1/*	$NetBSD: kern_lwp.c,v 1.166 2012/02/11 23:16:17 martin Exp $	*/
2
3/*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Overview
34 *
35 *	Lightweight processes (LWPs) are the basic unit or thread of
36 *	execution within the kernel.  The core state of an LWP is described
37 *	by "struct lwp", also known as lwp_t.
38 *
39 *	Each LWP is contained within a process (described by "struct proc"),
40 *	Every process contains at least one LWP, but may contain more.  The
41 *	process describes attributes shared among all of its LWPs such as a
42 *	private address space, global execution state (stopped, active,
43 *	zombie, ...), signal disposition and so on.  On a multiprocessor
44 *	machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 *	At any given time, an LWP has overall state that is described by
49 *	lwp::l_stat.  The states are broken into two sets below.  The first
50 *	set is guaranteed to represent the absolute, current state of the
51 *	LWP:
52 *
53 *	LSONPROC
54 *
55 *		On processor: the LWP is executing on a CPU, either in the
56 *		kernel or in user space.
57 *
58 *	LSRUN
59 *
60 *		Runnable: the LWP is parked on a run queue, and may soon be
61 *		chosen to run by an idle processor, or by a processor that
62 *		has been asked to preempt a currently runnning but lower
63 *		priority LWP.
64 *
65 *	LSIDL
66 *
67 *		Idle: the LWP has been created but has not yet executed,
68 *		or it has ceased executing a unit of work and is waiting
69 *		to be started again.
70 *
71 *	LSSUSPENDED:
72 *
73 *		Suspended: the LWP has had its execution suspended by
74 *		another LWP in the same process using the _lwp_suspend()
75 *		system call.  User-level LWPs also enter the suspended
76 *		state when the system is shutting down.
77 *
78 *	The second set represent a "statement of intent" on behalf of the
79 *	LWP.  The LWP may in fact be executing on a processor, may be
80 *	sleeping or idle. It is expected to take the necessary action to
81 *	stop executing or become "running" again within a short timeframe.
82 *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 *	Importantly, it indicates that its state is tied to a CPU.
84 *
85 *	LSZOMB:
86 *
87 *		Dead or dying: the LWP has released most of its resources
88 *		and is about to switch away into oblivion, or has already
89 *		switched away.  When it switches away, its few remaining
90 *		resources can be collected.
91 *
92 *	LSSLEEP:
93 *
94 *		Sleeping: the LWP has entered itself onto a sleep queue, and
95 *		has switched away or will switch away shortly to allow other
96 *		LWPs to run on the CPU.
97 *
98 *	LSSTOP:
99 *
100 *		Stopped: the LWP has been stopped as a result of a job
101 *		control signal, or as a result of the ptrace() interface.
102 *
103 *		Stopped LWPs may run briefly within the kernel to handle
104 *		signals that they receive, but will not return to user space
105 *		until their process' state is changed away from stopped.
106 *
107 *		Single LWPs within a process can not be set stopped
108 *		selectively: all actions that can stop or continue LWPs
109 *		occur at the process level.
110 *
111 * State transitions
112 *
113 *	Note that the LSSTOP state may only be set when returning to
114 *	user space in userret(), or when sleeping interruptably.  The
115 *	LSSUSPENDED state may only be set in userret().  Before setting
116 *	those states, we try to ensure that the LWPs will release all
117 *	locks that they hold, and at a minimum try to ensure that the
118 *	LWP can be set runnable again by a signal.
119 *
120 *	LWPs may transition states in the following ways:
121 *
122 *	 RUN -------> ONPROC		ONPROC -----> RUN
123 *		    				    > SLEEP
124 *		    				    > STOPPED
125 *						    > SUSPENDED
126 *						    > ZOMB
127 *						    > IDL (special cases)
128 *
129 *	 STOPPED ---> RUN		SUSPENDED --> RUN
130 *	            > SLEEP
131 *
132 *	 SLEEP -----> ONPROC		IDL --------> RUN
133 *		    > RUN			    > SUSPENDED
134 *		    > STOPPED			    > STOPPED
135 *						    > ONPROC (special cases)
136 *
137 *	Some state transitions are only possible with kernel threads (eg
138 *	ONPROC -> IDL) and happen under tightly controlled circumstances
139 *	free of unwanted side effects.
140 *
141 * Migration
142 *
143 *	Migration of threads from one CPU to another could be performed
144 *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 *	functions.  The universal lwp_migrate() function should be used for
146 *	any other cases.  Subsystems in the kernel must be aware that CPU
147 *	of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 *	The majority of fields in 'struct lwp' are covered by a single,
152 *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153 *	each field are documented in sys/lwp.h.
154 *
155 *	State transitions must be made with the LWP's general lock held,
156 *	and may cause the LWP's lock pointer to change.  Manipulation of
157 *	the general lock is not performed directly, but through calls to
158 *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159 *	adaptive locks are not allowed to be released while the LWP's lock
160 *	is being held (unlike for other spin-locks).
161 *
162 *	States and their associated locks:
163 *
164 *	LSONPROC, LSZOMB:
165 *
166 *		Always covered by spc_lwplock, which protects running LWPs.
167 *		This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 *	LSIDL, LSRUN:
170 *
171 *		Always covered by spc_mutex, which protects the run queues.
172 *		This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 *	LSSLEEP:
175 *
176 *		Covered by a lock associated with the sleep queue that the
177 *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178 *
179 *	LSSTOP, LSSUSPENDED:
180 *
181 *		If the LWP was previously sleeping (l_wchan != NULL), then
182 *		l_mutex references the sleep queue lock.  If the LWP was
183 *		runnable or on the CPU when halted, or has been removed from
184 *		the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 *	The lock order is as follows:
187 *
188 *		spc::spc_lwplock ->
189 *		    sleeptab::st_mutex ->
190 *			tschain_t::tc_mutex ->
191 *			    spc::spc_mutex
192 *
193 *	Each process has an scheduler state lock (proc::p_lock), and a
194 *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 *	so on.  When an LWP is to be entered into or removed from one of the
196 *	following states, p_lock must be held and the process wide counters
197 *	adjusted:
198 *
199 *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 *	(But not always for kernel threads.  There are some special cases
202 *	as mentioned above.  See kern_softint.c.)
203 *
204 *	Note that an LWP is considered running or likely to run soon if in
205 *	one of the following states.  This affects the value of p_nrlwps:
206 *
207 *		LSRUN, LSONPROC, LSSLEEP
208 *
209 *	p_lock does not need to be held when transitioning among these
210 *	three states, hence p_lock is rarely taken for state transitions.
