1/*	$NetBSD: subr_blist.c,v 1.9 2006/01/20 14:19:40 yamt Exp $	*/
2
3/*-
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
18 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
23 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29/*
30 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
31 *
32 *	This module implements a general bitmap allocator/deallocator.  The
33 *	allocator eats around 2 bits per 'block'.  The module does not
34 *	try to interpret the meaning of a 'block' other then to return
35 *	BLIST_NONE on an allocation failure.
36 *
37 *	A radix tree is used to maintain the bitmap.  Two radix constants are
38 *	involved:  One for the bitmaps contained in the leaf nodes (typically
39 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
40 *	nodes have a hint field.  This field gives us a hint as to the largest
41 *	free contiguous range of blocks under the node.  It may contain a
42 *	value that is too high, but will never contain a value that is too
43 *	low.  When the radix tree is searched, allocation failures in subtrees
44 *	update the hint.
45 *
46 *	The radix tree also implements two collapsed states for meta nodes:
47 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
48 *	in either of these two states, all information contained underneath
49 *	the node is considered stale.  These states are used to optimize
50 *	allocation and freeing operations.
51 *
52 * 	The hinting greatly increases code efficiency for allocations while
53 *	the general radix structure optimizes both allocations and frees.  The
54 *	radix tree should be able to operate well no matter how much
55 *	fragmentation there is and no matter how large a bitmap is used.
56 *
57 *	Unlike the rlist code, the blist code wires all necessary memory at
58 *	creation time.  Neither allocations nor frees require interaction with
59 *	the memory subsystem.  In contrast, the rlist code may allocate memory
60 *	on an rlist_free() call.  The non-blocking features of the blist code
61 *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
62 *	rlist code uses a little less overall memory then the blist code (but
63 *	due to swap interleaving not all that much less), but the blist code
64 *	scales much, much better.
65 *
66 *	LAYOUT: The radix tree is layed out recursively using a
67 *	linear array.  Each meta node is immediately followed (layed out
68 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
69 *	is a recursive structure but one that can be easily scanned through
70 *	a very simple 'skip' calculation.  In order to support large radixes,
71 *	portions of the tree may reside outside our memory allocation.  We
72 *	handle this with an early-termination optimization (when bighint is
73 *	set to -1) on the scan.  The memory allocation is only large enough
74 *	to cover the number of blocks requested at creation time even if it
75 *	must be encompassed in larger root-node radix.
76 *
77 *	NOTE: the allocator cannot currently allocate more then
78 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
79 *	large' if you try.  This is an area that could use improvement.  The
80 *	radix is large enough that this restriction does not effect the swap
81 *	system, though.  Currently only the allocation code is effected by
82 *	this algorithmic unfeature.  The freeing code can handle arbitrary
83 *	ranges.
84 *
85 *	This code can be compiled stand-alone for debugging.
86 */
87
88#include <sys/cdefs.h>
89__KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.9 2006/01/20 14:19:40 yamt Exp $");
90#if 0
91__FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
92#endif
93
94#ifdef _KERNEL
95
96#include <sys/param.h>
97#include <sys/systm.h>
98#include <sys/blist.h>
99#include <sys/kmem.h>
100
101#else
102
103#ifndef BLIST_NO_DEBUG
104#define BLIST_DEBUG
105#endif
106
107#include <sys/types.h>
108#include <stdio.h>
109#include <string.h>
110#include <stdlib.h>
111#include <stdarg.h>
112#include <inttypes.h>
113
114#define	KM_SLEEP 1
115#define	kmem_zalloc(a,b,c) calloc(1, (a))
116#define	kmem_alloc(a,b,c) malloc(a)
117#define	kmem_free(a,b) free(a)
118
119#include "../sys/blist.h"
120
121void panic(const char *ctl, ...);
122
123#endif
124
125/*
126 * blmeta and bl_bitmap_t MUST be a power of 2 in size.
