1/*	$NetBSD$	*/
2
3/*
4 * Copyright (c) 1989, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)ufs_bmap.c	8.8 (Berkeley) 8/11/95
37 */
38
39#include <sys/cdefs.h>
40__KERNEL_RCSID(0, "$NetBSD$");
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/buf.h>
45#include <sys/proc.h>
46#include <sys/vnode.h>
47#include <sys/mount.h>
48#include <sys/resourcevar.h>
49#include <sys/trace.h>
50#include <sys/fstrans.h>
51
52#include <miscfs/specfs/specdev.h>
53
54#include <ufs/ufs/inode.h>
55#include <ufs/ufs/ufsmount.h>
56#include <ufs/ufs/ufs_extern.h>
57#include <ufs/ufs/ufs_bswap.h>
58
59static bool
60ufs_issequential(const struct ufsmount *ump, daddr_t daddr0, daddr_t daddr1)
61{
62
63	/* for ufs, blocks in a hole is not 'contiguous'. */
64	if (daddr0 == 0)
65		return false;
66
67	return (daddr0 + ump->um_seqinc == daddr1);
68}
69
70/*
71 * Bmap converts the logical block number of a file to its physical block
72 * number on the disk. The conversion is done by using the logical block
73 * number to index into the array of block pointers described by the dinode.
74 */
75int
76ufs_bmap(void *v)
77{
78	struct vop_bmap_args /* {
79		struct vnode *a_vp;
80		daddr_t  a_bn;
81		struct vnode **a_vpp;
82		daddr_t *a_bnp;
83		int *a_runp;
84	} */ *ap = v;
85	int error;
86
87	/*
88	 * Check for underlying vnode requests and ensure that logical
89	 * to physical mapping is requested.
90	 */
91	if (ap->a_vpp != NULL)
92		*ap->a_vpp = VTOI(ap->a_vp)->i_devvp;
93	if (ap->a_bnp == NULL)
94		return (0);
95
96	fstrans_start(ap->a_vp->v_mount, FSTRANS_SHARED);
97	error = ufs_bmaparray(ap->a_vp, ap->a_bn, ap->a_bnp, NULL, NULL,
98	    ap->a_runp, ufs_issequential);
99	fstrans_done(ap->a_vp->v_mount);
100	return error;
101}
102
103/*
104 * Indirect blocks are now on the vnode for the file.  They are given negative
105 * logical block numbers.  Indirect blocks are addressed by the negative
106 * address of the first data block to which they point.  Double indirect blocks
107 * are addressed by one less than the address of the first indirect block to
108 * which they point.  Triple indirect blocks are addressed by one less than
109 * the address of the first double indirect block to which they point.
110 *
111 * ufs_bmaparray does the bmap conversion, and if requested returns the
112 * array of logical blocks which must be traversed to get to a block.
113 * Each entry contains the offset into that block that gets you to the
114 * next block and the disk address of the block (if it is assigned).
115 */
116
117int
118ufs_bmaparray(struct vnode *vp, daddr_t bn, daddr_t *bnp, struct indir *ap,
119    int *nump, int *runp, ufs_issequential_callback_t is_sequential)
120{
121	struct inode *ip;
122	struct buf *bp, *cbp;
123	struct ufsmount *ump;
124	struct mount *mp;
125	struct indir a[NIADDR + 1], *xap;
126	daddr_t daddr;
127	daddr_t metalbn;
128	int error, maxrun = 0, num;
129
130	ip = VTOI(vp);
131	mp = vp->v_mount;
132	ump = ip->i_ump;
133#ifdef DIAGNOSTIC
134	if ((ap != NULL && nump == NULL) || (ap == NULL && nump != NULL))
135		panic("ufs_bmaparray: invalid arguments");
136#endif
137
138	if (runp) {
139		/*
140		 * XXX
141		 * If MAXBSIZE is the largest transfer the disks can handle,
142		 * we probably want maxrun to be 1 block less so that we
143		 * don't create a block larger than the device can handle.
144		 */
145		*runp = 0;
146		maxrun = MAXPHYS / mp->mnt_stat.f_iosize - 1;
147	}
148
149	if (bn >= 0 && bn < NDADDR) {
150		if (nump != NULL)
151			*nump = 0;
152		if (ump->um_fstype == UFS1)
153			daddr = ufs_rw32(ip->i_ffs1_db[bn],
154			    UFS_MPNEEDSWAP(ump));
155		else
156			daddr = ufs_rw64(ip->i_ffs2_db[bn],
157			    UFS_MPNEEDSWAP(ump));
158		*bnp = blkptrtodb(ump, daddr);
159		/*
160		 * Since this is FFS independent code, we are out of
161		 * scope for the definitions of BLK_NOCOPY and
162		 * BLK_SNAP, but we do know that they will fall in
163		 * the range 1..um_seqinc, so we use that test and
164		 * return a request for a zeroed out buffer if attempts
165		 * are made to read a BLK_NOCOPY or BLK_SNAP block.