211 */
212
213#include <sys/cdefs.h>
214__KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.166 2012/02/11 23:16:17 martin Exp $");
215
216#include "opt_ddb.h"
217#include "opt_lockdebug.h"
218#include "opt_sa.h"
219#include "opt_dtrace.h"
220
221#define _LWP_API_PRIVATE
222
223#include <sys/param.h>
224#include <sys/systm.h>
225#include <sys/cpu.h>
226#include <sys/pool.h>
227#include <sys/proc.h>
228#include <sys/sa.h>
229#include <sys/savar.h>
230#include <sys/syscallargs.h>
231#include <sys/syscall_stats.h>
232#include <sys/kauth.h>
233#include <sys/pserialize.h>
234#include <sys/sleepq.h>
235#include <sys/lockdebug.h>
236#include <sys/kmem.h>
237#include <sys/pset.h>
238#include <sys/intr.h>
239#include <sys/lwpctl.h>
240#include <sys/atomic.h>
241#include <sys/filedesc.h>
242#include <sys/dtrace_bsd.h>
243#include <sys/sdt.h>
244#include <sys/xcall.h>
245
246#include <uvm/uvm_extern.h>
247#include <uvm/uvm_object.h>
248
249static pool_cache_t	lwp_cache	__read_mostly;
250struct lwplist		alllwp		__cacheline_aligned;
251
252static void		lwp_dtor(void *, void *);
253
254/* DTrace proc provider probes */
255SDT_PROBE_DEFINE(proc,,,lwp_create,
256	"struct lwp *", NULL,
257	NULL, NULL, NULL, NULL,
258	NULL, NULL, NULL, NULL);
259SDT_PROBE_DEFINE(proc,,,lwp_start,
260	"struct lwp *", NULL,
261	NULL, NULL, NULL, NULL,
262	NULL, NULL, NULL, NULL);
263SDT_PROBE_DEFINE(proc,,,lwp_exit,
264	"struct lwp *", NULL,
265	NULL, NULL, NULL, NULL,
266	NULL, NULL, NULL, NULL);
267
268struct turnstile turnstile0;
269struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
270#ifdef LWP0_CPU_INFO
271	.l_cpu = LWP0_CPU_INFO,
272#endif
273#ifdef LWP0_MD_INITIALIZER
274	.l_md = LWP0_MD_INITIALIZER,
275#endif
276	.l_proc = &proc0,
277	.l_lid = 1,
278	.l_flag = LW_SYSTEM,
279	.l_stat = LSONPROC,
280	.l_ts = &turnstile0,
281	.l_syncobj = &sched_syncobj,
282	.l_refcnt = 1,
283	.l_priority = PRI_USER + NPRI_USER - 1,
284	.l_inheritedprio = -1,
285	.l_class = SCHED_OTHER,
286	.l_psid = PS_NONE,
287	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
288	.l_name = __UNCONST("swapper"),
289	.l_fd = &filedesc0,
290};
291
292void
293lwpinit(void)
294{
295
296	LIST_INIT(&alllwp);
297	lwpinit_specificdata();
298	lwp_sys_init();
299	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
300	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
301}
302
303void
304lwp0_init(void)
305{
306	struct lwp *l = &lwp0;
307
308	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
309	KASSERT(l->l_lid == proc0.p_nlwpid);
310
311	LIST_INSERT_HEAD(&alllwp, l, l_list);
312
313	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
314	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
315	cv_init(&l->l_sigcv, "sigwait");
316
317	kauth_cred_hold(proc0.p_cred);
318	l->l_cred = proc0.p_cred;
319
320	kdtrace_thread_ctor(NULL, l);
321	lwp_initspecific(l);
322
323	SYSCALL_TIME_LWP_INIT(l);
324}
325
326static void
327lwp_dtor(void *arg, void *obj)
328{
329	lwp_t *l = obj;
330	uint64_t where;
331	(void)l;
332
333	/*
334	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
335	 * calls will exit before memory of LWP is returned to the pool, where
336	 * KVA of LWP structure might be freed and re-used for other purposes.
337	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
338	 * callers, therefore cross-call to all CPUs will do the job.  Also,
339	 * the value of l->l_cpu must be still valid at this point.
340	 */
341	KASSERT(l->l_cpu != NULL);
342	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
343	xc_wait(where);
344}
345
346/*
347 * Set an suspended.
348 *
349 * Must be called with p_lock held, and the LWP locked.  Will unlock the
350 * LWP before return.
351 */
352int
353lwp_suspend(struct lwp *curl, struct lwp *t)
354{
355	int error;
356
357	KASSERT(mutex_owned(t->l_proc->p_lock));
358	KASSERT(lwp_locked(t, NULL));
359
360	KASSERT(curl != t || curl->l_stat == LSONPROC);
361
362	/*
363	 * If the current LWP has been told to exit, we must not suspend anyone
364	 * else or deadlock could occur.  We won't return to userspace.
365	 */
366	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
367		lwp_unlock(t);
368		return (EDEADLK);
369	}
370
371	error = 0;
372
373	switch (t->l_stat) {
374	case LSRUN:
375	case LSONPROC:
376		t->l_flag |= LW_WSUSPEND;
377		lwp_need_userret(t);
378		lwp_unlock(t);
379		break;
380
381	case LSSLEEP:
382		t->l_flag |= LW_WSUSPEND;
383
384		/*
385		 * Kick the LWP and try to get it to the kernel boundary
386		 * so that it will release any locks that it holds.
387		 * setrunnable() will release the lock.
388		 */
389		if ((t->l_flag & LW_SINTR) != 0)
390			setrunnable(t);
391		else
392			lwp_unlock(t);
393		break;
394
395	case LSSUSPENDED:
396		lwp_unlock(t);
397		break;
398
399	case LSSTOP:
400		t->l_flag |= LW_WSUSPEND;
401		setrunnable(t);
402		break;
403
404	case LSIDL:
405	case LSZOMB:
406		error = EINTR; /* It's what Solaris does..... */
407		lwp_unlock(t);
408		break;
409	}
410
411	return (error);
412}
413
414/*
415 * Restart a suspended LWP.
416 *
417 * Must be called with p_lock held, and the LWP locked.  Will unlock the
418 * LWP before return.
419 */
420void
421lwp_continue(struct lwp *l)
422{
423
424	KASSERT(mutex_owned(l->l_proc->p_lock));
425	KASSERT(lwp_locked(l, NULL));
426
427	/* If rebooting or not suspended, then just bail out. */
428	if ((l->l_flag & LW_WREBOOT) != 0) {
429		lwp_unlock(l);
430		return;
431	}
432
433	l->l_flag &= ~LW_WSUSPEND;
434
435	if (l->l_stat != LSSUSPENDED) {
436		lwp_unlock(l);
437		return;
438	}
439
440	/* setrunnable() will release the lock. */
441	setrunnable(l);
442}
443
444/*
445 * Restart a stopped LWP.
446 *
447 * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
448 * LWP before return.
