1/*
2 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4 * Copyright (c) 2015, CloudFlare, Inc.
5 *
6 * Licensed under the OpenSSL license (the "License").  You may not use
7 * this file except in compliance with the License.  You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 *
11 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13 * (2) University of Haifa, Israel
14 * (3) CloudFlare, Inc.
15 *
16 * Reference:
17 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18 *                          256 Bit Primes"
19 */
20
21#include <string.h>
22
23#include "internal/cryptlib.h"
24#include "crypto/bn.h"
25#include "ec_local.h"
26#include "internal/refcount.h"
27
28#if BN_BITS2 != 64
29# define TOBN(hi,lo)    lo,hi
30#else
31# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
32#endif
33
34#if defined(__GNUC__)
35# define ALIGN32        __attribute((aligned(32)))
36#elif defined(_MSC_VER)
37# define ALIGN32        __declspec(align(32))
38#else
39# define ALIGN32
40#endif
41
42#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
43#define P256_LIMBS      (256/BN_BITS2)
44
45typedef unsigned short u16;
46
47typedef struct {
48    BN_ULONG X[P256_LIMBS];
49    BN_ULONG Y[P256_LIMBS];
50    BN_ULONG Z[P256_LIMBS];
51} P256_POINT;
52
53typedef struct {
54    BN_ULONG X[P256_LIMBS];
55    BN_ULONG Y[P256_LIMBS];
56} P256_POINT_AFFINE;
57
58typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
59
60/* structure for precomputed multiples of the generator */
61struct nistz256_pre_comp_st {
62    const EC_GROUP *group;      /* Parent EC_GROUP object */
63    size_t w;                   /* Window size */
64    /*
65     * Constant time access to the X and Y coordinates of the pre-computed,
66     * generator multiplies, in the Montgomery domain. Pre-calculated
67     * multiplies are stored in affine form.
68     */
69    PRECOMP256_ROW *precomp;
70    void *precomp_storage;
71    CRYPTO_REF_COUNT references;
72    CRYPTO_RWLOCK *lock;
73};
74
75/* Functions implemented in assembly */
76/*
77 * Most of below mentioned functions *preserve* the property of inputs
78 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
79 * inputs are fully reduced, then output is too. Note that reverse is
80 * not true, in sense that given partially reduced inputs output can be
81 * either, not unlikely reduced. And "most" in first sentence refers to
82 * the fact that given the calculations flow one can tolerate that
83 * addition, 1st function below, produces partially reduced result *if*
84 * multiplications by 2 and 3, which customarily use addition, fully
85 * reduce it. This effectively gives two options: a) addition produces
86 * fully reduced result [as long as inputs are, just like remaining
87 * functions]; b) addition is allowed to produce partially reduced
88 * result, but multiplications by 2 and 3 perform additional reduction
89 * step. Choice between the two can be platform-specific, but it was a)
90 * in all cases so far...
91 */
92/* Modular add: res = a+b mod P   */
93void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
94                      const BN_ULONG a[P256_LIMBS],
95                      const BN_ULONG b[P256_LIMBS]);
96/* Modular mul by 2: res = 2*a mod P */
97void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
98                           const BN_ULONG a[P256_LIMBS]);
99/* Modular mul by 3: res = 3*a mod P */
100void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
101                           const BN_ULONG a[P256_LIMBS]);
102
103/* Modular div by 2: res = a/2 mod P */
104void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
105                           const BN_ULONG a[P256_LIMBS]);
106/* Modular sub: res = a-b mod P   */
107void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
108                      const BN_ULONG a[P256_LIMBS],
109                      const BN_ULONG b[P256_LIMBS]);
110/* Modular neg: res = -a mod P    */
111void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
112/* Montgomery mul: res = a*b*2^-256 mod P */
113void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
114                           const BN_ULONG a[P256_LIMBS],
115                           const BN_ULONG b[P256_LIMBS]);
116/* Montgomery sqr: res = a*a*2^-256 mod P */
117void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
118                           const BN_ULONG a[P256_LIMBS]);
119/* Convert a number from Montgomery domain, by multiplying with 1 */
120void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
121                            const BN_ULONG in[P256_LIMBS]);
122/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
123void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
124                          const BN_ULONG in[P256_LIMBS]);
125/* Functions that perform constant time access to the precomputed tables */
126void ecp_nistz256_scatter_w5(P256_POINT *val,
127                             const P256_POINT *in_t, int idx);
128void ecp_nistz256_gather_w5(P256_POINT *val,
129                            const P256_POINT *in_t, int idx);
130void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
131                             const P256_POINT_AFFINE *in_t, int idx);
132void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
133                            const P256_POINT_AFFINE *in_t, int idx);
134
135/* One converted into the Montgomery domain */
136static const BN_ULONG ONE[P256_LIMBS] = {
137    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
138    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
139};
140
141static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
142
143/* Precomputed tables for the default generator */
144extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
145
146/* Recode window to a signed digit, see ecp_nistputil.c for details */
147static unsigned int _booth_recode_w5(unsigned int in)
148{
149    unsigned int s, d;
150
151    s = ~((in >> 5) - 1);
152    d = (1 << 6) - in - 1;
153    d = (d & s) | (in & ~s);
154    d = (d >> 1) + (d & 1);
155
156    return (d << 1) + (s & 1);
157}
158
159static unsigned int _booth_recode_w7(unsigned int in)
160{
161    unsigned int s, d;
162
163    s = ~((in >> 7) - 1);
164    d = (1 << 8) - in - 1;
165    d = (d & s) | (in & ~s);
166    d = (d >> 1) + (d & 1);
167
168    return (d << 1) + (s & 1);
169}
170
