ret, P256_LIMBS))
1214            return 0;
1215    }
1216
1217    return 1;
1218}
1219
1220static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1221{
1222    NISTZ256_PRE_COMP *ret = NULL;
1223
1224    if (!group)
1225        return NULL;
1226
1227    ret = OPENSSL_zalloc(sizeof(*ret));
1228
1229    if (ret == NULL) {
1230        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1231        return ret;
1232    }
1233
1234    ret->group = group;
1235    ret->w = 6;                 /* default */
1236    ret->references = 1;
1237
1238    ret->lock = CRYPTO_THREAD_lock_new();
1239    if (ret->lock == NULL) {
1240        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1241        OPENSSL_free(ret);
1242        return NULL;
1243    }
1244    return ret;
1245}
1246
1247NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1248{
1249    int i;
1250    if (p != NULL)
1251        CRYPTO_UP_REF(&p->references, &i, p->lock);
1252    return p;
1253}
1254
1255void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1256{
1257    int i;
1258
1259    if (pre == NULL)
1260        return;
1261
1262    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1263    REF_PRINT_COUNT("EC_nistz256", pre);
1264    if (i > 0)
1265        return;
1266    REF_ASSERT_ISNT(i < 0);
1267
1268    OPENSSL_free(pre->precomp_storage);
1269    CRYPTO_THREAD_lock_free(pre->lock);
1270    OPENSSL_free(pre);
1271}
1272
1273
1274static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1275{
1276    /* There is a hard-coded table for the default generator. */
1277    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1278
1279    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1280        /* There is a hard-coded table for the default generator. */
1281        return 1;
1282    }
1283
1284    return HAVEPRECOMP(group, nistz256);
1285}
1286
1287#if defined(__x86_64) || defined(__x86_64__) || \
1288    defined(_M_AMD64) || defined(_M_X64) || \
1289    defined(__powerpc64__) || defined(_ARCH_PP64) || \
1290    defined(__aarch64__)
1291/*
1292 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1293 */
1294void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1295                               const BN_ULONG a[P256_LIMBS],
1296                               const BN_ULONG b[P256_LIMBS]);
1297void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1298                               const BN_ULONG a[P256_LIMBS],
1299                               BN_ULONG rep);
1300
1301static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1302                                    const BIGNUM *x, BN_CTX *ctx)
1303{
1304    /* RR = 2^512 mod ord(p256) */
1305    static const BN_ULONG RR[P256_LIMBS]  = {
1306        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1307        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1308    };
1309    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1310    static const BN_ULONG one[P256_LIMBS] = {
1311        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1312    };
1313    /*
1314     * We don't use entry 0 in the table, so we omit it and address
1315     * with -1 offset.
1316     */
1317    BN_ULONG table[15][P256_LIMBS];
1318    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1319    int i, ret = 0;
1320    enum {
1321        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1322        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1323    };
1324
1325    /*
1326     * Catch allocation failure early.
1327     */
1328    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1329        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1330        goto err;
1331    }
1332
1333    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1334        BIGNUM *tmp;
1335
1336        if ((tmp = BN_CTX_get(ctx)) == NULL
1337            || !BN_nnmod(tmp, x, group->order, ctx)) {
1338            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1339            goto err;
1340        }
1341        x = tmp;
1342    }
1343
1344    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1345        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1346        goto err;
1347    }
1348
1349    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1350#if 0
1351    /*
1352     * Original sparse-then-fixed-window algorithm, retained for reference.
1353     */
1354    for (i = 2; i < 16; i += 2) {
1355        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1356        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1357    }
1358
1359    /*
1360     * The top 128bit of the exponent are highly redudndant, so we
1361     * perform an optimized flow
1362     */
1363    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1364    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1365
1366    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1367    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1368
1369    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1370    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1371
1372    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1373    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1374
1375    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1376    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1377
1378    /*
1379     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1380     */
1381    for(i = 0; i < 32; i++) {
1382        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1383         * split into nibbles */
1384        static const unsigned char expLo[32]  = {
1385            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1386            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1387        };
1388
1389        ecp_nistz256_ord_sqr_mont(out, out, 4);
1390        /* The exponent is public, no need in constant-time access */
1391        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1392    }
1393#else
1394    /*
1395     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1396     *
1397     * Even though this code path spares 12 squarings, 4.5%, and 13
1398     * multiplications, 25%, on grand scale sign operation is not that
1399     * much faster, not more that 2%...
