radixtree.c revision 1.16
1/*	$NetBSD: radixtree.c,v 1.16 2011/10/25 14:11:27 yamt Exp $	*/
2
3/*-
4 * Copyright (c)2011 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * radix tree
31 *
32 * it's designed to work efficiently with dense index distribution.
33 * the memory consumption (number of necessary intermediate nodes)
34 * heavily depends on index distribution.  basically, more dense index
35 * distribution consumes less nodes per item.
36 * approximately,
37 * the best case: about RADIX_TREE_PTR_PER_NODE items per node.
38 * the worst case: RADIX_TREE_MAX_HEIGHT nodes per item.
39 */
40
41#include <sys/cdefs.h>
42
43#if defined(_KERNEL) || defined(_STANDALONE)
44__KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.16 2011/10/25 14:11:27 yamt Exp $");
45#include <sys/param.h>
46#include <sys/errno.h>
47#include <sys/pool.h>
48#include <sys/radixtree.h>
49#include <lib/libkern/libkern.h>
50#if defined(_STANDALONE)
51#include <lib/libsa/stand.h>
52#endif /* defined(_STANDALONE) */
53#else /* defined(_KERNEL) || defined(_STANDALONE) */
54__RCSID("$NetBSD: radixtree.c,v 1.16 2011/10/25 14:11:27 yamt Exp $");
55#include <assert.h>
56#include <errno.h>
57#include <stdbool.h>
58#include <stdlib.h>
59#include <string.h>
60#if 1
61#define KASSERT assert
62#else
63#define KASSERT(a)	/* nothing */
64#endif
65#endif /* defined(_KERNEL) || defined(_STANDALONE) */
66
67#include <sys/radixtree.h>
68
69#define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
70#define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
71#define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
72#define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
73__CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
74
75__CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
76#define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
77
78static inline void *
79entry_ptr(void *p)
80{
81
82	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
83}
84
85static inline unsigned int
86entry_tagmask(void *p)
87{
88
89	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
90}
91
92static inline void *
93entry_compose(void *p, unsigned int tagmask)
94{
95
96	return (void *)((uintptr_t)p | tagmask);
97}
98
99static inline bool
100entry_match_p(void *p, unsigned int tagmask)
101{
102
103	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
104	if (p == NULL) {
105		return false;
106	}
107	if (tagmask == 0) {
108		return true;
109	}
110	return (entry_tagmask(p) & tagmask) != 0;
111}
112
113static inline unsigned int
114tagid_to_mask(radix_tree_tagid_t id)
115{
116
117	KASSERT(id >= 0);
118	KASSERT(id < RADIX_TREE_TAG_ID_MAX);
119	return 1U << id;
120}
121
122/*
123 * radix_tree_node: an intermediate node
124 *
125 * we don't care the type of leaf nodes.  they are just void *.
126 */
127
128struct radix_tree_node {
129	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
130	unsigned int n_nptrs;	/* # of non-NULL pointers in n_ptrs */
131};
132
133/*
134 * any_children_tagmask:
135 *
136 * return OR'ed tagmask of the given node's children.
137 */
138
139static unsigned int
140any_children_tagmask(const struct radix_tree_node *n)
141{
142	unsigned int mask;
143	int i;
144
145	mask = 0;
146	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
147		mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
148	}
149	return mask & RADIX_TREE_TAG_MASK;
150}
151
152/*
153 * p_refs[0].pptr == &t->t_root
154 *	:
155 * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
156 *	:
157 *	:
158 * p_refs[t->t_height].pptr == &leaf_pointer
159 */
160
161struct radix_tree_path {
162	struct radix_tree_node_ref {
163		void **pptr;
164	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
165	/*
166	 * p_lastidx is either the index of the last valid element of p_refs[]
167	 * or RADIX_TREE_INVALID_HEIGHT.
168	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
169	 * that the height of the tree is not enough to cover the given index.
170	 */
171	unsigned int p_lastidx;
172};
173
174static inline void **
175path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
176    unsigned int height)
177{
178
179	KASSERT(height <= t->t_height);
180	return p->p_refs[height].pptr;
181}
182
183static inline struct radix_tree_node *
184path_node(const struct radix_tree * t, const struct radix_tree_path *p,
185    unsigned int height)
186{
187
188	KASSERT(height <= t->t_height);
189	return entry_ptr(*path_pptr(t, p, height));
190}
191
192/*
193 * radix_tree_init_tree:
194 *
195 * initialize a tree.
196 */
197
198void
199radix_tree_init_tree(struct radix_tree *t)
200{
201
202	t->t_height = 0;
203	t->t_root = NULL;
204}
205
206/*
207 * radix_tree_init_tree:
208 *
209 * clean up a tree.