171static void copy_conditional(BN_ULONG dst[P256_LIMBS],
172                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
173{
174    BN_ULONG mask1 = 0-move;
175    BN_ULONG mask2 = ~mask1;
176
177    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
178    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
179    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
180    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
181    if (P256_LIMBS == 8) {
182        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
183        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
184        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
185        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
186    }
187}
188
189static BN_ULONG is_zero(BN_ULONG in)
190{
191    in |= (0 - in);
192    in = ~in;
193    in >>= BN_BITS2 - 1;
194    return in;
195}
196
197static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
198                         const BN_ULONG b[P256_LIMBS])
199{
200    BN_ULONG res;
201
202    res = a[0] ^ b[0];
203    res |= a[1] ^ b[1];
204    res |= a[2] ^ b[2];
205    res |= a[3] ^ b[3];
206    if (P256_LIMBS == 8) {
207        res |= a[4] ^ b[4];
208        res |= a[5] ^ b[5];
209        res |= a[6] ^ b[6];
210        res |= a[7] ^ b[7];
211    }
212
213    return is_zero(res);
214}
215
216static BN_ULONG is_one(const BIGNUM *z)
217{
218    BN_ULONG res = 0;
219    BN_ULONG *a = bn_get_words(z);
220
221    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
222        res = a[0] ^ ONE[0];
223        res |= a[1] ^ ONE[1];
224        res |= a[2] ^ ONE[2];
225        res |= a[3] ^ ONE[3];
226        if (P256_LIMBS == 8) {
227            res |= a[4] ^ ONE[4];
228            res |= a[5] ^ ONE[5];
229            res |= a[6] ^ ONE[6];
230            /*
231             * no check for a[7] (being zero) on 32-bit platforms,
232             * because value of "one" takes only 7 limbs.
233             */
234        }
235        res = is_zero(res);
236    }
237
238    return res;
239}
240
241/*
242 * For reference, this macro is used only when new ecp_nistz256 assembly
243 * module is being developed.  For example, configure with
244 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
245 * performing simplest arithmetic operations on 256-bit vectors. Then
246 * work on implementation of higher-level functions performing point
247 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
248 * and never define it again. (The correct macro denoting presence of
249 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
250 */
251#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
252void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
253void ecp_nistz256_point_add(P256_POINT *r,
254                            const P256_POINT *a, const P256_POINT *b);
255void ecp_nistz256_point_add_affine(P256_POINT *r,
256                                   const P256_POINT *a,
257                                   const P256_POINT_AFFINE *b);
258#else
259/* Point double: r = 2*a */
260static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
261{
262    BN_ULONG S[P256_LIMBS];
263    BN_ULONG M[P256_LIMBS];
264    BN_ULONG Zsqr[P256_LIMBS];
265    BN_ULONG tmp0[P256_LIMBS];
266
267    const BN_ULONG *in_x = a->X;
268    const BN_ULONG *in_y = a->Y;
269    const BN_ULONG *in_z = a->Z;
270
271    BN_ULONG *res_x = r->X;
272    BN_ULONG *res_y = r->Y;
273    BN_ULONG *res_z = r->Z;
274
275    ecp_nistz256_mul_by_2(S, in_y);
276
277    ecp_nistz256_sqr_mont(Zsqr, in_z);
278
279    ecp_nistz256_sqr_mont(S, S);
280
281    ecp_nistz256_mul_mont(res_z, in_z, in_y);
282    ecp_nistz256_mul_by_2(res_z, res_z);
283
284    ecp_nistz256_add(M, in_x, Zsqr);
285    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
286
287    ecp_nistz256_sqr_mont(res_y, S);
288    ecp_nistz256_div_by_2(res_y, res_y);
289
290    ecp_nistz256_mul_mont(M, M, Zsqr);
291    ecp_nistz256_mul_by_3(M, M);
292
293    ecp_nistz256_mul_mont(S, S, in_x);
294    ecp_nistz256_mul_by_2(tmp0, S);
295
296    ecp_nistz256_sqr_mont(res_x, M);
297
298    ecp_nistz256_sub(res_x, res_x, tmp0);
299    ecp_nistz256_sub(S, S, res_x);
300
301    ecp_nistz256_mul_mont(S, S, M);
302    ecp_nistz256_sub(res_y, S, res_y);
303}
304
305/* Point addition: r = a+b */
306static void ecp_nistz256_point_add(P256_POINT *r,
307                                   const P256_POINT *a, const P256_POINT *b)
308{
309    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
310    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
311    BN_ULONG Z1sqr[P256_LIMBS];
312    BN_ULONG Z2sqr[P256_LIMBS];
313    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
314    BN_ULONG Hsqr[P256_LIMBS];
315    BN_ULONG Rsqr[P256_LIMBS];
316    BN_ULONG Hcub[P256_LIMBS];
317
318    BN_ULONG res_x[P256_LIMBS];
319    BN_ULONG res_y[P256_LIMBS];
320    BN_ULONG res_z[P256_LIMBS];
321
322    BN_ULONG in1infty, in2infty;
323
324    const BN_ULONG *in1_x = a->X;
325    const BN_ULONG *in1_y = a->Y;
326    const BN_ULONG *in1_z = a->Z;
327
328    const BN_ULONG *in2_x = b->X;
329    const BN_ULONG *in2_y = b->Y;
330    const BN_ULONG *in2_z = b->Z;
331
332    /*
333     * Infinity in encoded as (,,0)
334     */
335    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
336    if (P256_LIMBS == 8)
337        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
338
339    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
340    if (P256_LIMBS == 8)
341        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
342
343    in1infty = is_zero(in1infty);
344    in2infty = is_zero(in2infty);
345
346    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
347    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
348
349    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
350    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
351
352    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
353    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
354    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
355
356    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
357    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
358    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
359
360    /*
361     * The formulae are incorrect if the points are equal so we check for
362     * this and do doubling if this happens.