127 */
128
129typedef struct blmeta {
130	union {
131		blist_blkno_t	bmu_avail; /* space available under us	*/
132		blist_bitmap_t	bmu_bitmap; /* bitmap if we are a leaf	*/
133	} u;
134	blist_blkno_t	bm_bighint;	/* biggest contiguous block hint*/
135} blmeta_t;
136
137struct blist {
138	blist_blkno_t		bl_blocks;	/* area of coverage		*/
139	blist_blkno_t		bl_radix;	/* coverage radix		*/
140	blist_blkno_t		bl_skip;	/* starting skip		*/
141	blist_blkno_t		bl_free;	/* number of free blocks	*/
142	blmeta_t	*bl_root;	/* root of radix tree		*/
143	blist_blkno_t		bl_rootblks;	/* blks allocated for tree */
144};
145
146#define BLIST_META_RADIX	16
147
148/*
149 * static support functions
150 */
151
152static blist_blkno_t blst_leaf_alloc(blmeta_t *scan, blist_blkno_t blk,
153    int count);
154static blist_blkno_t blst_meta_alloc(blmeta_t *scan, blist_blkno_t blk,
155    blist_blkno_t count, blist_blkno_t radix, blist_blkno_t skip);
156static void blst_leaf_free(blmeta_t *scan, blist_blkno_t relblk, int count);
157static void blst_meta_free(blmeta_t *scan, blist_blkno_t freeBlk,
158    blist_blkno_t count, blist_blkno_t radix, blist_blkno_t skip,
159    blist_blkno_t blk);
160static void blst_copy(blmeta_t *scan, blist_blkno_t blk, blist_blkno_t radix,
161    blist_blkno_t skip, blist_t dest, blist_blkno_t count);
162static int blst_leaf_fill(blmeta_t *scan, blist_blkno_t blk, int count);
163static blist_blkno_t blst_meta_fill(blmeta_t *scan, blist_blkno_t allocBlk,
164    blist_blkno_t count, blist_blkno_t radix, blist_blkno_t skip,
165    blist_blkno_t blk);
166static blist_blkno_t blst_radix_init(blmeta_t *scan, blist_blkno_t radix,
167    blist_blkno_t skip, blist_blkno_t count);
168#ifndef _KERNEL
169static void blst_radix_print(blmeta_t *scan, blist_blkno_t blk,
170    blist_blkno_t radix, blist_blkno_t skip, int tab);
171#endif
172
173/*
174 * blist_create() - create a blist capable of handling up to the specified
175 *		    number of blocks
176 *
177 *	blocks must be greater then 0
178 *
179 *	The smallest blist consists of a single leaf node capable of
180 *	managing BLIST_BMAP_RADIX blocks.
181 */
182
183blist_t
184blist_create(blist_blkno_t blocks)
185{
186	blist_t bl;
187	blist_blkno_t radix;
188	blist_blkno_t skip = 0;
189
190	/*
191	 * Calculate radix and skip field used for scanning.
192	 *
193	 * XXX check overflow
194	 */
195	radix = BLIST_BMAP_RADIX;
196
197	while (radix < blocks) {
198		radix *= BLIST_META_RADIX;
199		skip = (skip + 1) * BLIST_META_RADIX;
200	}
201
202	bl = kmem_zalloc(sizeof(struct blist), KM_SLEEP);
203
204	bl->bl_blocks = blocks;
205	bl->bl_radix = radix;
206	bl->bl_skip = skip;
207	bl->bl_rootblks = 1 +
208	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
209	bl->bl_root = kmem_alloc(sizeof(blmeta_t) * bl->bl_rootblks, KM_SLEEP);
210
211#if defined(BLIST_DEBUG)
212	printf(
213		"BLIST representing %" PRIu64 " blocks (%" PRIu64 " MB of swap)"
214		", requiring %" PRIu64 "K of ram\n",
215		(uint64_t)bl->bl_blocks,
216		(uint64_t)bl->bl_blocks * 4 / 1024,
217		((uint64_t)bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
218	);
219	printf("BLIST raw radix tree contains %" PRIu64 " records\n",
220	    (uint64_t)bl->bl_rootblks);
221#endif
222	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
223
224	return(bl);
225}
226
227void
228blist_destroy(blist_t bl)
229{
230
231	kmem_free(bl->bl_root, sizeof(blmeta_t) * bl->bl_rootblks);
232	kmem_free(bl, sizeof(struct blist));
233}
234
235/*
236 * blist_alloc() - reserve space in the block bitmap.  Return the base
237 *		     of a contiguous region or BLIST_NONE if space could
238 *		     not be allocated.
239 */
240
241blist_blkno_t
242blist_alloc(blist_t bl, blist_blkno_t count)
243{
244	blist_blkno_t blk = BLIST_NONE;
245
246	if (bl) {
247		if (bl->bl_radix == BLIST_BMAP_RADIX)
248			blk = blst_leaf_alloc(bl->bl_root, 0, count);
249		else
250			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
251		if (blk != BLIST_NONE)
252			bl->bl_free -= count;
253	}
254	return(blk);
255}
256
257/*
258 * blist_free() -	free up space in the block bitmap.  Return the base
259 *		     	of a contiguous region.  Panic if an inconsistancy is
260 *			found.