449 */
450void
451lwp_unstop(struct lwp *l)
452{
453	struct proc *p = l->l_proc;
454
455	KASSERT(mutex_owned(proc_lock));
456	KASSERT(mutex_owned(p->p_lock));
457
458	lwp_lock(l);
459
460	/* If not stopped, then just bail out. */
461	if (l->l_stat != LSSTOP) {
462		lwp_unlock(l);
463		return;
464	}
465
466	p->p_stat = SACTIVE;
467	p->p_sflag &= ~PS_STOPPING;
468
469	if (!p->p_waited)
470		p->p_pptr->p_nstopchild--;
471
472	if (l->l_wchan == NULL) {
473		/* setrunnable() will release the lock. */
474		setrunnable(l);
475	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
476		/* setrunnable() so we can receive the signal */
477		setrunnable(l);
478	} else {
479		l->l_stat = LSSLEEP;
480		p->p_nrlwps++;
481		lwp_unlock(l);
482	}
483}
484
485/*
486 * Wait for an LWP within the current process to exit.  If 'lid' is
487 * non-zero, we are waiting for a specific LWP.
488 *
489 * Must be called with p->p_lock held.
490 */
491int
492lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
493{
494	const lwpid_t curlid = l->l_lid;
495	proc_t *p = l->l_proc;
496	lwp_t *l2;
497	int error;
498
499	KASSERT(mutex_owned(p->p_lock));
500
501	p->p_nlwpwait++;
502	l->l_waitingfor = lid;
503
504	for (;;) {
505		int nfound;
506
507		/*
508		 * Avoid a race between exit1() and sigexit(): if the
509		 * process is dumping core, then we need to bail out: call
510		 * into lwp_userret() where we will be suspended until the
511		 * deed is done.
512		 */
513		if ((p->p_sflag & PS_WCORE) != 0) {
514			mutex_exit(p->p_lock);
515			lwp_userret(l);
516			KASSERT(false);
517		}
518
519		/*
520		 * First off, drain any detached LWP that is waiting to be
521		 * reaped.
522		 */
523		while ((l2 = p->p_zomblwp) != NULL) {
524			p->p_zomblwp = NULL;
525			lwp_free(l2, false, false);/* releases proc mutex */
526			mutex_enter(p->p_lock);
527		}
528
529		/*
530		 * Now look for an LWP to collect.  If the whole process is
531		 * exiting, count detached LWPs as eligible to be collected,
532		 * but don't drain them here.
533		 */
534		nfound = 0;
535		error = 0;
536		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
537			/*
538			 * If a specific wait and the target is waiting on
539			 * us, then avoid deadlock.  This also traps LWPs
540			 * that try to wait on themselves.
541			 *
542			 * Note that this does not handle more complicated
543			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
544			 * can still be killed so it is not a major problem.
545			 */
546			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
547				error = EDEADLK;
548				break;
549			}
550			if (l2 == l)
551				continue;
552			if ((l2->l_prflag & LPR_DETACHED) != 0) {
553				nfound += exiting;
554				continue;
555			}
556			if (lid != 0) {
557				if (l2->l_lid != lid)
558					continue;
559				/*
560				 * Mark this LWP as the first waiter, if there
561				 * is no other.
562				 */
563				if (l2->l_waiter == 0)
564					l2->l_waiter = curlid;
565			} else if (l2->l_waiter != 0) {
566				/*
567				 * It already has a waiter - so don't
568				 * collect it.  If the waiter doesn't
569				 * grab it we'll get another chance
570				 * later.
571				 */
572				nfound++;
573				continue;
574			}
575			nfound++;
576
577			/* No need to lock the LWP in order to see LSZOMB. */
578			if (l2->l_stat != LSZOMB)
579				continue;
580
581			/*
582			 * We're no longer waiting.  Reset the "first waiter"
583			 * pointer on the target, in case it was us.
584			 */
585			l->l_waitingfor = 0;
586			l2->l_waiter = 0;
587			p->p_nlwpwait--;
588			if (departed)
589				*departed = l2->l_lid;
590			sched_lwp_collect(l2);
591
592			/* lwp_free() releases the proc lock. */
593			lwp_free(l2, false, false);
594			mutex_enter(p->p_lock);
595			return 0;
596		}
597
598		if (error != 0)
599			break;
600		if (nfound == 0) {
601			error = ESRCH;
602			break;
603		}
604
605		/*
606		 * Note: since the lock will be dropped, need to restart on
607		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
608		 */
609		if (exiting) {
610			KASSERT(p->p_nlwps > 1);
611			cv_wait(&p->p_lwpcv, p->p_lock);
612			error = EAGAIN;
613			break;
614		}
615
616		/*
617		 * If all other LWPs are waiting for exits or suspends
618		 * and the supply of zombies and potential zombies is
619		 * exhausted, then we are about to deadlock.
620		 *
621		 * If the process is exiting (and this LWP is not the one
622		 * that is coordinating the exit) then bail out now.
623		 */
624		if ((p->p_sflag & PS_WEXIT) != 0 ||
625		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
626			error = EDEADLK;
627			break;
628		}
629
630		/*
631		 * Sit around and wait for something to happen.  We'll be
632		 * awoken if any of the conditions examined change: if an
633		 * LWP exits, is collected, or is detached.
634		 */
635		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
636			break;
637	}
638
639	/*
640	 * We didn't find any LWPs to collect, we may have received a
641	 * signal, or some other condition has caused us to bail out.
642	 *
643	 * If waiting on a specific LWP, clear the waiters marker: some
644	 * other LWP may want it.  Then, kick all the remaining waiters
645	 * so that they can re-check for zombies and for deadlock.
646	 */
647	if (lid != 0) {
648		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
649			if (l2->l_lid == lid) {
650				if (l2->l_waiter == curlid)
651					l2->l_waiter = 0;
652				break;
653			}
654		}
655	}
656	p->p_nlwpwait--;
657	l->l_waitingfor = 0;
658	cv_broadcast(&p->p_lwpcv);
659
660	return error;
661}
662
663/*
664 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
665 * The new LWP is created in state LSIDL and must be set running,
666 * suspended, or stopped by the caller.
667 */
668int
669lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
670	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
671	   lwp_t **rnewlwpp, int sclass)
672{
673	struct lwp *l2, *isfree;
674	turnstile_t *ts;
675	lwpid_t lid;
676
677	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
678
679	/*
680	 * First off, reap any detached LWP waiting to be collected.
681	 * We can re-use its LWP structure and turnstile.
682	 */
683	isfree = NULL;
684	if (p2->p_zomblwp != NULL) {
685		mutex_enter(p2->p_lock);
686		if ((isfree = p2->p_zomblwp) != NULL) {
687			p2->p_zomblwp = NULL;
688			lwp_free(isfree, true, false);/* releases proc mutex */
689		} else
690			mutex_exit(p2->p_lock);
691	}
692	if (isfree == NULL) {
693		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
694		memset(l2, 0, sizeof(*l2));
695		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
696		SLIST_INIT(&l2->l_pi_lenders);
697	} else {
698		l2 = isfree;
699		ts = l2->l_ts;
700		KASSERT(l2->l_inheritedprio == -1);
701		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
702		memset(l2, 0, sizeof(*l2));
703		l2->l_ts = ts;
704	}
705
706	l2->l_stat = LSIDL;
707	l2->l_proc = p2;
708	l2->l_refcnt = 1;
709	l2->l_class = sclass;
710
711	/*
712	 * If vfork(), we want the LWP to run fast and on the same CPU
713	 * as its parent, so that it can reuse the VM context and cache
714	 * footprint on the local CPU.