363     *
364     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
365     * that are bound to the affine coordinates (xi, yi) by the following
366     * equations:
367     *     - xi = Xi / (Zi)^2
368     *     - y1 = Yi / (Zi)^3
369     *
370     * For the sake of optimization, the algorithm operates over
371     * intermediate variables U1, U2 and S1, S2 that are derived from
372     * the projective coordinates:
373     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
374     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
375     *
376     * It is easy to prove that is_equal(U1, U2) implies that the affine
377     * x-coordinates are equal, or either point is at infinity.
378     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
379     * equal, or either point is at infinity.
380     *
381     * The special case of either point being the point at infinity (Z1 or Z2
382     * is zero), is handled separately later on in this function, so we avoid
383     * jumping to point_double here in those special cases.
384     *
385     * When both points are inverse of each other, we know that the affine
386     * x-coordinates are equal, and the y-coordinates have different sign.
387     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
388     * will equal 0, thus the result is infinity, if we simply let this
389     * function continue normally.
390     *
391     * We use bitwise operations to avoid potential side-channels introduced by
392     * the short-circuiting behaviour of boolean operators.
393     */
394    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
395        /*
396         * This is obviously not constant-time but it should never happen during
397         * single point multiplication, so there is no timing leak for ECDH or
398         * ECDSA signing.
399         */
400        ecp_nistz256_point_double(r, a);
401        return;
402    }
403
404    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
405    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
406    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
407    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
408    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
409
410    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
411    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
412
413    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
414    ecp_nistz256_sub(res_x, res_x, Hcub);
415
416    ecp_nistz256_sub(res_y, U2, res_x);
417
418    ecp_nistz256_mul_mont(S2, S1, Hcub);
419    ecp_nistz256_mul_mont(res_y, R, res_y);
420    ecp_nistz256_sub(res_y, res_y, S2);
421
422    copy_conditional(res_x, in2_x, in1infty);
423    copy_conditional(res_y, in2_y, in1infty);
424    copy_conditional(res_z, in2_z, in1infty);
425
426    copy_conditional(res_x, in1_x, in2infty);
427    copy_conditional(res_y, in1_y, in2infty);
428    copy_conditional(res_z, in1_z, in2infty);
429
430    memcpy(r->X, res_x, sizeof(res_x));
431    memcpy(r->Y, res_y, sizeof(res_y));
432    memcpy(r->Z, res_z, sizeof(res_z));
433}
434
435/* Point addition when b is known to be affine: r = a+b */
436static void ecp_nistz256_point_add_affine(P256_POINT *r,
437                                          const P256_POINT *a,
438                                          const P256_POINT_AFFINE *b)
439{
440    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
441    BN_ULONG Z1sqr[P256_LIMBS];
442    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
443    BN_ULONG Hsqr[P256_LIMBS];
444    BN_ULONG Rsqr[P256_LIMBS];
445    BN_ULONG Hcub[P256_LIMBS];
446
447    BN_ULONG res_x[P256_LIMBS];
448    BN_ULONG res_y[P256_LIMBS];
449    BN_ULONG res_z[P256_LIMBS];
450
451    BN_ULONG in1infty, in2infty;
452
453    const BN_ULONG *in1_x = a->X;
454    const BN_ULONG *in1_y = a->Y;
455    const BN_ULONG *in1_z = a->Z;
456
457    const BN_ULONG *in2_x = b->X;
458    const BN_ULONG *in2_y = b->Y;
459
460    /*
461     * Infinity in encoded as (,,0)
462     */
463    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
464    if (P256_LIMBS == 8)
465        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
466
467    /*
468     * In affine representation we encode infinity as (0,0), which is
469     * not on the curve, so it is OK
470     */
471    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
472                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
473    if (P256_LIMBS == 8)
474        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
475                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
476
477    in1infty = is_zero(in1infty);
478    in2infty = is_zero(in2infty);
479
480    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
481
482    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
483    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
484
485    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
486
487    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
488
489    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
490    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
491
492    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
493    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
494    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
495
496    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
497    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
498
499    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
500    ecp_nistz256_sub(res_x, res_x, Hcub);
501    ecp_nistz256_sub(H, U2, res_x);
502
503    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
504    ecp_nistz256_mul_mont(H, H, R);
505    ecp_nistz256_sub(res_y, H, S2);
506
507    copy_conditional(res_x, in2_x, in1infty);
508    copy_conditional(res_x, in1_x, in2infty);
509
510    copy_conditional(res_y, in2_y, in1infty);
511    copy_conditional(res_y, in1_y, in2infty);
512
513    copy_conditional(res_z, ONE, in1infty);
514    copy_conditional(res_z, in1_z, in2infty);
515
516    memcpy(r->X, res_x, sizeof(res_x));
517    memcpy(r->Y, res_y, sizeof(res_y));
518    memcpy(r->Z, res_z, sizeof(res_z));