210 */
211
212void
213radix_tree_fini_tree(struct radix_tree *t)
214{
215
216	KASSERT(t->t_root == NULL);
217	KASSERT(t->t_height == 0);
218}
219
220bool
221radix_tree_empty_tree_p(struct radix_tree *t)
222{
223
224	return t->t_root == NULL;
225}
226
227bool
228radix_tree_empty_tagged_tree_p(struct radix_tree *t, radix_tree_tagid_t tagid)
229{
230	const unsigned int tagmask = tagid_to_mask(tagid);
231
232	return (entry_tagmask(t->t_root) & tagmask) == 0;
233}
234
235static void
236radix_tree_node_init(struct radix_tree_node *n)
237{
238
239	memset(n, 0, sizeof(*n));
240}
241
242#if defined(_KERNEL)
243pool_cache_t radix_tree_node_cache __read_mostly;
244
245static int
246radix_tree_node_ctor(void *dummy, void *item, int flags)
247{
248	struct radix_tree_node *n = item;
249
250	KASSERT(dummy == NULL);
251	radix_tree_node_init(n);
252	return 0;
253}
254
255/*
256 * radix_tree_init:
257 *
258 * initialize the subsystem.
259 */
260
261void
262radix_tree_init(void)
263{
264
265	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
266	    0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
267	    NULL, NULL);
268	KASSERT(radix_tree_node_cache != NULL);
269}
270#endif /* defined(_KERNEL) */
271
272static bool __unused
273radix_tree_node_clean_p(const struct radix_tree_node *n)
274{
275	unsigned int i;
276
277	if (n->n_nptrs != 0) {
278		return false;
279	}
280	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
281		if (n->n_ptrs[i] != NULL) {
282			return false;
283		}
284	}
285	return true;
286}
287
288static struct radix_tree_node *
289radix_tree_alloc_node(void)
290{
291	struct radix_tree_node *n;
292
293#if defined(_KERNEL)
294	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
295#else /* defined(_KERNEL) */
296#if defined(_STANDALONE)
297	n = alloc(sizeof(*n));
298#else /* defined(_STANDALONE) */
299	n = malloc(sizeof(*n));
300#endif /* defined(_STANDALONE) */
301	if (n != NULL) {
302		radix_tree_node_init(n);
303	}
304#endif /* defined(_KERNEL) */
305	KASSERT(n == NULL || radix_tree_node_clean_p(n));
306	return n;
307}
308
309static void
310radix_tree_free_node(struct radix_tree_node *n)
311{
312
313	KASSERT(radix_tree_node_clean_p(n));
314#if defined(_KERNEL)
315	pool_cache_put(radix_tree_node_cache, n);
316#elif defined(_STANDALONE)
317	dealloc(n, sizeof(*n));
318#else
319	free(n);
320#endif
321}
322
323static int
324radix_tree_grow(struct radix_tree *t, unsigned int newheight)
325{
326	const unsigned int tagmask = entry_tagmask(t->t_root);
327
328	KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
329	if (t->t_root == NULL) {
330		t->t_height = newheight;
331		return 0;
332	}
333	while (t->t_height < newheight) {
334		struct radix_tree_node *n;
335
336		n = radix_tree_alloc_node();
337		if (n == NULL) {
338			/*
339			 * don't bother to revert our changes.
340			 * the caller will likely retry.
341			 */
342			return ENOMEM;
343		}
344		n->n_nptrs = 1;
345		n->n_ptrs[0] = t->t_root;
346		t->t_root = entry_compose(n, tagmask);
347		t->t_height++;
348	}
349	return 0;
350}
351
352/*
353 * radix_tree_lookup_ptr:
354 *
355 * an internal helper function used for various exported functions.
356 *
357 * return the pointer to store the node for the given index.
358 *
359 * if alloc is true, try to allocate the storage.  (note for _KERNEL:
360 * in that case, this function can block.)  if the allocation failed or
361 * alloc is false, return NULL.
362 *
363 * if path is not NULL, fill it for the caller's investigation.
364 *
365 * if tagmask is not zero, search only for nodes with the tag set.
366 * note that, however, this function doesn't check the tagmask for the leaf
367 * pointer.  it's a caller's responsibility to investigate the value which
368 * is pointed by the returned pointer if necessary.
369 *
370 * while this function is a bit large, as it's called with some constant
371 * arguments, inlining might have benefits.  anyway, a compiler will decide.