261 */
262
263void
264blist_free(blist_t bl, blist_blkno_t blkno, blist_blkno_t count)
265{
266	if (bl) {
267		if (bl->bl_radix == BLIST_BMAP_RADIX)
268			blst_leaf_free(bl->bl_root, blkno, count);
269		else
270			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
271		bl->bl_free += count;
272	}
273}
274
275/*
276 * blist_fill() -	mark a region in the block bitmap as off-limits
277 *			to the allocator (i.e. allocate it), ignoring any
278 *			existing allocations.  Return the number of blocks
279 *			actually filled that were free before the call.
280 */
281
282blist_blkno_t
283blist_fill(blist_t bl, blist_blkno_t blkno, blist_blkno_t count)
284{
285	blist_blkno_t filled;
286
287	if (bl) {
288		if (bl->bl_radix == BLIST_BMAP_RADIX)
289			filled = blst_leaf_fill(bl->bl_root, blkno, count);
290		else
291			filled = blst_meta_fill(bl->bl_root, blkno, count,
292			    bl->bl_radix, bl->bl_skip, 0);
293		bl->bl_free -= filled;
294		return filled;
295	} else
296		return 0;
297}
298
299/*
300 * blist_resize() -	resize an existing radix tree to handle the
301 *			specified number of blocks.  This will reallocate
302 *			the tree and transfer the previous bitmap to the new
303 *			one.  When extending the tree you can specify whether
304 *			the new blocks are to left allocated or freed.
305 */
306
307void
308blist_resize(blist_t *pbl, blist_blkno_t count, int freenew)
309{
310    blist_t newbl = blist_create(count);
311    blist_t save = *pbl;
312
313    *pbl = newbl;
314    if (count > save->bl_blocks)
315	    count = save->bl_blocks;
316    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
317
318    /*
319     * If resizing upwards, should we free the new space or not?
320     */
321    if (freenew && count < newbl->bl_blocks) {
322	    blist_free(newbl, count, newbl->bl_blocks - count);
323    }
324    blist_destroy(save);
325}
326
327#ifdef BLIST_DEBUG
328
329/*
330 * blist_print()    - dump radix tree
331 */
332
333void
334blist_print(blist_t bl)
335{
336	printf("BLIST {\n");
337	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
338	printf("}\n");
339}
340
341#endif
342
343/************************************************************************
344 *			  ALLOCATION SUPPORT FUNCTIONS			*
345 ************************************************************************
346 *
347 *	These support functions do all the actual work.  They may seem
348 *	rather longish, but that's because I've commented them up.  The
349 *	actual code is straight forward.
350 *
351 */
352
353/*
354 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
355 *
356 *	This is the core of the allocator and is optimized for the 1 block
357 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
358 *	somewhat slower.  The 1 block allocation case is log2 and extremely
359 *	quick.
360 */
361
362static blist_blkno_t
363blst_leaf_alloc(
364	blmeta_t *scan,
365	blist_blkno_t blk,
366	int count
367) {
368	blist_bitmap_t orig = scan->u.bmu_bitmap;
369
370	if (orig == 0) {
371		/*
372		 * Optimize bitmap all-allocated case.  Also, count = 1
373		 * case assumes at least 1 bit is free in the bitmap, so
374		 * we have to take care of this case here.
375		 */
376		scan->bm_bighint = 0;
377		return(BLIST_NONE);
378	}
379	if (count == 1) {
380		/*
381		 * Optimized code to allocate one bit out of the bitmap
382		 */
383		blist_bitmap_t mask;
384		int j = BLIST_BMAP_RADIX/2;
385		int r = 0;
386
387		mask = (blist_bitmap_t)-1 >> (BLIST_BMAP_RADIX/2);
388
389		while (j) {
390			if ((orig & mask) == 0) {
391			    r += j;
392			    orig >>= j;
393			}
394			j >>= 1;
395			mask >>= j;
396		}
397		scan->u.bmu_bitmap &= ~((blist_bitmap_t)1 << r);
398		return(blk + r);
399	}
400	if (count <= BLIST_BMAP_RADIX) {
401		/*
402		 * non-optimized code to allocate N bits out of the bitmap.