519}
520#endif
521
522/* r = in^-1 mod p */
523static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
524                                     const BN_ULONG in[P256_LIMBS])
525{
526    /*
527     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
528     * ffffffff ffffffff We use FLT and used poly-2 as exponent
529     */
530    BN_ULONG p2[P256_LIMBS];
531    BN_ULONG p4[P256_LIMBS];
532    BN_ULONG p8[P256_LIMBS];
533    BN_ULONG p16[P256_LIMBS];
534    BN_ULONG p32[P256_LIMBS];
535    BN_ULONG res[P256_LIMBS];
536    int i;
537
538    ecp_nistz256_sqr_mont(res, in);
539    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
540
541    ecp_nistz256_sqr_mont(res, p2);
542    ecp_nistz256_sqr_mont(res, res);
543    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
544
545    ecp_nistz256_sqr_mont(res, p4);
546    ecp_nistz256_sqr_mont(res, res);
547    ecp_nistz256_sqr_mont(res, res);
548    ecp_nistz256_sqr_mont(res, res);
549    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
550
551    ecp_nistz256_sqr_mont(res, p8);
552    for (i = 0; i < 7; i++)
553        ecp_nistz256_sqr_mont(res, res);
554    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
555
556    ecp_nistz256_sqr_mont(res, p16);
557    for (i = 0; i < 15; i++)
558        ecp_nistz256_sqr_mont(res, res);
559    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
560
561    ecp_nistz256_sqr_mont(res, p32);
562    for (i = 0; i < 31; i++)
563        ecp_nistz256_sqr_mont(res, res);
564    ecp_nistz256_mul_mont(res, res, in);
565
566    for (i = 0; i < 32 * 4; i++)
567        ecp_nistz256_sqr_mont(res, res);
568    ecp_nistz256_mul_mont(res, res, p32);
569
570    for (i = 0; i < 32; i++)
571        ecp_nistz256_sqr_mont(res, res);
572    ecp_nistz256_mul_mont(res, res, p32);
573
574    for (i = 0; i < 16; i++)
575        ecp_nistz256_sqr_mont(res, res);
576    ecp_nistz256_mul_mont(res, res, p16);
577
578    for (i = 0; i < 8; i++)
579        ecp_nistz256_sqr_mont(res, res);
580    ecp_nistz256_mul_mont(res, res, p8);
581
582    ecp_nistz256_sqr_mont(res, res);
583    ecp_nistz256_sqr_mont(res, res);
584    ecp_nistz256_sqr_mont(res, res);
585    ecp_nistz256_sqr_mont(res, res);
586    ecp_nistz256_mul_mont(res, res, p4);
587
588    ecp_nistz256_sqr_mont(res, res);
589    ecp_nistz256_sqr_mont(res, res);
590    ecp_nistz256_mul_mont(res, res, p2);
591
592    ecp_nistz256_sqr_mont(res, res);
593    ecp_nistz256_sqr_mont(res, res);
594    ecp_nistz256_mul_mont(res, res, in);
595
596    memcpy(r, res, sizeof(res));
597}
598
599/*
600 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
601 * returns one if it fits. Otherwise it returns zero.
602 */
603__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
604                                                    const BIGNUM *in)
605{
606    return bn_copy_words(out, in, P256_LIMBS);
607}
608
609/* r = sum(scalar[i]*point[i]) */
610__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
611                                            P256_POINT *r,
612                                            const BIGNUM **scalar,
613                                            const EC_POINT **point,
614                                            size_t num, BN_CTX *ctx)
615{
616    size_t i;
617    int j, ret = 0;
618    unsigned int idx;
619    unsigned char (*p_str)[33] = NULL;
620    const unsigned int window_size = 5;
621    const unsigned int mask = (1 << (window_size + 1)) - 1;
622    unsigned int wvalue;
623    P256_POINT *temp;           /* place for 5 temporary points */
624    const BIGNUM **scalars = NULL;
625    P256_POINT (*table)[16] = NULL;
626    void *table_storage = NULL;
627
628    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
629        || (table_storage =
630            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
631        || (p_str =
632            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
633        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
634        ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
635        goto err;
636    }
637
638    table = (void *)ALIGNPTR(table_storage, 64);
639    temp = (P256_POINT *)(table + num);
640
641    for (i = 0; i < num; i++) {
642        P256_POINT *row = table[i];
643
644        /* This is an unusual input, we don't guarantee constant-timeness. */
645        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
646            BIGNUM *mod;
647
648            if ((mod = BN_CTX_get(ctx)) == NULL)
649                goto err;
650            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
651                ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
652                goto err;
653            }
654            scalars[i] = mod;
655        } else
656            scalars[i] = scalar[i];
657
658        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
659            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
660
661            p_str[i][j + 0] = (unsigned char)d;
662            p_str[i][j + 1] = (unsigned char)(d >> 8);
663            p_str[i][j + 2] = (unsigned char)(d >> 16);
664            p_str[i][j + 3] = (unsigned char)(d >>= 24);
665            if (BN_BYTES == 8) {
666                d >>= 8;
667                p_str[i][j + 4] = (unsigned char)d;
668                p_str[i][j + 5] = (unsigned char)(d >> 8);
669                p_str[i][j + 6] = (unsigned char)(d >> 16);
670                p_str[i][j + 7] = (unsigned char)(d >> 24);
671            }
672        }
673        for (; j < 33; j++)
674            p_str[i][j] = 0;
675
676        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
677            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
678            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
679            ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
680                  EC_R_COORDINATES_OUT_OF_RANGE);
681            goto err;
682        }
683
684        /*
685         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
686         * is not stored. All other values are actually stored with an offset
687         * of -1 in table.