715	 */
716	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
717	l2->l_kpribase = PRI_KERNEL;
718	l2->l_priority = l1->l_priority;
719	l2->l_inheritedprio = -1;
720	l2->l_flag = 0;
721	l2->l_pflag = LP_MPSAFE;
722	TAILQ_INIT(&l2->l_ld_locks);
723
724	/*
725	 * For vfork, borrow parent's lwpctl context if it exists.
726	 * This also causes us to return via lwp_userret.
727	 */
728	if (flags & LWP_VFORK && l1->l_lwpctl) {
729		l2->l_lwpctl = l1->l_lwpctl;
730		l2->l_flag |= LW_LWPCTL;
731	}
732
733	/*
734	 * If not the first LWP in the process, grab a reference to the
735	 * descriptor table.
736	 */
737	l2->l_fd = p2->p_fd;
738	if (p2->p_nlwps != 0) {
739		KASSERT(l1->l_proc == p2);
740		fd_hold(l2);
741	} else {
742		KASSERT(l1->l_proc != p2);
743	}
744
745	if (p2->p_flag & PK_SYSTEM) {
746		/* Mark it as a system LWP. */
747		l2->l_flag |= LW_SYSTEM;
748	}
749
750	kpreempt_disable();
751	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
752	l2->l_cpu = l1->l_cpu;
753	kpreempt_enable();
754
755	kdtrace_thread_ctor(NULL, l2);
756	lwp_initspecific(l2);
757	sched_lwp_fork(l1, l2);
758	lwp_update_creds(l2);
759	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
760	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
761	cv_init(&l2->l_sigcv, "sigwait");
762	l2->l_syncobj = &sched_syncobj;
763
764	if (rnewlwpp != NULL)
765		*rnewlwpp = l2;
766
767	/*
768	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
769	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
770	 */
771	pcu_save_all(l1);
772
773	uvm_lwp_setuarea(l2, uaddr);
774	uvm_lwp_fork(l1, l2, stack, stacksize, func,
775	    (arg != NULL) ? arg : l2);
776
777	if ((flags & LWP_PIDLID) != 0) {
778		lid = proc_alloc_pid(p2);
779		l2->l_pflag |= LP_PIDLID;
780	} else {
781		lid = 0;
782	}
783
784	mutex_enter(p2->p_lock);
785
786	if ((flags & LWP_DETACHED) != 0) {
787		l2->l_prflag = LPR_DETACHED;
788		p2->p_ndlwps++;
789	} else
790		l2->l_prflag = 0;
791
792	l2->l_sigstk = l1->l_sigstk;
793	l2->l_sigmask = l1->l_sigmask;
794	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
795	sigemptyset(&l2->l_sigpend.sp_set);
796
797	if (lid == 0) {
798		p2->p_nlwpid++;
799		if (p2->p_nlwpid == 0)
800			p2->p_nlwpid++;
801		lid = p2->p_nlwpid;
802	}
803	l2->l_lid = lid;
804	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
805	p2->p_nlwps++;
806	p2->p_nrlwps++;
807
808	KASSERT(l2->l_affinity == NULL);
809
810	if ((p2->p_flag & PK_SYSTEM) == 0) {
811		/* Inherit the affinity mask. */
812		if (l1->l_affinity) {
813			/*
814			 * Note that we hold the state lock while inheriting
815			 * the affinity to avoid race with sched_setaffinity().
816			 */
817			lwp_lock(l1);
818			if (l1->l_affinity) {
819				kcpuset_use(l1->l_affinity);
820				l2->l_affinity = l1->l_affinity;
821			}
822			lwp_unlock(l1);
823		}
824		lwp_lock(l2);
825		/* Inherit a processor-set */
826		l2->l_psid = l1->l_psid;
827		/* Look for a CPU to start */
828		l2->l_cpu = sched_takecpu(l2);
829		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
830	}
831	mutex_exit(p2->p_lock);
832
833	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
834
835	mutex_enter(proc_lock);
836	LIST_INSERT_HEAD(&alllwp, l2, l_list);
837	mutex_exit(proc_lock);
838
839	SYSCALL_TIME_LWP_INIT(l2);
840
841	if (p2->p_emul->e_lwp_fork)
842		(*p2->p_emul->e_lwp_fork)(l1, l2);
843
844	return (0);
845}
846
847/*
848 * Called by MD code when a new LWP begins execution.  Must be called
849 * with the previous LWP locked (so at splsched), or if there is no
850 * previous LWP, at splsched.
851 */
852void
853lwp_startup(struct lwp *prev, struct lwp *new)
854{
855
856	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
857
858	KASSERT(kpreempt_disabled());
859	if (prev != NULL) {
860		/*
861		 * Normalize the count of the spin-mutexes, it was
862		 * increased in mi_switch().  Unmark the state of
863		 * context switch - it is finished for previous LWP.
864		 */
865		curcpu()->ci_mtx_count++;
866		membar_exit();
867		prev->l_ctxswtch = 0;
868	}
869	KPREEMPT_DISABLE(new);
870	spl0();
871	if (__predict_true(new->l_proc->p_vmspace))
872		pmap_activate(new);
873
874	/* Note trip through cpu_switchto(). */
875	pserialize_switchpoint();
876
877	LOCKDEBUG_BARRIER(NULL, 0);
878	KPREEMPT_ENABLE(new);
879	if ((new->l_pflag & LP_MPSAFE) == 0) {
880		KERNEL_LOCK(1, new);
881	}
882}
883
884/*
885 * Exit an LWP.
886 */
887void
888lwp_exit(struct lwp *l)
889{
890	struct proc *p = l->l_proc;
891	struct lwp *l2;
892	bool current;
893
894	current = (l == curlwp);
895
896	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
897	KASSERT(p == curproc);
898
899	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
900
901	/*
902	 * Verify that we hold no locks other than the kernel lock.
903	 */
904	LOCKDEBUG_BARRIER(&kernel_lock, 0);
905
906	/*
907	 * If we are the last live LWP in a process, we need to exit the
908	 * entire process.  We do so with an exit status of zero, because
909	 * it's a "controlled" exit, and because that's what Solaris does.
910	 *
911	 * We are not quite a zombie yet, but for accounting purposes we
912	 * must increment the count of zombies here.
913	 *
914	 * Note: the last LWP's specificdata will be deleted here.
915	 */
916	mutex_enter(p->p_lock);
917	if (p->p_nlwps - p->p_nzlwps == 1) {
918		KASSERT(current == true);
919		/* XXXSMP kernel_lock not held */
920		exit1(l, 0);
921		/* NOTREACHED */
922	}
923	p->p_nzlwps++;
924	mutex_exit(p->p_lock);
925
926	if (p->p_emul->e_lwp_exit)
927		(*p->p_emul->e_lwp_exit)(l);
928
929	/* Drop filedesc reference. */
930	fd_free();
931
932	/* Delete the specificdata while it's still safe to sleep. */
933	lwp_finispecific(l);
934
935	/*
936	 * Release our cached credentials.