403		 * The more bits, the faster the code runs.  It will run
404		 * the slowest allocating 2 bits, but since there aren't any
405		 * memory ops in the core loop (or shouldn't be, anyway),
406		 * you probably won't notice the difference.
407		 */
408		int j;
409		int n = BLIST_BMAP_RADIX - count;
410		blist_bitmap_t mask;
411
412		mask = (blist_bitmap_t)-1 >> n;
413
414		for (j = 0; j <= n; ++j) {
415			if ((orig & mask) == mask) {
416				scan->u.bmu_bitmap &= ~mask;
417				return(blk + j);
418			}
419			mask = (mask << 1);
420		}
421	}
422	/*
423	 * We couldn't allocate count in this subtree, update bighint.
424	 */
425	scan->bm_bighint = count - 1;
426	return(BLIST_NONE);
427}
428
429/*
430 * blist_meta_alloc() -	allocate at a meta in the radix tree.
431 *
432 *	Attempt to allocate at a meta node.  If we can't, we update
433 *	bighint and return a failure.  Updating bighint optimize future
434 *	calls that hit this node.  We have to check for our collapse cases
435 *	and we have a few optimizations strewn in as well.
436 */
437
438static blist_blkno_t
439blst_meta_alloc(
440	blmeta_t *scan,
441	blist_blkno_t blk,
442	blist_blkno_t count,
443	blist_blkno_t radix,
444	blist_blkno_t skip
445) {
446	blist_blkno_t i;
447	blist_blkno_t next_skip = (skip / BLIST_META_RADIX);
448
449	if (scan->u.bmu_avail == 0)  {
450		/*
451		 * ALL-ALLOCATED special case
452		 */
453		scan->bm_bighint = count;
454		return(BLIST_NONE);
455	}
456
457	if (scan->u.bmu_avail == radix) {
458		radix /= BLIST_META_RADIX;
459
460		/*
461		 * ALL-FREE special case, initialize uninitialize
462		 * sublevel.
463		 */
464		for (i = 1; i <= skip; i += next_skip) {
465			if (scan[i].bm_bighint == (blist_blkno_t)-1)
466				break;
467			if (next_skip == 1) {
468				scan[i].u.bmu_bitmap = (blist_bitmap_t)-1;
469				scan[i].bm_bighint = BLIST_BMAP_RADIX;
470			} else {
471				scan[i].bm_bighint = radix;
472				scan[i].u.bmu_avail = radix;
473			}
474		}
475	} else {
476		radix /= BLIST_META_RADIX;
477	}
478
479	for (i = 1; i <= skip; i += next_skip) {
480		if (scan[i].bm_bighint == (blist_blkno_t)-1) {
481			/*
482			 * Terminator
483			 */
484			break;
485		} else if (count <= scan[i].bm_bighint) {
486			/*
487			 * count fits in object
488			 */
489			blist_blkno_t r;
490			if (next_skip == 1) {
491				r = blst_leaf_alloc(&scan[i], blk, count);
492			} else {
493				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
494			}
495			if (r != BLIST_NONE) {
496				scan->u.bmu_avail -= count;
497				if (scan->bm_bighint > scan->u.bmu_avail)
498					scan->bm_bighint = scan->u.bmu_avail;
499				return(r);
500			}
501		} else if (count > radix) {
502			/*
503			 * count does not fit in object even if it were
504			 * complete free.
505			 */
506			panic("blist_meta_alloc: allocation too large");
507		}
508		blk += radix;
509	}
510
511	/*
512	 * We couldn't allocate count in this subtree, update bighint.
513	 */
514	if (scan->bm_bighint >= count)
515		scan->bm_bighint = count - 1;
516	return(BLIST_NONE);
517}
518
519/*
520 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
521 *
522 */
523
524static void
525blst_leaf_free(
526	blmeta_t *scan,
527	blist_blkno_t blk,
528	int count
529) {
530	/*
531	 * free some data in this bitmap
532	 *
533	 * e.g.
534	 *	0000111111111110000
535	 *          \_________/\__/
536	 *		v        n
537	 */
538	int n = blk & (BLIST_BMAP_RADIX - 1);
539	blist_bitmap_t mask;
540
541	mask = ((blist_bitmap_t)-1 << n) &
542	    ((blist_bitmap_t)-1 >> (BLIST_BMAP_RADIX - count - n));
543
544	if (scan->u.bmu_bitmap & mask)
545		panic("blst_radix_free: freeing free block");
546	scan->u.bmu_bitmap |= mask;
547
548	/*
549	 * We could probably do a better job here.  We are required to make
550	 * bighint at least as large as the biggest contiguous block of
551	 * data.  If we just shoehorn it, a little extra overhead will
552	 * be incured on the next allocation (but only that one typically).