688         */
689
690        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
691        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
692        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
693        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
694        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
695        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
696        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
697        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
698        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
699        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
700        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
701        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
702        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
703        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
704        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
705        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
706        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
707        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
708        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
709        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
710        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
711        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
712        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
713        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
714        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
715        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
716        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
717        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
718        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
719        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
720        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
721    }
722
723    idx = 255;
724
725    wvalue = p_str[0][(idx - 1) / 8];
726    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
727
728    /*
729     * We gather to temp[0], because we know it's position relative
730     * to table
731     */
732    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
733    memcpy(r, &temp[0], sizeof(temp[0]));
734
735    while (idx >= 5) {
736        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
737            unsigned int off = (idx - 1) / 8;
738
739            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
740            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
741
742            wvalue = _booth_recode_w5(wvalue);
743
744            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
745
746            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
747            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
748
749            ecp_nistz256_point_add(r, r, &temp[0]);
750        }
751
752        idx -= window_size;
753
754        ecp_nistz256_point_double(r, r);
755        ecp_nistz256_point_double(r, r);
756        ecp_nistz256_point_double(r, r);
757        ecp_nistz256_point_double(r, r);
758        ecp_nistz256_point_double(r, r);
759    }
760
761    /* Final window */
762    for (i = 0; i < num; i++) {
763        wvalue = p_str[i][0];
764        wvalue = (wvalue << 1) & mask;
765
766        wvalue = _booth_recode_w5(wvalue);
767
768        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
769
770        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
771        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
772
773        ecp_nistz256_point_add(r, r, &temp[0]);
774    }
775
776    ret = 1;
777 err:
778    OPENSSL_free(table_storage);
779    OPENSSL_free(p_str);
780    OPENSSL_free(scalars);
781    return ret;
782}
783
784/* Coordinates of G, for which we have precomputed tables */
785static const BN_ULONG def_xG[P256_LIMBS] = {
786    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
787    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
788};
789
790static const BN_ULONG def_yG[P256_LIMBS] = {
791    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
792    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
793};
794
795/*
796 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
797 * generator.
798 */
799static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
800{
801    return (bn_get_top(generator->X) == P256_LIMBS) &&
802        (bn_get_top(generator->Y) == P256_LIMBS) &&
803        is_equal(bn_get_words(generator->X), def_xG) &&
804        is_equal(bn_get_words(generator->Y), def_yG) &&
805        is_one(generator->Z);
806}
807
808__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
809{
810    /*
811     * We precompute a table for a Booth encoded exponent (wNAF) based
812     * computation. Each table holds 64 values for safe access, with an
813     * implicit value of infinity at index zero. We use window of size 7, and
814     * therefore require ceil(256/7) = 37 tables.
815     */
816    const BIGNUM *order;
817    EC_POINT *P = NULL, *T = NULL;
818    const EC_POINT *generator;
819    NISTZ256_PRE_COMP *pre_comp;
820    BN_CTX *new_ctx = NULL;
821    int i, j, k, ret = 0;
822    size_t w;
823
824    PRECOMP256_ROW *preComputedTable = NULL;
825    unsigned char *precomp_storage = NULL;
826
827    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
828    EC_pre_comp_free(group);
829    generator = EC_GROUP_get0_generator(group);
830    if (generator == NULL) {
831        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
832        return 0;
833    }
834
835    if (ecp_nistz256_is_affine_G(generator)) {
836        /*
837         * No need to calculate tables for the standard generator because we
838         * have them statically.
839         */
840        return 1;
841    }
842
843    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
844        return 0;
845
846    if (ctx == NULL) {
847        ctx = new_ctx = BN_CTX_new();
848        if (ctx == NULL)
849            goto err;
850    }
851
852    BN_CTX_start(ctx);
853
854    order = EC_GROUP_get0_order(group);
855    if (order == NULL)
856        goto err;
857
858    if (BN_is_zero(order)) {
859        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
860        goto err;
861    }
862
863    w = 7;
864
865    if ((precomp_storage =
866         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
867        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
868        goto err;
869    }
870
871    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
872
873    P = EC_POINT_new(group);
874    T = EC_POINT_new(group);
875    if (P == NULL || T == NULL)
876        goto err;
877
878    /*
879     * The zero entry is implicitly infinity, and we skip it, storing other
880     * values with -1 offset.
881     */
882    if (!EC_POINT_copy(T, generator))
883        goto err;
884
885    for (k = 0; k < 64; k++) {
886        if (!EC_POINT_copy(P, T))
887            goto err;
888        for (j = 0; j < 37; j++) {
889            P256_POINT_AFFINE temp;
890            /*
891             * It would be faster to use EC_POINTs_make_affine and
892             * make multiple points affine at the same time.