1400     */
1401
1402    /* pre-calculate powers */
1403    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1404
1405    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1406
1407    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1408
1409    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1410
1411    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1412
1413    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1414
1415    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1416    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1417
1418    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1419
1420    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1421
1422    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1423
1424    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1425    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1426
1427    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1428    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1429
1430    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1431    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1432
1433    /* calculations */
1434    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1435    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1436
1437    for (i = 0; i < 27; i++) {
1438        static const struct { unsigned char p, i; } chain[27] = {
1439            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1440            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1441            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1442            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1443            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1444            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1445            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1446            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1447            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1448        };
1449
1450        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1451        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1452    }
1453#endif
1454    ecp_nistz256_ord_mul_mont(out, out, one);
1455
1456    /*
1457     * Can't fail, but check return code to be consistent anyway.
1458     */
1459    if (!bn_set_words(r, out, P256_LIMBS))
1460        goto err;
1461
1462    ret = 1;
1463err:
1464    return ret;
1465}
1466#else
1467# define ecp_nistz256_inv_mod_ord NULL
1468#endif
1469
1470const EC_METHOD *EC_GFp_nistz256_method(void)
1471{
1472    static const EC_METHOD ret = {
1473        EC_FLAGS_DEFAULT_OCT,
1474        NID_X9_62_prime_field,
1475        ossl_ec_GFp_mont_group_init,
1476        ossl_ec_GFp_mont_group_finish,
1477        ossl_ec_GFp_mont_group_clear_finish,
1478        ossl_ec_GFp_mont_group_copy,
1479        ossl_ec_GFp_mont_group_set_curve,
1480        ossl_ec_GFp_simple_group_get_curve,
1481        ossl_ec_GFp_simple_group_get_degree,
1482        ossl_ec_group_simple_order_bits,
1483        ossl_ec_GFp_simple_group_check_discriminant,
1484        ossl_ec_GFp_simple_point_init,
1485        ossl_ec_GFp_simple_point_finish,
1486        ossl_ec_GFp_simple_point_clear_finish,
1487        ossl_ec_GFp_simple_point_copy,
1488        ossl_ec_GFp_simple_point_set_to_infinity,
1489        ossl_ec_GFp_simple_point_set_affine_coordinates,
1490        ecp_nistz256_get_affine,
1491        0, 0, 0,
1492        ossl_ec_GFp_simple_add,
1493        ossl_ec_GFp_simple_dbl,
1494        ossl_ec_GFp_simple_invert,
1495        ossl_ec_GFp_simple_is_at_infinity,
1496        ossl_ec_GFp_simple_is_on_curve,
1497        ossl_ec_GFp_simple_cmp,
1498        ossl_ec_GFp_simple_make_affine,
1499        ossl_ec_GFp_simple_points_make_affine,
1500        ecp_nistz256_points_mul,                    /* mul */
1501        ecp_nistz256_mult_precompute,               /* precompute_mult */
1502        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1503        ossl_ec_GFp_mont_field_mul,
1504        ossl_ec_GFp_mont_field_sqr,
1505        0,                                          /* field_div */
1506        ossl_ec_GFp_mont_field_inv,
1507        ossl_ec_GFp_mont_field_encode,
1508        ossl_ec_GFp_mont_field_decode,
1509        ossl_ec_GFp_mont_field_set_to_one,
1510        ossl_ec_key_simple_priv2oct,
1511        ossl_ec_key_simple_oct2priv,
1512        0, /* set private */
1513        ossl_ec_key_simple_generate_key,
1514        ossl_ec_key_simple_check_key,
1515        ossl_ec_key_simple_generate_public_key,
1516        0, /* keycopy */
1517        0, /* keyfinish */
1518        ossl_ecdh_simple_compute_key,
1519        ossl_ecdsa_simple_sign_setup,
1520        ossl_ecdsa_simple_sign_sig,
1521        ossl_ecdsa_simple_verify_sig,
1522        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1523        0,                                          /* blind_coordinates */
1524        0,                                          /* ladder_pre */
1525        0,                                          /* ladder_step */
1526        0                                           /* ladder_post */
1527    };
1528
1529    return &ret;
1530}
1531