553	 */
554	scan->bm_bighint = BLIST_BMAP_RADIX;
555}
556
557/*
558 * BLST_META_FREE() - free allocated blocks from radix tree meta info
559 *
560 *	This support routine frees a range of blocks from the bitmap.
561 *	The range must be entirely enclosed by this radix node.  If a
562 *	meta node, we break the range down recursively to free blocks
563 *	in subnodes (which means that this code can free an arbitrary
564 *	range whereas the allocation code cannot allocate an arbitrary
565 *	range).
566 */
567
568static void
569blst_meta_free(
570	blmeta_t *scan,
571	blist_blkno_t freeBlk,
572	blist_blkno_t count,
573	blist_blkno_t radix,
574	blist_blkno_t skip,
575	blist_blkno_t blk
576) {
577	blist_blkno_t i;
578	blist_blkno_t next_skip = (skip / BLIST_META_RADIX);
579
580#if 0
581	printf("FREE (%" PRIx64 ",%" PRIu64
582	    ") FROM (%" PRIx64 ",%" PRIu64 ")\n",
583	    (uint64_t)freeBlk, (uint64_t)count,
584	    (uint64_t)blk, (uint64_t)radix
585	);
586#endif
587
588	if (scan->u.bmu_avail == 0) {
589		/*
590		 * ALL-ALLOCATED special case, with possible
591		 * shortcut to ALL-FREE special case.
592		 */
593		scan->u.bmu_avail = count;
594		scan->bm_bighint = count;
595
596		if (count != radix)  {
597			for (i = 1; i <= skip; i += next_skip) {
598				if (scan[i].bm_bighint == (blist_blkno_t)-1)
599					break;
600				scan[i].bm_bighint = 0;
601				if (next_skip == 1) {
602					scan[i].u.bmu_bitmap = 0;
603				} else {
604					scan[i].u.bmu_avail = 0;
605				}
606			}
607			/* fall through */
608		}
609	} else {
610		scan->u.bmu_avail += count;
611		/* scan->bm_bighint = radix; */
612	}
613
614	/*
615	 * ALL-FREE special case.
616	 */
617
618	if (scan->u.bmu_avail == radix)
619		return;
620	if (scan->u.bmu_avail > radix)
621		panic("blst_meta_free: freeing already free blocks (%"
622		    PRIu64 ") %" PRIu64 "/%" PRIu64,
623		    (uint64_t)count,
624		    (uint64_t)scan->u.bmu_avail,
625		    (uint64_t)radix);
626
627	/*
628	 * Break the free down into its components
629	 */
630
631	radix /= BLIST_META_RADIX;
632
633	i = (freeBlk - blk) / radix;
634	blk += i * radix;
635	i = i * next_skip + 1;
636
637	while (i <= skip && blk < freeBlk + count) {
638		blist_blkno_t v;
639
640		v = blk + radix - freeBlk;
641		if (v > count)
642			v = count;
643
644		if (scan->bm_bighint == (blist_blkno_t)-1)
645			panic("blst_meta_free: freeing unexpected range");
646
647		if (next_skip == 1) {
648			blst_leaf_free(&scan[i], freeBlk, v);
649		} else {
650			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
651		}
652		if (scan->bm_bighint < scan[i].bm_bighint)
653		    scan->bm_bighint = scan[i].bm_bighint;
654		count -= v;
655		freeBlk += v;
656		blk += radix;
657		i += next_skip;
658	}
659}
660
661/*
662 * BLIST_RADIX_COPY() - copy one radix tree to another
663 *
664 *	Locates free space in the source tree and frees it in the destination
665 *	tree.  The space may not already be free in the destination.