166		 */
167		if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL)) == SF_SNAPSHOT
168		    && daddr > 0 &&
169		    daddr < ump->um_seqinc) {
170			*bnp = -1;
171		} else if (*bnp == 0) {
172			if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL))
173			    == SF_SNAPSHOT) {
174				*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
175			} else {
176				*bnp = -1;
177			}
178		} else if (runp) {
179			if (ump->um_fstype == UFS1) {
180				for (++bn; bn < NDADDR && *runp < maxrun &&
181				    is_sequential(ump,
182				        ufs_rw32(ip->i_ffs1_db[bn - 1],
183				            UFS_MPNEEDSWAP(ump)),
184				        ufs_rw32(ip->i_ffs1_db[bn],
185				            UFS_MPNEEDSWAP(ump)));
186				    ++bn, ++*runp);
187			} else {
188				for (++bn; bn < NDADDR && *runp < maxrun &&
189				    is_sequential(ump,
190				        ufs_rw64(ip->i_ffs2_db[bn - 1],
191				            UFS_MPNEEDSWAP(ump)),
192				        ufs_rw64(ip->i_ffs2_db[bn],
193				            UFS_MPNEEDSWAP(ump)));
194				    ++bn, ++*runp);
195			}
196		}
197		return (0);
198	}
199
200	xap = ap == NULL ? a : ap;
201	if (!nump)
202		nump = &num;
203	if ((error = ufs_getlbns(vp, bn, xap, nump)) != 0)
204		return (error);
205
206	num = *nump;
207
208	/* Get disk address out of indirect block array */
209	if (ump->um_fstype == UFS1)
210		daddr = ufs_rw32(ip->i_ffs1_ib[xap->in_off],
211		    UFS_MPNEEDSWAP(ump));
212	else
213		daddr = ufs_rw64(ip->i_ffs2_ib[xap->in_off],
214		    UFS_MPNEEDSWAP(ump));
215
216	for (bp = NULL, ++xap; --num; ++xap) {
217		/*
218		 * Exit the loop if there is no disk address assigned yet and
219		 * the indirect block isn't in the cache, or if we were
220		 * looking for an indirect block and we've found it.
221		 */
222
223		metalbn = xap->in_lbn;
224		if (metalbn == bn)
225			break;
226		if (daddr == 0) {
227			mutex_enter(&bufcache_lock);
228			cbp = incore(vp, metalbn);
229			mutex_exit(&bufcache_lock);
230			if (cbp == NULL)
231				break;
232		}
233
234		/*
235		 * If we get here, we've either got the block in the cache
236		 * or we have a disk address for it, go fetch it.
237		 */
238		if (bp)
239			brelse(bp, 0);
240
241		xap->in_exists = 1;
242		bp = getblk(vp, metalbn, mp->mnt_stat.f_iosize, 0, 0);
243		if (bp == NULL) {
244
245			/*
246			 * getblk() above returns NULL only iff we are
247			 * pagedaemon.  See the implementation of getblk
248			 * for detail.