937	 */
938	kauth_cred_free(l->l_cred);
939	callout_destroy(&l->l_timeout_ch);
940
941	/*
942	 * Remove the LWP from the global list.
943	 * Free its LID from the PID namespace if needed.
944	 */
945	mutex_enter(proc_lock);
946	LIST_REMOVE(l, l_list);
947	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
948		proc_free_pid(l->l_lid);
949	}
950	mutex_exit(proc_lock);
951
952	/*
953	 * Get rid of all references to the LWP that others (e.g. procfs)
954	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
955	 * mark it waiting for collection in the proc structure.  Note that
956	 * before we can do that, we need to free any other dead, deatched
957	 * LWP waiting to meet its maker.
958	 */
959	mutex_enter(p->p_lock);
960	lwp_drainrefs(l);
961
962	if ((l->l_prflag & LPR_DETACHED) != 0) {
963		while ((l2 = p->p_zomblwp) != NULL) {
964			p->p_zomblwp = NULL;
965			lwp_free(l2, false, false);/* releases proc mutex */
966			mutex_enter(p->p_lock);
967			l->l_refcnt++;
968			lwp_drainrefs(l);
969		}
970		p->p_zomblwp = l;
971	}
972
973	/*
974	 * If we find a pending signal for the process and we have been
975	 * asked to check for signals, then we lose: arrange to have
976	 * all other LWPs in the process check for signals.
977	 */
978	if ((l->l_flag & LW_PENDSIG) != 0 &&
979	    firstsig(&p->p_sigpend.sp_set) != 0) {
980		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
981			lwp_lock(l2);
982			l2->l_flag |= LW_PENDSIG;
983			lwp_unlock(l2);
984		}
985	}
986
987	/*
988	 * Release any PCU resources before becoming a zombie.
989	 */
990	pcu_discard_all(l);
991
992	lwp_lock(l);
993	l->l_stat = LSZOMB;
994	if (l->l_name != NULL) {
995		strcpy(l->l_name, "(zombie)");
996	}
997	lwp_unlock(l);
998	p->p_nrlwps--;
999	cv_broadcast(&p->p_lwpcv);
1000	if (l->l_lwpctl != NULL)
1001		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1002	mutex_exit(p->p_lock);
1003
1004	/*
1005	 * We can no longer block.  At this point, lwp_free() may already
1006	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1007	 *
1008	 * Free MD LWP resources.
1009	 */
1010	cpu_lwp_free(l, 0);
1011
1012	if (current) {
1013		pmap_deactivate(l);
1014
1015		/*
1016		 * Release the kernel lock, and switch away into
1017		 * oblivion.
1018		 */
1019#ifdef notyet
1020		/* XXXSMP hold in lwp_userret() */
1021		KERNEL_UNLOCK_LAST(l);
1022#else
1023		KERNEL_UNLOCK_ALL(l, NULL);
1024#endif
1025		lwp_exit_switchaway(l);
1026	}
1027}
1028
1029/*
1030 * Free a dead LWP's remaining resources.
1031 *
1032 * XXXLWP limits.
1033 */
1034void
1035lwp_free(struct lwp *l, bool recycle, bool last)
1036{
1037	struct proc *p = l->l_proc;
1038	struct rusage *ru;
1039	ksiginfoq_t kq;
1040
1041	KASSERT(l != curlwp);
1042	KASSERT(last || mutex_owned(p->p_lock));
1043
1044	/*
1045	 * If this was not the last LWP in the process, then adjust
1046	 * counters and unlock.
1047	 */
1048	if (!last) {
1049		/*
1050		 * Add the LWP's run time to the process' base value.
1051		 * This needs to co-incide with coming off p_lwps.
1052		 */
1053		bintime_add(&p->p_rtime, &l->l_rtime);
1054		p->p_pctcpu += l->l_pctcpu;
1055		ru = &p->p_stats->p_ru;
1056		ruadd(ru, &l->l_ru);
1057		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1058		ru->ru_nivcsw += l->l_nivcsw;
1059		LIST_REMOVE(l, l_sibling);
1060		p->p_nlwps--;
1061		p->p_nzlwps--;
1062		if ((l->l_prflag & LPR_DETACHED) != 0)
1063			p->p_ndlwps--;
1064
1065		/*
1066		 * Have any LWPs sleeping in lwp_wait() recheck for
1067		 * deadlock.
1068		 */
1069		cv_broadcast(&p->p_lwpcv);
1070		mutex_exit(p->p_lock);
1071	}
1072
1073#ifdef MULTIPROCESSOR
1074	/*
1075	 * In the unlikely event that the LWP is still on the CPU,
1076	 * then spin until it has switched away.  We need to release
1077	 * all locks to avoid deadlock against interrupt handlers on
1078	 * the target CPU.
1079	 */
1080	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1081		int count;
1082		(void)count; /* XXXgcc */
1083		KERNEL_UNLOCK_ALL(curlwp, &count);
1084		while ((l->l_pflag & LP_RUNNING) != 0 ||
1085		    l->l_cpu->ci_curlwp == l)
1086			SPINLOCK_BACKOFF_HOOK;
1087		KERNEL_LOCK(count, curlwp);
1088	}
1089#endif
1090
1091	/*
1092	 * Destroy the LWP's remaining signal information.
1093	 */
1094	ksiginfo_queue_init(&kq);
1095	sigclear(&l->l_sigpend, NULL, &kq);
1096	ksiginfo_queue_drain(&kq);
1097	cv_destroy(&l->l_sigcv);
1098
1099	/*
1100	 * Free lwpctl structure and affinity.
1101	 */
1102	if (l->l_lwpctl) {
1103		lwp_ctl_free(l);
1104	}
1105	if (l->l_affinity) {
1106		kcpuset_unuse(l->l_affinity, NULL);
1107		l->l_affinity = NULL;
1108	}
1109
1110	/*
1111	 * Free the LWP's turnstile and the LWP structure itself unless the
1112	 * caller wants to recycle them.  Also, free the scheduler specific
1113	 * data.
1114	 *
1115	 * We can't return turnstile0 to the pool (it didn't come from it),
1116	 * so if it comes up just drop it quietly and move on.
1117	 *
1118	 * We don't recycle the VM resources at this time.
1119	 */
1120
1121	if (!recycle && l->l_ts != &turnstile0)
1122		pool_cache_put(turnstile_cache, l->l_ts);
1123	if (l->l_name != NULL)
1124		kmem_free(l->l_name, MAXCOMLEN);
1125
1126	cpu_lwp_free2(l);
1127	uvm_lwp_exit(l);
1128
1129	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1130	KASSERT(l->l_inheritedprio == -1);
1131	KASSERT(l->l_blcnt == 0);
1132	kdtrace_thread_dtor(NULL, l);
1133	if (!recycle)
1134		pool_cache_put(lwp_cache, l);
1135}
1136
1137/*
1138 * Migrate the LWP to the another CPU.  Unlocks the LWP.