372 */
373
374static inline void **
375radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
376    struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
377{
378	struct radix_tree_node *n;
379	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
380	int shift;
381	void **vpp;
382	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
383	struct radix_tree_node_ref *refs = NULL;
384
385	/*
386	 * check unsupported combinations
387	 */
388	KASSERT(tagmask == 0 || !alloc);
389	KASSERT(path == NULL || !alloc);
390	vpp = &t->t_root;
391	if (path != NULL) {
392		refs = path->p_refs;
393		refs->pptr = vpp;
394	}
395	n = NULL;
396	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
397		struct radix_tree_node *c;
398		void *entry;
399		const uint64_t i = (idx >> shift) & mask;
400
401		if (shift >= hshift) {
402			unsigned int newheight;
403
404			KASSERT(vpp == &t->t_root);
405			if (i == 0) {
406				shift -= RADIX_TREE_BITS_PER_HEIGHT;
407				continue;
408			}
409			if (!alloc) {
410				if (path != NULL) {
411					KASSERT((refs - path->p_refs) == 0);
412					path->p_lastidx =
413					    RADIX_TREE_INVALID_HEIGHT;
414				}
415				return NULL;
416			}
417			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
418			if (radix_tree_grow(t, newheight)) {
419				return NULL;
420			}
421			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
422		}
423		entry = *vpp;
424		c = entry_ptr(entry);
425		if (c == NULL ||
426		    (tagmask != 0 &&
427		    (entry_tagmask(entry) & tagmask) == 0)) {
428			if (!alloc) {
429				if (path != NULL) {
430					path->p_lastidx = refs - path->p_refs;
431				}
432				return NULL;
433			}
434			c = radix_tree_alloc_node();
435			if (c == NULL) {
436				return NULL;
437			}
438			*vpp = c;
439			if (n != NULL) {
440				KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
441				n->n_nptrs++;
442			}
443		}
444		n = c;
445		vpp = &n->n_ptrs[i];
446		if (path != NULL) {
447			refs++;
448			refs->pptr = vpp;
449		}
450		shift -= RADIX_TREE_BITS_PER_HEIGHT;
451	}
452	if (alloc) {
453		KASSERT(*vpp == NULL);
454		if (n != NULL) {
455			KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
456			n->n_nptrs++;
457		}
458	}
459	if (path != NULL) {
460		path->p_lastidx = refs - path->p_refs;
461	}
462	return vpp;
463}
464
465/*
466 * radix_tree_insert_node:
467 *
468 * insert the node at idx.
469 * it's illegal to insert NULL.
470 * it's illegal to insert a non-aligned pointer.
471 *
472 * this function returns ENOMEM if necessary memory allocation failed.
473 * otherwise, this function returns 0.
474 *
475 * note that inserting a node can involves memory allocation for intermediate
476 * nodes.  if _KERNEL, it's done with non-blocking IPL_NONE memory allocation.
477 *
478 * for the newly inserted node, all tags are cleared.
479 */
480
481int
482radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
483{
484	void **vpp;
485
486	KASSERT(p != NULL);
487	KASSERT(entry_compose(p, 0) == p);
488	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
489	if (vpp == NULL) {
490		return ENOMEM;
491	}
492	KASSERT(*vpp == NULL);
493	*vpp = p;
494	return 0;
495}
496
497/*
498 * radix_tree_replace_node:
499 *
500 * replace a node at the given index with the given node.
501 * return the old node.
502 * it's illegal to try to replace a node which has not been inserted.
503 *
504 * this function doesn't change tags.
505 */
506
507void *
508radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
509{
510	void **vpp;
511	void *oldp;
512
513	KASSERT(p != NULL);
514	KASSERT(entry_compose(p, 0) == p);
515	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
516	KASSERT(vpp != NULL);
517	oldp = *vpp;
518	KASSERT(oldp != NULL);
519	*vpp = entry_compose(p, entry_tagmask(*vpp));
520	return entry_ptr(oldp);
521}
522
523/*
524 * radix_tree_remove_node:
525 *
526 * remove the node at idx.
527 * it's illegal to try to remove a node which has not been inserted.
528 */
529
530void *
531radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
532{
533	struct radix_tree_path path;
534	void **vpp;
535	void *oldp;
536	int i;
537
538	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
539	KASSERT(vpp != NULL);
540	oldp = *vpp;
541	KASSERT(oldp != NULL);
542	KASSERT(path.p_lastidx == t->t_height);
543	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
544	*vpp = NULL;
545	for (i = t->t_height - 1; i >= 0; i--) {
546		void *entry;
547		struct radix_tree_node ** const pptr =
548		    (struct radix_tree_node **)path_pptr(t, &path, i);
549		struct radix_tree_node *n;
550
551		KASSERT(pptr != NULL);
552		entry = *pptr;
553		n = entry_ptr(entry);
554		KASSERT(n != NULL);
555		KASSERT(n->n_nptrs > 0);
556		n->n_nptrs--;
557		if (n->n_nptrs > 0) {
558			break;
559		}
560		radix_tree_free_node(n);
561		*pptr = NULL;
562	}
563	/*
564	 * fix up height
565	 */
566	if (i < 0) {
567		KASSERT(t->t_root == NULL);
568		t->t_height = 0;
569	}
570	/*
571	 * update tags
572	 */
573	for (; i >= 0; i--) {
574		void *entry;
575		struct radix_tree_node ** const pptr =
576		    (struct radix_tree_node **)path_pptr(t, &path, i);
577		struct radix_tree_node *n;
578		unsigned int newmask;
579
580		KASSERT(pptr != NULL);
581		entry = *pptr;
582		n = entry_ptr(entry);
583		KASSERT(n != NULL);
584		KASSERT(n->n_nptrs > 0);
585		newmask = any_children_tagmask(n);
586		if (newmask == entry_tagmask(entry)) {
587			break;
588		}
589		*pptr = entry_compose(n, newmask);
590	}
591	/*
592	 * XXX is it worth to try to reduce height?
593	 * if we do that, make radix_tree_grow rollback its change as well.
594	 */
595	return entry_ptr(oldp);
596}
597
598/*
599 * radix_tree_lookup_node:
600 *
601 * returns the node at idx.
602 * returns NULL if nothing is found at idx.