666 */
667
668static void blst_copy(
669	blmeta_t *scan,
670	blist_blkno_t blk,
671	blist_blkno_t radix,
672	blist_blkno_t skip,
673	blist_t dest,
674	blist_blkno_t count
675) {
676	blist_blkno_t next_skip;
677	blist_blkno_t i;
678
679	/*
680	 * Leaf node
681	 */
682
683	if (radix == BLIST_BMAP_RADIX) {
684		blist_bitmap_t v = scan->u.bmu_bitmap;
685
686		if (v == (blist_bitmap_t)-1) {
687			blist_free(dest, blk, count);
688		} else if (v != 0) {
689			int j;
690
691			for (j = 0; j < BLIST_BMAP_RADIX && j < count; ++j) {
692				if (v & (1 << j))
693					blist_free(dest, blk + j, 1);
694			}
695		}
696		return;
697	}
698
699	/*
700	 * Meta node
701	 */
702
703	if (scan->u.bmu_avail == 0) {
704		/*
705		 * Source all allocated, leave dest allocated
706		 */
707		return;
708	}
709	if (scan->u.bmu_avail == radix) {
710		/*
711		 * Source all free, free entire dest
712		 */
713		if (count < radix)
714			blist_free(dest, blk, count);
715		else
716			blist_free(dest, blk, radix);
717		return;
718	}
719
720
721	radix /= BLIST_META_RADIX;
722	next_skip = (skip / BLIST_META_RADIX);
723
724	for (i = 1; count && i <= skip; i += next_skip) {
725		if (scan[i].bm_bighint == (blist_blkno_t)-1)
726			break;
727
728		if (count >= radix) {
729			blst_copy(
730			    &scan[i],
731			    blk,
732			    radix,
733			    next_skip - 1,
734			    dest,
735			    radix
736			);
737			count -= radix;
738		} else {
739			if (count) {
740				blst_copy(
741				    &scan[i],
742				    blk,
743				    radix,
744				    next_skip - 1,
745				    dest,
746				    count
747				);
748			}
749			count = 0;
750		}
751		blk += radix;
752	}
753}
754
755/*
756 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
757 *
758 *	This routine allocates all blocks in the specified range
759 *	regardless of any existing allocations in that range.  Returns
760 *	the number of blocks allocated by the call.
761 */
762
763static int
764blst_leaf_fill(blmeta_t *scan, blist_blkno_t blk, int count)
765{
766	int n = blk & (BLIST_BMAP_RADIX - 1);
767	int nblks;
768	blist_bitmap_t mask, bitmap;
769
770	mask = ((blist_bitmap_t)-1 << n) &
771	    ((blist_bitmap_t)-1 >> (BLIST_BMAP_RADIX - count - n));
772
773	/* Count the number of blocks we're about to allocate */
774	bitmap = scan->u.bmu_bitmap & mask;
775	for (nblks = 0; bitmap != 0; nblks++)
776		bitmap &= bitmap - 1;
777
778	scan->u.bmu_bitmap &= ~mask;
779	return nblks;
780}
781
782/*
783 * BLIST_META_FILL() -	allocate specific blocks at a meta node
784 *
785 *	This routine allocates the specified range of blocks,
786 *	regardless of any existing allocations in the range.  The
787 *	range must be within the extent of this node.  Returns the
788 *	number of blocks allocated by the call.
789 */
790static blist_blkno_t
791blst_meta_fill(
792	blmeta_t *scan,
793	blist_blkno_t allocBlk,
794	blist_blkno_t count,
795	blist_blkno_t radix,
796	blist_blkno_t skip,
797	blist_blkno_t blk
798) {
799	blist_blkno_t i;
800	blist_blkno_t next_skip = (skip / BLIST_META_RADIX);
801	blist_blkno_t nblks = 0;
802
803	if (count == radix || scan->u.bmu_avail == 0)  {
804		/*
805		 * ALL-ALLOCATED special case
806		 */
807		nblks = scan->u.bmu_avail;
808		scan->u.bmu_avail = 0;
809		scan->bm_bighint = count;
810		return nblks;
811	}
812
813	if (count > radix)
814		panic("blist_meta_fill: allocation too large");
815
816	if (scan->u.bmu_avail == radix) {
817		radix /= BLIST_META_RADIX;
818
819		/*
820		 * ALL-FREE special case, initialize sublevel
821		 */
822		for (i = 1; i <= skip; i += next_skip) {
823			if (scan[i].bm_bighint == (blist_blkno_t)-1)
824				break;
825			if (next_skip == 1) {
826				scan[i].u.bmu_bitmap = (blist_bitmap_t)-1;
827				scan[i].bm_bighint = BLIST_BMAP_RADIX;
828			} else {
829				scan[i].bm_bighint = radix;
830				scan[i].u.bmu_avail = radix;
831			}
832		}
833	} else {
834		radix /= BLIST_META_RADIX;
835	}
836
837	i = (allocBlk - blk) / radix;
838	blk += i * radix;
839	i = i * next_skip + 1;
840
841	while (i <= skip && blk < allocBlk + count) {
842		blist_blkno_t v;
843
844		v = blk + radix - allocBlk;
845		if (v > count)
846			v = count;
847
848		if (scan->bm_bighint == (blist_blkno_t)-1)
849			panic("blst_meta_fill: filling unexpected range");
850
851		if (next_skip == 1) {
852			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
853		} else {
854			nblks += blst_meta_fill(&scan[i], allocBlk, v,
855			    radix, next_skip - 1, blk);
856		}
857		count -= v;
858		allocBlk += v;
859		blk += radix;
860		i += next_skip;
861	}
862	scan->u.bmu_avail -= nblks;
863	return nblks;
864}
865
866/*
867 * BLST_RADIX_INIT() - initialize radix tree
868 *
869 *	Initialize our meta structures and bitmaps and calculate the exact
870 *	amount of space required to manage 'count' blocks - this space may
871 *	be considerably less then the calculated radix due to the large
872 *	RADIX values we use.