1139 */
1140void
1141lwp_migrate(lwp_t *l, struct cpu_info *tci)
1142{
1143	struct schedstate_percpu *tspc;
1144	int lstat = l->l_stat;
1145
1146	KASSERT(lwp_locked(l, NULL));
1147	KASSERT(tci != NULL);
1148
1149	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1150	if ((l->l_pflag & LP_RUNNING) != 0) {
1151		lstat = LSONPROC;
1152	}
1153
1154	/*
1155	 * The destination CPU could be changed while previous migration
1156	 * was not finished.
1157	 */
1158	if (l->l_target_cpu != NULL) {
1159		l->l_target_cpu = tci;
1160		lwp_unlock(l);
1161		return;
1162	}
1163
1164	/* Nothing to do if trying to migrate to the same CPU */
1165	if (l->l_cpu == tci) {
1166		lwp_unlock(l);
1167		return;
1168	}
1169
1170	KASSERT(l->l_target_cpu == NULL);
1171	tspc = &tci->ci_schedstate;
1172	switch (lstat) {
1173	case LSRUN:
1174		l->l_target_cpu = tci;
1175		break;
1176	case LSIDL:
1177		l->l_cpu = tci;
1178		lwp_unlock_to(l, tspc->spc_mutex);
1179		return;
1180	case LSSLEEP:
1181		l->l_cpu = tci;
1182		break;
1183	case LSSTOP:
1184	case LSSUSPENDED:
1185		l->l_cpu = tci;
1186		if (l->l_wchan == NULL) {
1187			lwp_unlock_to(l, tspc->spc_lwplock);
1188			return;
1189		}
1190		break;
1191	case LSONPROC:
1192		l->l_target_cpu = tci;
1193		spc_lock(l->l_cpu);
1194		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1195		spc_unlock(l->l_cpu);
1196		break;
1197	}
1198	lwp_unlock(l);
1199}
1200
1201/*
1202 * Find the LWP in the process.  Arguments may be zero, in such case,
1203 * the calling process and first LWP in the list will be used.
1204 * On success - returns proc locked.
1205 */
1206struct lwp *
1207lwp_find2(pid_t pid, lwpid_t lid)
1208{
1209	proc_t *p;
1210	lwp_t *l;
1211
1212	/* Find the process. */
1213	if (pid != 0) {
1214		mutex_enter(proc_lock);
1215		p = proc_find(pid);
1216		if (p == NULL) {
1217			mutex_exit(proc_lock);
1218			return NULL;
1219		}
1220		mutex_enter(p->p_lock);
1221		mutex_exit(proc_lock);
1222	} else {
1223		p = curlwp->l_proc;
1224		mutex_enter(p->p_lock);
1225	}
1226	/* Find the thread. */
1227	if (lid != 0) {
1228		l = lwp_find(p, lid);
1229	} else {
1230		l = LIST_FIRST(&p->p_lwps);
1231	}
1232	if (l == NULL) {
1233		mutex_exit(p->p_lock);
1234	}
1235	return l;
1236}
1237
1238/*
1239 * Look up a live LWP within the specified process, and return it locked.
1240 *
1241 * Must be called with p->p_lock held.
1242 */
1243struct lwp *
1244lwp_find(struct proc *p, lwpid_t id)
1245{
1246	struct lwp *l;
1247
1248	KASSERT(mutex_owned(p->p_lock));
1249
1250	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1251		if (l->l_lid == id)
1252			break;
1253	}
1254
1255	/*
1256	 * No need to lock - all of these conditions will
1257	 * be visible with the process level mutex held.
1258	 */
1259	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1260		l = NULL;
1261
1262	return l;
1263}
1264
1265/*
1266 * Update an LWP's cached credentials to mirror the process' master copy.
1267 *
1268 * This happens early in the syscall path, on user trap, and on LWP
1269 * creation.  A long-running LWP can also voluntarily choose to update
1270 * it's credentials by calling this routine.  This may be called from
1271 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1272 */
1273void
1274lwp_update_creds(struct lwp *l)
1275{
1276	kauth_cred_t oc;
1277	struct proc *p;
1278
1279	p = l->l_proc;
1280	oc = l->l_cred;
1281
1282	mutex_enter(p->p_lock);
1283	kauth_cred_hold(p->p_cred);
1284	l->l_cred = p->p_cred;
1285	l->l_prflag &= ~LPR_CRMOD;
1286	mutex_exit(p->p_lock);
1287	if (oc != NULL)
1288		kauth_cred_free(oc);
1289}
1290
1291/*
1292 * Verify that an LWP is locked, and optionally verify that the lock matches
1293 * one we specify.
1294 */
1295int
1296lwp_locked(struct lwp *l, kmutex_t *mtx)
1297{
1298	kmutex_t *cur = l->l_mutex;
1299
1300	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1301}
1302
1303/*
1304 * Lend a new mutex to an LWP.  The old mutex must be held.
1305 */
1306void
1307lwp_setlock(struct lwp *l, kmutex_t *new)
1308{
1309
1310	KASSERT(mutex_owned(l->l_mutex));
1311
1312	membar_exit();
1313	l->l_mutex = new;
1314}
1315
1316/*
1317 * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1318 * must be held.
1319 */
1320void
1321lwp_unlock_to(struct lwp *l, kmutex_t *new)
1322{
1323	kmutex_t *old;
1324
1325	KASSERT(lwp_locked(l, NULL));
1326
1327	old = l->l_mutex;
1328	membar_exit();
1329	l->l_mutex = new;
1330	mutex_spin_exit(old);
1331}
1332
1333int
1334lwp_trylock(struct lwp *l)
1335{
1336	kmutex_t *old;
1337
1338	for (;;) {
1339		if (!mutex_tryenter(old = l->l_mutex))
1340			return 0;
1341		if (__predict_true(l->l_mutex == old))
1342			return 1;
1343		mutex_spin_exit(old);
1344	}
1345}
1346
1347void
1348lwp_unsleep(lwp_t *l, bool cleanup)
1349{
1350
1351	KASSERT(mutex_owned(l->l_mutex));
1352	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1353}
1354
1355/*
1356 * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1357 * set.
1358 */
1359void
1360lwp_userret(struct lwp *l)
1361{
1362	struct proc *p;
1363	int sig;
1364
1365	KASSERT(l == curlwp);
1366	KASSERT(l->l_stat == LSONPROC);
1367	p = l->l_proc;
1368
1369#ifndef __HAVE_FAST_SOFTINTS
1370	/* Run pending soft interrupts. */
1371	if (l->l_cpu->ci_data.cpu_softints != 0)
1372		softint_overlay();
1373#endif
1374
1375#ifdef KERN_SA
1376	/* Generate UNBLOCKED upcall if needed */
1377	if (l->l_flag & LW_SA_BLOCKING) {
1378		sa_unblock_userret(l);
1379		/* NOTREACHED */
1380	}
1381#endif
1382
1383	/*
1384	 * It should be safe to do this read unlocked on a multiprocessor
1385	 * system..