603 */
604
605void *
606radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
607{
608	void **vpp;
609
610	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
611	if (vpp == NULL) {
612		return NULL;
613	}
614	return entry_ptr(*vpp);
615}
616
617static inline void
618gang_lookup_init(struct radix_tree *t, uint64_t idx,
619    struct radix_tree_path *path, const unsigned int tagmask)
620{
621	void **vpp;
622
623	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
624	KASSERT(vpp == NULL ||
625	    vpp == path_pptr(t, path, path->p_lastidx));
626	KASSERT(&t->t_root == path_pptr(t, path, 0));
627	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
628	   path->p_lastidx == t->t_height ||
629	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
630}
631
632/*
633 * gang_lookup_scan:
634 *
635 * a helper routine for radix_tree_gang_lookup_node and its variants.
636 */
637
638static inline unsigned int
639__attribute__((__always_inline__))
640gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
641    void **results, unsigned int maxresults, const unsigned int tagmask,
642    bool reverse)
643{
644
645	/*
646	 * we keep the path updated only for lastidx-1.
647	 * vpp is what path_pptr(t, path, lastidx) would be.
648	 */
649	void **vpp;
650	unsigned int nfound;
651	unsigned int lastidx;
652	/*
653	 * set up scan direction dependant constants so that we can iterate
654	 * n_ptrs as the following.
655	 *
656	 *	for (i = first; i != guard; i += step)
657	 *		visit n->n_ptrs[i];
658	 */
659	const int step = reverse ? -1 : 1;
660	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
661	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
662	const unsigned int guard = last + step;
663
664	KASSERT(maxresults > 0);
665	KASSERT(&t->t_root == path_pptr(t, path, 0));
666	lastidx = path->p_lastidx;
667	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
668	   lastidx == t->t_height ||
669	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
670	nfound = 0;
671	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
672		if (reverse) {
673			lastidx = 0;
674			vpp = path_pptr(t, path, lastidx);
675			goto descend;
676		}
677		return 0;
678	}
679	vpp = path_pptr(t, path, lastidx);
680	while (/*CONSTCOND*/true) {
681		struct radix_tree_node *n;
682		unsigned int i;
683
684		if (entry_match_p(*vpp, tagmask)) {
685			KASSERT(lastidx == t->t_height);
686			/*
687			 * record the matching non-NULL leaf.
688			 */
689			results[nfound] = entry_ptr(*vpp);
690			nfound++;
691			if (nfound == maxresults) {
692				return nfound;
693			}
694		}
695scan_siblings:
696		/*
697		 * try to find the next matching non-NULL sibling.
698		 */
699		if (lastidx == 0) {
700			/*
701			 * the root has no siblings.
702			 * we've done.
703			 */
704			KASSERT(vpp == &t->t_root);
705			break;
706		}
707		n = path_node(t, path, lastidx - 1);
708		if (*vpp != NULL && n->n_nptrs == 1) {
709			/*
710			 * optimization; if the node has only a single pointer
711			 * and we've already visited it, there's no point to
712			 * keep scanning in this node.
713			 */
714			goto no_siblings;
715		}
716		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
717			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
718			if (entry_match_p(n->n_ptrs[i], tagmask)) {
719				vpp = &n->n_ptrs[i];
720				break;
721			}
722		}
723		if (i == guard) {
724no_siblings:
725			/*
726			 * not found.  go to parent.
727			 */
728			lastidx--;
729			vpp = path_pptr(t, path, lastidx);
730			goto scan_siblings;
731		}
732descend:
733		/*
734		 * following the left-most (or right-most in the case of
735		 * reverse scan) child node, decend until reaching the leaf or
736		 * an non-matching entry.
737		 */
738		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
739			/*
740			 * save vpp in the path so that we can come back to this
741			 * node after finishing visiting children.
742			 */
743			path->p_refs[lastidx].pptr = vpp;
744			n = entry_ptr(*vpp);
745			vpp = &n->n_ptrs[first];
746			lastidx++;
747		}
748	}
749	return nfound;
750}
751
752/*
753 * radix_tree_gang_lookup_node:
754 *
755 * search nodes starting from idx in the ascending order.
756 * results should be an array large enough to hold maxresults pointers.
757 * returns the number of nodes found, up to maxresults.
758 * returning less than maxresults means there are no more nodes.
759 *
760 * the result of this function is semantically equivalent to what could be
761 * obtained by repeated calls of radix_tree_lookup_node with increasing index.
762 * but this function is much faster when node indexes are distributed sparsely.
763 *
764 * note that this function doesn't return exact values of node indexes of
765 * found nodes.  if they are important for a caller, it's the caller's
766 * responsibility to check them, typically by examinining the returned nodes
767 * using some caller-specific knowledge about them.
768 */
769
770unsigned int
771radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
772    void **results, unsigned int maxresults)
773{
774	struct radix_tree_path path;
775
776	gang_lookup_init(t, idx, &path, 0);
777	return gang_lookup_scan(t, &path, results, maxresults, 0, false);
778}
779
780/*
781 * radix_tree_gang_lookup_node_reverse:
782 *
783 * same as radix_tree_gang_lookup_node except that this one scans the
784 * tree in the reverse order.  ie. descending index values.