893             */
894            if (!EC_POINT_make_affine(group, P, ctx))
895                goto err;
896            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
897                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
898                ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
899                      EC_R_COORDINATES_OUT_OF_RANGE);
900                goto err;
901            }
902            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
903            for (i = 0; i < 7; i++) {
904                if (!EC_POINT_dbl(group, P, P, ctx))
905                    goto err;
906            }
907        }
908        if (!EC_POINT_add(group, T, T, generator, ctx))
909            goto err;
910    }
911
912    pre_comp->group = group;
913    pre_comp->w = w;
914    pre_comp->precomp = preComputedTable;
915    pre_comp->precomp_storage = precomp_storage;
916    precomp_storage = NULL;
917    SETPRECOMP(group, nistz256, pre_comp);
918    pre_comp = NULL;
919    ret = 1;
920
921 err:
922    BN_CTX_end(ctx);
923    BN_CTX_free(new_ctx);
924
925    EC_nistz256_pre_comp_free(pre_comp);
926    OPENSSL_free(precomp_storage);
927    EC_POINT_free(P);
928    EC_POINT_free(T);
929    return ret;
930}
931
932__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
933                                               const P256_POINT_AFFINE *in,
934                                               BN_CTX *ctx)
935{
936    int ret = 0;
937
938    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
939        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
940        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
941        out->Z_is_one = 1;
942
943    return ret;
944}
945
946/* r = scalar*G + sum(scalars[i]*points[i]) */
947__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
948                                          EC_POINT *r,
949                                          const BIGNUM *scalar,
950                                          size_t num,
951                                          const EC_POINT *points[],
952                                          const BIGNUM *scalars[], BN_CTX *ctx)
953{
954    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
955    unsigned char p_str[33] = { 0 };
956    const PRECOMP256_ROW *preComputedTable = NULL;
957    const NISTZ256_PRE_COMP *pre_comp = NULL;
958    const EC_POINT *generator = NULL;
959    const BIGNUM **new_scalars = NULL;
960    const EC_POINT **new_points = NULL;
961    unsigned int idx = 0;
962    const unsigned int window_size = 7;
963    const unsigned int mask = (1 << (window_size + 1)) - 1;
964    unsigned int wvalue;
965    ALIGN32 union {
966        P256_POINT p;
967        P256_POINT_AFFINE a;
968    } t, p;
969    BIGNUM *tmp_scalar;
970
971    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
972        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
973        return 0;
974    }
975
976    memset(&p, 0, sizeof(p));
977    BN_CTX_start(ctx);
978
979    if (scalar) {
980        generator = EC_GROUP_get0_generator(group);
981        if (generator == NULL) {
982            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
983            goto err;
984        }
985
986        /* look if we can use precomputed multiples of generator */
987        pre_comp = group->pre_comp.nistz256;
988
989        if (pre_comp) {
990            /*
991             * If there is a precomputed table for the generator, check that
992             * it was generated with the same generator.
993             */
994            EC_POINT *pre_comp_generator = EC_POINT_new(group);
995            if (pre_comp_generator == NULL)
996                goto err;
997
998            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
999            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1000                                              group, &p.a, ctx)) {
1001                EC_POINT_free(pre_comp_generator);
1002                goto err;
1003            }
1004
1005            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1006                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1007
1008            EC_POINT_free(pre_comp_generator);
1009        }
1010
1011        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1012            /*
1013             * If there is no precomputed data, but the generator is the
1014             * default, a hardcoded table of precomputed data is used. This
1015             * is because applications, such as Apache, do not use
1016             * EC_KEY_precompute_mult.
1017             */
1018            preComputedTable = ecp_nistz256_precomputed;
1019        }
1020
1021        if (preComputedTable) {
1022            BN_ULONG infty;
1023
1024            if ((BN_num_bits(scalar) > 256)
1025                || BN_is_negative(scalar)) {
1026                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1027                    goto err;
1028
1029                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1030                    ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
1031                    goto err;
1032                }
1033                scalar = tmp_scalar;
1034            }
1035
1036            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1037                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1038
1039                p_str[i + 0] = (unsigned char)d;
1040                p_str[i + 1] = (unsigned char)(d >> 8);
1041                p_str[i + 2] = (unsigned char)(d >> 16);
1042                p_str[i + 3] = (unsigned char)(d >>= 24);
1043                if (BN_BYTES == 8) {
1044                    d >>= 8;
1045                    p_str[i + 4] = (unsigned char)d;
1046                    p_str[i + 5] = (unsigned char)(d >> 8);
1047                    p_str[i + 6] = (unsigned char)(d >> 16);
1048                    p_str[i + 7] = (unsigned char)(d >> 24);
1049                }
1050            }
1051
1052            for (; i < 33; i++)
1053                p_str[i] = 0;
1054
1055            /* First window */
1056            wvalue = (p_str[0] << 1) & mask;
1057            idx += window_size;
1058
1059            wvalue = _booth_recode_w7(wvalue);
1060
1061            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1062                                   wvalue >> 1);
1063
1064            ecp_nistz256_neg(p.p.Z, p.p.Y);
1065            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1066
1067            /*
1068             * Since affine infinity is encoded as (0,0) and
1069             * Jacobian is (,,0), we need to harmonize them
1070             * by assigning "one" or zero to Z.
1071             */
1072            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1073                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1074            if (P256_LIMBS == 8)
1075                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1076                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1077
1078            infty = 0 - is_zero(infty);
1079            infty = ~infty;
1080
1081            p.p.Z[0] = ONE[0] & infty;
1082            p.p.Z[1] = ONE[1] & infty;
1083            p.p.Z[2] = ONE[2] & infty;
1084            p.p.Z[3] = ONE[3] & infty;
1085            if (P256_LIMBS == 8) {
1086                p.p.Z[4] = ONE[4] & infty;
1087                p.p.Z[5] = ONE[5] & infty;
1088                p.p.Z[6] = ONE[6] & infty;
1089                p.p.Z[7] = ONE[7] & infty;
1090            }
1091
1092            for (i = 1; i < 37; i++) {
1093                unsigned int off = (idx - 1) / 8;
1094                wvalue = p_str[off] | p_str[off + 1] << 8;
1095                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1096                idx += window_size;
1097
1098                wvalue = _booth_recode_w7(wvalue);
1099
1100                ecp_nistz256_gather_w7(&t.a,
1101                                       preComputedTable[i], wvalue >> 1);
1102
1103                ecp_nistz256_neg(t.p.Z, t.a.Y);
1104                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1105
1106                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1107            }
1108        } else {
1109            p_is_infinity = 1;
1110            no_precomp_for_generator = 1;
1111        }
1112    } else
1113        p_is_infinity = 1;
1114
1115    if (no_precomp_for_generator) {
1116        /*
1117         * Without a precomputed table for the generator, it has to be
1118         * handled like a normal point.