1386	 *
1387	 * LW_SA_UPCALL will be handled after the while() loop, so don't
1388	 * consider it now.
1389	 */
1390	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1391		/*
1392		 * Process pending signals first, unless the process
1393		 * is dumping core or exiting, where we will instead
1394		 * enter the LW_WSUSPEND case below.
1395		 */
1396		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1397		    LW_PENDSIG) {
1398			mutex_enter(p->p_lock);
1399			while ((sig = issignal(l)) != 0)
1400				postsig(sig);
1401			mutex_exit(p->p_lock);
1402		}
1403
1404		/*
1405		 * Core-dump or suspend pending.
1406		 *
1407		 * In case of core dump, suspend ourselves, so that the kernel
1408		 * stack and therefore the userland registers saved in the
1409		 * trapframe are around for coredump() to write them out.
1410		 * We also need to save any PCU resources that we have so that
1411		 * they accessible for coredump().  We issue a wakeup on
1412		 * p->p_lwpcv so that sigexit() will write the core file out
1413		 * once all other LWPs are suspended.
1414		 */
1415		if ((l->l_flag & LW_WSUSPEND) != 0) {
1416			pcu_save_all(l);
1417			mutex_enter(p->p_lock);
1418			p->p_nrlwps--;
1419			cv_broadcast(&p->p_lwpcv);
1420			lwp_lock(l);
1421			l->l_stat = LSSUSPENDED;
1422			lwp_unlock(l);
1423			mutex_exit(p->p_lock);
1424			lwp_lock(l);
1425			mi_switch(l);
1426		}
1427
1428		/* Process is exiting. */
1429		if ((l->l_flag & LW_WEXIT) != 0) {
1430			lwp_exit(l);
1431			KASSERT(0);
1432			/* NOTREACHED */
1433		}
1434
1435		/* update lwpctl processor (for vfork child_return) */
1436		if (l->l_flag & LW_LWPCTL) {
1437			lwp_lock(l);
1438			KASSERT(kpreempt_disabled());
1439			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1440			l->l_lwpctl->lc_pctr++;
1441			l->l_flag &= ~LW_LWPCTL;
1442			lwp_unlock(l);
1443		}
1444	}
1445
1446#ifdef KERN_SA
1447	/*
1448	 * Timer events are handled specially.  We only try once to deliver
1449	 * pending timer upcalls; if if fails, we can try again on the next
1450	 * loop around.  If we need to re-enter lwp_userret(), MD code will
1451	 * bounce us back here through the trap path after we return.
1452	 */
1453	if (p->p_timerpend)
1454		timerupcall(l);
1455	if (l->l_flag & LW_SA_UPCALL)
1456		sa_upcall_userret(l);
1457#endif /* KERN_SA */
1458}
1459
1460/*
1461 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1462 */
1463void
1464lwp_need_userret(struct lwp *l)
1465{
1466	KASSERT(lwp_locked(l, NULL));
1467
1468	/*
1469	 * Since the tests in lwp_userret() are done unlocked, make sure
1470	 * that the condition will be seen before forcing the LWP to enter
1471	 * kernel mode.
1472	 */
1473	membar_producer();
1474	cpu_signotify(l);
1475}
1476
1477/*
1478 * Add one reference to an LWP.  This will prevent the LWP from
1479 * exiting, thus keep the lwp structure and PCB around to inspect.
1480 */
1481void
1482lwp_addref(struct lwp *l)
1483{
1484
1485	KASSERT(mutex_owned(l->l_proc->p_lock));
1486	KASSERT(l->l_stat != LSZOMB);
1487	KASSERT(l->l_refcnt != 0);
1488
1489	l->l_refcnt++;
1490}
1491
1492/*
1493 * Remove one reference to an LWP.  If this is the last reference,
1494 * then we must finalize the LWP's death.
1495 */
1496void
1497lwp_delref(struct lwp *l)
1498{
1499	struct proc *p = l->l_proc;
1500
1501	mutex_enter(p->p_lock);
1502	lwp_delref2(l);
1503	mutex_exit(p->p_lock);
1504}
1505
1506/*
1507 * Remove one reference to an LWP.  If this is the last reference,
1508 * then we must finalize the LWP's death.  The proc mutex is held
1509 * on entry.
1510 */
1511void
1512lwp_delref2(struct lwp *l)
1513{
1514	struct proc *p = l->l_proc;
1515
1516	KASSERT(mutex_owned(p->p_lock));
1517	KASSERT(l->l_stat != LSZOMB);
1518	KASSERT(l->l_refcnt > 0);
1519	if (--l->l_refcnt == 0)
1520		cv_broadcast(&p->p_lwpcv);
1521}
1522
1523/*
1524 * Drain all references to the current LWP.
1525 */
1526void
1527lwp_drainrefs(struct lwp *l)
1528{
1529	struct proc *p = l->l_proc;
1530
1531	KASSERT(mutex_owned(p->p_lock));
1532	KASSERT(l->l_refcnt != 0);
1533
1534	l->l_refcnt--;
1535	while (l->l_refcnt != 0)
1536		cv_wait(&p->p_lwpcv, p->p_lock);
1537}
1538
1539/*
1540 * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1541 * be held.
1542 */
1543bool
1544lwp_alive(lwp_t *l)
1545{
1546
1547	KASSERT(mutex_owned(l->l_proc->p_lock));
1548
1549	switch (l->l_stat) {
1550	case LSSLEEP:
1551	case LSRUN:
1552	case LSONPROC:
1553	case LSSTOP:
1554	case LSSUSPENDED:
1555		return true;
1556	default:
1557		return false;
1558	}
1559}
1560
1561/*
1562 * Return first live LWP in the process.
1563 */
1564lwp_t *
1565lwp_find_first(proc_t *p)
1566{
1567	lwp_t *l;
1568
1569	KASSERT(mutex_owned(p->p_lock));
1570
1571	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1572		if (lwp_alive(l)) {
1573			return l;
1574		}
1575	}
1576
1577	return NULL;
1578}
1579
1580/*
1581 * Allocate a new lwpctl structure for a user LWP.