785 */
786
787unsigned int
788radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
789    void **results, unsigned int maxresults)
790{
791	struct radix_tree_path path;
792
793	gang_lookup_init(t, idx, &path, 0);
794	return gang_lookup_scan(t, &path, results, maxresults, 0, true);
795}
796
797/*
798 * radix_tree_gang_lookup_tagged_node:
799 *
800 * same as radix_tree_gang_lookup_node except that this one only returns
801 * nodes tagged with tagid.
802 */
803
804unsigned int
805radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
806    void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
807{
808	struct radix_tree_path path;
809	const unsigned int tagmask = tagid_to_mask(tagid);
810
811	gang_lookup_init(t, idx, &path, tagmask);
812	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false);
813}
814
815/*
816 * radix_tree_gang_lookup_tagged_node_reverse:
817 *
818 * same as radix_tree_gang_lookup_tagged_node except that this one scans the
819 * tree in the reverse order.  ie. descending index values.
820 */
821
822unsigned int
823radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
824    void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
825{
826	struct radix_tree_path path;
827	const unsigned int tagmask = tagid_to_mask(tagid);
828
829	gang_lookup_init(t, idx, &path, tagmask);
830	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true);
831}
832
833/*
834 * radix_tree_get_tag:
835 *
836 * return if the tag is set for the node at the given index.  (true if set)
837 * it's illegal to call this function for a node which has not been inserted.
838 */
839
840bool
841radix_tree_get_tag(struct radix_tree *t, uint64_t idx,
842    radix_tree_tagid_t tagid)
843{
844#if 1
845	const unsigned int tagmask = tagid_to_mask(tagid);
846	void **vpp;
847
848	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
849	if (vpp == NULL) {
850		return false;
851	}
852	KASSERT(*vpp != NULL);
853	return (entry_tagmask(*vpp) & tagmask) != 0;
854#else
855	const unsigned int tagmask = tagid_to_mask(tagid);
856	void **vpp;
857
858	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
859	KASSERT(vpp != NULL);
860	return (entry_tagmask(*vpp) & tagmask) != 0;
861#endif
862}
863
864/*
865 * radix_tree_set_tag:
866 *
867 * set the tag for the node at the given index.
868 * it's illegal to call this function for a node which has not been inserted.
869 */
870
871void
872radix_tree_set_tag(struct radix_tree *t, uint64_t idx,
873    radix_tree_tagid_t tagid)
874{
875	struct radix_tree_path path;
876	const unsigned int tagmask = tagid_to_mask(tagid);
877	void **vpp;
878	int i;
879
880	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
881	KASSERT(vpp != NULL);
882	KASSERT(*vpp != NULL);
883	KASSERT(path.p_lastidx == t->t_height);
884	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
885	for (i = t->t_height; i >= 0; i--) {
886		void ** const pptr = (void **)path_pptr(t, &path, i);
887		void *entry;
888
889		KASSERT(pptr != NULL);
890		entry = *pptr;
891		if ((entry_tagmask(entry) & tagmask) != 0) {
892			break;
893		}
894		*pptr = (void *)((uintptr_t)entry | tagmask);
895	}
896}
897
898/*
899 * radix_tree_clear_tag:
900 *
901 * clear the tag for the node at the given index.
902 * it's illegal to call this function for a node which has not been inserted.
903 */
904
905void
906radix_tree_clear_tag(struct radix_tree *t, uint64_t idx,
907    radix_tree_tagid_t tagid)
908{
909	struct radix_tree_path path;
910	const unsigned int tagmask = tagid_to_mask(tagid);
911	void **vpp;
912	int i;
913
914	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
915	KASSERT(vpp != NULL);
916	KASSERT(*vpp != NULL);
917	KASSERT(path.p_lastidx == t->t_height);
918	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
919	/*
920	 * if already cleared, nothing to do
921	 */
922	if ((entry_tagmask(*vpp) & tagmask) == 0) {
923		return;
924	}
925	/*
926	 * clear the tag only if no children have the tag.
927	 */
928	for (i = t->t_height; i >= 0; i--) {
929		void ** const pptr = (void **)path_pptr(t, &path, i);
930		void *entry;
931
932		KASSERT(pptr != NULL);
933		entry = *pptr;
934		KASSERT((entry_tagmask(entry) & tagmask) != 0);
935		*pptr = entry_compose(entry_ptr(entry),
936		    entry_tagmask(entry) & ~tagmask);
937		/*
938		 * check if we should proceed to process the next level.