1119         */
1120        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1121        if (new_scalars == NULL) {
1122            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1123            goto err;
1124        }
1125
1126        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1127        if (new_points == NULL) {
1128            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1129            goto err;
1130        }
1131
1132        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1133        new_scalars[num] = scalar;
1134        memcpy(new_points, points, num * sizeof(EC_POINT *));
1135        new_points[num] = generator;
1136
1137        scalars = new_scalars;
1138        points = new_points;
1139        num++;
1140    }
1141
1142    if (num) {
1143        P256_POINT *out = &t.p;
1144        if (p_is_infinity)
1145            out = &p.p;
1146
1147        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1148            goto err;
1149
1150        if (!p_is_infinity)
1151            ecp_nistz256_point_add(&p.p, &p.p, out);
1152    }
1153
1154    /* Not constant-time, but we're only operating on the public output. */
1155    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1156        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1157        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1158        goto err;
1159    }
1160    r->Z_is_one = is_one(r->Z) & 1;
1161
1162    ret = 1;
1163
1164err:
1165    BN_CTX_end(ctx);
1166    OPENSSL_free(new_points);
1167    OPENSSL_free(new_scalars);
1168    return ret;
1169}
1170
1171__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1172                                          const EC_POINT *point,
1173                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1174{
1175    BN_ULONG z_inv2[P256_LIMBS];
1176    BN_ULONG z_inv3[P256_LIMBS];
1177    BN_ULONG x_aff[P256_LIMBS];
1178    BN_ULONG y_aff[P256_LIMBS];
1179    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1180    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1181
1182    if (EC_POINT_is_at_infinity(group, point)) {
1183        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
1184        return 0;
1185    }
1186
1187    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1188        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1189        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1190        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
1191        return 0;
1192    }
1193
1194    ecp_nistz256_mod_inverse(z_inv3, point_z);
1195    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1196    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1197
1198    if (x != NULL) {
1199        ecp_nistz256_from_mont(x_ret, x_aff);
1200        if (!bn_set_words(x, x_ret, P256_LIMBS))
1201            return 0;
1202    }
1203
1204    if (y != NULL) {
1205        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1206        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1207        ecp_nistz256_from_mont(y_ret, y_aff);
1208        if (!bn_set_words(y, y_ret, P256_LIMBS))
1209            return 0;
1210    }
1211
1212    return 1;
1213}
1214
1215static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1216{
1217    NISTZ256_PRE_COMP *ret = NULL;
1218
1219    if (!group)
1220        return NULL;
1221
1222    ret = OPENSSL_zalloc(sizeof(*ret));
1223
1224    if (ret == NULL) {
1225        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1226        return ret;
1227    }
1228
1229    ret->group = group;
1230    ret->w = 6;                 /* default */
1231    ret->references = 1;
1232
1233    ret->lock = CRYPTO_THREAD_lock_new();
1234    if (ret->lock == NULL) {
1235        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1236        OPENSSL_free(ret);
1237        return NULL;
1238    }
1239    return ret;
1240}
1241
1242NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1243{
1244    int i;
1245    if (p != NULL)
1246        CRYPTO_UP_REF(&p->references, &i, p->lock);
1247    return p;
1248}
1249
1250void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1251{
1252    int i;
1253
1254    if (pre == NULL)
1255        return;
1256
1257    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1258    REF_PRINT_COUNT("EC_nistz256", x);
1259    if (i > 0)
1260        return;
1261    REF_ASSERT_ISNT(i < 0);
1262
1263    OPENSSL_free(pre->precomp_storage);
1264    CRYPTO_THREAD_lock_free(pre->lock);
1265    OPENSSL_free(pre);
1266}
1267
1268
1269static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1270{
1271    /* There is a hard-coded table for the default generator. */
1272    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1273
1274    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1275        /* There is a hard-coded table for the default generator. */
1276        return 1;
1277    }
1278
1279    return HAVEPRECOMP(group, nistz256);
1280}
1281
1282#if defined(__x86_64) || defined(__x86_64__) || \
1283    defined(_M_AMD64) || defined(_M_X64) || \
1284    defined(__powerpc64__) || defined(_ARCH_PP64) || \
1285    defined(__aarch64__)
1286/*
1287 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1288 */
1289void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1290                               const BN_ULONG a[P256_LIMBS],
1291                               const BN_ULONG b[P256_LIMBS]);
1292void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1293                               const BN_ULONG a[P256_LIMBS],
1294                               int rep);
1295
1296static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1297                                    const BIGNUM *x, BN_CTX *ctx)
1298{
1299    /* RR = 2^512 mod ord(p256) */
1300    static const BN_ULONG RR[P256_LIMBS]  = {
1301        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1302        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1303    };
1304    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1305    static const BN_ULONG one[P256_LIMBS] = {
1306        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1307    };
1308    /*
1309     * We don't use entry 0 in the table, so we omit it and address
1310     * with -1 offset.