873 */
874
875static blist_blkno_t
876blst_radix_init(blmeta_t *scan, blist_blkno_t radix, blist_blkno_t skip,
877    blist_blkno_t count)
878{
879	blist_blkno_t i;
880	blist_blkno_t next_skip;
881	blist_blkno_t memindex = 0;
882
883	/*
884	 * Leaf node
885	 */
886
887	if (radix == BLIST_BMAP_RADIX) {
888		if (scan) {
889			scan->bm_bighint = 0;
890			scan->u.bmu_bitmap = 0;
891		}
892		return(memindex);
893	}
894
895	/*
896	 * Meta node.  If allocating the entire object we can special
897	 * case it.  However, we need to figure out how much memory
898	 * is required to manage 'count' blocks, so we continue on anyway.
899	 */
900
901	if (scan) {
902		scan->bm_bighint = 0;
903		scan->u.bmu_avail = 0;
904	}
905
906	radix /= BLIST_META_RADIX;
907	next_skip = (skip / BLIST_META_RADIX);
908
909	for (i = 1; i <= skip; i += next_skip) {
910		if (count >= radix) {
911			/*
912			 * Allocate the entire object
913			 */
914			memindex = i + blst_radix_init(
915			    ((scan) ? &scan[i] : NULL),
916			    radix,
917			    next_skip - 1,
918			    radix
919			);
920			count -= radix;
921		} else if (count > 0) {
922			/*
923			 * Allocate a partial object
924			 */
925			memindex = i + blst_radix_init(
926			    ((scan) ? &scan[i] : NULL),
927			    radix,
928			    next_skip - 1,
929			    count
930			);
931			count = 0;
932		} else {
933			/*
934			 * Add terminator and break out
935			 */
936			if (scan)
937				scan[i].bm_bighint = (blist_blkno_t)-1;
938			break;
939		}
940	}
941	if (memindex < i)
942		memindex = i;
943	return(memindex);
944}
945
946#ifdef BLIST_DEBUG
947
948static void
949blst_radix_print(blmeta_t *scan, blist_blkno_t blk, blist_blkno_t radix,
950    blist_blkno_t skip, int tab)
951{
952	blist_blkno_t i;
953	blist_blkno_t next_skip;
954	int lastState = 0;
955
956	if (radix == BLIST_BMAP_RADIX) {
957		printf(
958		    "%*.*s(%0*" PRIx64 ",%" PRIu64
959		    "): bitmap %0*" PRIx64 " big=%" PRIu64 "\n",
960		    tab, tab, "",
961		    sizeof(blk) * 2,
962		    (uint64_t)blk,
963		    (uint64_t)radix,
964		    sizeof(scan->u.bmu_bitmap) * 2,
965		    (uint64_t)scan->u.bmu_bitmap,
966		    (uint64_t)scan->bm_bighint
967		);
968		return;
969	}
970
971	if (scan->u.bmu_avail == 0) {
972		printf(
973		    "%*.*s(%0*" PRIx64 ",%" PRIu64") ALL ALLOCATED\n",
974		    tab, tab, "",
975		    sizeof(blk) * 2,
976		    (uint64_t)blk,
977		    (uint64_t)radix
978		);
979		return;
980	}
981	if (scan->u.bmu_avail == radix) {
982		printf(
983		    "%*.*s(%0*" PRIx64 ",%" PRIu64 ") ALL FREE\n",
984		    tab, tab, "",
985		    sizeof(blk) * 2,
986		    (uint64_t)blk,
987		    (uint64_t)radix
988		);
989		return;
990	}
991
992	printf(
993	    "%*.*s(%0*" PRIx64 ",%" PRIu64 "): subtree (%" PRIu64 "/%"
994	    PRIu64 ") big=%" PRIu64 " {\n",
995	    tab, tab, "",
996	    sizeof(blk) * 2,
997	    (uint64_t)blk,
998	    (uint64_t)radix,
999	    (uint64_t)scan->u.bmu_avail,
1000	    (uint64_t)radix,
1001	    (uint64_t)scan->bm_bighint
1002	);
1003
1004	radix /= BLIST_META_RADIX;