939		 */
940		if (0 < i) {
941			struct radix_tree_node *n = path_node(t, &path, i - 1);
942
943			if ((any_children_tagmask(n) & tagmask) != 0) {
944				break;
945			}
946		}
947	}
948}
949
950#if defined(UNITTEST)
951
952#include <inttypes.h>
953#include <stdio.h>
954
955static void
956radix_tree_dump_node(const struct radix_tree *t, void *vp,
957    uint64_t offset, unsigned int height)
958{
959	struct radix_tree_node *n;
960	unsigned int i;
961
962	for (i = 0; i < t->t_height - height; i++) {
963		printf(" ");
964	}
965	if (entry_tagmask(vp) == 0) {
966		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
967	} else {
968		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
969		    entry_tagmask(vp));
970	}
971	if (height == 0) {
972		printf(" (leaf)\n");
973		return;
974	}
975	n = entry_ptr(vp);
976	assert(any_children_tagmask(n) == entry_tagmask(vp));
977	printf(" (%u children)\n", n->n_nptrs);
978	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
979		void *c;
980
981		c = n->n_ptrs[i];
982		if (c == NULL) {
983			continue;
984		}
985		radix_tree_dump_node(t, c,
986		    offset + i * (UINT64_C(1) <<
987		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
988	}
989}
990
991void radix_tree_dump(const struct radix_tree *);
992
993void
994radix_tree_dump(const struct radix_tree *t)
995{
996
997	printf("tree %p height=%u\n", t, t->t_height);
998	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
999}
1000
1001static void
1002test1(void)
1003{
1004	struct radix_tree s;
1005	struct radix_tree *t = &s;
1006	void *results[3];
1007
1008	radix_tree_init_tree(t);
1009	radix_tree_dump(t);
1010	assert(radix_tree_lookup_node(t, 0) == NULL);
1011	assert(radix_tree_lookup_node(t, 1000) == NULL);
1012	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 0);
1013	assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
1014	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
1015	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 0);
1016	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0) == 0);
1017	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, 0) == 0);
1018	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
1019	    == 0);
1020	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1021	    0) == 0);
1022	assert(radix_tree_empty_tree_p(t));
1023	assert(radix_tree_empty_tagged_tree_p(t, 0));
1024	assert(radix_tree_empty_tagged_tree_p(t, 1));
1025	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1026	assert(!radix_tree_empty_tree_p(t));
1027	assert(radix_tree_empty_tagged_tree_p(t, 0));
1028	assert(radix_tree_empty_tagged_tree_p(t, 1));
1029	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1030	assert(radix_tree_lookup_node(t, 1000) == NULL);
1031	memset(results, 0, sizeof(results));
1032	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
1033	assert(results[0] == (void *)0xdeadbea0);
1034	assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
1035	memset(results, 0, sizeof(results));
1036	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 1);
1037	assert(results[0] == (void *)0xdeadbea0);
1038	memset(results, 0, sizeof(results));
1039	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
1040	assert(results[0] == (void *)0xdeadbea0);
1041	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
1042	    == 0);
1043	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
1044	    == 0);
1045	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1046	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1047	assert(!radix_tree_empty_tree_p(t));
1048	radix_tree_dump(t);
1049	assert(radix_tree_lookup_node(t, 0) == NULL);
1050	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1051	memset(results, 0, sizeof(results));
1052	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
1053	assert(results[0] == (void *)0xdeadbea0);
1054	memset(results, 0, sizeof(results));
1055	assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 1);
1056	assert(results[0] == (void *)0xdeadbea0);
1057	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
1058	memset(results, 0, sizeof(results));
1059	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
1060	assert(results[0] == (void *)0xdeadbea0);
1061	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
1062	    == 0);
1063	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
1064	    == 0);
1065	assert(!radix_tree_get_tag(t, 1000, 0));
1066	assert(!radix_tree_get_tag(t, 1000, 1));
1067	assert(radix_tree_empty_tagged_tree_p(t, 0));
1068	assert(radix_tree_empty_tagged_tree_p(t, 1));
1069	radix_tree_set_tag(t, 1000, 1);
1070	assert(!radix_tree_get_tag(t, 1000, 0));
1071	assert(radix_tree_get_tag(t, 1000, 1));
1072	assert(radix_tree_empty_tagged_tree_p(t, 0));
1073	assert(!radix_tree_empty_tagged_tree_p(t, 1));
1074	radix_tree_dump(t);
1075	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1076	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1077	radix_tree_dump(t);
1078	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1079	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1080	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1081	    == 0);
1082	radix_tree_dump(t);