249			 */
250
251			return (ENOMEM);
252		}
253		if (bp->b_oflags & (BO_DONE | BO_DELWRI)) {
254			trace(TR_BREADHIT, pack(vp, size), metalbn);
255		}
256#ifdef DIAGNOSTIC
257		else if (!daddr)
258			panic("ufs_bmaparray: indirect block not in cache");
259#endif
260		else {
261			trace(TR_BREADMISS, pack(vp, size), metalbn);
262			bp->b_blkno = blkptrtodb(ump, daddr);
263			bp->b_flags |= B_READ;
264			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
265			VOP_STRATEGY(vp, bp);
266			curlwp->l_ru.ru_inblock++;	/* XXX */
267			if ((error = biowait(bp)) != 0) {
268				brelse(bp, 0);
269				return (error);
270			}
271		}
272		if (ump->um_fstype == UFS1) {
273			daddr = ufs_rw32(((u_int32_t *)bp->b_data)[xap->in_off],
274			    UFS_MPNEEDSWAP(ump));
275			if (num == 1 && daddr && runp) {
276				for (bn = xap->in_off + 1;
277				    bn < MNINDIR(ump) && *runp < maxrun &&
278				    is_sequential(ump,
279				        ufs_rw32(((int32_t *)bp->b_data)[bn-1],
280				            UFS_MPNEEDSWAP(ump)),
281				        ufs_rw32(((int32_t *)bp->b_data)[bn],
282				            UFS_MPNEEDSWAP(ump)));
283				    ++bn, ++*runp);
284			}
285		} else {
286			daddr = ufs_rw64(((u_int64_t *)bp->b_data)[xap->in_off],
287			    UFS_MPNEEDSWAP(ump));
288			if (num == 1 && daddr && runp) {
289				for (bn = xap->in_off + 1;
290				    bn < MNINDIR(ump) && *runp < maxrun &&
291				    is_sequential(ump,
292				        ufs_rw64(((int64_t *)bp->b_data)[bn-1],
293				            UFS_MPNEEDSWAP(ump)),
294				        ufs_rw64(((int64_t *)bp->b_data)[bn],
295				            UFS_MPNEEDSWAP(ump)));
296				    ++bn, ++*runp);
297			}
298		}
299	}
300	if (bp)
301		brelse(bp, 0);
302
303	/*
304	 * Since this is FFS independent code, we are out of scope for the
305	 * definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
306	 * will fall in the range 1..um_seqinc, so we use that test and
307	 * return a request for a zeroed out buffer if attempts are made
308	 * to read a BLK_NOCOPY or BLK_SNAP block.
309	 */
310	if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL)) == SF_SNAPSHOT
311	    && daddr > 0 && daddr < ump->um_seqinc) {
312		*bnp = -1;
313		return (0);
314	}
315	*bnp = blkptrtodb(ump, daddr);
316	if (*bnp == 0) {
317		if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL))
318		    == SF_SNAPSHOT) {
319			*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
320		} else {
321			*bnp = -1;
322		}
323	}
324	return (0);
325}
326
327/*
328 * Create an array of logical block number/offset pairs which represent the
329 * path of indirect blocks required to access a data block.  The first "pair"
330 * contains the logical block number of the appropriate single, double or
331 * triple indirect block and the offset into the inode indirect block array.
332 * Note, the logical block number of the inode single/double/triple indirect
333 * block appears twice in the array, once with the offset into the i_ffs1_ib and
334 * once with the offset into the page itself.
335 */
336int
337ufs_getlbns(struct vnode *vp, daddr_t bn, struct indir *ap, int *nump)
338{
339	daddr_t metalbn, realbn;
340	struct ufsmount *ump;
341	int64_t blockcnt;
342	int lbc;
343	int i, numlevels, off;
344
345	ump = VFSTOUFS(vp->v_mount);
346	if (nump)
347		*nump = 0;
348	numlevels = 0;
349	realbn = bn;
350	if (bn < 0)
351		bn = -bn;
352	KASSERT(bn >= NDADDR);
353
354	/*
355	 * Determine the number of levels of indirection.  After this loop
356	 * is done, blockcnt indicates the number of data blocks possible
357	 * at the given level of indirection, and NIADDR - i is the number
358	 * of levels of indirection needed to locate the requested block.
359	 */
360
361	bn -= NDADDR;
362	for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
363		if (i == 0)
364			return (EFBIG);
365
366		lbc += ump->um_lognindir;
367		blockcnt = (int64_t)1 << lbc;
368
369		if (bn < blockcnt)
370			break;
371	}
372
373	/* Calculate the address of the first meta-block. */
374	metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
375
376	/*
377	 * At each iteration, off is the offset into the bap array which is
378	 * an array of disk addresses at the current level of indirection.
379	 * The logical block number and the offset in that block are stored
380	 * into the argument array.
381	 */
382	ap->in_lbn = metalbn;
383	ap->in_off = off = NIADDR - i;
384	ap->in_exists = 0;
385	ap++;
386	for (++numlevels; i <= NIADDR; i++) {
387		/* If searching for a meta-data block, quit when found. */
388		if (metalbn == realbn)
389			break;
390
391		lbc -= ump->um_lognindir;
392		off = (bn >> lbc) & (MNINDIR(ump) - 1);
393
394		++numlevels;
395		ap->in_lbn = metalbn;
396		ap->in_off = off;
397		ap->in_exists = 0;
398		++ap;
399
400		metalbn -= -1 + ((int64_t)off << lbc);
401	}
402	if (nump)
403		*nump = numlevels;
404	return (0);
405}
406