1005	next_skip = (skip / BLIST_META_RADIX);
1006	tab += 4;
1007
1008	for (i = 1; i <= skip; i += next_skip) {
1009		if (scan[i].bm_bighint == (blist_blkno_t)-1) {
1010			printf(
1011			    "%*.*s(%0*" PRIx64 ",%" PRIu64 "): Terminator\n",
1012			    tab, tab, "",
1013			    sizeof(blk) * 2,
1014			    (uint64_t)blk,
1015			    (uint64_t)radix
1016			);
1017			lastState = 0;
1018			break;
1019		}
1020		blst_radix_print(
1021		    &scan[i],
1022		    blk,
1023		    radix,
1024		    next_skip - 1,
1025		    tab
1026		);
1027		blk += radix;
1028	}
1029	tab -= 4;
1030
1031	printf(
1032	    "%*.*s}\n",
1033	    tab, tab, ""
1034	);
1035}
1036
1037#endif
1038
1039#ifdef BLIST_DEBUG
1040
1041int
1042main(int ac, char **av)
1043{
1044	blist_blkno_t size = 1024;
1045	int i;
1046	blist_t bl;
1047
1048	for (i = 1; i < ac; ++i) {
1049		const char *ptr = av[i];
1050		if (*ptr != '-') {
1051			size = strtol(ptr, NULL, 0);
1052			continue;
1053		}
1054		ptr += 2;
1055		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1056		exit(1);
1057	}
1058	bl = blist_create(size);
1059	blist_free(bl, 0, size);
1060
1061	for (;;) {
1062		char buf[1024];
1063		uint64_t da = 0;
1064		uint64_t count = 0;
1065
1066		printf("%" PRIu64 "/%" PRIu64 "/%" PRIu64 "> ",
1067		    (uint64_t)bl->bl_free,
1068		    (uint64_t)size,
1069		    (uint64_t)bl->bl_radix);
1070		fflush(stdout);
1071		if (fgets(buf, sizeof(buf), stdin) == NULL)
1072			break;
1073		switch(buf[0]) {
1074		case 'r':
1075			if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1076				blist_resize(&bl, count, 1);
1077			} else {
1078				printf("?\n");
1079			}
1080		case 'p':
1081			blist_print(bl);
1082			break;
1083		case 'a':
1084			if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1085				blist_blkno_t blk = blist_alloc(bl, count);
1086				printf("    R=%0*" PRIx64 "\n",
1087				    sizeof(blk) * 2,
1088				    (uint64_t)blk);
1089			} else {
1090				printf("?\n");
1091			}
1092			break;
1093		case 'f':
1094			if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1095			    &da, &count) == 2) {
1096				blist_free(bl, da, count);
1097			} else {
1098				printf("?\n");
1099			}
1100			break;
1101		case 'l':
1102			if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1103			    &da, &count) == 2) {
1104				printf("    n=%" PRIu64 "\n",
1105				    (uint64_t)blist_fill(bl, da, count));
1106			} else {
1107				printf("?\n");
1108			}
1109			break;
1110		case '?':
1111		case 'h':
1112			puts(
1113			    "p          -print\n"
1114			    "a %d       -allocate\n"
1115			    "f %x %d    -free\n"
1116			    "l %x %d    -fill\n"
1117			    "r %d       -resize\n"
1118			    "h/?        -help"
1119			);
1120			break;
1121		default:
1122			printf("?\n");
1123			break;
1124		}
1125	}
1126	return(0);
1127}
1128
1129void
1130panic(const char *ctl, ...)
1131{
1132	va_list va;
1133
1134	va_start(va, ctl);
1135	vfprintf(stderr, ctl, va);
1136	fprintf(stderr, "\n");
1137	va_end(va);
1138	exit(1);
1139}
1140
1141#endif
1142
1143