1083	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1084	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1085	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1086	    (void *)0xdea0);
1087	radix_tree_dump(t);
1088	assert(!radix_tree_get_tag(t, 0, 1));
1089	assert(radix_tree_get_tag(t, 1000, 1));
1090	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1091	radix_tree_set_tag(t, 0, 1);;
1092	radix_tree_set_tag(t, UINT64_C(10000000000), 1);
1093	radix_tree_dump(t);
1094	assert(radix_tree_get_tag(t, 0, 1));
1095	assert(radix_tree_get_tag(t, 1000, 1));
1096	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1097	radix_tree_clear_tag(t, 0, 1);;
1098	radix_tree_clear_tag(t, UINT64_C(10000000000), 1);
1099	radix_tree_dump(t);
1100	assert(!radix_tree_get_tag(t, 0, 1));
1101	assert(radix_tree_get_tag(t, 1000, 1));
1102	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1103	radix_tree_dump(t);
1104	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1105	    (void *)0xdeadbea0);
1106	assert(!radix_tree_get_tag(t, 1000, 0));
1107	assert(radix_tree_get_tag(t, 1000, 1));
1108	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 3);
1109	assert(results[0] == (void *)0xbea0);
1110	assert(results[1] == (void *)0x12345678);
1111	assert(results[2] == (void *)0xdea0);
1112	assert(radix_tree_gang_lookup_node(t, 1, results, 3) == 2);
1113	assert(results[0] == (void *)0x12345678);
1114	assert(results[1] == (void *)0xdea0);
1115	assert(radix_tree_gang_lookup_node(t, 1001, results, 3) == 1);
1116	assert(results[0] == (void *)0xdea0);
1117	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3)
1118	    == 0);
1119	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1120	    3) == 0);
1121	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, 1) == 1);
1122	assert(results[0] == (void *)0x12345678);
1123	assert(entry_tagmask(t->t_root) != 0);
1124	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1125	assert(entry_tagmask(t->t_root) == 0);
1126	radix_tree_dump(t);
1127	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1128	    (void *)0xdea0);
1129	radix_tree_dump(t);
1130	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1131	radix_tree_dump(t);
1132	radix_tree_fini_tree(t);
1133}
1134
1135#include <sys/time.h>
1136
1137struct testnode {
1138	uint64_t idx;
1139	bool tagged[RADIX_TREE_TAG_ID_MAX];
1140};
1141
1142static void
1143printops(const char *title, const char *name, int tag, unsigned int n,
1144    const struct timeval *stv, const struct timeval *etv)
1145{
1146	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1147	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1148
1149	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1150	    (double)n / (e - s) * 1000000);
1151}
1152
1153#define	TEST2_GANG_LOOKUP_NODES	16
1154
1155static bool
1156test2_should_tag(unsigned int i, radix_tree_tagid_t tagid)
1157{
1158
1159	if (tagid == 0) {
1160		return (i & 0x3) == 0;	/* 25% */
1161	} else {
1162		return (i % 7) == 0;	/* 14% */
1163	}
1164}
1165
1166static void
1167test2(const char *title, bool dense)
1168{
1169	struct radix_tree s;
1170	struct radix_tree *t = &s;
1171	struct testnode *n;
1172	unsigned int i;
1173	unsigned int nnodes = 100000;
1174	unsigned int removed;
1175	radix_tree_tagid_t tag;
1176	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1177	struct testnode *nodes;
1178	struct timeval stv;
1179	struct timeval etv;
1180
1181	nodes = malloc(nnodes * sizeof(*nodes));
1182	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1183		ntagged[tag] = 0;
1184	}
1185	radix_tree_init_tree(t);
1186	for (i = 0; i < nnodes; i++) {
1187		n = &nodes[i];
1188		n->idx = random();
1189		if (sizeof(long) == 4) {
1190			n->idx <<= 32;
1191			n->idx |= (uint32_t)random();
1192		}
1193		if (dense) {
1194			n->idx %= nnodes * 2;
1195		}
1196		while (radix_tree_lookup_node(t, n->idx) != NULL) {
1197			n->idx++;
1198		}
1199		radix_tree_insert_node(t, n->idx, n);
1200		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1201			n->tagged[tag] = test2_should_tag(i, tag);
1202			if (n->tagged[tag]) {
1203				radix_tree_set_tag(t, n->idx, tag);
1204				ntagged[tag]++;
1205			}
1206			assert(n->tagged[tag] ==
1207			    radix_tree_get_tag(t, n->idx, tag));
1208		}
1209	}
1210
1211	gettimeofday(&stv, NULL);
1212	for (i = 0; i < nnodes; i++) {
1213		n = &nodes[i];
1214		assert(radix_tree_lookup_node(t, n->idx) == n);
1215	}
1216	gettimeofday(&etv, NULL);
1217	printops(title, "lookup", 0, nnodes, &stv, &etv);
1218
1219	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1220		unsigned int count = 0;
1221
1222		gettimeofday(&stv, NULL);
1223		for (i = 0; i < nnodes; i++) {
1224			bool tagged;
1225
1226			n = &nodes[i];
1227			tagged = radix_tree_get_tag(t, n->idx, tag);
1228			assert(n->tagged[tag] == tagged);
1229			if (tagged) {
1230				count++;
1231			}
1232		}
1233		gettimeofday(&etv, NULL);
1234		assert(ntagged[tag] == count);
1235		printops(title, "get_tag", tag, nnodes, &stv, &etv);
1236	}
1237
1238	gettimeofday(&stv, NULL);
1239	for (i = 0; i < nnodes; i++) {
1240		n = &nodes[i];
1241		radix_tree_remove_node(t, n->idx);
1242	}
1243	gettimeofday(&etv, NULL);
1244	printops(title, "remove", 0, nnodes, &stv, &etv);
1245
1246	gettimeofday(&stv, NULL);
1247	for (i = 0; i < nnodes; i++) {
1248		n = &nodes[i];
1249		radix_tree_insert_node(t, n->idx, n);