1582 */
1583int
1584lwp_ctl_alloc(vaddr_t *uaddr)
1585{
1586	lcproc_t *lp;
1587	u_int bit, i, offset;
1588	struct uvm_object *uao;
1589	int error;
1590	lcpage_t *lcp;
1591	proc_t *p;
1592	lwp_t *l;
1593
1594	l = curlwp;
1595	p = l->l_proc;
1596
1597	/* don't allow a vforked process to create lwp ctls */
1598	if (p->p_lflag & PL_PPWAIT)
1599		return EBUSY;
1600
1601	if (l->l_lcpage != NULL) {
1602		lcp = l->l_lcpage;
1603		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1604		return 0;
1605	}
1606
1607	/* First time around, allocate header structure for the process. */
1608	if ((lp = p->p_lwpctl) == NULL) {
1609		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1610		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1611		lp->lp_uao = NULL;
1612		TAILQ_INIT(&lp->lp_pages);
1613		mutex_enter(p->p_lock);
1614		if (p->p_lwpctl == NULL) {
1615			p->p_lwpctl = lp;
1616			mutex_exit(p->p_lock);
1617		} else {
1618			mutex_exit(p->p_lock);
1619			mutex_destroy(&lp->lp_lock);
1620			kmem_free(lp, sizeof(*lp));
1621			lp = p->p_lwpctl;
1622		}
1623	}
1624
1625 	/*
1626 	 * Set up an anonymous memory region to hold the shared pages.
1627 	 * Map them into the process' address space.  The user vmspace
1628 	 * gets the first reference on the UAO.
1629 	 */
1630	mutex_enter(&lp->lp_lock);
1631	if (lp->lp_uao == NULL) {
1632		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1633		lp->lp_cur = 0;
1634		lp->lp_max = LWPCTL_UAREA_SZ;
1635		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1636		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1637		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1638		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1639		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1640		if (error != 0) {
1641			uao_detach(lp->lp_uao);
1642			lp->lp_uao = NULL;
1643			mutex_exit(&lp->lp_lock);
1644			return error;
1645		}
1646	}
1647
1648	/* Get a free block and allocate for this LWP. */
1649	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1650		if (lcp->lcp_nfree != 0)
1651			break;
1652	}
1653	if (lcp == NULL) {
1654		/* Nothing available - try to set up a free page. */
1655		if (lp->lp_cur == lp->lp_max) {
1656			mutex_exit(&lp->lp_lock);
1657			return ENOMEM;
1658		}
1659		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1660		if (lcp == NULL) {
1661			mutex_exit(&lp->lp_lock);
1662			return ENOMEM;
1663		}
1664		/*
1665		 * Wire the next page down in kernel space.  Since this
1666		 * is a new mapping, we must add a reference.
1667		 */
1668		uao = lp->lp_uao;
1669		(*uao->pgops->pgo_reference)(uao);
1670		lcp->lcp_kaddr = vm_map_min(kernel_map);
1671		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1672		    uao, lp->lp_cur, PAGE_SIZE,
1673		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1674		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1675		if (error != 0) {
1676			mutex_exit(&lp->lp_lock);
1677			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1678			(*uao->pgops->pgo_detach)(uao);
1679			return error;
1680		}
1681		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1682		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1683		if (error != 0) {
1684			mutex_exit(&lp->lp_lock);
1685			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1686			    lcp->lcp_kaddr + PAGE_SIZE);
1687			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1688			return error;
1689		}
1690		/* Prepare the page descriptor and link into the list. */
1691		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1692		lp->lp_cur += PAGE_SIZE;
1693		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1694		lcp->lcp_rotor = 0;
1695		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1696		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1697	}
1698	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1699		if (++i >= LWPCTL_BITMAP_ENTRIES)
1700			i = 0;
1701	}
1702	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1703	lcp->lcp_bitmap[i] ^= (1 << bit);
1704	lcp->lcp_rotor = i;
1705	lcp->lcp_nfree--;
1706	l->l_lcpage = lcp;
1707	offset = (i << 5) + bit;
1708	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1709	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1710	mutex_exit(&lp->lp_lock);
1711
1712	KPREEMPT_DISABLE(l);
1713	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1714	KPREEMPT_ENABLE(l);
1715
1716	return 0;
1717}
1718
1719/*
1720 * Free an lwpctl structure back to the per-process list.
1721 */
1722void
1723lwp_ctl_free(lwp_t *l)
1724{
1725	struct proc *p = l->l_proc;
1726	lcproc_t *lp;
1727	lcpage_t *lcp;
1728	u_int map, offset;
1729
1730	/* don't free a lwp context we borrowed for vfork */
1731	if (p->p_lflag & PL_PPWAIT) {
1732		l->l_lwpctl = NULL;
1733		return;
1734	}
1735
1736	lp = p->p_lwpctl;
1737	KASSERT(lp != NULL);
1738
1739	lcp = l->l_lcpage;
1740	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1741	KASSERT(offset < LWPCTL_PER_PAGE);
1742
1743	mutex_enter(&lp->lp_lock);
1744	lcp->lcp_nfree++;
1745	map = offset >> 5;
1746	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1747	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1748		lcp->lcp_rotor = map;
1749	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1750		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1751		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1752	}
1753	mutex_exit(&lp->lp_lock);
1754}
1755
1756/*
1757 * Process is exiting; tear down lwpctl state.  This can only be safely
1758 * called by the last LWP in the process.
1759 */
1760void
1761lwp_ctl_exit(void)
1762{
1763	lcpage_t *lcp, *next;
1764	lcproc_t *lp;
1765	proc_t *p;
1766	lwp_t *l;
1767
1768	l = curlwp;
1769	l->l_lwpctl = NULL;
1770	l->l_lcpage = NULL;
1771	p = l->l_proc;
1772	lp = p->p_lwpctl;
1773
1774	KASSERT(lp != NULL);
1775	KASSERT(p->p_nlwps == 1);
1776
1777	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1778		next = TAILQ_NEXT(lcp, lcp_chain);
1779		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1780		    lcp->lcp_kaddr + PAGE_SIZE);
1781		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1782	}
1783
1784	if (lp->lp_uao != NULL) {
1785		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1786		    lp->lp_uva + LWPCTL_UAREA_SZ);
1787	}
1788
1789	mutex_destroy(&lp->lp_lock);
1790	kmem_free(lp, sizeof(*lp));
1791	p->p_lwpctl = NULL;
1792}
1793
1794/*
1795 * Return the current LWP's "preemption counter".  Used to detect
1796 * preemption across operations that can tolerate preemption without
1797 * crashing, but which may generate incorrect results if preempted.
1798 */
1799uint64_t
1800lwp_pctr(void)
1801{
1802
1803	return curlwp->l_ncsw;
1804}
1805
1806/*
1807 * Set an LWP's private data pointer.
1808 */
1809int
1810lwp_setprivate(struct lwp *l, void *ptr)
1811{
1812	int error = 0;
1813
1814	l->l_private = ptr;
1815#ifdef __HAVE_CPU_LWP_SETPRIVATE
1816	error = cpu_lwp_setprivate(l, ptr);
1817#endif
1818	return error;
1819}
1820
1821#if defined(DDB)
1822#include <machine/pcb.h>
1823
1824void
1825lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1826{
1827	lwp_t *l;
1828
1829	LIST_FOREACH(l, &alllwp, l_list) {
1830		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1831
1832		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1833			continue;
1834		}
1835		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1836		    (void *)addr, (void *)stack,
1837		    (size_t)(addr - stack), l);
1838	}
1839}
1840#endif /* defined(DDB) */
1841