1311     */
1312    BN_ULONG table[15][P256_LIMBS];
1313    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1314    int i, ret = 0;
1315    enum {
1316        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1317        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1318    };
1319
1320    /*
1321     * Catch allocation failure early.
1322     */
1323    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1324        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1325        goto err;
1326    }
1327
1328    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1329        BIGNUM *tmp;
1330
1331        if ((tmp = BN_CTX_get(ctx)) == NULL
1332            || !BN_nnmod(tmp, x, group->order, ctx)) {
1333            ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1334            goto err;
1335        }
1336        x = tmp;
1337    }
1338
1339    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1340        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
1341        goto err;
1342    }
1343
1344    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1345#if 0
1346    /*
1347     * Original sparse-then-fixed-window algorithm, retained for reference.
1348     */
1349    for (i = 2; i < 16; i += 2) {
1350        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1351        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1352    }
1353
1354    /*
1355     * The top 128bit of the exponent are highly redudndant, so we
1356     * perform an optimized flow
1357     */
1358    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1359    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1360
1361    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1362    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1363
1364    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1365    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1366
1367    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1368    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1369
1370    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1371    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1372
1373    /*
1374     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1375     */
1376    for(i = 0; i < 32; i++) {
1377        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1378         * split into nibbles */
1379        static const unsigned char expLo[32]  = {
1380            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1381            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1382        };
1383
1384        ecp_nistz256_ord_sqr_mont(out, out, 4);
1385        /* The exponent is public, no need in constant-time access */
1386        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1387    }
1388#else
1389    /*
1390     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1391     *
1392     * Even though this code path spares 12 squarings, 4.5%, and 13
1393     * multiplications, 25%, on grand scale sign operation is not that
1394     * much faster, not more that 2%...
1395     */
1396
1397    /* pre-calculate powers */
1398    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1399
1400    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1401
1402    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1403
1404    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1405
1406    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1407
1408    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1409
1410    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1411    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1412
1413    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1414
1415    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1416
1417    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1418
1419    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1420    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1421
1422    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1423    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1424
1425    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1426    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1427
1428    /* calculations */
1429    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1430    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1431
1432    for (i = 0; i < 27; i++) {
1433        static const struct { unsigned char p, i; } chain[27] = {
1434            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1435            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1436            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1437            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1438            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1439            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1440            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1441            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1442            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1443        };
1444
1445        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1446        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1447    }
1448#endif
1449    ecp_nistz256_ord_mul_mont(out, out, one);
1450
1451    /*
1452     * Can't fail, but check return code to be consistent anyway.
1453     */
1454    if (!bn_set_words(r, out, P256_LIMBS))
1455        goto err;
1456
1457    ret = 1;
1458err:
1459    return ret;
1460}
1461#else
1462# define ecp_nistz256_inv_mod_ord NULL
1463#endif
1464
1465const EC_METHOD *EC_GFp_nistz256_method(void)
1466{
1467    static const EC_METHOD ret = {
1468        EC_FLAGS_DEFAULT_OCT,
1469        NID_X9_62_prime_field,
1470        ec_GFp_mont_group_init,
1471        ec_GFp_mont_group_finish,
1472        ec_GFp_mont_group_clear_finish,
1473        ec_GFp_mont_group_copy,
1474        ec_GFp_mont_group_set_curve,
1475        ec_GFp_simple_group_get_curve,
1476        ec_GFp_simple_group_get_degree,
1477        ec_group_simple_order_bits,
1478        ec_GFp_simple_group_check_discriminant,
1479        ec_GFp_simple_point_init,
1480        ec_GFp_simple_point_finish,
1481        ec_GFp_simple_point_clear_finish,
1482        ec_GFp_simple_point_copy,
1483        ec_GFp_simple_point_set_to_infinity,
1484        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1485        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1486        ec_GFp_simple_point_set_affine_coordinates,
1487        ecp_nistz256_get_affine,
1488        0, 0, 0,
1489        ec_GFp_simple_add,
1490        ec_GFp_simple_dbl,
1491        ec_GFp_simple_invert,
1492        ec_GFp_simple_is_at_infinity,
1493        ec_GFp_simple_is_on_curve,
1494        ec_GFp_simple_cmp,
1495        ec_GFp_simple_make_affine,
1496        ec_GFp_simple_points_make_affine,
1497        ecp_nistz256_points_mul,                    /* mul */
1498        ecp_nistz256_mult_precompute,               /* precompute_mult */
1499        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1500        ec_GFp_mont_field_mul,
1501        ec_GFp_mont_field_sqr,
1502        0,                                          /* field_div */
1503        ec_GFp_mont_field_inv,
1504        ec_GFp_mont_field_encode,
1505        ec_GFp_mont_field_decode,
1506        ec_GFp_mont_field_set_to_one,
1507        ec_key_simple_priv2oct,
1508        ec_key_simple_oct2priv,
1509        0, /* set private */
1510        ec_key_simple_generate_key,
1511        ec_key_simple_check_key,
1512        ec_key_simple_generate_public_key,
1513        0, /* keycopy */
1514        0, /* keyfinish */
1515        ecdh_simple_compute_key,
1516        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1517        0,                                          /* blind_coordinates */
1518        0,                                          /* ladder_pre */
1519        0,                                          /* ladder_step */
1520        0                                           /* ladder_post */
1521    };
1522
1523    return &ret;
1524}
1525