1250	}
1251	gettimeofday(&etv, NULL);
1252	printops(title, "insert", 0, nnodes, &stv, &etv);
1253
1254	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1255		ntagged[tag] = 0;
1256		gettimeofday(&stv, NULL);
1257		for (i = 0; i < nnodes; i++) {
1258			n = &nodes[i];
1259			if (n->tagged[tag]) {
1260				radix_tree_set_tag(t, n->idx, tag);
1261				ntagged[tag]++;
1262			}
1263		}
1264		gettimeofday(&etv, NULL);
1265		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1266	}
1267
1268	gettimeofday(&stv, NULL);
1269	{
1270		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1271		uint64_t nextidx;
1272		unsigned int nfound;
1273		unsigned int total;
1274
1275		nextidx = 0;
1276		total = 0;
1277		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1278		    (void *)results, __arraycount(results))) > 0) {
1279			nextidx = results[nfound - 1]->idx + 1;
1280			total += nfound;
1281			if (nextidx == 0) {
1282				break;
1283			}
1284		}
1285		assert(total == nnodes);
1286	}
1287	gettimeofday(&etv, NULL);
1288	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1289
1290	gettimeofday(&stv, NULL);
1291	{
1292		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1293		uint64_t nextidx;
1294		unsigned int nfound;
1295		unsigned int total;
1296
1297		nextidx = UINT64_MAX;
1298		total = 0;
1299		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1300		    (void *)results, __arraycount(results))) > 0) {
1301			nextidx = results[nfound - 1]->idx - 1;
1302			total += nfound;
1303			if (nextidx == UINT64_MAX) {
1304				break;
1305			}
1306		}
1307		assert(total == nnodes);
1308	}
1309	gettimeofday(&etv, NULL);
1310	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1311
1312	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1313		gettimeofday(&stv, NULL);
1314		{
1315			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1316			uint64_t nextidx;
1317			unsigned int nfound;
1318			unsigned int total;
1319
1320			nextidx = 0;
1321			total = 0;
1322			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1323			    nextidx, (void *)results, __arraycount(results),
1324			    tag)) > 0) {
1325				nextidx = results[nfound - 1]->idx + 1;
1326				total += nfound;
1327			}
1328			assert(total == ntagged[tag]);
1329		}
1330		gettimeofday(&etv, NULL);
1331		printops(title, "ganglookup_tag", tag, ntagged[tag], &stv,
1332		    &etv);
1333	}
1334
1335	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1336		gettimeofday(&stv, NULL);
1337		{
1338			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1339			uint64_t nextidx;
1340			unsigned int nfound;
1341			unsigned int total;
1342
1343			nextidx = UINT64_MAX;
1344			total = 0;
1345			while ((nfound =
1346			    radix_tree_gang_lookup_tagged_node_reverse(t,
1347			    nextidx, (void *)results, __arraycount(results),
1348			    tag)) > 0) {
1349				nextidx = results[nfound - 1]->idx - 1;
1350				total += nfound;
1351				if (nextidx == UINT64_MAX) {
1352					break;
1353				}
1354			}
1355			assert(total == ntagged[tag]);
1356		}
1357		gettimeofday(&etv, NULL);
1358		printops(title, "ganglookup_tag_reverse", tag, ntagged[tag],
1359		    &stv, &etv);
1360	}
1361
1362	removed = 0;
1363	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1364		unsigned int total;
1365
1366		total = 0;
1367		gettimeofday(&stv, NULL);
1368		{
1369			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1370			uint64_t nextidx;
1371			unsigned int nfound;
1372
1373			nextidx = 0;
1374			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1375			    nextidx, (void *)results, __arraycount(results),
1376			    tag)) > 0) {
1377				for (i = 0; i < nfound; i++) {
1378					radix_tree_remove_node(t,
1379					    results[i]->idx);
1380				}
1381				nextidx = results[nfound - 1]->idx + 1;
1382				total += nfound;
1383				if (nextidx == 0) {
1384					break;
1385				}
1386			}
1387			assert(tag != 0 || total == ntagged[tag]);
1388			assert(total <= ntagged[tag]);
1389		}
1390		gettimeofday(&etv, NULL);
1391		printops(title, "ganglookup_tag+remove", tag, total, &stv,
1392		    &etv);
1393		removed += total;
1394	}
1395
1396	gettimeofday(&stv, NULL);
1397	{
1398		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1399		uint64_t nextidx;
1400		unsigned int nfound;
1401		unsigned int total;
1402
1403		nextidx = 0;
1404		total = 0;
1405		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1406		    (void *)results, __arraycount(results))) > 0) {
1407			for (i = 0; i < nfound; i++) {
1408				assert(results[i] == radix_tree_remove_node(t,
1409				    results[i]->idx));
1410			}
1411			nextidx = results[nfound - 1]->idx + 1;
1412			total += nfound;
1413			if (nextidx == 0) {
1414				break;
1415			}
1416		}
1417		assert(total == nnodes - removed);
1418	}
1419	gettimeofday(&etv, NULL);
1420	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1421
1422	assert(radix_tree_empty_tree_p(t));
1423	assert(radix_tree_empty_tagged_tree_p(t, 0));
1424	assert(radix_tree_empty_tagged_tree_p(t, 1));
1425	radix_tree_fini_tree(t);
1426	free(nodes);
1427}
1428
1429int
1430main(int argc, char *argv[])
1431{
1432
1433	test1();
1434	test2("dense", true);
1435	test2("sparse", false);
1436	return 0;
1437}
1438
1439#endif /* defined(UNITTEST) */
1440